Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / libwebp / utils / huffman.c
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Utilities for building and looking up Huffman trees.
11 //
12 // Author: Urvang Joshi (urvang@google.com)
13
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "./huffman.h"
18 #include "../utils/utils.h"
19 #include "../webp/format_constants.h"
20
21 // Uncomment the following to use look-up table for ReverseBits()
22 // (might be faster on some platform)
23 // #define USE_LUT_REVERSE_BITS
24
25 // Huffman data read via DecodeImageStream is represented in two (red and green)
26 // bytes.
27 #define MAX_HTREE_GROUPS    0x10000
28 #define NON_EXISTENT_SYMBOL (-1)
29
30 static void TreeNodeInit(HuffmanTreeNode* const node) {
31   node->children_ = -1;   // means: 'unassigned so far'
32 }
33
34 static int NodeIsEmpty(const HuffmanTreeNode* const node) {
35   return (node->children_ < 0);
36 }
37
38 static int IsFull(const HuffmanTree* const tree) {
39   return (tree->num_nodes_ == tree->max_nodes_);
40 }
41
42 static void AssignChildren(HuffmanTree* const tree,
43                            HuffmanTreeNode* const node) {
44   HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
45   node->children_ = (int)(children - node);
46   assert(children - node == (int)(children - node));
47   tree->num_nodes_ += 2;
48   TreeNodeInit(children + 0);
49   TreeNodeInit(children + 1);
50 }
51
52 // A Huffman tree is a full binary tree; and in a full binary tree with L
53 // leaves, the total number of nodes N = 2 * L - 1.
54 static int HuffmanTreeMaxNodes(int num_leaves) {
55   return (2 * num_leaves - 1);
56 }
57
58 static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
59   assert(tree != NULL);
60   tree->root_ =
61       (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
62   return (tree->root_ != NULL);
63 }
64
65 static int TreeInit(HuffmanTree* const tree, int num_leaves) {
66   assert(tree != NULL);
67   if (num_leaves == 0) return 0;
68   tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
69   assert(tree->max_nodes_ < (1 << 16));   // limit for the lut_jump_ table
70   if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
71   TreeNodeInit(tree->root_);  // Initialize root.
72   tree->num_nodes_ = 1;
73   memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
74   memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
75   return 1;
76 }
77
78 void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
79   if (tree != NULL) {
80     WebPSafeFree(tree->root_);
81     tree->root_ = NULL;
82     tree->max_nodes_ = 0;
83     tree->num_nodes_ = 0;
84   }
85 }
86
87 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
88   HTreeGroup* const htree_groups =
89       (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
90   assert(num_htree_groups <= MAX_HTREE_GROUPS);
91   if (htree_groups == NULL) {
92     return NULL;
93   }
94   return htree_groups;
95 }
96
97 void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
98   if (htree_groups != NULL) {
99     int i, j;
100     for (i = 0; i < num_htree_groups; ++i) {
101       HuffmanTree* const htrees = htree_groups[i].htrees_;
102       for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
103         VP8LHuffmanTreeFree(&htrees[j]);
104       }
105     }
106     WebPSafeFree(htree_groups);
107   }
108 }
109
110 int VP8LHuffmanCodeLengthsToCodes(
111     const int* const code_lengths, int code_lengths_size,
112     int* const huff_codes) {
113   int symbol;
114   int code_len;
115   int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
116   int curr_code;
117   int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
118   int max_code_length = 0;
119
120   assert(code_lengths != NULL);
121   assert(code_lengths_size > 0);
122   assert(huff_codes != NULL);
123
124   // Calculate max code length.
125   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
126     if (code_lengths[symbol] > max_code_length) {
127       max_code_length = code_lengths[symbol];
128     }
129   }
130   if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;
131
132   // Calculate code length histogram.
133   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
134     ++code_length_hist[code_lengths[symbol]];
135   }
136   code_length_hist[0] = 0;
137
138   // Calculate the initial values of 'next_codes' for each code length.
139   // next_codes[code_len] denotes the code to be assigned to the next symbol
140   // of code length 'code_len'.
141   curr_code = 0;
142   next_codes[0] = -1;  // Unused, as code length = 0 implies code doesn't exist.
143   for (code_len = 1; code_len <= max_code_length; ++code_len) {
144     curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
145     next_codes[code_len] = curr_code;
146   }
147
148   // Get symbols.
149   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
150     if (code_lengths[symbol] > 0) {
151       huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
152     } else {
153       huff_codes[symbol] = NON_EXISTENT_SYMBOL;
154     }
155   }
156   return 1;
157 }
158
159 #ifndef USE_LUT_REVERSE_BITS
160
161 static int ReverseBitsShort(int bits, int num_bits) {
162   int retval = 0;
163   int i;
164   assert(num_bits <= 8);   // Not a hard requirement, just for coherency.
165   for (i = 0; i < num_bits; ++i) {
166     retval <<= 1;
167     retval |= bits & 1;
168     bits >>= 1;
169   }
170   return retval;
171 }
172
173 #else
174
175 static const uint8_t kReversedBits[16] = {  // Pre-reversed 4-bit values.
176   0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
177   0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
178 };
179
180 static int ReverseBitsShort(int bits, int num_bits) {
181   const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
182   assert(num_bits <= 8);
183   return v >> (8 - num_bits);
184 }
185
186 #endif
187
188 static int TreeAddSymbol(HuffmanTree* const tree,
189                          int symbol, int code, int code_length) {
190   int step = HUFF_LUT_BITS;
191   int base_code;
192   HuffmanTreeNode* node = tree->root_;
193   const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
194   assert(symbol == (int16_t)symbol);
195   if (code_length <= HUFF_LUT_BITS) {
196     int i;
197     base_code = ReverseBitsShort(code, code_length);
198     for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
199       const int idx = base_code | (i << code_length);
200       tree->lut_symbol_[idx] = (int16_t)symbol;
201       tree->lut_bits_[idx] = code_length;
202     }
203   } else {
204     base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
205                                  HUFF_LUT_BITS);
206   }
207   while (code_length-- > 0) {
208     if (node >= max_node) {
209       return 0;
210     }
211     if (NodeIsEmpty(node)) {
212       if (IsFull(tree)) return 0;    // error: too many symbols.
213       AssignChildren(tree, node);
214     } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
215       return 0;  // leaf is already occupied.
216     }
217     node += node->children_ + ((code >> code_length) & 1);
218     if (--step == 0) {
219       tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
220     }
221   }
222   if (NodeIsEmpty(node)) {
223     node->children_ = 0;      // turn newly created node into a leaf.
224   } else if (HuffmanTreeNodeIsNotLeaf(node)) {
225     return 0;   // trying to assign a symbol to already used code.
226   }
227   node->symbol_ = symbol;  // Add symbol in this node.
228   return 1;
229 }
230
231 int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
232                                  const int* const code_lengths,
233                                  int* const codes,
234                                  int code_lengths_size) {
235   int symbol;
236   int num_symbols = 0;
237   int root_symbol = 0;
238
239   assert(tree != NULL);
240   assert(code_lengths != NULL);
241
242   // Find out number of symbols and the root symbol.
243   for (symbol = 0; symbol < code_lengths_size; ++symbol) {
244     if (code_lengths[symbol] > 0) {
245       // Note: code length = 0 indicates non-existent symbol.
246       ++num_symbols;
247       root_symbol = symbol;
248     }
249   }
250
251   // Initialize the tree. Will fail for num_symbols = 0
252   if (!TreeInit(tree, num_symbols)) return 0;
253
254   // Build tree.
255   if (num_symbols == 1) {  // Trivial case.
256     const int max_symbol = code_lengths_size;
257     if (root_symbol < 0 || root_symbol >= max_symbol) {
258       VP8LHuffmanTreeFree(tree);
259       return 0;
260     }
261     return TreeAddSymbol(tree, root_symbol, 0, 0);
262   } else {  // Normal case.
263     int ok = 0;
264     memset(codes, 0, code_lengths_size * sizeof(*codes));
265
266     if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
267                                        codes)) {
268       goto End;
269     }
270
271     // Add symbols one-by-one.
272     for (symbol = 0; symbol < code_lengths_size; ++symbol) {
273       if (code_lengths[symbol] > 0) {
274         if (!TreeAddSymbol(tree, symbol, codes[symbol],
275                            code_lengths[symbol])) {
276           goto End;
277         }
278       }
279     }
280     ok = 1;
281  End:
282     ok = ok && IsFull(tree);
283     if (!ok) VP8LHuffmanTreeFree(tree);
284     return ok;
285   }
286 }
287
288 int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
289                                  const int* const code_lengths,
290                                  const int* const codes,
291                                  const int* const symbols, int max_symbol,
292                                  int num_symbols) {
293   int ok = 0;
294   int i;
295   assert(tree != NULL);
296   assert(code_lengths != NULL);
297   assert(codes != NULL);
298   assert(symbols != NULL);
299
300   // Initialize the tree. Will fail if num_symbols = 0.
301   if (!TreeInit(tree, num_symbols)) return 0;
302
303   // Add symbols one-by-one.
304   for (i = 0; i < num_symbols; ++i) {
305     if (codes[i] != NON_EXISTENT_SYMBOL) {
306       if (symbols[i] < 0 || symbols[i] >= max_symbol) {
307         goto End;
308       }
309       if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
310         goto End;
311       }
312     }
313   }
314   ok = 1;
315  End:
316   ok = ok && IsFull(tree);
317   if (!ok) VP8LHuffmanTreeFree(tree);
318   return ok;
319 }