Upstream version 9.37.197.0
[platform/framework/web/crosswalk.git] / src / third_party / libjingle / source / talk / base / move.h
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_
6 #define THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_
7
8 // Macro with the boilerplate that makes a type move-only in C++03.
9 //
10 // USAGE
11 //
12 // This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
13 // a "move-only" type.  Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
14 // the first line in a class declaration.
15 //
16 // A class using this macro must call .Pass() (or somehow be an r-value already)
17 // before it can be:
18 //
19 //   * Passed as a function argument
20 //   * Used as the right-hand side of an assignment
21 //   * Returned from a function
22 //
23 // Each class will still need to define their own "move constructor" and "move
24 // operator=" to make this useful.  Here's an example of the macro, the move
25 // constructor, and the move operator= from the scoped_ptr class:
26 //
27 //  template <typename T>
28 //  class scoped_ptr {
29 //     TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
30 //   public:
31 //    scoped_ptr(RValue& other) : ptr_(other.release()) { }
32 //    scoped_ptr& operator=(RValue& other) {
33 //      swap(other);
34 //      return *this;
35 //    }
36 //  };
37 //
38 // Note that the constructor must NOT be marked explicit.
39 //
40 // For consistency, the second parameter to the macro should always be RValue
41 // unless you have a strong reason to do otherwise.  It is only exposed as a
42 // macro parameter so that the move constructor and move operator= don't look
43 // like they're using a phantom type.
44 //
45 //
46 // HOW THIS WORKS
47 //
48 // For a thorough explanation of this technique, see:
49 //
50 //   http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
51 //
52 // The summary is that we take advantage of 2 properties:
53 //
54 //   1) non-const references will not bind to r-values.
55 //   2) C++ can apply one user-defined conversion when initializing a
56 //      variable.
57 //
58 // The first lets us disable the copy constructor and assignment operator
59 // by declaring private version of them with a non-const reference parameter.
60 //
61 // For l-values, direct initialization still fails like in
62 // DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
63 // operators are private.
64 //
65 // For r-values, the situation is different. The copy constructor and
66 // assignment operator are not viable due to (1), so we are trying to call
67 // a non-existent constructor and non-existing operator= rather than a private
68 // one.  Since we have not committed an error quite yet, we can provide an
69 // alternate conversion sequence and a constructor.  We add
70 //
71 //   * a private struct named "RValue"
72 //   * a user-defined conversion "operator RValue()"
73 //   * a "move constructor" and "move operator=" that take the RValue& as
74 //     their sole parameter.
75 //
76 // Only r-values will trigger this sequence and execute our "move constructor"
77 // or "move operator=."  L-values will match the private copy constructor and
78 // operator= first giving a "private in this context" error.  This combination
79 // gives us a move-only type.
80 //
81 // For signaling a destructive transfer of data from an l-value, we provide a
82 // method named Pass() which creates an r-value for the current instance
83 // triggering the move constructor or move operator=.
84 //
85 // Other ways to get r-values is to use the result of an expression like a
86 // function call.
87 //
88 // Here's an example with comments explaining what gets triggered where:
89 //
90 //    class Foo {
91 //      TALK_MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
92 //
93 //     public:
94 //       ... API ...
95 //       Foo(RValue other);           // Move constructor.
96 //       Foo& operator=(RValue rhs);  // Move operator=
97 //    };
98 //
99 //    Foo MakeFoo();  // Function that returns a Foo.
100 //
101 //    Foo f;
102 //    Foo f_copy(f);  // ERROR: Foo(Foo&) is private in this context.
103 //    Foo f_assign;
104 //    f_assign = f;   // ERROR: operator=(Foo&) is private in this context.
105 //
106 //
107 //    Foo f(MakeFoo());      // R-value so alternate conversion executed.
108 //    Foo f_copy(f.Pass());  // R-value so alternate conversion executed.
109 //    f = f_copy.Pass();     // R-value so alternate conversion executed.
110 //
111 //
112 // IMPLEMENTATION SUBTLETIES WITH RValue
113 //
114 // The RValue struct is just a container for a pointer back to the original
115 // object. It should only ever be created as a temporary, and no external
116 // class should ever declare it or use it in a parameter.
117 //
118 // It is tempting to want to use the RValue type in function parameters, but
119 // excluding the limited usage here for the move constructor and move
120 // operator=, doing so would mean that the function could take both r-values
121 // and l-values equially which is unexpected.  See COMPARED To Boost.Move for
122 // more details.
123 //
124 // An alternate, and incorrect, implementation of the RValue class used by
125 // Boost.Move makes RValue a fieldless child of the move-only type. RValue&
126 // is then used in place of RValue in the various operators.  The RValue& is
127 // "created" by doing *reinterpret_cast<RValue*>(this).  This has the appeal
128 // of never creating a temporary RValue struct even with optimizations
129 // disabled.  Also, by virtue of inheritance you can treat the RValue
130 // reference as if it were the move-only type itself.  Unfortunately,
131 // using the result of this reinterpret_cast<> is actually undefined behavior
132 // due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
133 // will generate non-working code.
134 //
135 // In optimized builds, both implementations generate the same assembly so we
136 // choose the one that adheres to the standard.
137 //
138 //
139 // COMPARED TO C++11
140 //
141 // In C++11, you would implement this functionality using an r-value reference
142 // and our .Pass() method would be replaced with a call to std::move().
143 //
144 // This emulation also has a deficiency where it uses up the single
145 // user-defined conversion allowed by C++ during initialization.  This can
146 // cause problems in some API edge cases.  For instance, in scoped_ptr, it is
147 // impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
148 // value of type scoped_ptr<Child> even if you add a constructor to
149 // scoped_ptr<> that would make it look like it should work.  C++11 does not
150 // have this deficiency.
151 //
152 //
153 // COMPARED TO Boost.Move
154 //
155 // Our implementation similar to Boost.Move, but we keep the RValue struct
156 // private to the move-only type, and we don't use the reinterpret_cast<> hack.
157 //
158 // In Boost.Move, RValue is the boost::rv<> template.  This type can be used
159 // when writing APIs like:
160 //
161 //   void MyFunc(boost::rv<Foo>& f)
162 //
163 // that can take advantage of rv<> to avoid extra copies of a type.  However you
164 // would still be able to call this version of MyFunc with an l-value:
165 //
166 //   Foo f;
167 //   MyFunc(f);  // Uh oh, we probably just destroyed |f| w/o calling Pass().
168 //
169 // unless someone is very careful to also declare a parallel override like:
170 //
171 //   void MyFunc(const Foo& f)
172 //
173 // that would catch the l-values first.  This was declared unsafe in C++11 and
174 // a C++11 compiler will explicitly fail MyFunc(f).  Unfortunately, we cannot
175 // ensure this in C++03.
176 //
177 // Since we have no need for writing such APIs yet, our implementation keeps
178 // RValue private and uses a .Pass() method to do the conversion instead of
179 // trying to write a version of "std::move()." Writing an API like std::move()
180 // would require the RValue struct to be public.
181 //
182 //
183 // CAVEATS
184 //
185 // If you include a move-only type as a field inside a class that does not
186 // explicitly declare a copy constructor, the containing class's implicit
187 // copy constructor will change from Containing(const Containing&) to
188 // Containing(Containing&).  This can cause some unexpected errors.
189 //
190 //   http://llvm.org/bugs/show_bug.cgi?id=11528
191 //
192 // The workaround is to explicitly declare your copy constructor.
193 //
194 #define TALK_MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
195  private: \
196   struct rvalue_type { \
197     explicit rvalue_type(type* object) : object(object) {} \
198     type* object; \
199   }; \
200   type(type&); \
201   void operator=(type&); \
202  public: \
203   operator rvalue_type() { return rvalue_type(this); } \
204   type Pass() { return type(rvalue_type(this)); } \
205  private:
206
207 #endif  // THIRD_PARTY_WEBRTC_FILES_TALK_BASE_MOVE_H_