Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / libvpx / source / libvpx / vp9 / encoder / vp9_dct.c
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include <assert.h>
12 #include <math.h>
13
14 #include "./vpx_config.h"
15 #include "./vp9_rtcd.h"
16
17 #include "vp9/common/vp9_blockd.h"
18 #include "vp9/common/vp9_idct.h"
19 #include "vp9/common/vp9_systemdependent.h"
20
21 static INLINE int fdct_round_shift(int input) {
22   int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
23   assert(INT16_MIN <= rv && rv <= INT16_MAX);
24   return rv;
25 }
26
27 static void fdct4(const int16_t *input, int16_t *output) {
28   int16_t step[4];
29   int temp1, temp2;
30
31   step[0] = input[0] + input[3];
32   step[1] = input[1] + input[2];
33   step[2] = input[1] - input[2];
34   step[3] = input[0] - input[3];
35
36   temp1 = (step[0] + step[1]) * cospi_16_64;
37   temp2 = (step[0] - step[1]) * cospi_16_64;
38   output[0] = fdct_round_shift(temp1);
39   output[2] = fdct_round_shift(temp2);
40   temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
41   temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
42   output[1] = fdct_round_shift(temp1);
43   output[3] = fdct_round_shift(temp2);
44 }
45
46 void vp9_fdct4x4_1_c(const int16_t *input, int16_t *output, int stride) {
47   int r, c;
48   int16_t sum = 0;
49   for (r = 0; r < 4; ++r)
50     for (c = 0; c < 4; ++c)
51       sum += input[r * stride + c];
52
53   output[0] = sum << 1;
54   output[1] = 0;
55 }
56
57 void vp9_fdct4x4_c(const int16_t *input, int16_t *output, int stride) {
58   // The 2D transform is done with two passes which are actually pretty
59   // similar. In the first one, we transform the columns and transpose
60   // the results. In the second one, we transform the rows. To achieve that,
61   // as the first pass results are transposed, we transpose the columns (that
62   // is the transposed rows) and transpose the results (so that it goes back
63   // in normal/row positions).
64   int pass;
65   // We need an intermediate buffer between passes.
66   int16_t intermediate[4 * 4];
67   const int16_t *in = input;
68   int16_t *out = intermediate;
69   // Do the two transform/transpose passes
70   for (pass = 0; pass < 2; ++pass) {
71     /*canbe16*/ int input[4];
72     /*canbe16*/ int step[4];
73     /*needs32*/ int temp1, temp2;
74     int i;
75     for (i = 0; i < 4; ++i) {
76       // Load inputs.
77       if (0 == pass) {
78         input[0] = in[0 * stride] * 16;
79         input[1] = in[1 * stride] * 16;
80         input[2] = in[2 * stride] * 16;
81         input[3] = in[3 * stride] * 16;
82         if (i == 0 && input[0]) {
83           input[0] += 1;
84         }
85       } else {
86         input[0] = in[0 * 4];
87         input[1] = in[1 * 4];
88         input[2] = in[2 * 4];
89         input[3] = in[3 * 4];
90       }
91       // Transform.
92       step[0] = input[0] + input[3];
93       step[1] = input[1] + input[2];
94       step[2] = input[1] - input[2];
95       step[3] = input[0] - input[3];
96       temp1 = (step[0] + step[1]) * cospi_16_64;
97       temp2 = (step[0] - step[1]) * cospi_16_64;
98       out[0] = fdct_round_shift(temp1);
99       out[2] = fdct_round_shift(temp2);
100       temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
101       temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
102       out[1] = fdct_round_shift(temp1);
103       out[3] = fdct_round_shift(temp2);
104       // Do next column (which is a transposed row in second/horizontal pass)
105       in++;
106       out += 4;
107     }
108     // Setup in/out for next pass.
109     in = intermediate;
110     out = output;
111   }
112
113   {
114     int i, j;
115     for (i = 0; i < 4; ++i) {
116       for (j = 0; j < 4; ++j)
117         output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
118     }
119   }
120 }
121
122 static void fadst4(const int16_t *input, int16_t *output) {
123   int x0, x1, x2, x3;
124   int s0, s1, s2, s3, s4, s5, s6, s7;
125
126   x0 = input[0];
127   x1 = input[1];
128   x2 = input[2];
129   x3 = input[3];
130
131   if (!(x0 | x1 | x2 | x3)) {
132     output[0] = output[1] = output[2] = output[3] = 0;
133     return;
134   }
135
136   s0 = sinpi_1_9 * x0;
137   s1 = sinpi_4_9 * x0;
138   s2 = sinpi_2_9 * x1;
139   s3 = sinpi_1_9 * x1;
140   s4 = sinpi_3_9 * x2;
141   s5 = sinpi_4_9 * x3;
142   s6 = sinpi_2_9 * x3;
143   s7 = x0 + x1 - x3;
144
145   x0 = s0 + s2 + s5;
146   x1 = sinpi_3_9 * s7;
147   x2 = s1 - s3 + s6;
148   x3 = s4;
149
150   s0 = x0 + x3;
151   s1 = x1;
152   s2 = x2 - x3;
153   s3 = x2 - x0 + x3;
154
155   // 1-D transform scaling factor is sqrt(2).
156   output[0] = fdct_round_shift(s0);
157   output[1] = fdct_round_shift(s1);
158   output[2] = fdct_round_shift(s2);
159   output[3] = fdct_round_shift(s3);
160 }
161
162 static const transform_2d FHT_4[] = {
163   { fdct4,  fdct4  },  // DCT_DCT  = 0
164   { fadst4, fdct4  },  // ADST_DCT = 1
165   { fdct4,  fadst4 },  // DCT_ADST = 2
166   { fadst4, fadst4 }   // ADST_ADST = 3
167 };
168
169 void vp9_fht4x4_c(const int16_t *input, int16_t *output,
170                   int stride, int tx_type) {
171   if (tx_type == DCT_DCT) {
172     vp9_fdct4x4_c(input, output, stride);
173   } else {
174     int16_t out[4 * 4];
175     int16_t *outptr = &out[0];
176     int i, j;
177     int16_t temp_in[4], temp_out[4];
178     const transform_2d ht = FHT_4[tx_type];
179
180     // Columns
181     for (i = 0; i < 4; ++i) {
182       for (j = 0; j < 4; ++j)
183         temp_in[j] = input[j * stride + i] * 16;
184       if (i == 0 && temp_in[0])
185         temp_in[0] += 1;
186       ht.cols(temp_in, temp_out);
187       for (j = 0; j < 4; ++j)
188         outptr[j * 4 + i] = temp_out[j];
189     }
190
191     // Rows
192     for (i = 0; i < 4; ++i) {
193       for (j = 0; j < 4; ++j)
194         temp_in[j] = out[j + i * 4];
195       ht.rows(temp_in, temp_out);
196       for (j = 0; j < 4; ++j)
197         output[j + i * 4] = (temp_out[j] + 1) >> 2;
198     }
199   }
200 }
201
202 static void fdct8(const int16_t *input, int16_t *output) {
203   /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
204   /*needs32*/ int t0, t1, t2, t3;
205   /*canbe16*/ int x0, x1, x2, x3;
206
207   // stage 1
208   s0 = input[0] + input[7];
209   s1 = input[1] + input[6];
210   s2 = input[2] + input[5];
211   s3 = input[3] + input[4];
212   s4 = input[3] - input[4];
213   s5 = input[2] - input[5];
214   s6 = input[1] - input[6];
215   s7 = input[0] - input[7];
216
217   // fdct4(step, step);
218   x0 = s0 + s3;
219   x1 = s1 + s2;
220   x2 = s1 - s2;
221   x3 = s0 - s3;
222   t0 = (x0 + x1) * cospi_16_64;
223   t1 = (x0 - x1) * cospi_16_64;
224   t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64;
225   t3 = -x2 * cospi_8_64  + x3 * cospi_24_64;
226   output[0] = fdct_round_shift(t0);
227   output[2] = fdct_round_shift(t2);
228   output[4] = fdct_round_shift(t1);
229   output[6] = fdct_round_shift(t3);
230
231   // Stage 2
232   t0 = (s6 - s5) * cospi_16_64;
233   t1 = (s6 + s5) * cospi_16_64;
234   t2 = fdct_round_shift(t0);
235   t3 = fdct_round_shift(t1);
236
237   // Stage 3
238   x0 = s4 + t2;
239   x1 = s4 - t2;
240   x2 = s7 - t3;
241   x3 = s7 + t3;
242
243   // Stage 4
244   t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
245   t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
246   t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
247   t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
248   output[1] = fdct_round_shift(t0);
249   output[3] = fdct_round_shift(t2);
250   output[5] = fdct_round_shift(t1);
251   output[7] = fdct_round_shift(t3);
252 }
253
254 void vp9_fdct8x8_1_c(const int16_t *input, int16_t *output, int stride) {
255   int r, c;
256   int16_t sum = 0;
257   for (r = 0; r < 8; ++r)
258     for (c = 0; c < 8; ++c)
259       sum += input[r * stride + c];
260
261   output[0] = sum;
262   output[1] = 0;
263 }
264
265 void vp9_fdct8x8_c(const int16_t *input, int16_t *final_output, int stride) {
266   int i, j;
267   int16_t intermediate[64];
268
269   // Transform columns
270   {
271     int16_t *output = intermediate;
272     /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
273     /*needs32*/ int t0, t1, t2, t3;
274     /*canbe16*/ int x0, x1, x2, x3;
275
276     int i;
277     for (i = 0; i < 8; i++) {
278       // stage 1
279       s0 = (input[0 * stride] + input[7 * stride]) * 4;
280       s1 = (input[1 * stride] + input[6 * stride]) * 4;
281       s2 = (input[2 * stride] + input[5 * stride]) * 4;
282       s3 = (input[3 * stride] + input[4 * stride]) * 4;
283       s4 = (input[3 * stride] - input[4 * stride]) * 4;
284       s5 = (input[2 * stride] - input[5 * stride]) * 4;
285       s6 = (input[1 * stride] - input[6 * stride]) * 4;
286       s7 = (input[0 * stride] - input[7 * stride]) * 4;
287
288       // fdct4(step, step);
289       x0 = s0 + s3;
290       x1 = s1 + s2;
291       x2 = s1 - s2;
292       x3 = s0 - s3;
293       t0 = (x0 + x1) * cospi_16_64;
294       t1 = (x0 - x1) * cospi_16_64;
295       t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64;
296       t3 = -x2 * cospi_8_64  + x3 * cospi_24_64;
297       output[0 * 8] = fdct_round_shift(t0);
298       output[2 * 8] = fdct_round_shift(t2);
299       output[4 * 8] = fdct_round_shift(t1);
300       output[6 * 8] = fdct_round_shift(t3);
301
302       // Stage 2
303       t0 = (s6 - s5) * cospi_16_64;
304       t1 = (s6 + s5) * cospi_16_64;
305       t2 = fdct_round_shift(t0);
306       t3 = fdct_round_shift(t1);
307
308       // Stage 3
309       x0 = s4 + t2;
310       x1 = s4 - t2;
311       x2 = s7 - t3;
312       x3 = s7 + t3;
313
314       // Stage 4
315       t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
316       t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
317       t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
318       t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
319       output[1 * 8] = fdct_round_shift(t0);
320       output[3 * 8] = fdct_round_shift(t2);
321       output[5 * 8] = fdct_round_shift(t1);
322       output[7 * 8] = fdct_round_shift(t3);
323       input++;
324       output++;
325     }
326   }
327
328   // Rows
329   for (i = 0; i < 8; ++i) {
330     fdct8(&intermediate[i * 8], &final_output[i * 8]);
331     for (j = 0; j < 8; ++j)
332       final_output[j + i * 8] /= 2;
333   }
334 }
335
336 void vp9_fdct16x16_1_c(const int16_t *input, int16_t *output, int stride) {
337   int r, c;
338   int16_t sum = 0;
339   for (r = 0; r < 16; ++r)
340     for (c = 0; c < 16; ++c)
341       sum += input[r * stride + c];
342
343   output[0] = sum >> 1;
344   output[1] = 0;
345 }
346
347 void vp9_fdct16x16_c(const int16_t *input, int16_t *output, int stride) {
348   // The 2D transform is done with two passes which are actually pretty
349   // similar. In the first one, we transform the columns and transpose
350   // the results. In the second one, we transform the rows. To achieve that,
351   // as the first pass results are transposed, we transpose the columns (that
352   // is the transposed rows) and transpose the results (so that it goes back
353   // in normal/row positions).
354   int pass;
355   // We need an intermediate buffer between passes.
356   int16_t intermediate[256];
357   const int16_t *in = input;
358   int16_t *out = intermediate;
359   // Do the two transform/transpose passes
360   for (pass = 0; pass < 2; ++pass) {
361     /*canbe16*/ int step1[8];
362     /*canbe16*/ int step2[8];
363     /*canbe16*/ int step3[8];
364     /*canbe16*/ int input[8];
365     /*needs32*/ int temp1, temp2;
366     int i;
367     for (i = 0; i < 16; i++) {
368       if (0 == pass) {
369         // Calculate input for the first 8 results.
370         input[0] = (in[0 * stride] + in[15 * stride]) * 4;
371         input[1] = (in[1 * stride] + in[14 * stride]) * 4;
372         input[2] = (in[2 * stride] + in[13 * stride]) * 4;
373         input[3] = (in[3 * stride] + in[12 * stride]) * 4;
374         input[4] = (in[4 * stride] + in[11 * stride]) * 4;
375         input[5] = (in[5 * stride] + in[10 * stride]) * 4;
376         input[6] = (in[6 * stride] + in[ 9 * stride]) * 4;
377         input[7] = (in[7 * stride] + in[ 8 * stride]) * 4;
378         // Calculate input for the next 8 results.
379         step1[0] = (in[7 * stride] - in[ 8 * stride]) * 4;
380         step1[1] = (in[6 * stride] - in[ 9 * stride]) * 4;
381         step1[2] = (in[5 * stride] - in[10 * stride]) * 4;
382         step1[3] = (in[4 * stride] - in[11 * stride]) * 4;
383         step1[4] = (in[3 * stride] - in[12 * stride]) * 4;
384         step1[5] = (in[2 * stride] - in[13 * stride]) * 4;
385         step1[6] = (in[1 * stride] - in[14 * stride]) * 4;
386         step1[7] = (in[0 * stride] - in[15 * stride]) * 4;
387       } else {
388         // Calculate input for the first 8 results.
389         input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
390         input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
391         input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
392         input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
393         input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
394         input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
395         input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
396         input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
397         // Calculate input for the next 8 results.
398         step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
399         step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
400         step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
401         step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
402         step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
403         step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
404         step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
405         step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
406       }
407       // Work on the first eight values; fdct8(input, even_results);
408       {
409         /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
410         /*needs32*/ int t0, t1, t2, t3;
411         /*canbe16*/ int x0, x1, x2, x3;
412
413         // stage 1
414         s0 = input[0] + input[7];
415         s1 = input[1] + input[6];
416         s2 = input[2] + input[5];
417         s3 = input[3] + input[4];
418         s4 = input[3] - input[4];
419         s5 = input[2] - input[5];
420         s6 = input[1] - input[6];
421         s7 = input[0] - input[7];
422
423         // fdct4(step, step);
424         x0 = s0 + s3;
425         x1 = s1 + s2;
426         x2 = s1 - s2;
427         x3 = s0 - s3;
428         t0 = (x0 + x1) * cospi_16_64;
429         t1 = (x0 - x1) * cospi_16_64;
430         t2 = x3 * cospi_8_64  + x2 * cospi_24_64;
431         t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
432         out[0] = fdct_round_shift(t0);
433         out[4] = fdct_round_shift(t2);
434         out[8] = fdct_round_shift(t1);
435         out[12] = fdct_round_shift(t3);
436
437         // Stage 2
438         t0 = (s6 - s5) * cospi_16_64;
439         t1 = (s6 + s5) * cospi_16_64;
440         t2 = fdct_round_shift(t0);
441         t3 = fdct_round_shift(t1);
442
443         // Stage 3
444         x0 = s4 + t2;
445         x1 = s4 - t2;
446         x2 = s7 - t3;
447         x3 = s7 + t3;
448
449         // Stage 4
450         t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
451         t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
452         t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
453         t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
454         out[2] = fdct_round_shift(t0);
455         out[6] = fdct_round_shift(t2);
456         out[10] = fdct_round_shift(t1);
457         out[14] = fdct_round_shift(t3);
458       }
459       // Work on the next eight values; step1 -> odd_results
460       {
461         // step 2
462         temp1 = (step1[5] - step1[2]) * cospi_16_64;
463         temp2 = (step1[4] - step1[3]) * cospi_16_64;
464         step2[2] = fdct_round_shift(temp1);
465         step2[3] = fdct_round_shift(temp2);
466         temp1 = (step1[4] + step1[3]) * cospi_16_64;
467         temp2 = (step1[5] + step1[2]) * cospi_16_64;
468         step2[4] = fdct_round_shift(temp1);
469         step2[5] = fdct_round_shift(temp2);
470         // step 3
471         step3[0] = step1[0] + step2[3];
472         step3[1] = step1[1] + step2[2];
473         step3[2] = step1[1] - step2[2];
474         step3[3] = step1[0] - step2[3];
475         step3[4] = step1[7] - step2[4];
476         step3[5] = step1[6] - step2[5];
477         step3[6] = step1[6] + step2[5];
478         step3[7] = step1[7] + step2[4];
479         // step 4
480         temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64;
481         temp2 = step3[2] * cospi_24_64 + step3[5] *  cospi_8_64;
482         step2[1] = fdct_round_shift(temp1);
483         step2[2] = fdct_round_shift(temp2);
484         temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
485         temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64;
486         step2[5] = fdct_round_shift(temp1);
487         step2[6] = fdct_round_shift(temp2);
488         // step 5
489         step1[0] = step3[0] + step2[1];
490         step1[1] = step3[0] - step2[1];
491         step1[2] = step3[3] + step2[2];
492         step1[3] = step3[3] - step2[2];
493         step1[4] = step3[4] - step2[5];
494         step1[5] = step3[4] + step2[5];
495         step1[6] = step3[7] - step2[6];
496         step1[7] = step3[7] + step2[6];
497         // step 6
498         temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64;
499         temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
500         out[1] = fdct_round_shift(temp1);
501         out[9] = fdct_round_shift(temp2);
502         temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
503         temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64;
504         out[5] = fdct_round_shift(temp1);
505         out[13] = fdct_round_shift(temp2);
506         temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64;
507         temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
508         out[3] = fdct_round_shift(temp1);
509         out[11] = fdct_round_shift(temp2);
510         temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
511         temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64;
512         out[7] = fdct_round_shift(temp1);
513         out[15] = fdct_round_shift(temp2);
514       }
515       // Do next column (which is a transposed row in second/horizontal pass)
516       in++;
517       out += 16;
518     }
519     // Setup in/out for next pass.
520     in = intermediate;
521     out = output;
522   }
523 }
524
525 static void fadst8(const int16_t *input, int16_t *output) {
526   int s0, s1, s2, s3, s4, s5, s6, s7;
527
528   int x0 = input[7];
529   int x1 = input[0];
530   int x2 = input[5];
531   int x3 = input[2];
532   int x4 = input[3];
533   int x5 = input[4];
534   int x6 = input[1];
535   int x7 = input[6];
536
537   // stage 1
538   s0 = cospi_2_64  * x0 + cospi_30_64 * x1;
539   s1 = cospi_30_64 * x0 - cospi_2_64  * x1;
540   s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
541   s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
542   s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
543   s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
544   s6 = cospi_26_64 * x6 + cospi_6_64  * x7;
545   s7 = cospi_6_64  * x6 - cospi_26_64 * x7;
546
547   x0 = fdct_round_shift(s0 + s4);
548   x1 = fdct_round_shift(s1 + s5);
549   x2 = fdct_round_shift(s2 + s6);
550   x3 = fdct_round_shift(s3 + s7);
551   x4 = fdct_round_shift(s0 - s4);
552   x5 = fdct_round_shift(s1 - s5);
553   x6 = fdct_round_shift(s2 - s6);
554   x7 = fdct_round_shift(s3 - s7);
555
556   // stage 2
557   s0 = x0;
558   s1 = x1;
559   s2 = x2;
560   s3 = x3;
561   s4 = cospi_8_64  * x4 + cospi_24_64 * x5;
562   s5 = cospi_24_64 * x4 - cospi_8_64  * x5;
563   s6 = - cospi_24_64 * x6 + cospi_8_64  * x7;
564   s7 =   cospi_8_64  * x6 + cospi_24_64 * x7;
565
566   x0 = s0 + s2;
567   x1 = s1 + s3;
568   x2 = s0 - s2;
569   x3 = s1 - s3;
570   x4 = fdct_round_shift(s4 + s6);
571   x5 = fdct_round_shift(s5 + s7);
572   x6 = fdct_round_shift(s4 - s6);
573   x7 = fdct_round_shift(s5 - s7);
574
575   // stage 3
576   s2 = cospi_16_64 * (x2 + x3);
577   s3 = cospi_16_64 * (x2 - x3);
578   s6 = cospi_16_64 * (x6 + x7);
579   s7 = cospi_16_64 * (x6 - x7);
580
581   x2 = fdct_round_shift(s2);
582   x3 = fdct_round_shift(s3);
583   x6 = fdct_round_shift(s6);
584   x7 = fdct_round_shift(s7);
585
586   output[0] =   x0;
587   output[1] = - x4;
588   output[2] =   x6;
589   output[3] = - x2;
590   output[4] =   x3;
591   output[5] = - x7;
592   output[6] =   x5;
593   output[7] = - x1;
594 }
595
596 static const transform_2d FHT_8[] = {
597   { fdct8,  fdct8  },  // DCT_DCT  = 0
598   { fadst8, fdct8  },  // ADST_DCT = 1
599   { fdct8,  fadst8 },  // DCT_ADST = 2
600   { fadst8, fadst8 }   // ADST_ADST = 3
601 };
602
603 void vp9_fht8x8_c(const int16_t *input, int16_t *output,
604                   int stride, int tx_type) {
605   if (tx_type == DCT_DCT) {
606     vp9_fdct8x8_c(input, output, stride);
607   } else {
608     int16_t out[64];
609     int16_t *outptr = &out[0];
610     int i, j;
611     int16_t temp_in[8], temp_out[8];
612     const transform_2d ht = FHT_8[tx_type];
613
614     // Columns
615     for (i = 0; i < 8; ++i) {
616       for (j = 0; j < 8; ++j)
617         temp_in[j] = input[j * stride + i] * 4;
618       ht.cols(temp_in, temp_out);
619       for (j = 0; j < 8; ++j)
620         outptr[j * 8 + i] = temp_out[j];
621     }
622
623     // Rows
624     for (i = 0; i < 8; ++i) {
625       for (j = 0; j < 8; ++j)
626         temp_in[j] = out[j + i * 8];
627       ht.rows(temp_in, temp_out);
628       for (j = 0; j < 8; ++j)
629         output[j + i * 8] = (temp_out[j] + (temp_out[j] < 0)) >> 1;
630     }
631   }
632 }
633
634 /* 4-point reversible, orthonormal Walsh-Hadamard in 3.5 adds, 0.5 shifts per
635    pixel. */
636 void vp9_fwht4x4_c(const int16_t *input, int16_t *output, int stride) {
637   int i;
638   int a1, b1, c1, d1, e1;
639   const int16_t *ip = input;
640   int16_t *op = output;
641
642   for (i = 0; i < 4; i++) {
643     a1 = ip[0 * stride];
644     b1 = ip[1 * stride];
645     c1 = ip[2 * stride];
646     d1 = ip[3 * stride];
647
648     a1 += b1;
649     d1 = d1 - c1;
650     e1 = (a1 - d1) >> 1;
651     b1 = e1 - b1;
652     c1 = e1 - c1;
653     a1 -= c1;
654     d1 += b1;
655     op[0] = a1;
656     op[4] = c1;
657     op[8] = d1;
658     op[12] = b1;
659
660     ip++;
661     op++;
662   }
663   ip = output;
664   op = output;
665
666   for (i = 0; i < 4; i++) {
667     a1 = ip[0];
668     b1 = ip[1];
669     c1 = ip[2];
670     d1 = ip[3];
671
672     a1 += b1;
673     d1 -= c1;
674     e1 = (a1 - d1) >> 1;
675     b1 = e1 - b1;
676     c1 = e1 - c1;
677     a1 -= c1;
678     d1 += b1;
679     op[0] = a1 * UNIT_QUANT_FACTOR;
680     op[1] = c1 * UNIT_QUANT_FACTOR;
681     op[2] = d1 * UNIT_QUANT_FACTOR;
682     op[3] = b1 * UNIT_QUANT_FACTOR;
683
684     ip += 4;
685     op += 4;
686   }
687 }
688
689 // Rewrote to use same algorithm as others.
690 static void fdct16(const int16_t in[16], int16_t out[16]) {
691   /*canbe16*/ int step1[8];
692   /*canbe16*/ int step2[8];
693   /*canbe16*/ int step3[8];
694   /*canbe16*/ int input[8];
695   /*needs32*/ int temp1, temp2;
696
697   // step 1
698   input[0] = in[0] + in[15];
699   input[1] = in[1] + in[14];
700   input[2] = in[2] + in[13];
701   input[3] = in[3] + in[12];
702   input[4] = in[4] + in[11];
703   input[5] = in[5] + in[10];
704   input[6] = in[6] + in[ 9];
705   input[7] = in[7] + in[ 8];
706
707   step1[0] = in[7] - in[ 8];
708   step1[1] = in[6] - in[ 9];
709   step1[2] = in[5] - in[10];
710   step1[3] = in[4] - in[11];
711   step1[4] = in[3] - in[12];
712   step1[5] = in[2] - in[13];
713   step1[6] = in[1] - in[14];
714   step1[7] = in[0] - in[15];
715
716   // fdct8(step, step);
717   {
718     /*canbe16*/ int s0, s1, s2, s3, s4, s5, s6, s7;
719     /*needs32*/ int t0, t1, t2, t3;
720     /*canbe16*/ int x0, x1, x2, x3;
721
722     // stage 1
723     s0 = input[0] + input[7];
724     s1 = input[1] + input[6];
725     s2 = input[2] + input[5];
726     s3 = input[3] + input[4];
727     s4 = input[3] - input[4];
728     s5 = input[2] - input[5];
729     s6 = input[1] - input[6];
730     s7 = input[0] - input[7];
731
732     // fdct4(step, step);
733     x0 = s0 + s3;
734     x1 = s1 + s2;
735     x2 = s1 - s2;
736     x3 = s0 - s3;
737     t0 = (x0 + x1) * cospi_16_64;
738     t1 = (x0 - x1) * cospi_16_64;
739     t2 = x3 * cospi_8_64  + x2 * cospi_24_64;
740     t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
741     out[0] = fdct_round_shift(t0);
742     out[4] = fdct_round_shift(t2);
743     out[8] = fdct_round_shift(t1);
744     out[12] = fdct_round_shift(t3);
745
746     // Stage 2
747     t0 = (s6 - s5) * cospi_16_64;
748     t1 = (s6 + s5) * cospi_16_64;
749     t2 = fdct_round_shift(t0);
750     t3 = fdct_round_shift(t1);
751
752     // Stage 3
753     x0 = s4 + t2;
754     x1 = s4 - t2;
755     x2 = s7 - t3;
756     x3 = s7 + t3;
757
758     // Stage 4
759     t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
760     t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
761     t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
762     t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
763     out[2] = fdct_round_shift(t0);
764     out[6] = fdct_round_shift(t2);
765     out[10] = fdct_round_shift(t1);
766     out[14] = fdct_round_shift(t3);
767   }
768
769   // step 2
770   temp1 = (step1[5] - step1[2]) * cospi_16_64;
771   temp2 = (step1[4] - step1[3]) * cospi_16_64;
772   step2[2] = fdct_round_shift(temp1);
773   step2[3] = fdct_round_shift(temp2);
774   temp1 = (step1[4] + step1[3]) * cospi_16_64;
775   temp2 = (step1[5] + step1[2]) * cospi_16_64;
776   step2[4] = fdct_round_shift(temp1);
777   step2[5] = fdct_round_shift(temp2);
778
779   // step 3
780   step3[0] = step1[0] + step2[3];
781   step3[1] = step1[1] + step2[2];
782   step3[2] = step1[1] - step2[2];
783   step3[3] = step1[0] - step2[3];
784   step3[4] = step1[7] - step2[4];
785   step3[5] = step1[6] - step2[5];
786   step3[6] = step1[6] + step2[5];
787   step3[7] = step1[7] + step2[4];
788
789   // step 4
790   temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64;
791   temp2 = step3[2] * cospi_24_64 + step3[5] *  cospi_8_64;
792   step2[1] = fdct_round_shift(temp1);
793   step2[2] = fdct_round_shift(temp2);
794   temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
795   temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64;
796   step2[5] = fdct_round_shift(temp1);
797   step2[6] = fdct_round_shift(temp2);
798
799   // step 5
800   step1[0] = step3[0] + step2[1];
801   step1[1] = step3[0] - step2[1];
802   step1[2] = step3[3] + step2[2];
803   step1[3] = step3[3] - step2[2];
804   step1[4] = step3[4] - step2[5];
805   step1[5] = step3[4] + step2[5];
806   step1[6] = step3[7] - step2[6];
807   step1[7] = step3[7] + step2[6];
808
809   // step 6
810   temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64;
811   temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
812   out[1] = fdct_round_shift(temp1);
813   out[9] = fdct_round_shift(temp2);
814
815   temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
816   temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64;
817   out[5] = fdct_round_shift(temp1);
818   out[13] = fdct_round_shift(temp2);
819
820   temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64;
821   temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
822   out[3] = fdct_round_shift(temp1);
823   out[11] = fdct_round_shift(temp2);
824
825   temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
826   temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64;
827   out[7] = fdct_round_shift(temp1);
828   out[15] = fdct_round_shift(temp2);
829 }
830
831 static void fadst16(const int16_t *input, int16_t *output) {
832   int s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15;
833
834   int x0 = input[15];
835   int x1 = input[0];
836   int x2 = input[13];
837   int x3 = input[2];
838   int x4 = input[11];
839   int x5 = input[4];
840   int x6 = input[9];
841   int x7 = input[6];
842   int x8 = input[7];
843   int x9 = input[8];
844   int x10 = input[5];
845   int x11 = input[10];
846   int x12 = input[3];
847   int x13 = input[12];
848   int x14 = input[1];
849   int x15 = input[14];
850
851   // stage 1
852   s0 = x0 * cospi_1_64  + x1 * cospi_31_64;
853   s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
854   s2 = x2 * cospi_5_64  + x3 * cospi_27_64;
855   s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
856   s4 = x4 * cospi_9_64  + x5 * cospi_23_64;
857   s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
858   s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
859   s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
860   s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
861   s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
862   s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
863   s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
864   s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
865   s13 = x12 * cospi_7_64  - x13 * cospi_25_64;
866   s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
867   s15 = x14 * cospi_3_64  - x15 * cospi_29_64;
868
869   x0 = fdct_round_shift(s0 + s8);
870   x1 = fdct_round_shift(s1 + s9);
871   x2 = fdct_round_shift(s2 + s10);
872   x3 = fdct_round_shift(s3 + s11);
873   x4 = fdct_round_shift(s4 + s12);
874   x5 = fdct_round_shift(s5 + s13);
875   x6 = fdct_round_shift(s6 + s14);
876   x7 = fdct_round_shift(s7 + s15);
877   x8  = fdct_round_shift(s0 - s8);
878   x9  = fdct_round_shift(s1 - s9);
879   x10 = fdct_round_shift(s2 - s10);
880   x11 = fdct_round_shift(s3 - s11);
881   x12 = fdct_round_shift(s4 - s12);
882   x13 = fdct_round_shift(s5 - s13);
883   x14 = fdct_round_shift(s6 - s14);
884   x15 = fdct_round_shift(s7 - s15);
885
886   // stage 2
887   s0 = x0;
888   s1 = x1;
889   s2 = x2;
890   s3 = x3;
891   s4 = x4;
892   s5 = x5;
893   s6 = x6;
894   s7 = x7;
895   s8 =    x8 * cospi_4_64   + x9 * cospi_28_64;
896   s9 =    x8 * cospi_28_64  - x9 * cospi_4_64;
897   s10 =   x10 * cospi_20_64 + x11 * cospi_12_64;
898   s11 =   x10 * cospi_12_64 - x11 * cospi_20_64;
899   s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
900   s13 =   x12 * cospi_4_64  + x13 * cospi_28_64;
901   s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
902   s15 =   x14 * cospi_20_64 + x15 * cospi_12_64;
903
904   x0 = s0 + s4;
905   x1 = s1 + s5;
906   x2 = s2 + s6;
907   x3 = s3 + s7;
908   x4 = s0 - s4;
909   x5 = s1 - s5;
910   x6 = s2 - s6;
911   x7 = s3 - s7;
912   x8 = fdct_round_shift(s8 + s12);
913   x9 = fdct_round_shift(s9 + s13);
914   x10 = fdct_round_shift(s10 + s14);
915   x11 = fdct_round_shift(s11 + s15);
916   x12 = fdct_round_shift(s8 - s12);
917   x13 = fdct_round_shift(s9 - s13);
918   x14 = fdct_round_shift(s10 - s14);
919   x15 = fdct_round_shift(s11 - s15);
920
921   // stage 3
922   s0 = x0;
923   s1 = x1;
924   s2 = x2;
925   s3 = x3;
926   s4 = x4 * cospi_8_64  + x5 * cospi_24_64;
927   s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
928   s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
929   s7 =   x6 * cospi_8_64  + x7 * cospi_24_64;
930   s8 = x8;
931   s9 = x9;
932   s10 = x10;
933   s11 = x11;
934   s12 = x12 * cospi_8_64  + x13 * cospi_24_64;
935   s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
936   s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
937   s15 =   x14 * cospi_8_64  + x15 * cospi_24_64;
938
939   x0 = s0 + s2;
940   x1 = s1 + s3;
941   x2 = s0 - s2;
942   x3 = s1 - s3;
943   x4 = fdct_round_shift(s4 + s6);
944   x5 = fdct_round_shift(s5 + s7);
945   x6 = fdct_round_shift(s4 - s6);
946   x7 = fdct_round_shift(s5 - s7);
947   x8 = s8 + s10;
948   x9 = s9 + s11;
949   x10 = s8 - s10;
950   x11 = s9 - s11;
951   x12 = fdct_round_shift(s12 + s14);
952   x13 = fdct_round_shift(s13 + s15);
953   x14 = fdct_round_shift(s12 - s14);
954   x15 = fdct_round_shift(s13 - s15);
955
956   // stage 4
957   s2 = (- cospi_16_64) * (x2 + x3);
958   s3 = cospi_16_64 * (x2 - x3);
959   s6 = cospi_16_64 * (x6 + x7);
960   s7 = cospi_16_64 * (- x6 + x7);
961   s10 = cospi_16_64 * (x10 + x11);
962   s11 = cospi_16_64 * (- x10 + x11);
963   s14 = (- cospi_16_64) * (x14 + x15);
964   s15 = cospi_16_64 * (x14 - x15);
965
966   x2 = fdct_round_shift(s2);
967   x3 = fdct_round_shift(s3);
968   x6 = fdct_round_shift(s6);
969   x7 = fdct_round_shift(s7);
970   x10 = fdct_round_shift(s10);
971   x11 = fdct_round_shift(s11);
972   x14 = fdct_round_shift(s14);
973   x15 = fdct_round_shift(s15);
974
975   output[0] = x0;
976   output[1] = - x8;
977   output[2] = x12;
978   output[3] = - x4;
979   output[4] = x6;
980   output[5] = x14;
981   output[6] = x10;
982   output[7] = x2;
983   output[8] = x3;
984   output[9] =  x11;
985   output[10] = x15;
986   output[11] = x7;
987   output[12] = x5;
988   output[13] = - x13;
989   output[14] = x9;
990   output[15] = - x1;
991 }
992
993 static const transform_2d FHT_16[] = {
994   { fdct16,  fdct16  },  // DCT_DCT  = 0
995   { fadst16, fdct16  },  // ADST_DCT = 1
996   { fdct16,  fadst16 },  // DCT_ADST = 2
997   { fadst16, fadst16 }   // ADST_ADST = 3
998 };
999
1000 void vp9_fht16x16_c(const int16_t *input, int16_t *output,
1001                     int stride, int tx_type) {
1002   if (tx_type == DCT_DCT) {
1003     vp9_fdct16x16_c(input, output, stride);
1004   } else {
1005     int16_t out[256];
1006     int16_t *outptr = &out[0];
1007     int i, j;
1008     int16_t temp_in[16], temp_out[16];
1009     const transform_2d ht = FHT_16[tx_type];
1010
1011     // Columns
1012     for (i = 0; i < 16; ++i) {
1013       for (j = 0; j < 16; ++j)
1014         temp_in[j] = input[j * stride + i] * 4;
1015       ht.cols(temp_in, temp_out);
1016       for (j = 0; j < 16; ++j)
1017         outptr[j * 16 + i] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
1018     }
1019
1020     // Rows
1021     for (i = 0; i < 16; ++i) {
1022       for (j = 0; j < 16; ++j)
1023         temp_in[j] = out[j + i * 16];
1024       ht.rows(temp_in, temp_out);
1025       for (j = 0; j < 16; ++j)
1026         output[j + i * 16] = temp_out[j];
1027     }
1028   }
1029 }
1030
1031 static INLINE int dct_32_round(int input) {
1032   int rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
1033   assert(-131072 <= rv && rv <= 131071);
1034   return rv;
1035 }
1036
1037 static INLINE int half_round_shift(int input) {
1038   int rv = (input + 1 + (input < 0)) >> 2;
1039   return rv;
1040 }
1041
1042 static void fdct32(const int *input, int *output, int round) {
1043   int step[32];
1044   // Stage 1
1045   step[0] = input[0] + input[(32 - 1)];
1046   step[1] = input[1] + input[(32 - 2)];
1047   step[2] = input[2] + input[(32 - 3)];
1048   step[3] = input[3] + input[(32 - 4)];
1049   step[4] = input[4] + input[(32 - 5)];
1050   step[5] = input[5] + input[(32 - 6)];
1051   step[6] = input[6] + input[(32 - 7)];
1052   step[7] = input[7] + input[(32 - 8)];
1053   step[8] = input[8] + input[(32 - 9)];
1054   step[9] = input[9] + input[(32 - 10)];
1055   step[10] = input[10] + input[(32 - 11)];
1056   step[11] = input[11] + input[(32 - 12)];
1057   step[12] = input[12] + input[(32 - 13)];
1058   step[13] = input[13] + input[(32 - 14)];
1059   step[14] = input[14] + input[(32 - 15)];
1060   step[15] = input[15] + input[(32 - 16)];
1061   step[16] = -input[16] + input[(32 - 17)];
1062   step[17] = -input[17] + input[(32 - 18)];
1063   step[18] = -input[18] + input[(32 - 19)];
1064   step[19] = -input[19] + input[(32 - 20)];
1065   step[20] = -input[20] + input[(32 - 21)];
1066   step[21] = -input[21] + input[(32 - 22)];
1067   step[22] = -input[22] + input[(32 - 23)];
1068   step[23] = -input[23] + input[(32 - 24)];
1069   step[24] = -input[24] + input[(32 - 25)];
1070   step[25] = -input[25] + input[(32 - 26)];
1071   step[26] = -input[26] + input[(32 - 27)];
1072   step[27] = -input[27] + input[(32 - 28)];
1073   step[28] = -input[28] + input[(32 - 29)];
1074   step[29] = -input[29] + input[(32 - 30)];
1075   step[30] = -input[30] + input[(32 - 31)];
1076   step[31] = -input[31] + input[(32 - 32)];
1077
1078   // Stage 2
1079   output[0] = step[0] + step[16 - 1];
1080   output[1] = step[1] + step[16 - 2];
1081   output[2] = step[2] + step[16 - 3];
1082   output[3] = step[3] + step[16 - 4];
1083   output[4] = step[4] + step[16 - 5];
1084   output[5] = step[5] + step[16 - 6];
1085   output[6] = step[6] + step[16 - 7];
1086   output[7] = step[7] + step[16 - 8];
1087   output[8] = -step[8] + step[16 - 9];
1088   output[9] = -step[9] + step[16 - 10];
1089   output[10] = -step[10] + step[16 - 11];
1090   output[11] = -step[11] + step[16 - 12];
1091   output[12] = -step[12] + step[16 - 13];
1092   output[13] = -step[13] + step[16 - 14];
1093   output[14] = -step[14] + step[16 - 15];
1094   output[15] = -step[15] + step[16 - 16];
1095
1096   output[16] = step[16];
1097   output[17] = step[17];
1098   output[18] = step[18];
1099   output[19] = step[19];
1100
1101   output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
1102   output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
1103   output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
1104   output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
1105
1106   output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
1107   output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
1108   output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
1109   output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
1110
1111   output[28] = step[28];
1112   output[29] = step[29];
1113   output[30] = step[30];
1114   output[31] = step[31];
1115
1116   // dump the magnitude by 4, hence the intermediate values are within
1117   // the range of 16 bits.
1118   if (round) {
1119     output[0] = half_round_shift(output[0]);
1120     output[1] = half_round_shift(output[1]);
1121     output[2] = half_round_shift(output[2]);
1122     output[3] = half_round_shift(output[3]);
1123     output[4] = half_round_shift(output[4]);
1124     output[5] = half_round_shift(output[5]);
1125     output[6] = half_round_shift(output[6]);
1126     output[7] = half_round_shift(output[7]);
1127     output[8] = half_round_shift(output[8]);
1128     output[9] = half_round_shift(output[9]);
1129     output[10] = half_round_shift(output[10]);
1130     output[11] = half_round_shift(output[11]);
1131     output[12] = half_round_shift(output[12]);
1132     output[13] = half_round_shift(output[13]);
1133     output[14] = half_round_shift(output[14]);
1134     output[15] = half_round_shift(output[15]);
1135
1136     output[16] = half_round_shift(output[16]);
1137     output[17] = half_round_shift(output[17]);
1138     output[18] = half_round_shift(output[18]);
1139     output[19] = half_round_shift(output[19]);
1140     output[20] = half_round_shift(output[20]);
1141     output[21] = half_round_shift(output[21]);
1142     output[22] = half_round_shift(output[22]);
1143     output[23] = half_round_shift(output[23]);
1144     output[24] = half_round_shift(output[24]);
1145     output[25] = half_round_shift(output[25]);
1146     output[26] = half_round_shift(output[26]);
1147     output[27] = half_round_shift(output[27]);
1148     output[28] = half_round_shift(output[28]);
1149     output[29] = half_round_shift(output[29]);
1150     output[30] = half_round_shift(output[30]);
1151     output[31] = half_round_shift(output[31]);
1152   }
1153
1154   // Stage 3
1155   step[0] = output[0] + output[(8 - 1)];
1156   step[1] = output[1] + output[(8 - 2)];
1157   step[2] = output[2] + output[(8 - 3)];
1158   step[3] = output[3] + output[(8 - 4)];
1159   step[4] = -output[4] + output[(8 - 5)];
1160   step[5] = -output[5] + output[(8 - 6)];
1161   step[6] = -output[6] + output[(8 - 7)];
1162   step[7] = -output[7] + output[(8 - 8)];
1163   step[8] = output[8];
1164   step[9] = output[9];
1165   step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
1166   step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
1167   step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
1168   step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
1169   step[14] = output[14];
1170   step[15] = output[15];
1171
1172   step[16] = output[16] + output[23];
1173   step[17] = output[17] + output[22];
1174   step[18] = output[18] + output[21];
1175   step[19] = output[19] + output[20];
1176   step[20] = -output[20] + output[19];
1177   step[21] = -output[21] + output[18];
1178   step[22] = -output[22] + output[17];
1179   step[23] = -output[23] + output[16];
1180   step[24] = -output[24] + output[31];
1181   step[25] = -output[25] + output[30];
1182   step[26] = -output[26] + output[29];
1183   step[27] = -output[27] + output[28];
1184   step[28] = output[28] + output[27];
1185   step[29] = output[29] + output[26];
1186   step[30] = output[30] + output[25];
1187   step[31] = output[31] + output[24];
1188
1189   // Stage 4
1190   output[0] = step[0] + step[3];
1191   output[1] = step[1] + step[2];
1192   output[2] = -step[2] + step[1];
1193   output[3] = -step[3] + step[0];
1194   output[4] = step[4];
1195   output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
1196   output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
1197   output[7] = step[7];
1198   output[8] = step[8] + step[11];
1199   output[9] = step[9] + step[10];
1200   output[10] = -step[10] + step[9];
1201   output[11] = -step[11] + step[8];
1202   output[12] = -step[12] + step[15];
1203   output[13] = -step[13] + step[14];
1204   output[14] = step[14] + step[13];
1205   output[15] = step[15] + step[12];
1206
1207   output[16] = step[16];
1208   output[17] = step[17];
1209   output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
1210   output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
1211   output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
1212   output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
1213   output[22] = step[22];
1214   output[23] = step[23];
1215   output[24] = step[24];
1216   output[25] = step[25];
1217   output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
1218   output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
1219   output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
1220   output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
1221   output[30] = step[30];
1222   output[31] = step[31];
1223
1224   // Stage 5
1225   step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
1226   step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
1227   step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
1228   step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
1229   step[4] = output[4] + output[5];
1230   step[5] = -output[5] + output[4];
1231   step[6] = -output[6] + output[7];
1232   step[7] = output[7] + output[6];
1233   step[8] = output[8];
1234   step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
1235   step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
1236   step[11] = output[11];
1237   step[12] = output[12];
1238   step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
1239   step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
1240   step[15] = output[15];
1241
1242   step[16] = output[16] + output[19];
1243   step[17] = output[17] + output[18];
1244   step[18] = -output[18] + output[17];
1245   step[19] = -output[19] + output[16];
1246   step[20] = -output[20] + output[23];
1247   step[21] = -output[21] + output[22];
1248   step[22] = output[22] + output[21];
1249   step[23] = output[23] + output[20];
1250   step[24] = output[24] + output[27];
1251   step[25] = output[25] + output[26];
1252   step[26] = -output[26] + output[25];
1253   step[27] = -output[27] + output[24];
1254   step[28] = -output[28] + output[31];
1255   step[29] = -output[29] + output[30];
1256   step[30] = output[30] + output[29];
1257   step[31] = output[31] + output[28];
1258
1259   // Stage 6
1260   output[0] = step[0];
1261   output[1] = step[1];
1262   output[2] = step[2];
1263   output[3] = step[3];
1264   output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
1265   output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
1266   output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
1267   output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
1268   output[8] = step[8] + step[9];
1269   output[9] = -step[9] + step[8];
1270   output[10] = -step[10] + step[11];
1271   output[11] = step[11] + step[10];
1272   output[12] = step[12] + step[13];
1273   output[13] = -step[13] + step[12];
1274   output[14] = -step[14] + step[15];
1275   output[15] = step[15] + step[14];
1276
1277   output[16] = step[16];
1278   output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
1279   output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
1280   output[19] = step[19];
1281   output[20] = step[20];
1282   output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
1283   output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
1284   output[23] = step[23];
1285   output[24] = step[24];
1286   output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
1287   output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
1288   output[27] = step[27];
1289   output[28] = step[28];
1290   output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
1291   output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
1292   output[31] = step[31];
1293
1294   // Stage 7
1295   step[0] = output[0];
1296   step[1] = output[1];
1297   step[2] = output[2];
1298   step[3] = output[3];
1299   step[4] = output[4];
1300   step[5] = output[5];
1301   step[6] = output[6];
1302   step[7] = output[7];
1303   step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
1304   step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
1305   step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
1306   step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
1307   step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
1308   step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
1309   step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
1310   step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
1311
1312   step[16] = output[16] + output[17];
1313   step[17] = -output[17] + output[16];
1314   step[18] = -output[18] + output[19];
1315   step[19] = output[19] + output[18];
1316   step[20] = output[20] + output[21];
1317   step[21] = -output[21] + output[20];
1318   step[22] = -output[22] + output[23];
1319   step[23] = output[23] + output[22];
1320   step[24] = output[24] + output[25];
1321   step[25] = -output[25] + output[24];
1322   step[26] = -output[26] + output[27];
1323   step[27] = output[27] + output[26];
1324   step[28] = output[28] + output[29];
1325   step[29] = -output[29] + output[28];
1326   step[30] = -output[30] + output[31];
1327   step[31] = output[31] + output[30];
1328
1329   // Final stage --- outputs indices are bit-reversed.
1330   output[0]  = step[0];
1331   output[16] = step[1];
1332   output[8]  = step[2];
1333   output[24] = step[3];
1334   output[4]  = step[4];
1335   output[20] = step[5];
1336   output[12] = step[6];
1337   output[28] = step[7];
1338   output[2]  = step[8];
1339   output[18] = step[9];
1340   output[10] = step[10];
1341   output[26] = step[11];
1342   output[6]  = step[12];
1343   output[22] = step[13];
1344   output[14] = step[14];
1345   output[30] = step[15];
1346
1347   output[1]  = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
1348   output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
1349   output[9]  = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
1350   output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
1351   output[5]  = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
1352   output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
1353   output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
1354   output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
1355   output[3]  = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
1356   output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
1357   output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
1358   output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
1359   output[7]  = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
1360   output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
1361   output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
1362   output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
1363 }
1364
1365 void vp9_fdct32x32_1_c(const int16_t *input, int16_t *output, int stride) {
1366   int r, c;
1367   int16_t sum = 0;
1368   for (r = 0; r < 32; ++r)
1369     for (c = 0; c < 32; ++c)
1370       sum += input[r * stride + c];
1371
1372   output[0] = sum >> 3;
1373   output[1] = 0;
1374 }
1375
1376 void vp9_fdct32x32_c(const int16_t *input, int16_t *out, int stride) {
1377   int i, j;
1378   int output[32 * 32];
1379
1380   // Columns
1381   for (i = 0; i < 32; ++i) {
1382     int temp_in[32], temp_out[32];
1383     for (j = 0; j < 32; ++j)
1384       temp_in[j] = input[j * stride + i] * 4;
1385     fdct32(temp_in, temp_out, 0);
1386     for (j = 0; j < 32; ++j)
1387       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
1388   }
1389
1390   // Rows
1391   for (i = 0; i < 32; ++i) {
1392     int temp_in[32], temp_out[32];
1393     for (j = 0; j < 32; ++j)
1394       temp_in[j] = output[j + i * 32];
1395     fdct32(temp_in, temp_out, 0);
1396     for (j = 0; j < 32; ++j)
1397       out[j + i * 32] = (temp_out[j] + 1 + (temp_out[j] < 0)) >> 2;
1398   }
1399 }
1400
1401 // Note that although we use dct_32_round in dct32 computation flow,
1402 // this 2d fdct32x32 for rate-distortion optimization loop is operating
1403 // within 16 bits precision.
1404 void vp9_fdct32x32_rd_c(const int16_t *input, int16_t *out, int stride) {
1405   int i, j;
1406   int output[32 * 32];
1407
1408   // Columns
1409   for (i = 0; i < 32; ++i) {
1410     int temp_in[32], temp_out[32];
1411     for (j = 0; j < 32; ++j)
1412       temp_in[j] = input[j * stride + i] * 4;
1413     fdct32(temp_in, temp_out, 0);
1414     for (j = 0; j < 32; ++j)
1415       // TODO(cd): see quality impact of only doing
1416       //           output[j * 32 + i] = (temp_out[j] + 1) >> 2;
1417       //           PS: also change code in vp9/encoder/x86/vp9_dct_sse2.c
1418       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
1419   }
1420
1421   // Rows
1422   for (i = 0; i < 32; ++i) {
1423     int temp_in[32], temp_out[32];
1424     for (j = 0; j < 32; ++j)
1425       temp_in[j] = output[j + i * 32];
1426     fdct32(temp_in, temp_out, 1);
1427     for (j = 0; j < 32; ++j)
1428       out[j + i * 32] = temp_out[j];
1429   }
1430 }