- add sources.
[platform/framework/web/crosswalk.git] / src / third_party / lzma_sdk / LzmaEnc.c
1 /* LzmaEnc.c -- LZMA Encoder
2 2010-04-16 : Igor Pavlov : Public domain */
3
4 #include <string.h>
5
6 /* #define SHOW_STAT */
7 /* #define SHOW_STAT2 */
8
9 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
10 #include <stdio.h>
11 #endif
12
13 #include "LzmaEnc.h"
14
15 #include "LzFind.h"
16 #ifndef _7ZIP_ST
17 #include "LzFindMt.h"
18 #endif
19
20 #ifdef SHOW_STAT
21 static int ttt = 0;
22 #endif
23
24 #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
25
26 #define kBlockSize (9 << 10)
27 #define kUnpackBlockSize (1 << 18)
28 #define kMatchArraySize (1 << 21)
29 #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
30
31 #define kNumMaxDirectBits (31)
32
33 #define kNumTopBits 24
34 #define kTopValue ((UInt32)1 << kNumTopBits)
35
36 #define kNumBitModelTotalBits 11
37 #define kBitModelTotal (1 << kNumBitModelTotalBits)
38 #define kNumMoveBits 5
39 #define kProbInitValue (kBitModelTotal >> 1)
40
41 #define kNumMoveReducingBits 4
42 #define kNumBitPriceShiftBits 4
43 #define kBitPrice (1 << kNumBitPriceShiftBits)
44
45 void LzmaEncProps_Init(CLzmaEncProps *p)
46 {
47   p->level = 5;
48   p->dictSize = p->mc = 0;
49   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
50   p->writeEndMark = 0;
51 }
52
53 void LzmaEncProps_Normalize(CLzmaEncProps *p)
54 {
55   int level = p->level;
56   if (level < 0) level = 5;
57   p->level = level;
58   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
59   if (p->lc < 0) p->lc = 3;
60   if (p->lp < 0) p->lp = 0;
61   if (p->pb < 0) p->pb = 2;
62   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
63   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
64   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
65   if (p->numHashBytes < 0) p->numHashBytes = 4;
66   if (p->mc == 0)  p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
67   if (p->numThreads < 0)
68     p->numThreads =
69       #ifndef _7ZIP_ST
70       ((p->btMode && p->algo) ? 2 : 1);
71       #else
72       1;
73       #endif
74 }
75
76 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
77 {
78   CLzmaEncProps props = *props2;
79   LzmaEncProps_Normalize(&props);
80   return props.dictSize;
81 }
82
83 /* #define LZMA_LOG_BSR */
84 /* Define it for Intel's CPU */
85
86
87 #ifdef LZMA_LOG_BSR
88
89 #define kDicLogSizeMaxCompress 30
90
91 #define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
92
93 UInt32 GetPosSlot1(UInt32 pos)
94 {
95   UInt32 res;
96   BSR2_RET(pos, res);
97   return res;
98 }
99 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
100 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
101
102 #else
103
104 #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
105 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
106
107 void LzmaEnc_FastPosInit(Byte *g_FastPos)
108 {
109   int c = 2, slotFast;
110   g_FastPos[0] = 0;
111   g_FastPos[1] = 1;
112   
113   for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
114   {
115     UInt32 k = (1 << ((slotFast >> 1) - 1));
116     UInt32 j;
117     for (j = 0; j < k; j++, c++)
118       g_FastPos[c] = (Byte)slotFast;
119   }
120 }
121
122 #define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
123   (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
124   res = p->g_FastPos[pos >> i] + (i * 2); }
125 /*
126 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
127   p->g_FastPos[pos >> 6] + 12 : \
128   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
129 */
130
131 #define GetPosSlot1(pos) p->g_FastPos[pos]
132 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
133 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
134
135 #endif
136
137
138 #define LZMA_NUM_REPS 4
139
140 typedef unsigned CState;
141
142 typedef struct
143 {
144   UInt32 price;
145
146   CState state;
147   int prev1IsChar;
148   int prev2;
149
150   UInt32 posPrev2;
151   UInt32 backPrev2;
152
153   UInt32 posPrev;
154   UInt32 backPrev;
155   UInt32 backs[LZMA_NUM_REPS];
156 } COptimal;
157
158 #define kNumOpts (1 << 12)
159
160 #define kNumLenToPosStates 4
161 #define kNumPosSlotBits 6
162 #define kDicLogSizeMin 0
163 #define kDicLogSizeMax 32
164 #define kDistTableSizeMax (kDicLogSizeMax * 2)
165
166
167 #define kNumAlignBits 4
168 #define kAlignTableSize (1 << kNumAlignBits)
169 #define kAlignMask (kAlignTableSize - 1)
170
171 #define kStartPosModelIndex 4
172 #define kEndPosModelIndex 14
173 #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
174
175 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
176
177 #ifdef _LZMA_PROB32
178 #define CLzmaProb UInt32
179 #else
180 #define CLzmaProb UInt16
181 #endif
182
183 #define LZMA_PB_MAX 4
184 #define LZMA_LC_MAX 8
185 #define LZMA_LP_MAX 4
186
187 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
188
189
190 #define kLenNumLowBits 3
191 #define kLenNumLowSymbols (1 << kLenNumLowBits)
192 #define kLenNumMidBits 3
193 #define kLenNumMidSymbols (1 << kLenNumMidBits)
194 #define kLenNumHighBits 8
195 #define kLenNumHighSymbols (1 << kLenNumHighBits)
196
197 #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
198
199 #define LZMA_MATCH_LEN_MIN 2
200 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
201
202 #define kNumStates 12
203
204 typedef struct
205 {
206   CLzmaProb choice;
207   CLzmaProb choice2;
208   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
209   CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
210   CLzmaProb high[kLenNumHighSymbols];
211 } CLenEnc;
212
213 typedef struct
214 {
215   CLenEnc p;
216   UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
217   UInt32 tableSize;
218   UInt32 counters[LZMA_NUM_PB_STATES_MAX];
219 } CLenPriceEnc;
220
221 typedef struct
222 {
223   UInt32 range;
224   Byte cache;
225   UInt64 low;
226   UInt64 cacheSize;
227   Byte *buf;
228   Byte *bufLim;
229   Byte *bufBase;
230   ISeqOutStream *outStream;
231   UInt64 processed;
232   SRes res;
233 } CRangeEnc;
234
235 typedef struct
236 {
237   CLzmaProb *litProbs;
238
239   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
240   CLzmaProb isRep[kNumStates];
241   CLzmaProb isRepG0[kNumStates];
242   CLzmaProb isRepG1[kNumStates];
243   CLzmaProb isRepG2[kNumStates];
244   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
245
246   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
247   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
248   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
249   
250   CLenPriceEnc lenEnc;
251   CLenPriceEnc repLenEnc;
252
253   UInt32 reps[LZMA_NUM_REPS];
254   UInt32 state;
255 } CSaveState;
256
257 typedef struct
258 {
259   IMatchFinder matchFinder;
260   void *matchFinderObj;
261
262   #ifndef _7ZIP_ST
263   Bool mtMode;
264   CMatchFinderMt matchFinderMt;
265   #endif
266
267   CMatchFinder matchFinderBase;
268
269   #ifndef _7ZIP_ST
270   Byte pad[128];
271   #endif
272   
273   UInt32 optimumEndIndex;
274   UInt32 optimumCurrentIndex;
275
276   UInt32 longestMatchLength;
277   UInt32 numPairs;
278   UInt32 numAvail;
279   COptimal opt[kNumOpts];
280   
281   #ifndef LZMA_LOG_BSR
282   Byte g_FastPos[1 << kNumLogBits];
283   #endif
284
285   UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
286   UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
287   UInt32 numFastBytes;
288   UInt32 additionalOffset;
289   UInt32 reps[LZMA_NUM_REPS];
290   UInt32 state;
291
292   UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
293   UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
294   UInt32 alignPrices[kAlignTableSize];
295   UInt32 alignPriceCount;
296
297   UInt32 distTableSize;
298
299   unsigned lc, lp, pb;
300   unsigned lpMask, pbMask;
301
302   CLzmaProb *litProbs;
303
304   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
305   CLzmaProb isRep[kNumStates];
306   CLzmaProb isRepG0[kNumStates];
307   CLzmaProb isRepG1[kNumStates];
308   CLzmaProb isRepG2[kNumStates];
309   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
310
311   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
312   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
313   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
314   
315   CLenPriceEnc lenEnc;
316   CLenPriceEnc repLenEnc;
317
318   unsigned lclp;
319
320   Bool fastMode;
321   
322   CRangeEnc rc;
323
324   Bool writeEndMark;
325   UInt64 nowPos64;
326   UInt32 matchPriceCount;
327   Bool finished;
328   Bool multiThread;
329
330   SRes result;
331   UInt32 dictSize;
332   UInt32 matchFinderCycles;
333
334   int needInit;
335
336   CSaveState saveState;
337 } CLzmaEnc;
338
339 void LzmaEnc_SaveState(CLzmaEncHandle pp)
340 {
341   CLzmaEnc *p = (CLzmaEnc *)pp;
342   CSaveState *dest = &p->saveState;
343   int i;
344   dest->lenEnc = p->lenEnc;
345   dest->repLenEnc = p->repLenEnc;
346   dest->state = p->state;
347
348   for (i = 0; i < kNumStates; i++)
349   {
350     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
351     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
352   }
353   for (i = 0; i < kNumLenToPosStates; i++)
354     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
355   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
356   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
357   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
358   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
359   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
360   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
361   memcpy(dest->reps, p->reps, sizeof(p->reps));
362   memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
363 }
364
365 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
366 {
367   CLzmaEnc *dest = (CLzmaEnc *)pp;
368   const CSaveState *p = &dest->saveState;
369   int i;
370   dest->lenEnc = p->lenEnc;
371   dest->repLenEnc = p->repLenEnc;
372   dest->state = p->state;
373
374   for (i = 0; i < kNumStates; i++)
375   {
376     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
377     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
378   }
379   for (i = 0; i < kNumLenToPosStates; i++)
380     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
381   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
382   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
383   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
384   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
385   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
386   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
387   memcpy(dest->reps, p->reps, sizeof(p->reps));
388   memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
389 }
390
391 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
392 {
393   CLzmaEnc *p = (CLzmaEnc *)pp;
394   CLzmaEncProps props = *props2;
395   LzmaEncProps_Normalize(&props);
396
397   if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
398       props.dictSize > ((UInt32)1 << kDicLogSizeMaxCompress) || props.dictSize > ((UInt32)1 << 30))
399     return SZ_ERROR_PARAM;
400   p->dictSize = props.dictSize;
401   p->matchFinderCycles = props.mc;
402   {
403     unsigned fb = props.fb;
404     if (fb < 5)
405       fb = 5;
406     if (fb > LZMA_MATCH_LEN_MAX)
407       fb = LZMA_MATCH_LEN_MAX;
408     p->numFastBytes = fb;
409   }
410   p->lc = props.lc;
411   p->lp = props.lp;
412   p->pb = props.pb;
413   p->fastMode = (props.algo == 0);
414   p->matchFinderBase.btMode = props.btMode;
415   {
416     UInt32 numHashBytes = 4;
417     if (props.btMode)
418     {
419       if (props.numHashBytes < 2)
420         numHashBytes = 2;
421       else if (props.numHashBytes < 4)
422         numHashBytes = props.numHashBytes;
423     }
424     p->matchFinderBase.numHashBytes = numHashBytes;
425   }
426
427   p->matchFinderBase.cutValue = props.mc;
428
429   p->writeEndMark = props.writeEndMark;
430
431   #ifndef _7ZIP_ST
432   /*
433   if (newMultiThread != _multiThread)
434   {
435     ReleaseMatchFinder();
436     _multiThread = newMultiThread;
437   }
438   */
439   p->multiThread = (props.numThreads > 1);
440   #endif
441
442   return SZ_OK;
443 }
444
445 static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
446 static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
447 static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
448 static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
449
450 #define IsCharState(s) ((s) < 7)
451
452 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
453
454 #define kInfinityPrice (1 << 30)
455
456 static void RangeEnc_Construct(CRangeEnc *p)
457 {
458   p->outStream = 0;
459   p->bufBase = 0;
460 }
461
462 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
463
464 #define RC_BUF_SIZE (1 << 16)
465 static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
466 {
467   if (p->bufBase == 0)
468   {
469     p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
470     if (p->bufBase == 0)
471       return 0;
472     p->bufLim = p->bufBase + RC_BUF_SIZE;
473   }
474   return 1;
475 }
476
477 static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
478 {
479   alloc->Free(alloc, p->bufBase);
480   p->bufBase = 0;
481 }
482
483 static void RangeEnc_Init(CRangeEnc *p)
484 {
485   /* Stream.Init(); */
486   p->low = 0;
487   p->range = 0xFFFFFFFF;
488   p->cacheSize = 1;
489   p->cache = 0;
490
491   p->buf = p->bufBase;
492
493   p->processed = 0;
494   p->res = SZ_OK;
495 }
496
497 static void RangeEnc_FlushStream(CRangeEnc *p)
498 {
499   size_t num;
500   if (p->res != SZ_OK)
501     return;
502   num = p->buf - p->bufBase;
503   if (num != p->outStream->Write(p->outStream, p->bufBase, num))
504     p->res = SZ_ERROR_WRITE;
505   p->processed += num;
506   p->buf = p->bufBase;
507 }
508
509 static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
510 {
511   if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
512   {
513     Byte temp = p->cache;
514     do
515     {
516       Byte *buf = p->buf;
517       *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
518       p->buf = buf;
519       if (buf == p->bufLim)
520         RangeEnc_FlushStream(p);
521       temp = 0xFF;
522     }
523     while (--p->cacheSize != 0);
524     p->cache = (Byte)((UInt32)p->low >> 24);
525   }
526   p->cacheSize++;
527   p->low = (UInt32)p->low << 8;
528 }
529
530 static void RangeEnc_FlushData(CRangeEnc *p)
531 {
532   int i;
533   for (i = 0; i < 5; i++)
534     RangeEnc_ShiftLow(p);
535 }
536
537 static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
538 {
539   do
540   {
541     p->range >>= 1;
542     p->low += p->range & (0 - ((value >> --numBits) & 1));
543     if (p->range < kTopValue)
544     {
545       p->range <<= 8;
546       RangeEnc_ShiftLow(p);
547     }
548   }
549   while (numBits != 0);
550 }
551
552 static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
553 {
554   UInt32 ttt = *prob;
555   UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
556   if (symbol == 0)
557   {
558     p->range = newBound;
559     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
560   }
561   else
562   {
563     p->low += newBound;
564     p->range -= newBound;
565     ttt -= ttt >> kNumMoveBits;
566   }
567   *prob = (CLzmaProb)ttt;
568   if (p->range < kTopValue)
569   {
570     p->range <<= 8;
571     RangeEnc_ShiftLow(p);
572   }
573 }
574
575 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
576 {
577   symbol |= 0x100;
578   do
579   {
580     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
581     symbol <<= 1;
582   }
583   while (symbol < 0x10000);
584 }
585
586 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
587 {
588   UInt32 offs = 0x100;
589   symbol |= 0x100;
590   do
591   {
592     matchByte <<= 1;
593     RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
594     symbol <<= 1;
595     offs &= ~(matchByte ^ symbol);
596   }
597   while (symbol < 0x10000);
598 }
599
600 void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
601 {
602   UInt32 i;
603   for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
604   {
605     const int kCyclesBits = kNumBitPriceShiftBits;
606     UInt32 w = i;
607     UInt32 bitCount = 0;
608     int j;
609     for (j = 0; j < kCyclesBits; j++)
610     {
611       w = w * w;
612       bitCount <<= 1;
613       while (w >= ((UInt32)1 << 16))
614       {
615         w >>= 1;
616         bitCount++;
617       }
618     }
619     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
620   }
621 }
622
623
624 #define GET_PRICE(prob, symbol) \
625   p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
626
627 #define GET_PRICEa(prob, symbol) \
628   ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
629
630 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
631 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
632
633 #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
634 #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
635
636 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
637 {
638   UInt32 price = 0;
639   symbol |= 0x100;
640   do
641   {
642     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
643     symbol <<= 1;
644   }
645   while (symbol < 0x10000);
646   return price;
647 }
648
649 static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
650 {
651   UInt32 price = 0;
652   UInt32 offs = 0x100;
653   symbol |= 0x100;
654   do
655   {
656     matchByte <<= 1;
657     price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
658     symbol <<= 1;
659     offs &= ~(matchByte ^ symbol);
660   }
661   while (symbol < 0x10000);
662   return price;
663 }
664
665
666 static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
667 {
668   UInt32 m = 1;
669   int i;
670   for (i = numBitLevels; i != 0;)
671   {
672     UInt32 bit;
673     i--;
674     bit = (symbol >> i) & 1;
675     RangeEnc_EncodeBit(rc, probs + m, bit);
676     m = (m << 1) | bit;
677   }
678 }
679
680 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
681 {
682   UInt32 m = 1;
683   int i;
684   for (i = 0; i < numBitLevels; i++)
685   {
686     UInt32 bit = symbol & 1;
687     RangeEnc_EncodeBit(rc, probs + m, bit);
688     m = (m << 1) | bit;
689     symbol >>= 1;
690   }
691 }
692
693 static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
694 {
695   UInt32 price = 0;
696   symbol |= (1 << numBitLevels);
697   while (symbol != 1)
698   {
699     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
700     symbol >>= 1;
701   }
702   return price;
703 }
704
705 static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
706 {
707   UInt32 price = 0;
708   UInt32 m = 1;
709   int i;
710   for (i = numBitLevels; i != 0; i--)
711   {
712     UInt32 bit = symbol & 1;
713     symbol >>= 1;
714     price += GET_PRICEa(probs[m], bit);
715     m = (m << 1) | bit;
716   }
717   return price;
718 }
719
720
721 static void LenEnc_Init(CLenEnc *p)
722 {
723   unsigned i;
724   p->choice = p->choice2 = kProbInitValue;
725   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
726     p->low[i] = kProbInitValue;
727   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
728     p->mid[i] = kProbInitValue;
729   for (i = 0; i < kLenNumHighSymbols; i++)
730     p->high[i] = kProbInitValue;
731 }
732
733 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
734 {
735   if (symbol < kLenNumLowSymbols)
736   {
737     RangeEnc_EncodeBit(rc, &p->choice, 0);
738     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
739   }
740   else
741   {
742     RangeEnc_EncodeBit(rc, &p->choice, 1);
743     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
744     {
745       RangeEnc_EncodeBit(rc, &p->choice2, 0);
746       RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
747     }
748     else
749     {
750       RangeEnc_EncodeBit(rc, &p->choice2, 1);
751       RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
752     }
753   }
754 }
755
756 static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
757 {
758   UInt32 a0 = GET_PRICE_0a(p->choice);
759   UInt32 a1 = GET_PRICE_1a(p->choice);
760   UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
761   UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
762   UInt32 i = 0;
763   for (i = 0; i < kLenNumLowSymbols; i++)
764   {
765     if (i >= numSymbols)
766       return;
767     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
768   }
769   for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
770   {
771     if (i >= numSymbols)
772       return;
773     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
774   }
775   for (; i < numSymbols; i++)
776     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
777 }
778
779 static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
780 {
781   LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
782   p->counters[posState] = p->tableSize;
783 }
784
785 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
786 {
787   UInt32 posState;
788   for (posState = 0; posState < numPosStates; posState++)
789     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
790 }
791
792 static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
793 {
794   LenEnc_Encode(&p->p, rc, symbol, posState);
795   if (updatePrice)
796     if (--p->counters[posState] == 0)
797       LenPriceEnc_UpdateTable(p, posState, ProbPrices);
798 }
799
800
801
802
803 static void MovePos(CLzmaEnc *p, UInt32 num)
804 {
805   #ifdef SHOW_STAT
806   ttt += num;
807   printf("\n MovePos %d", num);
808   #endif
809   if (num != 0)
810   {
811     p->additionalOffset += num;
812     p->matchFinder.Skip(p->matchFinderObj, num);
813   }
814 }
815
816 static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
817 {
818   UInt32 lenRes = 0, numPairs;
819   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
820   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
821   #ifdef SHOW_STAT
822   printf("\n i = %d numPairs = %d    ", ttt, numPairs / 2);
823   ttt++;
824   {
825     UInt32 i;
826     for (i = 0; i < numPairs; i += 2)
827       printf("%2d %6d   | ", p->matches[i], p->matches[i + 1]);
828   }
829   #endif
830   if (numPairs > 0)
831   {
832     lenRes = p->matches[numPairs - 2];
833     if (lenRes == p->numFastBytes)
834     {
835       const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
836       UInt32 distance = p->matches[numPairs - 1] + 1;
837       UInt32 numAvail = p->numAvail;
838       if (numAvail > LZMA_MATCH_LEN_MAX)
839         numAvail = LZMA_MATCH_LEN_MAX;
840       {
841         const Byte *pby2 = pby - distance;
842         for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
843       }
844     }
845   }
846   p->additionalOffset++;
847   *numDistancePairsRes = numPairs;
848   return lenRes;
849 }
850
851
852 #define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
853 #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
854 #define IsShortRep(p) ((p)->backPrev == 0)
855
856 static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
857 {
858   return
859     GET_PRICE_0(p->isRepG0[state]) +
860     GET_PRICE_0(p->isRep0Long[state][posState]);
861 }
862
863 static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
864 {
865   UInt32 price;
866   if (repIndex == 0)
867   {
868     price = GET_PRICE_0(p->isRepG0[state]);
869     price += GET_PRICE_1(p->isRep0Long[state][posState]);
870   }
871   else
872   {
873     price = GET_PRICE_1(p->isRepG0[state]);
874     if (repIndex == 1)
875       price += GET_PRICE_0(p->isRepG1[state]);
876     else
877     {
878       price += GET_PRICE_1(p->isRepG1[state]);
879       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
880     }
881   }
882   return price;
883 }
884
885 static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
886 {
887   return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
888     GetPureRepPrice(p, repIndex, state, posState);
889 }
890
891 static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
892 {
893   UInt32 posMem = p->opt[cur].posPrev;
894   UInt32 backMem = p->opt[cur].backPrev;
895   p->optimumEndIndex = cur;
896   do
897   {
898     if (p->opt[cur].prev1IsChar)
899     {
900       MakeAsChar(&p->opt[posMem])
901       p->opt[posMem].posPrev = posMem - 1;
902       if (p->opt[cur].prev2)
903       {
904         p->opt[posMem - 1].prev1IsChar = False;
905         p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
906         p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
907       }
908     }
909     {
910       UInt32 posPrev = posMem;
911       UInt32 backCur = backMem;
912       
913       backMem = p->opt[posPrev].backPrev;
914       posMem = p->opt[posPrev].posPrev;
915       
916       p->opt[posPrev].backPrev = backCur;
917       p->opt[posPrev].posPrev = cur;
918       cur = posPrev;
919     }
920   }
921   while (cur != 0);
922   *backRes = p->opt[0].backPrev;
923   p->optimumCurrentIndex  = p->opt[0].posPrev;
924   return p->optimumCurrentIndex;
925 }
926
927 #define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
928
929 static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
930 {
931   UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
932   UInt32 matchPrice, repMatchPrice, normalMatchPrice;
933   UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
934   UInt32 *matches;
935   const Byte *data;
936   Byte curByte, matchByte;
937   if (p->optimumEndIndex != p->optimumCurrentIndex)
938   {
939     const COptimal *opt = &p->opt[p->optimumCurrentIndex];
940     UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
941     *backRes = opt->backPrev;
942     p->optimumCurrentIndex = opt->posPrev;
943     return lenRes;
944   }
945   p->optimumCurrentIndex = p->optimumEndIndex = 0;
946   
947   if (p->additionalOffset == 0)
948     mainLen = ReadMatchDistances(p, &numPairs);
949   else
950   {
951     mainLen = p->longestMatchLength;
952     numPairs = p->numPairs;
953   }
954
955   numAvail = p->numAvail;
956   if (numAvail < 2)
957   {
958     *backRes = (UInt32)(-1);
959     return 1;
960   }
961   if (numAvail > LZMA_MATCH_LEN_MAX)
962     numAvail = LZMA_MATCH_LEN_MAX;
963
964   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
965   repMaxIndex = 0;
966   for (i = 0; i < LZMA_NUM_REPS; i++)
967   {
968     UInt32 lenTest;
969     const Byte *data2;
970     reps[i] = p->reps[i];
971     data2 = data - (reps[i] + 1);
972     if (data[0] != data2[0] || data[1] != data2[1])
973     {
974       repLens[i] = 0;
975       continue;
976     }
977     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
978     repLens[i] = lenTest;
979     if (lenTest > repLens[repMaxIndex])
980       repMaxIndex = i;
981   }
982   if (repLens[repMaxIndex] >= p->numFastBytes)
983   {
984     UInt32 lenRes;
985     *backRes = repMaxIndex;
986     lenRes = repLens[repMaxIndex];
987     MovePos(p, lenRes - 1);
988     return lenRes;
989   }
990
991   matches = p->matches;
992   if (mainLen >= p->numFastBytes)
993   {
994     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
995     MovePos(p, mainLen - 1);
996     return mainLen;
997   }
998   curByte = *data;
999   matchByte = *(data - (reps[0] + 1));
1000
1001   if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1002   {
1003     *backRes = (UInt32)-1;
1004     return 1;
1005   }
1006
1007   p->opt[0].state = (CState)p->state;
1008
1009   posState = (position & p->pbMask);
1010
1011   {
1012     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1013     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1014         (!IsCharState(p->state) ?
1015           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1016           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1017   }
1018
1019   MakeAsChar(&p->opt[1]);
1020
1021   matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1022   repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1023
1024   if (matchByte == curByte)
1025   {
1026     UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
1027     if (shortRepPrice < p->opt[1].price)
1028     {
1029       p->opt[1].price = shortRepPrice;
1030       MakeAsShortRep(&p->opt[1]);
1031     }
1032   }
1033   lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
1034
1035   if (lenEnd < 2)
1036   {
1037     *backRes = p->opt[1].backPrev;
1038     return 1;
1039   }
1040
1041   p->opt[1].posPrev = 0;
1042   for (i = 0; i < LZMA_NUM_REPS; i++)
1043     p->opt[0].backs[i] = reps[i];
1044
1045   len = lenEnd;
1046   do
1047     p->opt[len--].price = kInfinityPrice;
1048   while (len >= 2);
1049
1050   for (i = 0; i < LZMA_NUM_REPS; i++)
1051   {
1052     UInt32 repLen = repLens[i];
1053     UInt32 price;
1054     if (repLen < 2)
1055       continue;
1056     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
1057     do
1058     {
1059       UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
1060       COptimal *opt = &p->opt[repLen];
1061       if (curAndLenPrice < opt->price)
1062       {
1063         opt->price = curAndLenPrice;
1064         opt->posPrev = 0;
1065         opt->backPrev = i;
1066         opt->prev1IsChar = False;
1067       }
1068     }
1069     while (--repLen >= 2);
1070   }
1071
1072   normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1073
1074   len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1075   if (len <= mainLen)
1076   {
1077     UInt32 offs = 0;
1078     while (len > matches[offs])
1079       offs += 2;
1080     for (; ; len++)
1081     {
1082       COptimal *opt;
1083       UInt32 distance = matches[offs + 1];
1084
1085       UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
1086       UInt32 lenToPosState = GetLenToPosState(len);
1087       if (distance < kNumFullDistances)
1088         curAndLenPrice += p->distancesPrices[lenToPosState][distance];
1089       else
1090       {
1091         UInt32 slot;
1092         GetPosSlot2(distance, slot);
1093         curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
1094       }
1095       opt = &p->opt[len];
1096       if (curAndLenPrice < opt->price)
1097       {
1098         opt->price = curAndLenPrice;
1099         opt->posPrev = 0;
1100         opt->backPrev = distance + LZMA_NUM_REPS;
1101         opt->prev1IsChar = False;
1102       }
1103       if (len == matches[offs])
1104       {
1105         offs += 2;
1106         if (offs == numPairs)
1107           break;
1108       }
1109     }
1110   }
1111
1112   cur = 0;
1113
1114     #ifdef SHOW_STAT2
1115     if (position >= 0)
1116     {
1117       unsigned i;
1118       printf("\n pos = %4X", position);
1119       for (i = cur; i <= lenEnd; i++)
1120       printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
1121     }
1122     #endif
1123
1124   for (;;)
1125   {
1126     UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
1127     UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
1128     Bool nextIsChar;
1129     Byte curByte, matchByte;
1130     const Byte *data;
1131     COptimal *curOpt;
1132     COptimal *nextOpt;
1133
1134     cur++;
1135     if (cur == lenEnd)
1136       return Backward(p, backRes, cur);
1137
1138     newLen = ReadMatchDistances(p, &numPairs);
1139     if (newLen >= p->numFastBytes)
1140     {
1141       p->numPairs = numPairs;
1142       p->longestMatchLength = newLen;
1143       return Backward(p, backRes, cur);
1144     }
1145     position++;
1146     curOpt = &p->opt[cur];
1147     posPrev = curOpt->posPrev;
1148     if (curOpt->prev1IsChar)
1149     {
1150       posPrev--;
1151       if (curOpt->prev2)
1152       {
1153         state = p->opt[curOpt->posPrev2].state;
1154         if (curOpt->backPrev2 < LZMA_NUM_REPS)
1155           state = kRepNextStates[state];
1156         else
1157           state = kMatchNextStates[state];
1158       }
1159       else
1160         state = p->opt[posPrev].state;
1161       state = kLiteralNextStates[state];
1162     }
1163     else
1164       state = p->opt[posPrev].state;
1165     if (posPrev == cur - 1)
1166     {
1167       if (IsShortRep(curOpt))
1168         state = kShortRepNextStates[state];
1169       else
1170         state = kLiteralNextStates[state];
1171     }
1172     else
1173     {
1174       UInt32 pos;
1175       const COptimal *prevOpt;
1176       if (curOpt->prev1IsChar && curOpt->prev2)
1177       {
1178         posPrev = curOpt->posPrev2;
1179         pos = curOpt->backPrev2;
1180         state = kRepNextStates[state];
1181       }
1182       else
1183       {
1184         pos = curOpt->backPrev;
1185         if (pos < LZMA_NUM_REPS)
1186           state = kRepNextStates[state];
1187         else
1188           state = kMatchNextStates[state];
1189       }
1190       prevOpt = &p->opt[posPrev];
1191       if (pos < LZMA_NUM_REPS)
1192       {
1193         UInt32 i;
1194         reps[0] = prevOpt->backs[pos];
1195         for (i = 1; i <= pos; i++)
1196           reps[i] = prevOpt->backs[i - 1];
1197         for (; i < LZMA_NUM_REPS; i++)
1198           reps[i] = prevOpt->backs[i];
1199       }
1200       else
1201       {
1202         UInt32 i;
1203         reps[0] = (pos - LZMA_NUM_REPS);
1204         for (i = 1; i < LZMA_NUM_REPS; i++)
1205           reps[i] = prevOpt->backs[i - 1];
1206       }
1207     }
1208     curOpt->state = (CState)state;
1209
1210     curOpt->backs[0] = reps[0];
1211     curOpt->backs[1] = reps[1];
1212     curOpt->backs[2] = reps[2];
1213     curOpt->backs[3] = reps[3];
1214
1215     curPrice = curOpt->price;
1216     nextIsChar = False;
1217     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1218     curByte = *data;
1219     matchByte = *(data - (reps[0] + 1));
1220
1221     posState = (position & p->pbMask);
1222
1223     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1224     {
1225       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1226       curAnd1Price +=
1227         (!IsCharState(state) ?
1228           LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
1229           LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1230     }
1231
1232     nextOpt = &p->opt[cur + 1];
1233
1234     if (curAnd1Price < nextOpt->price)
1235     {
1236       nextOpt->price = curAnd1Price;
1237       nextOpt->posPrev = cur;
1238       MakeAsChar(nextOpt);
1239       nextIsChar = True;
1240     }
1241
1242     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1243     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1244     
1245     if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
1246     {
1247       UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
1248       if (shortRepPrice <= nextOpt->price)
1249       {
1250         nextOpt->price = shortRepPrice;
1251         nextOpt->posPrev = cur;
1252         MakeAsShortRep(nextOpt);
1253         nextIsChar = True;
1254       }
1255     }
1256     numAvailFull = p->numAvail;
1257     {
1258       UInt32 temp = kNumOpts - 1 - cur;
1259       if (temp < numAvailFull)
1260         numAvailFull = temp;
1261     }
1262
1263     if (numAvailFull < 2)
1264       continue;
1265     numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1266
1267     if (!nextIsChar && matchByte != curByte) /* speed optimization */
1268     {
1269       /* try Literal + rep0 */
1270       UInt32 temp;
1271       UInt32 lenTest2;
1272       const Byte *data2 = data - (reps[0] + 1);
1273       UInt32 limit = p->numFastBytes + 1;
1274       if (limit > numAvailFull)
1275         limit = numAvailFull;
1276
1277       for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
1278       lenTest2 = temp - 1;
1279       if (lenTest2 >= 2)
1280       {
1281         UInt32 state2 = kLiteralNextStates[state];
1282         UInt32 posStateNext = (position + 1) & p->pbMask;
1283         UInt32 nextRepMatchPrice = curAnd1Price +
1284             GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1285             GET_PRICE_1(p->isRep[state2]);
1286         /* for (; lenTest2 >= 2; lenTest2--) */
1287         {
1288           UInt32 curAndLenPrice;
1289           COptimal *opt;
1290           UInt32 offset = cur + 1 + lenTest2;
1291           while (lenEnd < offset)
1292             p->opt[++lenEnd].price = kInfinityPrice;
1293           curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1294           opt = &p->opt[offset];
1295           if (curAndLenPrice < opt->price)
1296           {
1297             opt->price = curAndLenPrice;
1298             opt->posPrev = cur + 1;
1299             opt->backPrev = 0;
1300             opt->prev1IsChar = True;
1301             opt->prev2 = False;
1302           }
1303         }
1304       }
1305     }
1306     
1307     startLen = 2; /* speed optimization */
1308     {
1309     UInt32 repIndex;
1310     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
1311     {
1312       UInt32 lenTest;
1313       UInt32 lenTestTemp;
1314       UInt32 price;
1315       const Byte *data2 = data - (reps[repIndex] + 1);
1316       if (data[0] != data2[0] || data[1] != data2[1])
1317         continue;
1318       for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
1319       while (lenEnd < cur + lenTest)
1320         p->opt[++lenEnd].price = kInfinityPrice;
1321       lenTestTemp = lenTest;
1322       price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
1323       do
1324       {
1325         UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
1326         COptimal *opt = &p->opt[cur + lenTest];
1327         if (curAndLenPrice < opt->price)
1328         {
1329           opt->price = curAndLenPrice;
1330           opt->posPrev = cur;
1331           opt->backPrev = repIndex;
1332           opt->prev1IsChar = False;
1333         }
1334       }
1335       while (--lenTest >= 2);
1336       lenTest = lenTestTemp;
1337       
1338       if (repIndex == 0)
1339         startLen = lenTest + 1;
1340         
1341       /* if (_maxMode) */
1342         {
1343           UInt32 lenTest2 = lenTest + 1;
1344           UInt32 limit = lenTest2 + p->numFastBytes;
1345           UInt32 nextRepMatchPrice;
1346           if (limit > numAvailFull)
1347             limit = numAvailFull;
1348           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1349           lenTest2 -= lenTest + 1;
1350           if (lenTest2 >= 2)
1351           {
1352             UInt32 state2 = kRepNextStates[state];
1353             UInt32 posStateNext = (position + lenTest) & p->pbMask;
1354             UInt32 curAndLenCharPrice =
1355                 price + p->repLenEnc.prices[posState][lenTest - 2] +
1356                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1357                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1358                     data[lenTest], data2[lenTest], p->ProbPrices);
1359             state2 = kLiteralNextStates[state2];
1360             posStateNext = (position + lenTest + 1) & p->pbMask;
1361             nextRepMatchPrice = curAndLenCharPrice +
1362                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1363                 GET_PRICE_1(p->isRep[state2]);
1364             
1365             /* for (; lenTest2 >= 2; lenTest2--) */
1366             {
1367               UInt32 curAndLenPrice;
1368               COptimal *opt;
1369               UInt32 offset = cur + lenTest + 1 + lenTest2;
1370               while (lenEnd < offset)
1371                 p->opt[++lenEnd].price = kInfinityPrice;
1372               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1373               opt = &p->opt[offset];
1374               if (curAndLenPrice < opt->price)
1375               {
1376                 opt->price = curAndLenPrice;
1377                 opt->posPrev = cur + lenTest + 1;
1378                 opt->backPrev = 0;
1379                 opt->prev1IsChar = True;
1380                 opt->prev2 = True;
1381                 opt->posPrev2 = cur;
1382                 opt->backPrev2 = repIndex;
1383               }
1384             }
1385           }
1386         }
1387     }
1388     }
1389     /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
1390     if (newLen > numAvail)
1391     {
1392       newLen = numAvail;
1393       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1394       matches[numPairs] = newLen;
1395       numPairs += 2;
1396     }
1397     if (newLen >= startLen)
1398     {
1399       UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1400       UInt32 offs, curBack, posSlot;
1401       UInt32 lenTest;
1402       while (lenEnd < cur + newLen)
1403         p->opt[++lenEnd].price = kInfinityPrice;
1404
1405       offs = 0;
1406       while (startLen > matches[offs])
1407         offs += 2;
1408       curBack = matches[offs + 1];
1409       GetPosSlot2(curBack, posSlot);
1410       for (lenTest = /*2*/ startLen; ; lenTest++)
1411       {
1412         UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
1413         UInt32 lenToPosState = GetLenToPosState(lenTest);
1414         COptimal *opt;
1415         if (curBack < kNumFullDistances)
1416           curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
1417         else
1418           curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
1419         
1420         opt = &p->opt[cur + lenTest];
1421         if (curAndLenPrice < opt->price)
1422         {
1423           opt->price = curAndLenPrice;
1424           opt->posPrev = cur;
1425           opt->backPrev = curBack + LZMA_NUM_REPS;
1426           opt->prev1IsChar = False;
1427         }
1428
1429         if (/*_maxMode && */lenTest == matches[offs])
1430         {
1431           /* Try Match + Literal + Rep0 */
1432           const Byte *data2 = data - (curBack + 1);
1433           UInt32 lenTest2 = lenTest + 1;
1434           UInt32 limit = lenTest2 + p->numFastBytes;
1435           UInt32 nextRepMatchPrice;
1436           if (limit > numAvailFull)
1437             limit = numAvailFull;
1438           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
1439           lenTest2 -= lenTest + 1;
1440           if (lenTest2 >= 2)
1441           {
1442             UInt32 state2 = kMatchNextStates[state];
1443             UInt32 posStateNext = (position + lenTest) & p->pbMask;
1444             UInt32 curAndLenCharPrice = curAndLenPrice +
1445                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
1446                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
1447                     data[lenTest], data2[lenTest], p->ProbPrices);
1448             state2 = kLiteralNextStates[state2];
1449             posStateNext = (posStateNext + 1) & p->pbMask;
1450             nextRepMatchPrice = curAndLenCharPrice +
1451                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
1452                 GET_PRICE_1(p->isRep[state2]);
1453             
1454             /* for (; lenTest2 >= 2; lenTest2--) */
1455             {
1456               UInt32 offset = cur + lenTest + 1 + lenTest2;
1457               UInt32 curAndLenPrice;
1458               COptimal *opt;
1459               while (lenEnd < offset)
1460                 p->opt[++lenEnd].price = kInfinityPrice;
1461               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
1462               opt = &p->opt[offset];
1463               if (curAndLenPrice < opt->price)
1464               {
1465                 opt->price = curAndLenPrice;
1466                 opt->posPrev = cur + lenTest + 1;
1467                 opt->backPrev = 0;
1468                 opt->prev1IsChar = True;
1469                 opt->prev2 = True;
1470                 opt->posPrev2 = cur;
1471                 opt->backPrev2 = curBack + LZMA_NUM_REPS;
1472               }
1473             }
1474           }
1475           offs += 2;
1476           if (offs == numPairs)
1477             break;
1478           curBack = matches[offs + 1];
1479           if (curBack >= kNumFullDistances)
1480             GetPosSlot2(curBack, posSlot);
1481         }
1482       }
1483     }
1484   }
1485 }
1486
1487 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1488
1489 static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
1490 {
1491   UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
1492   const Byte *data;
1493   const UInt32 *matches;
1494
1495   if (p->additionalOffset == 0)
1496     mainLen = ReadMatchDistances(p, &numPairs);
1497   else
1498   {
1499     mainLen = p->longestMatchLength;
1500     numPairs = p->numPairs;
1501   }
1502
1503   numAvail = p->numAvail;
1504   *backRes = (UInt32)-1;
1505   if (numAvail < 2)
1506     return 1;
1507   if (numAvail > LZMA_MATCH_LEN_MAX)
1508     numAvail = LZMA_MATCH_LEN_MAX;
1509   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1510
1511   repLen = repIndex = 0;
1512   for (i = 0; i < LZMA_NUM_REPS; i++)
1513   {
1514     UInt32 len;
1515     const Byte *data2 = data - (p->reps[i] + 1);
1516     if (data[0] != data2[0] || data[1] != data2[1])
1517       continue;
1518     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1519     if (len >= p->numFastBytes)
1520     {
1521       *backRes = i;
1522       MovePos(p, len - 1);
1523       return len;
1524     }
1525     if (len > repLen)
1526     {
1527       repIndex = i;
1528       repLen = len;
1529     }
1530   }
1531
1532   matches = p->matches;
1533   if (mainLen >= p->numFastBytes)
1534   {
1535     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
1536     MovePos(p, mainLen - 1);
1537     return mainLen;
1538   }
1539
1540   mainDist = 0; /* for GCC */
1541   if (mainLen >= 2)
1542   {
1543     mainDist = matches[numPairs - 1];
1544     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
1545     {
1546       if (!ChangePair(matches[numPairs - 3], mainDist))
1547         break;
1548       numPairs -= 2;
1549       mainLen = matches[numPairs - 2];
1550       mainDist = matches[numPairs - 1];
1551     }
1552     if (mainLen == 2 && mainDist >= 0x80)
1553       mainLen = 1;
1554   }
1555
1556   if (repLen >= 2 && (
1557         (repLen + 1 >= mainLen) ||
1558         (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
1559         (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
1560   {
1561     *backRes = repIndex;
1562     MovePos(p, repLen - 1);
1563     return repLen;
1564   }
1565   
1566   if (mainLen < 2 || numAvail <= 2)
1567     return 1;
1568
1569   p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
1570   if (p->longestMatchLength >= 2)
1571   {
1572     UInt32 newDistance = matches[p->numPairs - 1];
1573     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
1574         (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
1575         (p->longestMatchLength > mainLen + 1) ||
1576         (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
1577       return 1;
1578   }
1579   
1580   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1581   for (i = 0; i < LZMA_NUM_REPS; i++)
1582   {
1583     UInt32 len, limit;
1584     const Byte *data2 = data - (p->reps[i] + 1);
1585     if (data[0] != data2[0] || data[1] != data2[1])
1586       continue;
1587     limit = mainLen - 1;
1588     for (len = 2; len < limit && data[len] == data2[len]; len++);
1589     if (len >= limit)
1590       return 1;
1591   }
1592   *backRes = mainDist + LZMA_NUM_REPS;
1593   MovePos(p, mainLen - 2);
1594   return mainLen;
1595 }
1596
1597 static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
1598 {
1599   UInt32 len;
1600   RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1601   RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1602   p->state = kMatchNextStates[p->state];
1603   len = LZMA_MATCH_LEN_MIN;
1604   LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1605   RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
1606   RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
1607   RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1608 }
1609
1610 static SRes CheckErrors(CLzmaEnc *p)
1611 {
1612   if (p->result != SZ_OK)
1613     return p->result;
1614   if (p->rc.res != SZ_OK)
1615     p->result = SZ_ERROR_WRITE;
1616   if (p->matchFinderBase.result != SZ_OK)
1617     p->result = SZ_ERROR_READ;
1618   if (p->result != SZ_OK)
1619     p->finished = True;
1620   return p->result;
1621 }
1622
1623 static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1624 {
1625   /* ReleaseMFStream(); */
1626   p->finished = True;
1627   if (p->writeEndMark)
1628     WriteEndMarker(p, nowPos & p->pbMask);
1629   RangeEnc_FlushData(&p->rc);
1630   RangeEnc_FlushStream(&p->rc);
1631   return CheckErrors(p);
1632 }
1633
1634 static void FillAlignPrices(CLzmaEnc *p)
1635 {
1636   UInt32 i;
1637   for (i = 0; i < kAlignTableSize; i++)
1638     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1639   p->alignPriceCount = 0;
1640 }
1641
1642 static void FillDistancesPrices(CLzmaEnc *p)
1643 {
1644   UInt32 tempPrices[kNumFullDistances];
1645   UInt32 i, lenToPosState;
1646   for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1647   {
1648     UInt32 posSlot = GetPosSlot1(i);
1649     UInt32 footerBits = ((posSlot >> 1) - 1);
1650     UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1651     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
1652   }
1653
1654   for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1655   {
1656     UInt32 posSlot;
1657     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1658     UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1659     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
1660       posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1661     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
1662       posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
1663
1664     {
1665       UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
1666       UInt32 i;
1667       for (i = 0; i < kStartPosModelIndex; i++)
1668         distancesPrices[i] = posSlotPrices[i];
1669       for (; i < kNumFullDistances; i++)
1670         distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
1671     }
1672   }
1673   p->matchPriceCount = 0;
1674 }
1675
1676 void LzmaEnc_Construct(CLzmaEnc *p)
1677 {
1678   RangeEnc_Construct(&p->rc);
1679   MatchFinder_Construct(&p->matchFinderBase);
1680   #ifndef _7ZIP_ST
1681   MatchFinderMt_Construct(&p->matchFinderMt);
1682   p->matchFinderMt.MatchFinder = &p->matchFinderBase;
1683   #endif
1684
1685   {
1686     CLzmaEncProps props;
1687     LzmaEncProps_Init(&props);
1688     LzmaEnc_SetProps(p, &props);
1689   }
1690
1691   #ifndef LZMA_LOG_BSR
1692   LzmaEnc_FastPosInit(p->g_FastPos);
1693   #endif
1694
1695   LzmaEnc_InitPriceTables(p->ProbPrices);
1696   p->litProbs = 0;
1697   p->saveState.litProbs = 0;
1698 }
1699
1700 CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
1701 {
1702   void *p;
1703   p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
1704   if (p != 0)
1705     LzmaEnc_Construct((CLzmaEnc *)p);
1706   return p;
1707 }
1708
1709 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
1710 {
1711   alloc->Free(alloc, p->litProbs);
1712   alloc->Free(alloc, p->saveState.litProbs);
1713   p->litProbs = 0;
1714   p->saveState.litProbs = 0;
1715 }
1716
1717 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
1718 {
1719   #ifndef _7ZIP_ST
1720   MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
1721   #endif
1722   MatchFinder_Free(&p->matchFinderBase, allocBig);
1723   LzmaEnc_FreeLits(p, alloc);
1724   RangeEnc_Free(&p->rc, alloc);
1725 }
1726
1727 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
1728 {
1729   LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
1730   alloc->Free(alloc, p);
1731 }
1732
1733 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
1734 {
1735   UInt32 nowPos32, startPos32;
1736   if (p->needInit)
1737   {
1738     p->matchFinder.Init(p->matchFinderObj);
1739     p->needInit = 0;
1740   }
1741
1742   if (p->finished)
1743     return p->result;
1744   RINOK(CheckErrors(p));
1745
1746   nowPos32 = (UInt32)p->nowPos64;
1747   startPos32 = nowPos32;
1748
1749   if (p->nowPos64 == 0)
1750   {
1751     UInt32 numPairs;
1752     Byte curByte;
1753     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1754       return Flush(p, nowPos32);
1755     ReadMatchDistances(p, &numPairs);
1756     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
1757     p->state = kLiteralNextStates[p->state];
1758     curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
1759     LitEnc_Encode(&p->rc, p->litProbs, curByte);
1760     p->additionalOffset--;
1761     nowPos32++;
1762   }
1763
1764   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
1765   for (;;)
1766   {
1767     UInt32 pos, len, posState;
1768
1769     if (p->fastMode)
1770       len = GetOptimumFast(p, &pos);
1771     else
1772       len = GetOptimum(p, nowPos32, &pos);
1773
1774     #ifdef SHOW_STAT2
1775     printf("\n pos = %4X,   len = %d   pos = %d", nowPos32, len, pos);
1776     #endif
1777
1778     posState = nowPos32 & p->pbMask;
1779     if (len == 1 && pos == (UInt32)-1)
1780     {
1781       Byte curByte;
1782       CLzmaProb *probs;
1783       const Byte *data;
1784
1785       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
1786       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
1787       curByte = *data;
1788       probs = LIT_PROBS(nowPos32, *(data - 1));
1789       if (IsCharState(p->state))
1790         LitEnc_Encode(&p->rc, probs, curByte);
1791       else
1792         LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
1793       p->state = kLiteralNextStates[p->state];
1794     }
1795     else
1796     {
1797       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
1798       if (pos < LZMA_NUM_REPS)
1799       {
1800         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
1801         if (pos == 0)
1802         {
1803           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
1804           RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
1805         }
1806         else
1807         {
1808           UInt32 distance = p->reps[pos];
1809           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
1810           if (pos == 1)
1811             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
1812           else
1813           {
1814             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
1815             RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
1816             if (pos == 3)
1817               p->reps[3] = p->reps[2];
1818             p->reps[2] = p->reps[1];
1819           }
1820           p->reps[1] = p->reps[0];
1821           p->reps[0] = distance;
1822         }
1823         if (len == 1)
1824           p->state = kShortRepNextStates[p->state];
1825         else
1826         {
1827           LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1828           p->state = kRepNextStates[p->state];
1829         }
1830       }
1831       else
1832       {
1833         UInt32 posSlot;
1834         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
1835         p->state = kMatchNextStates[p->state];
1836         LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
1837         pos -= LZMA_NUM_REPS;
1838         GetPosSlot(pos, posSlot);
1839         RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
1840         
1841         if (posSlot >= kStartPosModelIndex)
1842         {
1843           UInt32 footerBits = ((posSlot >> 1) - 1);
1844           UInt32 base = ((2 | (posSlot & 1)) << footerBits);
1845           UInt32 posReduced = pos - base;
1846
1847           if (posSlot < kEndPosModelIndex)
1848             RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
1849           else
1850           {
1851             RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
1852             RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
1853             p->alignPriceCount++;
1854           }
1855         }
1856         p->reps[3] = p->reps[2];
1857         p->reps[2] = p->reps[1];
1858         p->reps[1] = p->reps[0];
1859         p->reps[0] = pos;
1860         p->matchPriceCount++;
1861       }
1862     }
1863     p->additionalOffset -= len;
1864     nowPos32 += len;
1865     if (p->additionalOffset == 0)
1866     {
1867       UInt32 processed;
1868       if (!p->fastMode)
1869       {
1870         if (p->matchPriceCount >= (1 << 7))
1871           FillDistancesPrices(p);
1872         if (p->alignPriceCount >= kAlignTableSize)
1873           FillAlignPrices(p);
1874       }
1875       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
1876         break;
1877       processed = nowPos32 - startPos32;
1878       if (useLimits)
1879       {
1880         if (processed + kNumOpts + 300 >= maxUnpackSize ||
1881             RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
1882           break;
1883       }
1884       else if (processed >= (1 << 15))
1885       {
1886         p->nowPos64 += nowPos32 - startPos32;
1887         return CheckErrors(p);
1888       }
1889     }
1890   }
1891   p->nowPos64 += nowPos32 - startPos32;
1892   return Flush(p, nowPos32);
1893 }
1894
1895 #define kBigHashDicLimit ((UInt32)1 << 24)
1896
1897 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
1898 {
1899   UInt32 beforeSize = kNumOpts;
1900   Bool btMode;
1901   if (!RangeEnc_Alloc(&p->rc, alloc))
1902     return SZ_ERROR_MEM;
1903   btMode = (p->matchFinderBase.btMode != 0);
1904   #ifndef _7ZIP_ST
1905   p->mtMode = (p->multiThread && !p->fastMode && btMode);
1906   #endif
1907
1908   {
1909     unsigned lclp = p->lc + p->lp;
1910     if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
1911     {
1912       LzmaEnc_FreeLits(p, alloc);
1913       p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1914       p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
1915       if (p->litProbs == 0 || p->saveState.litProbs == 0)
1916       {
1917         LzmaEnc_FreeLits(p, alloc);
1918         return SZ_ERROR_MEM;
1919       }
1920       p->lclp = lclp;
1921     }
1922   }
1923
1924   p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
1925
1926   if (beforeSize + p->dictSize < keepWindowSize)
1927     beforeSize = keepWindowSize - p->dictSize;
1928
1929   #ifndef _7ZIP_ST
1930   if (p->mtMode)
1931   {
1932     RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
1933     p->matchFinderObj = &p->matchFinderMt;
1934     MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
1935   }
1936   else
1937   #endif
1938   {
1939     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
1940       return SZ_ERROR_MEM;
1941     p->matchFinderObj = &p->matchFinderBase;
1942     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
1943   }
1944   return SZ_OK;
1945 }
1946
1947 void LzmaEnc_Init(CLzmaEnc *p)
1948 {
1949   UInt32 i;
1950   p->state = 0;
1951   for (i = 0 ; i < LZMA_NUM_REPS; i++)
1952     p->reps[i] = 0;
1953
1954   RangeEnc_Init(&p->rc);
1955
1956
1957   for (i = 0; i < kNumStates; i++)
1958   {
1959     UInt32 j;
1960     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
1961     {
1962       p->isMatch[i][j] = kProbInitValue;
1963       p->isRep0Long[i][j] = kProbInitValue;
1964     }
1965     p->isRep[i] = kProbInitValue;
1966     p->isRepG0[i] = kProbInitValue;
1967     p->isRepG1[i] = kProbInitValue;
1968     p->isRepG2[i] = kProbInitValue;
1969   }
1970
1971   {
1972     UInt32 num = 0x300 << (p->lp + p->lc);
1973     for (i = 0; i < num; i++)
1974       p->litProbs[i] = kProbInitValue;
1975   }
1976
1977   {
1978     for (i = 0; i < kNumLenToPosStates; i++)
1979     {
1980       CLzmaProb *probs = p->posSlotEncoder[i];
1981       UInt32 j;
1982       for (j = 0; j < (1 << kNumPosSlotBits); j++)
1983         probs[j] = kProbInitValue;
1984     }
1985   }
1986   {
1987     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
1988       p->posEncoders[i] = kProbInitValue;
1989   }
1990
1991   LenEnc_Init(&p->lenEnc.p);
1992   LenEnc_Init(&p->repLenEnc.p);
1993
1994   for (i = 0; i < (1 << kNumAlignBits); i++)
1995     p->posAlignEncoder[i] = kProbInitValue;
1996
1997   p->optimumEndIndex = 0;
1998   p->optimumCurrentIndex = 0;
1999   p->additionalOffset = 0;
2000
2001   p->pbMask = (1 << p->pb) - 1;
2002   p->lpMask = (1 << p->lp) - 1;
2003 }
2004
2005 void LzmaEnc_InitPrices(CLzmaEnc *p)
2006 {
2007   if (!p->fastMode)
2008   {
2009     FillDistancesPrices(p);
2010     FillAlignPrices(p);
2011   }
2012
2013   p->lenEnc.tableSize =
2014   p->repLenEnc.tableSize =
2015       p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2016   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
2017   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
2018 }
2019
2020 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2021 {
2022   UInt32 i;
2023   for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
2024     if (p->dictSize <= ((UInt32)1 << i))
2025       break;
2026   p->distTableSize = i * 2;
2027
2028   p->finished = False;
2029   p->result = SZ_OK;
2030   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2031   LzmaEnc_Init(p);
2032   LzmaEnc_InitPrices(p);
2033   p->nowPos64 = 0;
2034   return SZ_OK;
2035 }
2036
2037 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2038     ISzAlloc *alloc, ISzAlloc *allocBig)
2039 {
2040   CLzmaEnc *p = (CLzmaEnc *)pp;
2041   p->matchFinderBase.stream = inStream;
2042   p->needInit = 1;
2043   p->rc.outStream = outStream;
2044   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2045 }
2046
2047 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2048     ISeqInStream *inStream, UInt32 keepWindowSize,
2049     ISzAlloc *alloc, ISzAlloc *allocBig)
2050 {
2051   CLzmaEnc *p = (CLzmaEnc *)pp;
2052   p->matchFinderBase.stream = inStream;
2053   p->needInit = 1;
2054   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2055 }
2056
2057 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2058 {
2059   p->matchFinderBase.directInput = 1;
2060   p->matchFinderBase.bufferBase = (Byte *)src;
2061   p->matchFinderBase.directInputRem = srcLen;
2062 }
2063
2064 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2065     UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
2066 {
2067   CLzmaEnc *p = (CLzmaEnc *)pp;
2068   LzmaEnc_SetInputBuf(p, src, srcLen);
2069   p->needInit = 1;
2070
2071   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2072 }
2073
2074 void LzmaEnc_Finish(CLzmaEncHandle pp)
2075 {
2076   #ifndef _7ZIP_ST
2077   CLzmaEnc *p = (CLzmaEnc *)pp;
2078   if (p->mtMode)
2079     MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2080   #else
2081   pp = pp;
2082   #endif
2083 }
2084
2085 typedef struct
2086 {
2087   ISeqOutStream funcTable;
2088   Byte *data;
2089   SizeT rem;
2090   Bool overflow;
2091 } CSeqOutStreamBuf;
2092
2093 static size_t MyWrite(void *pp, const void *data, size_t size)
2094 {
2095   CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
2096   if (p->rem < size)
2097   {
2098     size = p->rem;
2099     p->overflow = True;
2100   }
2101   memcpy(p->data, data, size);
2102   p->rem -= size;
2103   p->data += size;
2104   return size;
2105 }
2106
2107
2108 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2109 {
2110   const CLzmaEnc *p = (CLzmaEnc *)pp;
2111   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2112 }
2113
2114 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2115 {
2116   const CLzmaEnc *p = (CLzmaEnc *)pp;
2117   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2118 }
2119
2120 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2121     Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2122 {
2123   CLzmaEnc *p = (CLzmaEnc *)pp;
2124   UInt64 nowPos64;
2125   SRes res;
2126   CSeqOutStreamBuf outStream;
2127
2128   outStream.funcTable.Write = MyWrite;
2129   outStream.data = dest;
2130   outStream.rem = *destLen;
2131   outStream.overflow = False;
2132
2133   p->writeEndMark = False;
2134   p->finished = False;
2135   p->result = SZ_OK;
2136
2137   if (reInit)
2138     LzmaEnc_Init(p);
2139   LzmaEnc_InitPrices(p);
2140   nowPos64 = p->nowPos64;
2141   RangeEnc_Init(&p->rc);
2142   p->rc.outStream = &outStream.funcTable;
2143
2144   res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
2145   
2146   *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2147   *destLen -= outStream.rem;
2148   if (outStream.overflow)
2149     return SZ_ERROR_OUTPUT_EOF;
2150
2151   return res;
2152 }
2153
2154 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2155 {
2156   SRes res = SZ_OK;
2157
2158   #ifndef _7ZIP_ST
2159   Byte allocaDummy[0x300];
2160   int i = 0;
2161   for (i = 0; i < 16; i++)
2162     allocaDummy[i] = (Byte)i;
2163   #endif
2164
2165   for (;;)
2166   {
2167     res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
2168     if (res != SZ_OK || p->finished != 0)
2169       break;
2170     if (progress != 0)
2171     {
2172       res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2173       if (res != SZ_OK)
2174       {
2175         res = SZ_ERROR_PROGRESS;
2176         break;
2177       }
2178     }
2179   }
2180   LzmaEnc_Finish(p);
2181   return res;
2182 }
2183
2184 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2185     ISzAlloc *alloc, ISzAlloc *allocBig)
2186 {
2187   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2188   return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2189 }
2190
2191 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2192 {
2193   CLzmaEnc *p = (CLzmaEnc *)pp;
2194   int i;
2195   UInt32 dictSize = p->dictSize;
2196   if (*size < LZMA_PROPS_SIZE)
2197     return SZ_ERROR_PARAM;
2198   *size = LZMA_PROPS_SIZE;
2199   props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2200
2201   for (i = 11; i <= 30; i++)
2202   {
2203     if (dictSize <= ((UInt32)2 << i))
2204     {
2205       dictSize = (2 << i);
2206       break;
2207     }
2208     if (dictSize <= ((UInt32)3 << i))
2209     {
2210       dictSize = (3 << i);
2211       break;
2212     }
2213   }
2214
2215   for (i = 0; i < 4; i++)
2216     props[1 + i] = (Byte)(dictSize >> (8 * i));
2217   return SZ_OK;
2218 }
2219
2220 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2221     int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2222 {
2223   SRes res;
2224   CLzmaEnc *p = (CLzmaEnc *)pp;
2225
2226   CSeqOutStreamBuf outStream;
2227
2228   LzmaEnc_SetInputBuf(p, src, srcLen);
2229
2230   outStream.funcTable.Write = MyWrite;
2231   outStream.data = dest;
2232   outStream.rem = *destLen;
2233   outStream.overflow = False;
2234
2235   p->writeEndMark = writeEndMark;
2236
2237   p->rc.outStream = &outStream.funcTable;
2238   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2239   if (res == SZ_OK)
2240     res = LzmaEnc_Encode2(p, progress);
2241
2242   *destLen -= outStream.rem;
2243   if (outStream.overflow)
2244     return SZ_ERROR_OUTPUT_EOF;
2245   return res;
2246 }
2247
2248 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2249     const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2250     ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
2251 {
2252   CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2253   SRes res;
2254   if (p == 0)
2255     return SZ_ERROR_MEM;
2256
2257   res = LzmaEnc_SetProps(p, props);
2258   if (res == SZ_OK)
2259   {
2260     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2261     if (res == SZ_OK)
2262       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2263           writeEndMark, progress, alloc, allocBig);
2264   }
2265
2266   LzmaEnc_Destroy(p, alloc, allocBig);
2267   return res;
2268 }