Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / libvpx / source / libvpx / vp9 / common / vp9_scale.c
1 /*
2  *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10
11 #include "./vp9_rtcd.h"
12 #include "vp9/common/vp9_filter.h"
13 #include "vp9/common/vp9_scale.h"
14
15 static INLINE int scaled_x(int val, const struct scale_factors *sf) {
16   return (int)((int64_t)val * sf->x_scale_fp >> REF_SCALE_SHIFT);
17 }
18
19 static INLINE int scaled_y(int val, const struct scale_factors *sf) {
20   return (int)((int64_t)val * sf->y_scale_fp >> REF_SCALE_SHIFT);
21 }
22
23 static int unscaled_value(int val, const struct scale_factors *sf) {
24   (void) sf;
25   return val;
26 }
27
28 static int get_fixed_point_scale_factor(int other_size, int this_size) {
29   // Calculate scaling factor once for each reference frame
30   // and use fixed point scaling factors in decoding and encoding routines.
31   // Hardware implementations can calculate scale factor in device driver
32   // and use multiplication and shifting on hardware instead of division.
33   return (other_size << REF_SCALE_SHIFT) / this_size;
34 }
35
36 MV32 vp9_scale_mv(const MV *mv, int x, int y, const struct scale_factors *sf) {
37   const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf) & SUBPEL_MASK;
38   const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf) & SUBPEL_MASK;
39   const MV32 res = {
40     scaled_y(mv->row, sf) + y_off_q4,
41     scaled_x(mv->col, sf) + x_off_q4
42   };
43   return res;
44 }
45
46 #if CONFIG_VP9_HIGHBITDEPTH
47 void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
48                                        int other_w, int other_h,
49                                        int this_w, int this_h,
50                                        int use_high) {
51 #else
52 void vp9_setup_scale_factors_for_frame(struct scale_factors *sf,
53                                        int other_w, int other_h,
54                                        int this_w, int this_h) {
55 #endif
56   if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
57     sf->x_scale_fp = REF_INVALID_SCALE;
58     sf->y_scale_fp = REF_INVALID_SCALE;
59     return;
60   }
61
62   sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
63   sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
64   sf->x_step_q4 = scaled_x(16, sf);
65   sf->y_step_q4 = scaled_y(16, sf);
66
67   if (vp9_is_scaled(sf)) {
68     sf->scale_value_x = scaled_x;
69     sf->scale_value_y = scaled_y;
70   } else {
71     sf->scale_value_x = unscaled_value;
72     sf->scale_value_y = unscaled_value;
73   }
74
75   // TODO(agrange): Investigate the best choice of functions to use here
76   // for EIGHTTAP_SMOOTH. Since it is not interpolating, need to choose what
77   // to do at full-pel offsets. The current selection, where the filter is
78   // applied in one direction only, and not at all for 0,0, seems to give the
79   // best quality, but it may be worth trying an additional mode that does
80   // do the filtering on full-pel.
81   if (sf->x_step_q4 == 16) {
82     if (sf->y_step_q4 == 16) {
83       // No scaling in either direction.
84       sf->predict[0][0][0] = vp9_convolve_copy;
85       sf->predict[0][0][1] = vp9_convolve_avg;
86       sf->predict[0][1][0] = vp9_convolve8_vert;
87       sf->predict[0][1][1] = vp9_convolve8_avg_vert;
88       sf->predict[1][0][0] = vp9_convolve8_horiz;
89       sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
90     } else {
91       // No scaling in x direction. Must always scale in the y direction.
92       sf->predict[0][0][0] = vp9_convolve8_vert;
93       sf->predict[0][0][1] = vp9_convolve8_avg_vert;
94       sf->predict[0][1][0] = vp9_convolve8_vert;
95       sf->predict[0][1][1] = vp9_convolve8_avg_vert;
96       sf->predict[1][0][0] = vp9_convolve8;
97       sf->predict[1][0][1] = vp9_convolve8_avg;
98     }
99   } else {
100     if (sf->y_step_q4 == 16) {
101       // No scaling in the y direction. Must always scale in the x direction.
102       sf->predict[0][0][0] = vp9_convolve8_horiz;
103       sf->predict[0][0][1] = vp9_convolve8_avg_horiz;
104       sf->predict[0][1][0] = vp9_convolve8;
105       sf->predict[0][1][1] = vp9_convolve8_avg;
106       sf->predict[1][0][0] = vp9_convolve8_horiz;
107       sf->predict[1][0][1] = vp9_convolve8_avg_horiz;
108     } else {
109       // Must always scale in both directions.
110       sf->predict[0][0][0] = vp9_convolve8;
111       sf->predict[0][0][1] = vp9_convolve8_avg;
112       sf->predict[0][1][0] = vp9_convolve8;
113       sf->predict[0][1][1] = vp9_convolve8_avg;
114       sf->predict[1][0][0] = vp9_convolve8;
115       sf->predict[1][0][1] = vp9_convolve8_avg;
116     }
117   }
118   // 2D subpel motion always gets filtered in both directions
119   sf->predict[1][1][0] = vp9_convolve8;
120   sf->predict[1][1][1] = vp9_convolve8_avg;
121 #if CONFIG_VP9_HIGHBITDEPTH
122   if (use_high) {
123     if (sf->x_step_q4 == 16) {
124       if (sf->y_step_q4 == 16) {
125         // No scaling in either direction.
126         sf->high_predict[0][0][0] = vp9_high_convolve_copy;
127         sf->high_predict[0][0][1] = vp9_high_convolve_avg;
128         sf->high_predict[0][1][0] = vp9_high_convolve8_vert;
129         sf->high_predict[0][1][1] = vp9_high_convolve8_avg_vert;
130         sf->high_predict[1][0][0] = vp9_high_convolve8_horiz;
131         sf->high_predict[1][0][1] = vp9_high_convolve8_avg_horiz;
132       } else {
133         // No scaling in x direction. Must always scale in the y direction.
134         sf->high_predict[0][0][0] = vp9_high_convolve8_vert;
135         sf->high_predict[0][0][1] = vp9_high_convolve8_avg_vert;
136         sf->high_predict[0][1][0] = vp9_high_convolve8_vert;
137         sf->high_predict[0][1][1] = vp9_high_convolve8_avg_vert;
138         sf->high_predict[1][0][0] = vp9_high_convolve8;
139         sf->high_predict[1][0][1] = vp9_high_convolve8_avg;
140       }
141     } else {
142       if (sf->y_step_q4 == 16) {
143         // No scaling in the y direction. Must always scale in the x direction.
144         sf->high_predict[0][0][0] = vp9_high_convolve8_horiz;
145         sf->high_predict[0][0][1] = vp9_high_convolve8_avg_horiz;
146         sf->high_predict[0][1][0] = vp9_high_convolve8;
147         sf->high_predict[0][1][1] = vp9_high_convolve8_avg;
148         sf->high_predict[1][0][0] = vp9_high_convolve8_horiz;
149         sf->high_predict[1][0][1] = vp9_high_convolve8_avg_horiz;
150       } else {
151         // Must always scale in both directions.
152         sf->high_predict[0][0][0] = vp9_high_convolve8;
153         sf->high_predict[0][0][1] = vp9_high_convolve8_avg;
154         sf->high_predict[0][1][0] = vp9_high_convolve8;
155         sf->high_predict[0][1][1] = vp9_high_convolve8_avg;
156         sf->high_predict[1][0][0] = vp9_high_convolve8;
157         sf->high_predict[1][0][1] = vp9_high_convolve8_avg;
158       }
159     }
160     // 2D subpel motion always gets filtered in both directions.
161     sf->high_predict[1][1][0] = vp9_high_convolve8;
162     sf->high_predict[1][1][1] = vp9_high_convolve8_avg;
163   }
164 #endif
165 }