Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / icu / source / i18n / nfrule.cpp
1 /*
2 ******************************************************************************
3 *   Copyright (C) 1997-2011, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 ******************************************************************************
6 *   file name:  nfrule.cpp
7 *   encoding:   US-ASCII
8 *   tab size:   8 (not used)
9 *   indentation:4
10 *
11 * Modification history
12 * Date        Name      Comments
13 * 10/11/2001  Doug      Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
24 #include "nfrs.h"
25 #include "nfrlist.h"
26 #include "nfsubs.h"
27 #include "patternprops.h"
28
29 U_NAMESPACE_BEGIN
30
31 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
32   : baseValue((int32_t)0)
33   , radix(0)
34   , exponent(0)
35   , ruleText()
36   , sub1(NULL)
37   , sub2(NULL)
38   , formatter(_rbnf)
39 {
40 }
41
42 NFRule::~NFRule()
43 {
44   delete sub1;
45   delete sub2;
46 }
47
48 static const UChar gLeftBracket = 0x005b;
49 static const UChar gRightBracket = 0x005d;
50 static const UChar gColon = 0x003a;
51 static const UChar gZero = 0x0030;
52 static const UChar gNine = 0x0039;
53 static const UChar gSpace = 0x0020;
54 static const UChar gSlash = 0x002f;
55 static const UChar gGreaterThan = 0x003e;
56 static const UChar gLessThan = 0x003c;
57 static const UChar gComma = 0x002c;
58 static const UChar gDot = 0x002e;
59 static const UChar gTick = 0x0027;
60 //static const UChar gMinus = 0x002d;
61 static const UChar gSemicolon = 0x003b;
62
63 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
64 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
65 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
66 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
67
68 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
69 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
70 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
71 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
72 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
73 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
74 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
75 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
76 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
77 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
78 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
79 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
80
81 static const UChar * const tokenStrings[] = {
82     gLessLess, gLessPercent, gLessHash, gLessZero,
83     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
84     gEqualPercent, gEqualHash, gEqualZero, NULL
85 };
86
87 void
88 NFRule::makeRules(UnicodeString& description,
89                   const NFRuleSet *ruleSet,
90                   const NFRule *predecessor,
91                   const RuleBasedNumberFormat *rbnf,
92                   NFRuleList& rules,
93                   UErrorCode& status)
94 {
95     // we know we're making at least one rule, so go ahead and
96     // new it up and initialize its basevalue and divisor
97     // (this also strips the rule descriptor, if any, off the
98     // descripton string)
99     NFRule* rule1 = new NFRule(rbnf);
100     /* test for NULL */
101     if (rule1 == 0) {
102         status = U_MEMORY_ALLOCATION_ERROR;
103         return;
104     }
105     rule1->parseRuleDescriptor(description, status);
106
107     // check the description to see whether there's text enclosed
108     // in brackets
109     int32_t brack1 = description.indexOf(gLeftBracket);
110     int32_t brack2 = description.indexOf(gRightBracket);
111
112     // if the description doesn't contain a matched pair of brackets,
113     // or if it's of a type that doesn't recognize bracketed text,
114     // then leave the description alone, initialize the rule's
115     // rule text and substitutions, and return that rule
116     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
117         || rule1->getType() == kProperFractionRule
118         || rule1->getType() == kNegativeNumberRule) {
119         rule1->ruleText = description;
120         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
121         rules.add(rule1);
122     } else {
123         // if the description does contain a matched pair of brackets,
124         // then it's really shorthand for two rules (with one exception)
125         NFRule* rule2 = NULL;
126         UnicodeString sbuf;
127
128         // we'll actually only split the rule into two rules if its
129         // base value is an even multiple of its divisor (or it's one
130         // of the special rules)
131         if ((rule1->baseValue > 0
132             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
133             || rule1->getType() == kImproperFractionRule
134             || rule1->getType() == kMasterRule) {
135
136             // if it passes that test, new up the second rule.  If the
137             // rule set both rules will belong to is a fraction rule
138             // set, they both have the same base value; otherwise,
139             // increment the original rule's base value ("rule1" actually
140             // goes SECOND in the rule set's rule list)
141             rule2 = new NFRule(rbnf);
142             /* test for NULL */
143             if (rule2 == 0) {
144                 status = U_MEMORY_ALLOCATION_ERROR;
145                 return;
146             }
147             if (rule1->baseValue >= 0) {
148                 rule2->baseValue = rule1->baseValue;
149                 if (!ruleSet->isFractionRuleSet()) {
150                     ++rule1->baseValue;
151                 }
152             }
153
154             // if the description began with "x.x" and contains bracketed
155             // text, it describes both the improper fraction rule and
156             // the proper fraction rule
157             else if (rule1->getType() == kImproperFractionRule) {
158                 rule2->setType(kProperFractionRule);
159             }
160
161             // if the description began with "x.0" and contains bracketed
162             // text, it describes both the master rule and the
163             // improper fraction rule
164             else if (rule1->getType() == kMasterRule) {
165                 rule2->baseValue = rule1->baseValue;
166                 rule1->setType(kImproperFractionRule);
167             }
168
169             // both rules have the same radix and exponent (i.e., the
170             // same divisor)
171             rule2->radix = rule1->radix;
172             rule2->exponent = rule1->exponent;
173
174             // rule2's rule text omits the stuff in brackets: initalize
175             // its rule text and substitutions accordingly
176             sbuf.append(description, 0, brack1);
177             if (brack2 + 1 < description.length()) {
178                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
179             }
180             rule2->ruleText.setTo(sbuf);
181             rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
182         }
183
184         // rule1's text includes the text in the brackets but omits
185         // the brackets themselves: initialize _its_ rule text and
186         // substitutions accordingly
187         sbuf.setTo(description, 0, brack1);
188         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
189         if (brack2 + 1 < description.length()) {
190             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
191         }
192         rule1->ruleText.setTo(sbuf);
193         rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
194
195         // if we only have one rule, return it; if we have two, return
196         // a two-element array containing them (notice that rule2 goes
197         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
198         // material in the brackets and rule1 INCLUDES the material
199         // in the brackets)
200         if (rule2 != NULL) {
201             rules.add(rule2);
202         }
203         rules.add(rule1);
204     }
205 }
206
207 /**
208  * This function parses the rule's rule descriptor (i.e., the base
209  * value and/or other tokens that precede the rule's rule text
210  * in the description) and sets the rule's base value, radix, and
211  * exponent according to the descriptor.  (If the description doesn't
212  * include a rule descriptor, then this function sets everything to
213  * default values and the rule set sets the rule's real base value).
214  * @param description The rule's description
215  * @return If "description" included a rule descriptor, this is
216  * "description" with the descriptor and any trailing whitespace
217  * stripped off.  Otherwise; it's "descriptor" unchangd.
218  */
219 void
220 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
221 {
222     // the description consists of a rule descriptor and a rule body,
223     // separated by a colon.  The rule descriptor is optional.  If
224     // it's omitted, just set the base value to 0.
225     int32_t p = description.indexOf(gColon);
226     if (p == -1) {
227         setBaseValue((int32_t)0, status);
228     } else {
229         // copy the descriptor out into its own string and strip it,
230         // along with any trailing whitespace, out of the original
231         // description
232         UnicodeString descriptor;
233         descriptor.setTo(description, 0, p);
234
235         ++p;
236         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
237             ++p;
238         }
239         description.removeBetween(0, p);
240
241         // check first to see if the rule descriptor matches the token
242         // for one of the special rules.  If it does, set the base
243         // value to the correct identfier value
244         if (0 == descriptor.compare(gMinusX, 2)) {
245             setType(kNegativeNumberRule);
246         }
247         else if (0 == descriptor.compare(gXDotX, 3)) {
248             setType(kImproperFractionRule);
249         }
250         else if (0 == descriptor.compare(gZeroDotX, 3)) {
251             setType(kProperFractionRule);
252         }
253         else if (0 == descriptor.compare(gXDotZero, 3)) {
254             setType(kMasterRule);
255         }
256
257         // if the rule descriptor begins with a digit, it's a descriptor
258         // for a normal rule
259         // since we don't have Long.parseLong, and this isn't much work anyway,
260         // just build up the value as we encounter the digits.
261         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
262             int64_t val = 0;
263             p = 0;
264             UChar c = gSpace;
265
266             // begin parsing the descriptor: copy digits
267             // into "tempValue", skip periods, commas, and spaces,
268             // stop on a slash or > sign (or at the end of the string),
269             // and throw an exception on any other character
270             int64_t ll_10 = 10;
271             while (p < descriptor.length()) {
272                 c = descriptor.charAt(p);
273                 if (c >= gZero && c <= gNine) {
274                     val = val * ll_10 + (int32_t)(c - gZero);
275                 }
276                 else if (c == gSlash || c == gGreaterThan) {
277                     break;
278                 }
279                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
280                 }
281                 else {
282                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
283                     status = U_PARSE_ERROR;
284                     return;
285                 }
286                 ++p;
287             }
288
289             // we have the base value, so set it
290             setBaseValue(val, status);
291
292             // if we stopped the previous loop on a slash, we're
293             // now parsing the rule's radix.  Again, accumulate digits
294             // in tempValue, skip punctuation, stop on a > mark, and
295             // throw an exception on anything else
296             if (c == gSlash) {
297                 val = 0;
298                 ++p;
299                 int64_t ll_10 = 10;
300                 while (p < descriptor.length()) {
301                     c = descriptor.charAt(p);
302                     if (c >= gZero && c <= gNine) {
303                         val = val * ll_10 + (int32_t)(c - gZero);
304                     }
305                     else if (c == gGreaterThan) {
306                         break;
307                     }
308                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
309                     }
310                     else {
311                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
312                         status = U_PARSE_ERROR;
313                         return;
314                     }
315                     ++p;
316                 }
317
318                 // tempValue now contain's the rule's radix.  Set it
319                 // accordingly, and recalculate the rule's exponent
320                 radix = (int32_t)val;
321                 if (radix == 0) {
322                     // throw new IllegalArgumentException("Rule can't have radix of 0");
323                     status = U_PARSE_ERROR;
324                 }
325
326                 exponent = expectedExponent();
327             }
328
329             // if we stopped the previous loop on a > sign, then continue
330             // for as long as we still see > signs.  For each one,
331             // decrement the exponent (unless the exponent is already 0).
332             // If we see another character before reaching the end of
333             // the descriptor, that's also a syntax error.
334             if (c == gGreaterThan) {
335                 while (p < descriptor.length()) {
336                     c = descriptor.charAt(p);
337                     if (c == gGreaterThan && exponent > 0) {
338                         --exponent;
339                     } else {
340                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
341                         status = U_PARSE_ERROR;
342                         return;
343                     }
344                     ++p;
345                 }
346             }
347         }
348     }
349
350     // finally, if the rule body begins with an apostrophe, strip it off
351     // (this is generally used to put whitespace at the beginning of
352     // a rule's rule text)
353     if (description.length() > 0 && description.charAt(0) == gTick) {
354         description.removeBetween(0, 1);
355     }
356
357     // return the description with all the stuff we've just waded through
358     // stripped off the front.  It now contains just the rule body.
359     // return description;
360 }
361
362 /**
363 * Searches the rule's rule text for the substitution tokens,
364 * creates the substitutions, and removes the substitution tokens
365 * from the rule's rule text.
366 * @param owner The rule set containing this rule
367 * @param predecessor The rule preseding this one in "owners" rule list
368 * @param ownersOwner The RuleBasedFormat that owns this rule
369 */
370 void
371 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
372                              const NFRule* predecessor,
373                              const RuleBasedNumberFormat* rbnf,
374                              UErrorCode& status)
375 {
376     if (U_SUCCESS(status)) {
377         sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
378         sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
379     }
380 }
381
382 /**
383 * Searches the rule's rule text for the first substitution token,
384 * creates a substitution based on it, and removes the token from
385 * the rule's rule text.
386 * @param owner The rule set containing this rule
387 * @param predecessor The rule preceding this one in the rule set's
388 * rule list
389 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
390 * @return The newly-created substitution.  This is never null; if
391 * the rule text doesn't contain any substitution tokens, this will
392 * be a NullSubstitution.
393 */
394 NFSubstitution *
395 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
396                             const NFRule* predecessor,
397                             const RuleBasedNumberFormat* rbnf,
398                             UErrorCode& status)
399 {
400     NFSubstitution* result = NULL;
401
402     // search the rule's rule text for the first two characters of
403     // a substitution token
404     int32_t subStart = indexOfAny(tokenStrings);
405     int32_t subEnd = subStart;
406
407     // if we didn't find one, create a null substitution positioned
408     // at the end of the rule text
409     if (subStart == -1) {
410         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
411             ruleSet, rbnf, UnicodeString(), status);
412     }
413
414     // special-case the ">>>" token, since searching for the > at the
415     // end will actually find the > in the middle
416     if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
417         subEnd = subStart + 2;
418
419         // otherwise the substitution token ends with the same character
420         // it began with
421     } else {
422         UChar c = ruleText.charAt(subStart);
423         subEnd = ruleText.indexOf(c, subStart + 1);
424         // special case for '<%foo<<'
425         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
426             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
427             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
428             // to get around this.  Having the duplicate at the front would cause problems with
429             // rules like "<<%" to format, say, percents...
430             ++subEnd;
431         }
432    }
433
434     // if we don't find the end of the token (i.e., if we're on a single,
435     // unmatched token character), create a null substitution positioned
436     // at the end of the rule
437     if (subEnd == -1) {
438         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
439             ruleSet, rbnf, UnicodeString(), status);
440     }
441
442     // if we get here, we have a real substitution token (or at least
443     // some text bounded by substitution token characters).  Use
444     // makeSubstitution() to create the right kind of substitution
445     UnicodeString subToken;
446     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
447     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
448         rbnf, subToken, status);
449
450     // remove the substitution from the rule text
451     ruleText.removeBetween(subStart, subEnd+1);
452
453     return result;
454 }
455
456 /**
457  * Sets the rule's base value, and causes the radix and exponent
458  * to be recalculated.  This is used during construction when we
459  * don't know the rule's base value until after it's been
460  * constructed.  It should be used at any other time.
461  * @param The new base value for the rule.
462  */
463 void
464 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
465 {
466     // set the base value
467     baseValue = newBaseValue;
468
469     // if this isn't a special rule, recalculate the radix and exponent
470     // (the radix always defaults to 10; if it's supposed to be something
471     // else, it's cleaned up by the caller and the exponent is
472     // recalculated again-- the only function that does this is
473     // NFRule.parseRuleDescriptor() )
474     if (baseValue >= 1) {
475         radix = 10;
476         exponent = expectedExponent();
477
478         // this function gets called on a fully-constructed rule whose
479         // description didn't specify a base value.  This means it
480         // has substitutions, and some substitutions hold on to copies
481         // of the rule's divisor.  Fix their copies of the divisor.
482         if (sub1 != NULL) {
483             sub1->setDivisor(radix, exponent, status);
484         }
485         if (sub2 != NULL) {
486             sub2->setDivisor(radix, exponent, status);
487         }
488
489         // if this is a special rule, its radix and exponent are basically
490         // ignored.  Set them to "safe" default values
491     } else {
492         radix = 10;
493         exponent = 0;
494     }
495 }
496
497 /**
498 * This calculates the rule's exponent based on its radix and base
499 * value.  This will be the highest power the radix can be raised to
500 * and still produce a result less than or equal to the base value.
501 */
502 int16_t
503 NFRule::expectedExponent() const
504 {
505     // since the log of 0, or the log base 0 of something, causes an
506     // error, declare the exponent in these cases to be 0 (we also
507     // deal with the special-rule identifiers here)
508     if (radix == 0 || baseValue < 1) {
509         return 0;
510     }
511
512     // we get rounding error in some cases-- for example, log 1000 / log 10
513     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
514     // that into account
515     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
516     int64_t temp = util64_pow(radix, tempResult + 1);
517     if (temp <= baseValue) {
518         tempResult += 1;
519     }
520     return tempResult;
521 }
522
523 /**
524  * Searches the rule's rule text for any of the specified strings.
525  * @param strings An array of strings to search the rule's rule
526  * text for
527  * @return The index of the first match in the rule's rule text
528  * (i.e., the first substring in the rule's rule text that matches
529  * _any_ of the strings in "strings").  If none of the strings in
530  * "strings" is found in the rule's rule text, returns -1.
531  */
532 int32_t
533 NFRule::indexOfAny(const UChar* const strings[]) const
534 {
535     int result = -1;
536     for (int i = 0; strings[i]; i++) {
537         int32_t pos = ruleText.indexOf(*strings[i]);
538         if (pos != -1 && (result == -1 || pos < result)) {
539             result = pos;
540         }
541     }
542     return result;
543 }
544
545 //-----------------------------------------------------------------------
546 // boilerplate
547 //-----------------------------------------------------------------------
548
549 /**
550 * Tests two rules for equality.
551 * @param that The rule to compare this one against
552 * @return True is the two rules are functionally equivalent
553 */
554 UBool
555 NFRule::operator==(const NFRule& rhs) const
556 {
557     return baseValue == rhs.baseValue
558         && radix == rhs.radix
559         && exponent == rhs.exponent
560         && ruleText == rhs.ruleText
561         && *sub1 == *rhs.sub1
562         && *sub2 == *rhs.sub2;
563 }
564
565 /**
566 * Returns a textual representation of the rule.  This won't
567 * necessarily be the same as the description that this rule
568 * was created with, but it will produce the same result.
569 * @return A textual description of the rule
570 */
571 static void util_append64(UnicodeString& result, int64_t n)
572 {
573     UChar buffer[256];
574     int32_t len = util64_tou(n, buffer, sizeof(buffer));
575     UnicodeString temp(buffer, len);
576     result.append(temp);
577 }
578
579 void
580 NFRule::_appendRuleText(UnicodeString& result) const
581 {
582     switch (getType()) {
583     case kNegativeNumberRule: result.append(gMinusX, 2); break;
584     case kImproperFractionRule: result.append(gXDotX, 3); break;
585     case kProperFractionRule: result.append(gZeroDotX, 3); break;
586     case kMasterRule: result.append(gXDotZero, 3); break;
587     default:
588         // for a normal rule, write out its base value, and if the radix is
589         // something other than 10, write out the radix (with the preceding
590         // slash, of course).  Then calculate the expected exponent and if
591         // if isn't the same as the actual exponent, write an appropriate
592         // number of > signs.  Finally, terminate the whole thing with
593         // a colon.
594         util_append64(result, baseValue);
595         if (radix != 10) {
596             result.append(gSlash);
597             util_append64(result, radix);
598         }
599         int numCarets = expectedExponent() - exponent;
600         for (int i = 0; i < numCarets; i++) {
601             result.append(gGreaterThan);
602         }
603         break;
604     }
605     result.append(gColon);
606     result.append(gSpace);
607
608     // if the rule text begins with a space, write an apostrophe
609     // (whitespace after the rule descriptor is ignored; the
610     // apostrophe is used to make the whitespace significant)
611     if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
612         result.append(gTick);
613     }
614
615     // now, write the rule's rule text, inserting appropriate
616     // substitution tokens in the appropriate places
617     UnicodeString ruleTextCopy;
618     ruleTextCopy.setTo(ruleText);
619
620     UnicodeString temp;
621     sub2->toString(temp);
622     ruleTextCopy.insert(sub2->getPos(), temp);
623     sub1->toString(temp);
624     ruleTextCopy.insert(sub1->getPos(), temp);
625
626     result.append(ruleTextCopy);
627
628     // and finally, top the whole thing off with a semicolon and
629     // return the result
630     result.append(gSemicolon);
631 }
632
633 //-----------------------------------------------------------------------
634 // formatting
635 //-----------------------------------------------------------------------
636
637 /**
638 * Formats the number, and inserts the resulting text into
639 * toInsertInto.
640 * @param number The number being formatted
641 * @param toInsertInto The string where the resultant text should
642 * be inserted
643 * @param pos The position in toInsertInto where the resultant text
644 * should be inserted
645 */
646 void
647 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
648 {
649     // first, insert the rule's rule text into toInsertInto at the
650     // specified position, then insert the results of the substitutions
651     // into the right places in toInsertInto (notice we do the
652     // substitutions in reverse order so that the offsets don't get
653     // messed up)
654     toInsertInto.insert(pos, ruleText);
655     sub2->doSubstitution(number, toInsertInto, pos);
656     sub1->doSubstitution(number, toInsertInto, pos);
657 }
658
659 /**
660 * Formats the number, and inserts the resulting text into
661 * toInsertInto.
662 * @param number The number being formatted
663 * @param toInsertInto The string where the resultant text should
664 * be inserted
665 * @param pos The position in toInsertInto where the resultant text
666 * should be inserted
667 */
668 void
669 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
670 {
671     // first, insert the rule's rule text into toInsertInto at the
672     // specified position, then insert the results of the substitutions
673     // into the right places in toInsertInto
674     // [again, we have two copies of this routine that do the same thing
675     // so that we don't sacrifice precision in a long by casting it
676     // to a double]
677     toInsertInto.insert(pos, ruleText);
678     sub2->doSubstitution(number, toInsertInto, pos);
679     sub1->doSubstitution(number, toInsertInto, pos);
680 }
681
682 /**
683 * Used by the owning rule set to determine whether to invoke the
684 * rollback rule (i.e., whether this rule or the one that precedes
685 * it in the rule set's list should be used to format the number)
686 * @param The number being formatted
687 * @return True if the rule set should use the rule that precedes
688 * this one in its list; false if it should use this rule
689 */
690 UBool
691 NFRule::shouldRollBack(double number) const
692 {
693     // we roll back if the rule contains a modulus substitution,
694     // the number being formatted is an even multiple of the rule's
695     // divisor, and the rule's base value is NOT an even multiple
696     // of its divisor
697     // In other words, if the original description had
698     //    100: << hundred[ >>];
699     // that expands into
700     //    100: << hundred;
701     //    101: << hundred >>;
702     // internally.  But when we're formatting 200, if we use the rule
703     // at 101, which would normally apply, we get "two hundred zero".
704     // To prevent this, we roll back and use the rule at 100 instead.
705     // This is the logic that makes this happen: the rule at 101 has
706     // a modulus substitution, its base value isn't an even multiple
707     // of 100, and the value we're trying to format _is_ an even
708     // multiple of 100.  This is called the "rollback rule."
709     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
710         int64_t re = util64_pow(radix, exponent);
711         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
712     }
713     return FALSE;
714 }
715
716 //-----------------------------------------------------------------------
717 // parsing
718 //-----------------------------------------------------------------------
719
720 /**
721 * Attempts to parse the string with this rule.
722 * @param text The string being parsed
723 * @param parsePosition On entry, the value is ignored and assumed to
724 * be 0. On exit, this has been updated with the position of the first
725 * character not consumed by matching the text against this rule
726 * (if this rule doesn't match the text at all, the parse position
727 * if left unchanged (presumably at 0) and the function returns
728 * new Long(0)).
729 * @param isFractionRule True if this rule is contained within a
730 * fraction rule set.  This is only used if the rule has no
731 * substitutions.
732 * @return If this rule matched the text, this is the rule's base value
733 * combined appropriately with the results of parsing the substitutions.
734 * If nothing matched, this is new Long(0) and the parse position is
735 * left unchanged.  The result will be an instance of Long if the
736 * result is an integer and Double otherwise.  The result is never null.
737 */
738 #ifdef RBNF_DEBUG
739 #include <stdio.h>
740
741 static void dumpUS(FILE* f, const UnicodeString& us) {
742   int len = us.length();
743   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
744   if (buf != NULL) {
745           us.extract(0, len, buf);
746           buf[len] = 0;
747           fprintf(f, "%s", buf);
748           uprv_free(buf); //delete[] buf;
749   }
750 }
751 #endif
752
753 UBool
754 NFRule::doParse(const UnicodeString& text,
755                 ParsePosition& parsePosition,
756                 UBool isFractionRule,
757                 double upperBound,
758                 Formattable& resVal) const
759 {
760     // internally we operate on a copy of the string being parsed
761     // (because we're going to change it) and use our own ParsePosition
762     ParsePosition pp;
763     UnicodeString workText(text);
764
765     // check to see whether the text before the first substitution
766     // matches the text at the beginning of the string being
767     // parsed.  If it does, strip that off the front of workText;
768     // otherwise, dump out with a mismatch
769     UnicodeString prefix;
770     prefix.setTo(ruleText, 0, sub1->getPos());
771
772 #ifdef RBNF_DEBUG
773     fprintf(stderr, "doParse %x ", this);
774     {
775         UnicodeString rt;
776         _appendRuleText(rt);
777         dumpUS(stderr, rt);
778     }
779
780     fprintf(stderr, " text: '", this);
781     dumpUS(stderr, text);
782     fprintf(stderr, "' prefix: '");
783     dumpUS(stderr, prefix);
784 #endif
785     stripPrefix(workText, prefix, pp);
786     int32_t prefixLength = text.length() - workText.length();
787
788 #ifdef RBNF_DEBUG
789     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
790 #endif
791
792     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
793         // commented out because ParsePosition doesn't have error index in 1.1.x
794         // restored for ICU4C port
795         parsePosition.setErrorIndex(pp.getErrorIndex());
796         resVal.setLong(0);
797         return TRUE;
798     }
799
800     // this is the fun part.  The basic guts of the rule-matching
801     // logic is matchToDelimiter(), which is called twice.  The first
802     // time it searches the input string for the rule text BETWEEN
803     // the substitutions and tries to match the intervening text
804     // in the input string with the first substitution.  If that
805     // succeeds, it then calls it again, this time to look for the
806     // rule text after the second substitution and to match the
807     // intervening input text against the second substitution.
808     //
809     // For example, say we have a rule that looks like this:
810     //    first << middle >> last;
811     // and input text that looks like this:
812     //    first one middle two last
813     // First we use stripPrefix() to match "first " in both places and
814     // strip it off the front, leaving
815     //    one middle two last
816     // Then we use matchToDelimiter() to match " middle " and try to
817     // match "one" against a substitution.  If it's successful, we now
818     // have
819     //    two last
820     // We use matchToDelimiter() a second time to match " last" and
821     // try to match "two" against a substitution.  If "two" matches
822     // the substitution, we have a successful parse.
823     //
824     // Since it's possible in many cases to find multiple instances
825     // of each of these pieces of rule text in the input string,
826     // we need to try all the possible combinations of these
827     // locations.  This prevents us from prematurely declaring a mismatch,
828     // and makes sure we match as much input text as we can.
829     int highWaterMark = 0;
830     double result = 0;
831     int start = 0;
832     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
833
834     UnicodeString temp;
835     do {
836         // our partial parse result starts out as this rule's base
837         // value.  If it finds a successful match, matchToDelimiter()
838         // will compose this in some way with what it gets back from
839         // the substitution, giving us a new partial parse result
840         pp.setIndex(0);
841
842         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
843         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
844             temp, pp, sub1,
845             upperBound);
846
847         // if we got a successful match (or were trying to match a
848         // null substitution), pp is now pointing at the first unmatched
849         // character.  Take note of that, and try matchToDelimiter()
850         // on the input text again
851         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
852             start = pp.getIndex();
853
854             UnicodeString workText2;
855             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
856             ParsePosition pp2;
857
858             // the second matchToDelimiter() will compose our previous
859             // partial result with whatever it gets back from its
860             // substitution if there's a successful match, giving us
861             // a real result
862             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
863             partialResult = matchToDelimiter(workText2, 0, partialResult,
864                 temp, pp2, sub2,
865                 upperBound);
866
867             // if we got a successful match on this second
868             // matchToDelimiter() call, update the high-water mark
869             // and result (if necessary)
870             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
871                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
872                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
873                     result = partialResult;
874                 }
875             }
876             // commented out because ParsePosition doesn't have error index in 1.1.x
877             // restored for ICU4C port
878             else {
879                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
880                 if (temp> parsePosition.getErrorIndex()) {
881                     parsePosition.setErrorIndex(temp);
882                 }
883             }
884         }
885         // commented out because ParsePosition doesn't have error index in 1.1.x
886         // restored for ICU4C port
887         else {
888             int32_t temp = sub1->getPos() + pp.getErrorIndex();
889             if (temp > parsePosition.getErrorIndex()) {
890                 parsePosition.setErrorIndex(temp);
891             }
892         }
893         // keep trying to match things until the outer matchToDelimiter()
894         // call fails to make a match (each time, it picks up where it
895         // left off the previous time)
896     } while (sub1->getPos() != sub2->getPos()
897         && pp.getIndex() > 0
898         && pp.getIndex() < workText.length()
899         && pp.getIndex() != start);
900
901     // update the caller's ParsePosition with our high-water mark
902     // (i.e., it now points at the first character this function
903     // didn't match-- the ParsePosition is therefore unchanged if
904     // we didn't match anything)
905     parsePosition.setIndex(highWaterMark);
906     // commented out because ParsePosition doesn't have error index in 1.1.x
907     // restored for ICU4C port
908     if (highWaterMark > 0) {
909         parsePosition.setErrorIndex(0);
910     }
911
912     // this is a hack for one unusual condition: Normally, whether this
913     // rule belong to a fraction rule set or not is handled by its
914     // substitutions.  But if that rule HAS NO substitutions, then
915     // we have to account for it here.  By definition, if the matching
916     // rule in a fraction rule set has no substitutions, its numerator
917     // is 1, and so the result is the reciprocal of its base value.
918     if (isFractionRule &&
919         highWaterMark > 0 &&
920         sub1->isNullSubstitution()) {
921         result = 1 / result;
922     }
923
924     resVal.setDouble(result);
925     return TRUE; // ??? do we need to worry if it is a long or a double?
926 }
927
928 /**
929 * This function is used by parse() to match the text being parsed
930 * against a possible prefix string.  This function
931 * matches characters from the beginning of the string being parsed
932 * to characters from the prospective prefix.  If they match, pp is
933 * updated to the first character not matched, and the result is
934 * the unparsed part of the string.  If they don't match, the whole
935 * string is returned, and pp is left unchanged.
936 * @param text The string being parsed
937 * @param prefix The text to match against
938 * @param pp On entry, ignored and assumed to be 0.  On exit, points
939 * to the first unmatched character (assuming the whole prefix matched),
940 * or is unchanged (if the whole prefix didn't match).
941 * @return If things match, this is the unparsed part of "text";
942 * if they didn't match, this is "text".
943 */
944 void
945 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
946 {
947     // if the prefix text is empty, dump out without doing anything
948     if (prefix.length() != 0) {
949         UErrorCode status = U_ZERO_ERROR;
950         // use prefixLength() to match the beginning of
951         // "text" against "prefix".  This function returns the
952         // number of characters from "text" that matched (or 0 if
953         // we didn't match the whole prefix)
954         int32_t pfl = prefixLength(text, prefix, status);
955         if (U_FAILURE(status)) { // Memory allocation error.
956                 return;
957         }
958         if (pfl != 0) {
959             // if we got a successful match, update the parse position
960             // and strip the prefix off of "text"
961             pp.setIndex(pp.getIndex() + pfl);
962             text.remove(0, pfl);
963         }
964     }
965 }
966
967 /**
968 * Used by parse() to match a substitution and any following text.
969 * "text" is searched for instances of "delimiter".  For each instance
970 * of delimiter, the intervening text is tested to see whether it
971 * matches the substitution.  The longest match wins.
972 * @param text The string being parsed
973 * @param startPos The position in "text" where we should start looking
974 * for "delimiter".
975 * @param baseValue A partial parse result (often the rule's base value),
976 * which is combined with the result from matching the substitution
977 * @param delimiter The string to search "text" for.
978 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
979 * on exit this will point to the first unmatched character.
980 * @param sub If we find "delimiter" in "text", this substitution is used
981 * to match the text between the beginning of the string and the
982 * position of "delimiter."  (If "delimiter" is the empty string, then
983 * this function just matches against this substitution and updates
984 * everything accordingly.)
985 * @param upperBound When matching the substitution, it will only
986 * consider rules with base values lower than this value.
987 * @return If there's a match, this is the result of composing
988 * baseValue with the result of matching the substitution.  Otherwise,
989 * this is new Long(0).  It's never null.  If the result is an integer,
990 * this will be an instance of Long; otherwise, it's an instance of
991 * Double.
992 *
993 * !!! note {dlf} in point of fact, in the java code the caller always converts
994 * the result to a double, so we might as well return one.
995 */
996 double
997 NFRule::matchToDelimiter(const UnicodeString& text,
998                          int32_t startPos,
999                          double _baseValue,
1000                          const UnicodeString& delimiter,
1001                          ParsePosition& pp,
1002                          const NFSubstitution* sub,
1003                          double upperBound) const
1004 {
1005         UErrorCode status = U_ZERO_ERROR;
1006     // if "delimiter" contains real (i.e., non-ignorable) text, search
1007     // it for "delimiter" beginning at "start".  If that succeeds, then
1008     // use "sub"'s doParse() method to match the text before the
1009     // instance of "delimiter" we just found.
1010     if (!allIgnorable(delimiter, status)) {
1011         if (U_FAILURE(status)) { //Memory allocation error.
1012                 return 0;
1013         }
1014         ParsePosition tempPP;
1015         Formattable result;
1016
1017         // use findText() to search for "delimiter".  It returns a two-
1018         // element array: element 0 is the position of the match, and
1019         // element 1 is the number of characters that matched
1020         // "delimiter".
1021         int32_t dLen;
1022         int32_t dPos = findText(text, delimiter, startPos, &dLen);
1023
1024         // if findText() succeeded, isolate the text preceding the
1025         // match, and use "sub" to match that text
1026         while (dPos >= 0) {
1027             UnicodeString subText;
1028             subText.setTo(text, 0, dPos);
1029             if (subText.length() > 0) {
1030                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1031 #if UCONFIG_NO_COLLATION
1032                     FALSE,
1033 #else
1034                     formatter->isLenient(),
1035 #endif
1036                     result);
1037
1038                 // if the substitution could match all the text up to
1039                 // where we found "delimiter", then this function has
1040                 // a successful match.  Bump the caller's parse position
1041                 // to point to the first character after the text
1042                 // that matches "delimiter", and return the result
1043                 // we got from parsing the substitution.
1044                 if (success && tempPP.getIndex() == dPos) {
1045                     pp.setIndex(dPos + dLen);
1046                     return result.getDouble();
1047                 }
1048                 // commented out because ParsePosition doesn't have error index in 1.1.x
1049                 // restored for ICU4C port
1050                 else {
1051                     if (tempPP.getErrorIndex() > 0) {
1052                         pp.setErrorIndex(tempPP.getErrorIndex());
1053                     } else {
1054                         pp.setErrorIndex(tempPP.getIndex());
1055                     }
1056                 }
1057             }
1058
1059             // if we didn't match the substitution, search for another
1060             // copy of "delimiter" in "text" and repeat the loop if
1061             // we find it
1062             tempPP.setIndex(0);
1063             dPos = findText(text, delimiter, dPos + dLen, &dLen);
1064         }
1065         // if we make it here, this was an unsuccessful match, and we
1066         // leave pp unchanged and return 0
1067         pp.setIndex(0);
1068         return 0;
1069
1070         // if "delimiter" is empty, or consists only of ignorable characters
1071         // (i.e., is semantically empty), thwe we obviously can't search
1072         // for "delimiter".  Instead, just use "sub" to parse as much of
1073         // "text" as possible.
1074     } else {
1075         ParsePosition tempPP;
1076         Formattable result;
1077
1078         // try to match the whole string against the substitution
1079         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1080 #if UCONFIG_NO_COLLATION
1081             FALSE,
1082 #else
1083             formatter->isLenient(),
1084 #endif
1085             result);
1086         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1087             // if there's a successful match (or it's a null
1088             // substitution), update pp to point to the first
1089             // character we didn't match, and pass the result from
1090             // sub.doParse() on through to the caller
1091             pp.setIndex(tempPP.getIndex());
1092             return result.getDouble();
1093         }
1094         // commented out because ParsePosition doesn't have error index in 1.1.x
1095         // restored for ICU4C port
1096         else {
1097             pp.setErrorIndex(tempPP.getErrorIndex());
1098         }
1099
1100         // and if we get to here, then nothing matched, so we return
1101         // 0 and leave pp alone
1102         return 0;
1103     }
1104 }
1105
1106 /**
1107 * Used by stripPrefix() to match characters.  If lenient parse mode
1108 * is off, this just calls startsWith().  If lenient parse mode is on,
1109 * this function uses CollationElementIterators to match characters in
1110 * the strings (only primary-order differences are significant in
1111 * determining whether there's a match).
1112 * @param str The string being tested
1113 * @param prefix The text we're hoping to see at the beginning
1114 * of "str"
1115 * @return If "prefix" is found at the beginning of "str", this
1116 * is the number of characters in "str" that were matched (this
1117 * isn't necessarily the same as the length of "prefix" when matching
1118 * text with a collator).  If there's no match, this is 0.
1119 */
1120 int32_t
1121 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1122 {
1123     // if we're looking for an empty prefix, it obviously matches
1124     // zero characters.  Just go ahead and return 0.
1125     if (prefix.length() == 0) {
1126         return 0;
1127     }
1128
1129 #if !UCONFIG_NO_COLLATION
1130     // go through all this grief if we're in lenient-parse mode
1131     if (formatter->isLenient()) {
1132         // get the formatter's collator and use it to create two
1133         // collation element iterators, one over the target string
1134         // and another over the prefix (right now, we'll throw an
1135         // exception if the collator we get back from the formatter
1136         // isn't a RuleBasedCollator, because RuleBasedCollator defines
1137         // the CollationElementIterator protocol.  Hopefully, this
1138         // will change someday.)
1139         RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1140         CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1141         CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1142         // Check for memory allocation error.
1143         if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1144                 delete collator;
1145                 delete strIter;
1146                 delete prefixIter;
1147                 status = U_MEMORY_ALLOCATION_ERROR;
1148                 return 0;
1149         }
1150
1151         UErrorCode err = U_ZERO_ERROR;
1152
1153         // The original code was problematic.  Consider this match:
1154         // prefix = "fifty-"
1155         // string = " fifty-7"
1156         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1157         // in the string.  Unfortunately, we were getting a match, and then computing where
1158         // the match terminated by rematching the string.  The rematch code was using as an
1159         // initial guess the substring of string between 0 and prefix.length.  Because of
1160         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1161         // the position before the hyphen in the string.  Recursing down, we then parsed the
1162         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1163         // This was not pretty, especially since the string "fifty-7" parsed just fine.
1164         //
1165         // We have newer APIs now, so we can use calls on the iterator to determine what we
1166         // matched up to.  If we terminate because we hit the last element in the string,
1167         // our match terminates at this length.  If we terminate because we hit the last element
1168         // in the target, our match terminates at one before the element iterator position.
1169
1170         // match collation elements between the strings
1171         int32_t oStr = strIter->next(err);
1172         int32_t oPrefix = prefixIter->next(err);
1173
1174         while (oPrefix != CollationElementIterator::NULLORDER) {
1175             // skip over ignorable characters in the target string
1176             while (CollationElementIterator::primaryOrder(oStr) == 0
1177                 && oStr != CollationElementIterator::NULLORDER) {
1178                 oStr = strIter->next(err);
1179             }
1180
1181             // skip over ignorable characters in the prefix
1182             while (CollationElementIterator::primaryOrder(oPrefix) == 0
1183                 && oPrefix != CollationElementIterator::NULLORDER) {
1184                 oPrefix = prefixIter->next(err);
1185             }
1186
1187             // dlf: move this above following test, if we consume the
1188             // entire target, aren't we ok even if the source was also
1189             // entirely consumed?
1190
1191             // if skipping over ignorables brought to the end of
1192             // the prefix, we DID match: drop out of the loop
1193             if (oPrefix == CollationElementIterator::NULLORDER) {
1194                 break;
1195             }
1196
1197             // if skipping over ignorables brought us to the end
1198             // of the target string, we didn't match and return 0
1199             if (oStr == CollationElementIterator::NULLORDER) {
1200                 delete prefixIter;
1201                 delete strIter;
1202                 return 0;
1203             }
1204
1205             // match collation elements from the two strings
1206             // (considering only primary differences).  If we
1207             // get a mismatch, dump out and return 0
1208             if (CollationElementIterator::primaryOrder(oStr)
1209                 != CollationElementIterator::primaryOrder(oPrefix)) {
1210                 delete prefixIter;
1211                 delete strIter;
1212                 return 0;
1213
1214                 // otherwise, advance to the next character in each string
1215                 // and loop (we drop out of the loop when we exhaust
1216                 // collation elements in the prefix)
1217             } else {
1218                 oStr = strIter->next(err);
1219                 oPrefix = prefixIter->next(err);
1220             }
1221         }
1222
1223         int32_t result = strIter->getOffset();
1224         if (oStr != CollationElementIterator::NULLORDER) {
1225             --result; // back over character that we don't want to consume;
1226         }
1227
1228 #ifdef RBNF_DEBUG
1229         fprintf(stderr, "prefix length: %d\n", result);
1230 #endif
1231         delete prefixIter;
1232         delete strIter;
1233
1234         return result;
1235 #if 0
1236         //----------------------------------------------------------------
1237         // JDK 1.2-specific API call
1238         // return strIter.getOffset();
1239         //----------------------------------------------------------------
1240         // JDK 1.1 HACK (take out for 1.2-specific code)
1241
1242         // if we make it to here, we have a successful match.  Now we
1243         // have to find out HOW MANY characters from the target string
1244         // matched the prefix (there isn't necessarily a one-to-one
1245         // mapping between collation elements and characters).
1246         // In JDK 1.2, there's a simple getOffset() call we can use.
1247         // In JDK 1.1, on the other hand, we have to go through some
1248         // ugly contortions.  First, use the collator to compare the
1249         // same number of characters from the prefix and target string.
1250         // If they're equal, we're done.
1251         collator->setStrength(Collator::PRIMARY);
1252         if (str.length() >= prefix.length()) {
1253             UnicodeString temp;
1254             temp.setTo(str, 0, prefix.length());
1255             if (collator->equals(temp, prefix)) {
1256 #ifdef RBNF_DEBUG
1257                 fprintf(stderr, "returning: %d\n", prefix.length());
1258 #endif
1259                 return prefix.length();
1260             }
1261         }
1262
1263         // if they're not equal, then we have to compare successively
1264         // larger and larger substrings of the target string until we
1265         // get to one that matches the prefix.  At that point, we know
1266         // how many characters matched the prefix, and we can return.
1267         int32_t p = 1;
1268         while (p <= str.length()) {
1269             UnicodeString temp;
1270             temp.setTo(str, 0, p);
1271             if (collator->equals(temp, prefix)) {
1272                 return p;
1273             } else {
1274                 ++p;
1275             }
1276         }
1277
1278         // SHOULD NEVER GET HERE!!!
1279         return 0;
1280         //----------------------------------------------------------------
1281 #endif
1282
1283         // If lenient parsing is turned off, forget all that crap above.
1284         // Just use String.startsWith() and be done with it.
1285   } else
1286 #endif
1287   {
1288       if (str.startsWith(prefix)) {
1289           return prefix.length();
1290       } else {
1291           return 0;
1292       }
1293   }
1294 }
1295
1296 /**
1297 * Searches a string for another string.  If lenient parsing is off,
1298 * this just calls indexOf().  If lenient parsing is on, this function
1299 * uses CollationElementIterator to match characters, and only
1300 * primary-order differences are significant in determining whether
1301 * there's a match.
1302 * @param str The string to search
1303 * @param key The string to search "str" for
1304 * @param startingAt The index into "str" where the search is to
1305 * begin
1306 * @return A two-element array of ints.  Element 0 is the position
1307 * of the match, or -1 if there was no match.  Element 1 is the
1308 * number of characters in "str" that matched (which isn't necessarily
1309 * the same as the length of "key")
1310 */
1311 int32_t
1312 NFRule::findText(const UnicodeString& str,
1313                  const UnicodeString& key,
1314                  int32_t startingAt,
1315                  int32_t* length) const
1316 {
1317 #if !UCONFIG_NO_COLLATION
1318     // if lenient parsing is turned off, this is easy: just call
1319     // String.indexOf() and we're done
1320     if (!formatter->isLenient()) {
1321         *length = key.length();
1322         return str.indexOf(key, startingAt);
1323
1324         // but if lenient parsing is turned ON, we've got some work
1325         // ahead of us
1326     } else
1327 #endif
1328     {
1329         //----------------------------------------------------------------
1330         // JDK 1.1 HACK (take out of 1.2-specific code)
1331
1332         // in JDK 1.2, CollationElementIterator provides us with an
1333         // API to map between character offsets and collation elements
1334         // and we can do this by marching through the string comparing
1335         // collation elements.  We can't do that in JDK 1.1.  Insted,
1336         // we have to go through this horrible slow mess:
1337         int32_t p = startingAt;
1338         int32_t keyLen = 0;
1339
1340         // basically just isolate smaller and smaller substrings of
1341         // the target string (each running to the end of the string,
1342         // and with the first one running from startingAt to the end)
1343         // and then use prefixLength() to see if the search key is at
1344         // the beginning of each substring.  This is excruciatingly
1345         // slow, but it will locate the key and tell use how long the
1346         // matching text was.
1347         UnicodeString temp;
1348         UErrorCode status = U_ZERO_ERROR;
1349         while (p < str.length() && keyLen == 0) {
1350             temp.setTo(str, p, str.length() - p);
1351             keyLen = prefixLength(temp, key, status);
1352             if (U_FAILURE(status)) {
1353                 break;
1354             }
1355             if (keyLen != 0) {
1356                 *length = keyLen;
1357                 return p;
1358             }
1359             ++p;
1360         }
1361         // if we make it to here, we didn't find it.  Return -1 for the
1362         // location.  The length should be ignored, but set it to 0,
1363         // which should be "safe"
1364         *length = 0;
1365         return -1;
1366
1367         //----------------------------------------------------------------
1368         // JDK 1.2 version of this routine
1369         //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1370         //
1371         //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1372         //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1373         //
1374         //int keyStart = -1;
1375         //
1376         //str.setOffset(startingAt);
1377         //
1378         //int oStr = strIter.next();
1379         //int oKey = keyIter.next();
1380         //while (oKey != CollationElementIterator.NULLORDER) {
1381         //    while (oStr != CollationElementIterator.NULLORDER &&
1382         //                CollationElementIterator.primaryOrder(oStr) == 0)
1383         //        oStr = strIter.next();
1384         //
1385         //    while (oKey != CollationElementIterator.NULLORDER &&
1386         //                CollationElementIterator.primaryOrder(oKey) == 0)
1387         //        oKey = keyIter.next();
1388         //
1389         //    if (oStr == CollationElementIterator.NULLORDER) {
1390         //        return new int[] { -1, 0 };
1391         //    }
1392         //
1393         //    if (oKey == CollationElementIterator.NULLORDER) {
1394         //        break;
1395         //    }
1396         //
1397         //    if (CollationElementIterator.primaryOrder(oStr) ==
1398         //            CollationElementIterator.primaryOrder(oKey)) {
1399         //        keyStart = strIter.getOffset();
1400         //        oStr = strIter.next();
1401         //        oKey = keyIter.next();
1402         //    } else {
1403         //        if (keyStart != -1) {
1404         //            keyStart = -1;
1405         //            keyIter.reset();
1406         //        } else {
1407         //            oStr = strIter.next();
1408         //        }
1409         //    }
1410         //}
1411         //
1412         //if (oKey == CollationElementIterator.NULLORDER) {
1413         //    return new int[] { keyStart, strIter.getOffset() - keyStart };
1414         //} else {
1415         //    return new int[] { -1, 0 };
1416         //}
1417     }
1418 }
1419
1420 /**
1421 * Checks to see whether a string consists entirely of ignorable
1422 * characters.
1423 * @param str The string to test.
1424 * @return true if the string is empty of consists entirely of
1425 * characters that the number formatter's collator says are
1426 * ignorable at the primary-order level.  false otherwise.
1427 */
1428 UBool
1429 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1430 {
1431     // if the string is empty, we can just return true
1432     if (str.length() == 0) {
1433         return TRUE;
1434     }
1435
1436 #if !UCONFIG_NO_COLLATION
1437     // if lenient parsing is turned on, walk through the string with
1438     // a collation element iterator and make sure each collation
1439     // element is 0 (ignorable) at the primary level
1440     if (formatter->isLenient()) {
1441         RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1442         CollationElementIterator* iter = collator->createCollationElementIterator(str);
1443         
1444         // Memory allocation error check.
1445         if (collator == NULL || iter == NULL) {
1446                 delete collator;
1447                 delete iter;
1448                 status = U_MEMORY_ALLOCATION_ERROR;
1449                 return FALSE;
1450         }
1451
1452         UErrorCode err = U_ZERO_ERROR;
1453         int32_t o = iter->next(err);
1454         while (o != CollationElementIterator::NULLORDER
1455             && CollationElementIterator::primaryOrder(o) == 0) {
1456             o = iter->next(err);
1457         }
1458
1459         delete iter;
1460         return o == CollationElementIterator::NULLORDER;
1461     }
1462 #endif
1463
1464     // if lenient parsing is turned off, there is no such thing as
1465     // an ignorable character: return true only if the string is empty
1466     return FALSE;
1467 }
1468
1469 U_NAMESPACE_END
1470
1471 /* U_HAVE_RBNF */
1472 #endif
1473
1474