Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / icu / source / i18n / decimfmt.cpp
1 /*
2 *******************************************************************************
3 * Copyright (C) 1997-2013, International Business Machines Corporation and    *
4 * others. All Rights Reserved.                                                *
5 *******************************************************************************
6 *
7 * File DECIMFMT.CPP
8 *
9 * Modification History:
10 *
11 *   Date        Name        Description
12 *   02/19/97    aliu        Converted from java.
13 *   03/20/97    clhuang     Implemented with new APIs.
14 *   03/31/97    aliu        Moved isLONG_MIN to DigitList, and fixed it.
15 *   04/3/97     aliu        Rewrote parsing and formatting completely, and
16 *                           cleaned up and debugged.  Actually works now.
17 *                           Implemented NAN and INF handling, for both parsing
18 *                           and formatting.  Extensive testing & debugging.
19 *   04/10/97    aliu        Modified to compile on AIX.
20 *   04/16/97    aliu        Rewrote to use DigitList, which has been resurrected.
21 *                           Changed DigitCount to int per code review.
22 *   07/09/97    helena      Made ParsePosition into a class.
23 *   08/26/97    aliu        Extensive changes to applyPattern; completely
24 *                           rewritten from the Java.
25 *   09/09/97    aliu        Ported over support for exponential formats.
26 *   07/20/98    stephen     JDK 1.2 sync up.
27 *                             Various instances of '0' replaced with 'NULL'
28 *                             Check for grouping size in subFormat()
29 *                             Brought subParse() in line with Java 1.2
30 *                             Added method appendAffix()
31 *   08/24/1998  srl         Removed Mutex calls. This is not a thread safe class!
32 *   02/22/99    stephen     Removed character literals for EBCDIC safety
33 *   06/24/99    helena      Integrated Alan's NF enhancements and Java2 bug fixes
34 *   06/28/99    stephen     Fixed bugs in toPattern().
35 *   06/29/99    stephen     Fixed operator= to copy fFormatWidth, fPad,
36 *                             fPadPosition
37 ********************************************************************************
38 */
39
40 #include "unicode/utypes.h"
41
42 #if !UCONFIG_NO_FORMATTING
43
44 #include "fphdlimp.h"
45 #include "unicode/decimfmt.h"
46 #include "unicode/choicfmt.h"
47 #include "unicode/ucurr.h"
48 #include "unicode/ustring.h"
49 #include "unicode/dcfmtsym.h"
50 #include "unicode/ures.h"
51 #include "unicode/uchar.h"
52 #include "unicode/uniset.h"
53 #include "unicode/curramt.h"
54 #include "unicode/currpinf.h"
55 #include "unicode/plurrule.h"
56 #include "unicode/utf16.h"
57 #include "unicode/numsys.h"
58 #include "unicode/localpointer.h"
59 #include "uresimp.h"
60 #include "ucurrimp.h"
61 #include "charstr.h"
62 #include "cmemory.h"
63 #include "patternprops.h"
64 #include "digitlst.h"
65 #include "cstring.h"
66 #include "umutex.h"
67 #include "uassert.h"
68 #include "putilimp.h"
69 #include <math.h>
70 #include "hash.h"
71 #include "decfmtst.h"
72 #include "dcfmtimp.h"
73 #include "plurrule_impl.h"
74
75 /*
76  * On certain platforms, round is a macro defined in math.h
77  * This undefine is to avoid conflict between the macro and
78  * the function defined below.
79  */
80 #ifdef round
81 #undef round
82 #endif
83
84
85 U_NAMESPACE_BEGIN
86
87 #ifdef FMT_DEBUG
88 #include <stdio.h>
89 static void _debugout(const char *f, int l, const UnicodeString& s) {
90     char buf[2000];
91     s.extract((int32_t) 0, s.length(), buf, "utf-8");
92     printf("%s:%d: %s\n", f,l, buf);
93 }
94 #define debugout(x) _debugout(__FILE__,__LINE__,x)
95 #define debug(x) printf("%s:%d: %s\n", __FILE__,__LINE__, x);
96 static const UnicodeString dbg_null("<NULL>","");
97 #define DEREFSTR(x)   ((x!=NULL)?(*x):(dbg_null))
98 #else
99 #define debugout(x)
100 #define debug(x)
101 #endif
102
103
104
105 /* == Fastpath calculation. ==
106  */
107 #if UCONFIG_FORMAT_FASTPATHS_49
108 inline DecimalFormatInternal& internalData(uint8_t *reserved) {
109   return *reinterpret_cast<DecimalFormatInternal*>(reserved);
110 }
111 inline const DecimalFormatInternal& internalData(const uint8_t *reserved) {
112   return *reinterpret_cast<const DecimalFormatInternal*>(reserved);
113 }
114 #else
115 #endif
116
117 /* For currency parsing purose,
118  * Need to remember all prefix patterns and suffix patterns of
119  * every currency format pattern,
120  * including the pattern of default currecny style
121  * and plural currency style. And the patterns are set through applyPattern.
122  */
123 struct AffixPatternsForCurrency : public UMemory {
124         // negative prefix pattern
125         UnicodeString negPrefixPatternForCurrency;
126         // negative suffix pattern
127         UnicodeString negSuffixPatternForCurrency;
128         // positive prefix pattern
129         UnicodeString posPrefixPatternForCurrency;
130         // positive suffix pattern
131         UnicodeString posSuffixPatternForCurrency;
132         int8_t patternType;
133
134         AffixPatternsForCurrency(const UnicodeString& negPrefix,
135                                                          const UnicodeString& negSuffix,
136                                                          const UnicodeString& posPrefix,
137                                                          const UnicodeString& posSuffix,
138                                                          int8_t type) {
139                 negPrefixPatternForCurrency = negPrefix;
140                 negSuffixPatternForCurrency = negSuffix;
141                 posPrefixPatternForCurrency = posPrefix;
142                 posSuffixPatternForCurrency = posSuffix;
143                 patternType = type;
144         }
145 #ifdef FMT_DEBUG
146   void dump() const  {
147     debugout( UnicodeString("AffixPatternsForCurrency( -=\"") +
148               negPrefixPatternForCurrency + (UnicodeString)"\"/\"" +
149               negSuffixPatternForCurrency + (UnicodeString)"\" +=\"" + 
150               posPrefixPatternForCurrency + (UnicodeString)"\"/\"" + 
151               posSuffixPatternForCurrency + (UnicodeString)"\" )");
152   }
153 #endif
154 };
155
156 /* affix for currency formatting when the currency sign in the pattern
157  * equals to 3, such as the pattern contains 3 currency sign or
158  * the formatter style is currency plural format style.
159  */
160 struct AffixesForCurrency : public UMemory {
161         // negative prefix
162         UnicodeString negPrefixForCurrency;
163         // negative suffix
164         UnicodeString negSuffixForCurrency;
165         // positive prefix
166         UnicodeString posPrefixForCurrency;
167         // positive suffix
168         UnicodeString posSuffixForCurrency;
169
170         int32_t formatWidth;
171
172         AffixesForCurrency(const UnicodeString& negPrefix,
173                                            const UnicodeString& negSuffix,
174                                            const UnicodeString& posPrefix,
175                                            const UnicodeString& posSuffix) {
176                 negPrefixForCurrency = negPrefix;
177                 negSuffixForCurrency = negSuffix;
178                 posPrefixForCurrency = posPrefix;
179                 posSuffixForCurrency = posSuffix;
180         }
181 #ifdef FMT_DEBUG
182   void dump() const {
183     debugout( UnicodeString("AffixesForCurrency( -=\"") +
184               negPrefixForCurrency + (UnicodeString)"\"/\"" +
185               negSuffixForCurrency + (UnicodeString)"\" +=\"" + 
186               posPrefixForCurrency + (UnicodeString)"\"/\"" + 
187               posSuffixForCurrency + (UnicodeString)"\" )");
188   }
189 #endif
190 };
191
192 U_CDECL_BEGIN
193
194 /**
195  * @internal ICU 4.2
196  */
197 static UBool U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2);
198
199 /**
200  * @internal ICU 4.2
201  */
202 static UBool U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2);
203
204
205 static UBool
206 U_CALLCONV decimfmtAffixValueComparator(UHashTok val1, UHashTok val2) {
207     const AffixesForCurrency* affix_1 =
208         (AffixesForCurrency*)val1.pointer;
209     const AffixesForCurrency* affix_2 =
210         (AffixesForCurrency*)val2.pointer;
211     return affix_1->negPrefixForCurrency == affix_2->negPrefixForCurrency &&
212            affix_1->negSuffixForCurrency == affix_2->negSuffixForCurrency &&
213            affix_1->posPrefixForCurrency == affix_2->posPrefixForCurrency &&
214            affix_1->posSuffixForCurrency == affix_2->posSuffixForCurrency;
215 }
216
217
218 static UBool
219 U_CALLCONV decimfmtAffixPatternValueComparator(UHashTok val1, UHashTok val2) {
220     const AffixPatternsForCurrency* affix_1 =
221         (AffixPatternsForCurrency*)val1.pointer;
222     const AffixPatternsForCurrency* affix_2 =
223         (AffixPatternsForCurrency*)val2.pointer;
224     return affix_1->negPrefixPatternForCurrency ==
225            affix_2->negPrefixPatternForCurrency &&
226            affix_1->negSuffixPatternForCurrency ==
227            affix_2->negSuffixPatternForCurrency &&
228            affix_1->posPrefixPatternForCurrency ==
229            affix_2->posPrefixPatternForCurrency &&
230            affix_1->posSuffixPatternForCurrency ==
231            affix_2->posSuffixPatternForCurrency &&
232            affix_1->patternType == affix_2->patternType;
233 }
234
235 U_CDECL_END
236
237
238
239
240 // *****************************************************************************
241 // class DecimalFormat
242 // *****************************************************************************
243
244 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(DecimalFormat)
245
246 // Constants for characters used in programmatic (unlocalized) patterns.
247 #define kPatternZeroDigit            ((UChar)0x0030) /*'0'*/
248 #define kPatternSignificantDigit     ((UChar)0x0040) /*'@'*/
249 #define kPatternGroupingSeparator    ((UChar)0x002C) /*','*/
250 #define kPatternDecimalSeparator     ((UChar)0x002E) /*'.'*/
251 #define kPatternPerMill              ((UChar)0x2030)
252 #define kPatternPercent              ((UChar)0x0025) /*'%'*/
253 #define kPatternDigit                ((UChar)0x0023) /*'#'*/
254 #define kPatternSeparator            ((UChar)0x003B) /*';'*/
255 #define kPatternExponent             ((UChar)0x0045) /*'E'*/
256 #define kPatternPlus                 ((UChar)0x002B) /*'+'*/
257 #define kPatternMinus                ((UChar)0x002D) /*'-'*/
258 #define kPatternPadEscape            ((UChar)0x002A) /*'*'*/
259 #define kQuote                       ((UChar)0x0027) /*'\''*/
260 /**
261  * The CURRENCY_SIGN is the standard Unicode symbol for currency.  It
262  * is used in patterns and substitued with either the currency symbol,
263  * or if it is doubled, with the international currency symbol.  If the
264  * CURRENCY_SIGN is seen in a pattern, then the decimal separator is
265  * replaced with the monetary decimal separator.
266  */
267 #define kCurrencySign                ((UChar)0x00A4)
268 #define kDefaultPad                  ((UChar)0x0020) /* */
269
270 const int32_t DecimalFormat::kDoubleIntegerDigits  = 309;
271 const int32_t DecimalFormat::kDoubleFractionDigits = 340;
272
273 const int32_t DecimalFormat::kMaxScientificIntegerDigits = 8;
274
275 /**
276  * These are the tags we expect to see in normal resource bundle files associated
277  * with a locale.
278  */
279 const char DecimalFormat::fgNumberPatterns[]="NumberPatterns"; // Deprecated - not used
280 static const char fgNumberElements[]="NumberElements";
281 static const char fgLatn[]="latn";
282 static const char fgPatterns[]="patterns";
283 static const char fgDecimalFormat[]="decimalFormat";
284 static const char fgCurrencyFormat[]="currencyFormat";
285
286 static const UChar fgTripleCurrencySign[] = {0xA4, 0xA4, 0xA4, 0};
287
288 inline int32_t _min(int32_t a, int32_t b) { return (a<b) ? a : b; }
289 inline int32_t _max(int32_t a, int32_t b) { return (a<b) ? b : a; }
290
291 //------------------------------------------------------------------------------
292 // Constructs a DecimalFormat instance in the default locale.
293
294 DecimalFormat::DecimalFormat(UErrorCode& status) {
295     init();
296     UParseError parseError;
297     construct(status, parseError);
298 }
299
300 //------------------------------------------------------------------------------
301 // Constructs a DecimalFormat instance with the specified number format
302 // pattern in the default locale.
303
304 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
305                              UErrorCode& status) {
306     init();
307     UParseError parseError;
308     construct(status, parseError, &pattern);
309 }
310
311 //------------------------------------------------------------------------------
312 // Constructs a DecimalFormat instance with the specified number format
313 // pattern and the number format symbols in the default locale.  The
314 // created instance owns the symbols.
315
316 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
317                              DecimalFormatSymbols* symbolsToAdopt,
318                              UErrorCode& status) {
319     init();
320     UParseError parseError;
321     if (symbolsToAdopt == NULL)
322         status = U_ILLEGAL_ARGUMENT_ERROR;
323     construct(status, parseError, &pattern, symbolsToAdopt);
324 }
325
326 DecimalFormat::DecimalFormat(  const UnicodeString& pattern,
327                     DecimalFormatSymbols* symbolsToAdopt,
328                     UParseError& parseErr,
329                     UErrorCode& status) {
330     init();
331     if (symbolsToAdopt == NULL)
332         status = U_ILLEGAL_ARGUMENT_ERROR;
333     construct(status,parseErr, &pattern, symbolsToAdopt);
334 }
335
336 //------------------------------------------------------------------------------
337 // Constructs a DecimalFormat instance with the specified number format
338 // pattern and the number format symbols in the default locale.  The
339 // created instance owns the clone of the symbols.
340
341 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
342                              const DecimalFormatSymbols& symbols,
343                              UErrorCode& status) {
344     init();
345     UParseError parseError;
346     construct(status, parseError, &pattern, new DecimalFormatSymbols(symbols));
347 }
348
349 //------------------------------------------------------------------------------
350 // Constructs a DecimalFormat instance with the specified number format
351 // pattern, the number format symbols, and the number format style.
352 // The created instance owns the clone of the symbols.
353
354 DecimalFormat::DecimalFormat(const UnicodeString& pattern,
355                              DecimalFormatSymbols* symbolsToAdopt,
356                              UNumberFormatStyle style,
357                              UErrorCode& status) {
358     init();
359     fStyle = style;
360     UParseError parseError;
361     construct(status, parseError, &pattern, symbolsToAdopt);
362 }
363
364 //-----------------------------------------------------------------------------
365 // Common DecimalFormat initialization.
366 //    Put all fields of an uninitialized object into a known state.
367 //    Common code, shared by all constructors.
368 //    Can not fail. Leave the object in good enough shape that the destructor
369 //    or assignment operator can run successfully.
370 void
371 DecimalFormat::init() {
372     fPosPrefixPattern = 0;
373     fPosSuffixPattern = 0;
374     fNegPrefixPattern = 0;
375     fNegSuffixPattern = 0;
376     fCurrencyChoice = 0;
377     fMultiplier = NULL;
378     fScale = 0;
379     fGroupingSize = 0;
380     fGroupingSize2 = 0;
381     fDecimalSeparatorAlwaysShown = FALSE;
382     fSymbols = NULL;
383     fUseSignificantDigits = FALSE;
384     fMinSignificantDigits = 1;
385     fMaxSignificantDigits = 6;
386     fUseExponentialNotation = FALSE;
387     fMinExponentDigits = 0;
388     fExponentSignAlwaysShown = FALSE;
389     fBoolFlags.clear();
390     fRoundingIncrement = 0;
391     fRoundingMode = kRoundHalfEven;
392     fPad = 0;
393     fFormatWidth = 0;
394     fPadPosition = kPadBeforePrefix;
395     fStyle = UNUM_DECIMAL;
396     fCurrencySignCount = fgCurrencySignCountZero;
397     fAffixPatternsForCurrency = NULL;
398     fAffixesForCurrency = NULL;
399     fPluralAffixesForCurrency = NULL;
400     fCurrencyPluralInfo = NULL;
401 #if UCONFIG_HAVE_PARSEALLINPUT
402     fParseAllInput = UNUM_MAYBE;
403 #endif
404
405 #if UCONFIG_FORMAT_FASTPATHS_49
406     DecimalFormatInternal &data = internalData(fReserved);
407     data.fFastFormatStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
408     data.fFastParseStatus=kFastpathUNKNOWN; // don't try to calculate the fastpath until later.
409 #endif
410     fStaticSets = NULL;
411 }
412
413 //------------------------------------------------------------------------------
414 // Constructs a DecimalFormat instance with the specified number format
415 // pattern and the number format symbols in the desired locale.  The
416 // created instance owns the symbols.
417
418 void
419 DecimalFormat::construct(UErrorCode&            status,
420                          UParseError&           parseErr,
421                          const UnicodeString*   pattern,
422                          DecimalFormatSymbols*  symbolsToAdopt)
423 {
424     fSymbols = symbolsToAdopt; // Do this BEFORE aborting on status failure!!!
425     fRoundingIncrement = NULL;
426     fRoundingMode = kRoundHalfEven;
427     fPad = kPatternPadEscape;
428     fPadPosition = kPadBeforePrefix;
429     if (U_FAILURE(status))
430         return;
431
432     fPosPrefixPattern = fPosSuffixPattern = NULL;
433     fNegPrefixPattern = fNegSuffixPattern = NULL;
434     setMultiplier(1);
435     fGroupingSize = 3;
436     fGroupingSize2 = 0;
437     fDecimalSeparatorAlwaysShown = FALSE;
438     fUseExponentialNotation = FALSE;
439     fMinExponentDigits = 0;
440
441     if (fSymbols == NULL)
442     {
443         fSymbols = new DecimalFormatSymbols(Locale::getDefault(), status);
444         if (fSymbols == 0) {
445             status = U_MEMORY_ALLOCATION_ERROR;
446             return;
447         }
448     }
449     fStaticSets = DecimalFormatStaticSets::getStaticSets(status);
450     if (U_FAILURE(status)) {
451         return;
452     }
453     UErrorCode nsStatus = U_ZERO_ERROR;
454     NumberingSystem *ns = NumberingSystem::createInstance(nsStatus);
455     if (U_FAILURE(nsStatus)) {
456         status = nsStatus;
457         return;
458     }
459
460     UnicodeString str;
461     // Uses the default locale's number format pattern if there isn't
462     // one specified.
463     if (pattern == NULL)
464     {
465         int32_t len = 0;
466         UResourceBundle *top = ures_open(NULL, Locale::getDefault().getName(), &status);
467
468         UResourceBundle *resource = ures_getByKeyWithFallback(top, fgNumberElements, NULL, &status);
469         resource = ures_getByKeyWithFallback(resource, ns->getName(), resource, &status);
470         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
471         const UChar *resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
472         if ( status == U_MISSING_RESOURCE_ERROR && uprv_strcmp(fgLatn,ns->getName())) {
473             status = U_ZERO_ERROR;
474             resource = ures_getByKeyWithFallback(top, fgNumberElements, resource, &status);
475             resource = ures_getByKeyWithFallback(resource, fgLatn, resource, &status);
476             resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &status);
477             resStr = ures_getStringByKeyWithFallback(resource, fgDecimalFormat, &len, &status);
478         }
479         str.setTo(TRUE, resStr, len);
480         pattern = &str;
481         ures_close(resource);
482         ures_close(top);
483     }
484
485     delete ns;
486
487     if (U_FAILURE(status))
488     {
489         return;
490     }
491
492     if (pattern->indexOf((UChar)kCurrencySign) >= 0) {
493         // If it looks like we are going to use a currency pattern
494         // then do the time consuming lookup.
495         setCurrencyForSymbols();
496     } else {
497         setCurrencyInternally(NULL, status);
498     }
499
500     const UnicodeString* patternUsed;
501     UnicodeString currencyPluralPatternForOther;
502     // apply pattern
503     if (fStyle == UNUM_CURRENCY_PLURAL) {
504         fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
505         if (U_FAILURE(status)) {
506             return;
507         }
508
509         // the pattern used in format is not fixed until formatting,
510         // in which, the number is known and
511         // will be used to pick the right pattern based on plural count.
512         // Here, set the pattern as the pattern of plural count == "other".
513         // For most locale, the patterns are probably the same for all
514         // plural count. If not, the right pattern need to be re-applied
515         // during format.
516         fCurrencyPluralInfo->getCurrencyPluralPattern(UNICODE_STRING("other", 5), currencyPluralPatternForOther);
517         patternUsed = &currencyPluralPatternForOther;
518         // TODO: not needed?
519         setCurrencyForSymbols();
520
521     } else {
522         patternUsed = pattern;
523     }
524
525     if (patternUsed->indexOf(kCurrencySign) != -1) {
526         // initialize for currency, not only for plural format,
527         // but also for mix parsing
528         if (fCurrencyPluralInfo == NULL) {
529            fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
530            if (U_FAILURE(status)) {
531                return;
532            }
533         }
534         // need it for mix parsing
535         setupCurrencyAffixPatterns(status);
536         // expanded affixes for plural names
537         if (patternUsed->indexOf(fgTripleCurrencySign, 3, 0) != -1) {
538             setupCurrencyAffixes(*patternUsed, TRUE, TRUE, status);
539         }
540     }
541
542     applyPatternWithoutExpandAffix(*patternUsed,FALSE, parseErr, status);
543
544     // expand affixes
545     if (fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
546         expandAffixAdjustWidth(NULL);
547     }
548
549     // If it was a currency format, apply the appropriate rounding by
550     // resetting the currency. NOTE: this copies fCurrency on top of itself.
551     if (fCurrencySignCount != fgCurrencySignCountZero) {
552         setCurrencyInternally(getCurrency(), status);
553     }
554 #if UCONFIG_FORMAT_FASTPATHS_49
555     DecimalFormatInternal &data = internalData(fReserved);
556     data.fFastFormatStatus = kFastpathNO; // allow it to be calculated
557     data.fFastParseStatus = kFastpathNO; // allow it to be calculated
558     handleChanged();
559 #endif
560 }
561
562
563 void
564 DecimalFormat::setupCurrencyAffixPatterns(UErrorCode& status) {
565     if (U_FAILURE(status)) {
566         return;
567     }
568     UParseError parseErr;
569     fAffixPatternsForCurrency = initHashForAffixPattern(status);
570     if (U_FAILURE(status)) {
571         return;
572     }
573
574     NumberingSystem *ns = NumberingSystem::createInstance(fSymbols->getLocale(),status);
575     if (U_FAILURE(status)) {
576         return;
577     }
578
579     // Save the default currency patterns of this locale.
580     // Here, chose onlyApplyPatternWithoutExpandAffix without
581     // expanding the affix patterns into affixes.
582     UnicodeString currencyPattern;
583     UErrorCode error = U_ZERO_ERROR;   
584     
585     UResourceBundle *resource = ures_open(NULL, fSymbols->getLocale().getName(), &error);
586     UResourceBundle *numElements = ures_getByKeyWithFallback(resource, fgNumberElements, NULL, &error);
587     resource = ures_getByKeyWithFallback(numElements, ns->getName(), resource, &error);
588     resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
589     int32_t patLen = 0;
590     const UChar *patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
591     if ( error == U_MISSING_RESOURCE_ERROR && uprv_strcmp(ns->getName(),fgLatn)) {
592         error = U_ZERO_ERROR;
593         resource = ures_getByKeyWithFallback(numElements, fgLatn, resource, &error);
594         resource = ures_getByKeyWithFallback(resource, fgPatterns, resource, &error);
595         patResStr = ures_getStringByKeyWithFallback(resource, fgCurrencyFormat,  &patLen, &error);
596     }
597     ures_close(numElements);
598     ures_close(resource);
599     delete ns;
600
601     if (U_SUCCESS(error)) {
602         applyPatternWithoutExpandAffix(UnicodeString(patResStr, patLen), false,
603                                        parseErr, status);
604         AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
605                                                     *fNegPrefixPattern,
606                                                     *fNegSuffixPattern,
607                                                     *fPosPrefixPattern,
608                                                     *fPosSuffixPattern,
609                                                     UCURR_SYMBOL_NAME);
610         fAffixPatternsForCurrency->put(UNICODE_STRING("default", 7), affixPtn, status);
611     }
612
613     // save the unique currency plural patterns of this locale.
614     Hashtable* pluralPtn = fCurrencyPluralInfo->fPluralCountToCurrencyUnitPattern;
615     const UHashElement* element = NULL;
616     int32_t pos = -1;
617     Hashtable pluralPatternSet;
618     while ((element = pluralPtn->nextElement(pos)) != NULL) {
619         const UHashTok valueTok = element->value;
620         const UnicodeString* value = (UnicodeString*)valueTok.pointer;
621         const UHashTok keyTok = element->key;
622         const UnicodeString* key = (UnicodeString*)keyTok.pointer;
623         if (pluralPatternSet.geti(*value) != 1) {
624             pluralPatternSet.puti(*value, 1, status);
625             applyPatternWithoutExpandAffix(*value, false, parseErr, status);
626             AffixPatternsForCurrency* affixPtn = new AffixPatternsForCurrency(
627                                                     *fNegPrefixPattern,
628                                                     *fNegSuffixPattern,
629                                                     *fPosPrefixPattern,
630                                                     *fPosSuffixPattern,
631                                                     UCURR_LONG_NAME);
632             fAffixPatternsForCurrency->put(*key, affixPtn, status);
633         }
634     }
635 }
636
637
638 void
639 DecimalFormat::setupCurrencyAffixes(const UnicodeString& pattern,
640                                     UBool setupForCurrentPattern,
641                                     UBool setupForPluralPattern,
642                                     UErrorCode& status) {
643     if (U_FAILURE(status)) {
644         return;
645     }
646     UParseError parseErr;
647     if (setupForCurrentPattern) {
648         if (fAffixesForCurrency) {
649             deleteHashForAffix(fAffixesForCurrency);
650         }
651         fAffixesForCurrency = initHashForAffix(status);
652         if (U_SUCCESS(status)) {
653             applyPatternWithoutExpandAffix(pattern, false, parseErr, status);
654             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
655             StringEnumeration* keywords = pluralRules->getKeywords(status);
656             if (U_SUCCESS(status)) {
657                 const UnicodeString* pluralCount;
658                 while ((pluralCount = keywords->snext(status)) != NULL) {
659                     if ( U_SUCCESS(status) ) {
660                         expandAffixAdjustWidth(pluralCount);
661                         AffixesForCurrency* affix = new AffixesForCurrency(
662                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
663                         fAffixesForCurrency->put(*pluralCount, affix, status);
664                     }
665                 }
666             }
667             delete keywords;
668         }
669     }
670
671     if (U_FAILURE(status)) {
672         return;
673     }
674
675     if (setupForPluralPattern) {
676         if (fPluralAffixesForCurrency) {
677             deleteHashForAffix(fPluralAffixesForCurrency);
678         }
679         fPluralAffixesForCurrency = initHashForAffix(status);
680         if (U_SUCCESS(status)) {
681             const PluralRules* pluralRules = fCurrencyPluralInfo->getPluralRules();
682             StringEnumeration* keywords = pluralRules->getKeywords(status);
683             if (U_SUCCESS(status)) {
684                 const UnicodeString* pluralCount;
685                 while ((pluralCount = keywords->snext(status)) != NULL) {
686                     if ( U_SUCCESS(status) ) {
687                         UnicodeString ptn;
688                         fCurrencyPluralInfo->getCurrencyPluralPattern(*pluralCount, ptn);
689                         applyPatternInternally(*pluralCount, ptn, false, parseErr, status);
690                         AffixesForCurrency* affix = new AffixesForCurrency(
691                             fNegativePrefix, fNegativeSuffix, fPositivePrefix, fPositiveSuffix);
692                         fPluralAffixesForCurrency->put(*pluralCount, affix, status);
693                     }
694                 }
695             }
696             delete keywords;
697         }
698     }
699 }
700
701
702 //------------------------------------------------------------------------------
703
704 DecimalFormat::~DecimalFormat()
705 {
706     delete fPosPrefixPattern;
707     delete fPosSuffixPattern;
708     delete fNegPrefixPattern;
709     delete fNegSuffixPattern;
710     delete fCurrencyChoice;
711     delete fMultiplier;
712     delete fSymbols;
713     delete fRoundingIncrement;
714     deleteHashForAffixPattern();
715     deleteHashForAffix(fAffixesForCurrency);
716     deleteHashForAffix(fPluralAffixesForCurrency);
717     delete fCurrencyPluralInfo;
718 }
719
720 //------------------------------------------------------------------------------
721 // copy constructor
722
723 DecimalFormat::DecimalFormat(const DecimalFormat &source) :
724     NumberFormat(source) {
725     init();
726     *this = source;
727 }
728
729 //------------------------------------------------------------------------------
730 // assignment operator
731
732 template <class T>
733 static void _copy_ptr(T** pdest, const T* source) {
734     if (source == NULL) {
735         delete *pdest;
736         *pdest = NULL;
737     } else if (*pdest == NULL) {
738         *pdest = new T(*source);
739     } else {
740         **pdest = *source;
741     }
742 }
743
744 template <class T>
745 static void _clone_ptr(T** pdest, const T* source) {
746     delete *pdest;
747     if (source == NULL) {
748         *pdest = NULL;
749     } else {
750         *pdest = static_cast<T*>(source->clone());
751     }
752 }
753
754 DecimalFormat&
755 DecimalFormat::operator=(const DecimalFormat& rhs)
756 {
757     if(this != &rhs) {
758         UErrorCode status = U_ZERO_ERROR;
759         NumberFormat::operator=(rhs);
760         fStaticSets     = DecimalFormatStaticSets::getStaticSets(status);
761         fPositivePrefix = rhs.fPositivePrefix;
762         fPositiveSuffix = rhs.fPositiveSuffix;
763         fNegativePrefix = rhs.fNegativePrefix;
764         fNegativeSuffix = rhs.fNegativeSuffix;
765         _copy_ptr(&fPosPrefixPattern, rhs.fPosPrefixPattern);
766         _copy_ptr(&fPosSuffixPattern, rhs.fPosSuffixPattern);
767         _copy_ptr(&fNegPrefixPattern, rhs.fNegPrefixPattern);
768         _copy_ptr(&fNegSuffixPattern, rhs.fNegSuffixPattern);
769         _clone_ptr(&fCurrencyChoice, rhs.fCurrencyChoice);
770         setRoundingIncrement(rhs.getRoundingIncrement());
771         fRoundingMode = rhs.fRoundingMode;
772         setMultiplier(rhs.getMultiplier());
773         fGroupingSize = rhs.fGroupingSize;
774         fGroupingSize2 = rhs.fGroupingSize2;
775         fDecimalSeparatorAlwaysShown = rhs.fDecimalSeparatorAlwaysShown;
776         _copy_ptr(&fSymbols, rhs.fSymbols);
777         fUseExponentialNotation = rhs.fUseExponentialNotation;
778         fExponentSignAlwaysShown = rhs.fExponentSignAlwaysShown;
779         fBoolFlags = rhs.fBoolFlags;
780         /*Bertrand A. D. Update 98.03.17*/
781         fCurrencySignCount = rhs.fCurrencySignCount;
782         /*end of Update*/
783         fMinExponentDigits = rhs.fMinExponentDigits;
784
785         /* sfb 990629 */
786         fFormatWidth = rhs.fFormatWidth;
787         fPad = rhs.fPad;
788         fPadPosition = rhs.fPadPosition;
789         /* end sfb */
790         fMinSignificantDigits = rhs.fMinSignificantDigits;
791         fMaxSignificantDigits = rhs.fMaxSignificantDigits;
792         fUseSignificantDigits = rhs.fUseSignificantDigits;
793         fFormatPattern = rhs.fFormatPattern;
794         fStyle = rhs.fStyle;
795         fCurrencySignCount = rhs.fCurrencySignCount;
796         _clone_ptr(&fCurrencyPluralInfo, rhs.fCurrencyPluralInfo);
797         deleteHashForAffixPattern();
798         if (rhs.fAffixPatternsForCurrency) {
799             UErrorCode status = U_ZERO_ERROR;
800             fAffixPatternsForCurrency = initHashForAffixPattern(status);
801             copyHashForAffixPattern(rhs.fAffixPatternsForCurrency,
802                                     fAffixPatternsForCurrency, status);
803         }
804         deleteHashForAffix(fAffixesForCurrency);
805         if (rhs.fAffixesForCurrency) {
806             UErrorCode status = U_ZERO_ERROR;
807             fAffixesForCurrency = initHashForAffixPattern(status);
808             copyHashForAffix(rhs.fAffixesForCurrency, fAffixesForCurrency, status);
809         }
810         deleteHashForAffix(fPluralAffixesForCurrency);
811         if (rhs.fPluralAffixesForCurrency) {
812             UErrorCode status = U_ZERO_ERROR;
813             fPluralAffixesForCurrency = initHashForAffixPattern(status);
814             copyHashForAffix(rhs.fPluralAffixesForCurrency, fPluralAffixesForCurrency, status);
815         }
816     }
817 #if UCONFIG_FORMAT_FASTPATHS_49
818     handleChanged();
819 #endif
820     return *this;
821 }
822
823 //------------------------------------------------------------------------------
824
825 UBool
826 DecimalFormat::operator==(const Format& that) const
827 {
828     if (this == &that)
829         return TRUE;
830
831     // NumberFormat::operator== guarantees this cast is safe
832     const DecimalFormat* other = (DecimalFormat*)&that;
833
834 #ifdef FMT_DEBUG
835     // This code makes it easy to determine why two format objects that should
836     // be equal aren't.
837     UBool first = TRUE;
838     if (!NumberFormat::operator==(that)) {
839         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
840         debug("NumberFormat::!=");
841     } else {
842     if (!((fPosPrefixPattern == other->fPosPrefixPattern && // both null
843               fPositivePrefix == other->fPositivePrefix)
844            || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
845                *fPosPrefixPattern  == *other->fPosPrefixPattern))) {
846         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
847         debug("Pos Prefix !=");
848     }
849     if (!((fPosSuffixPattern == other->fPosSuffixPattern && // both null
850            fPositiveSuffix == other->fPositiveSuffix)
851           || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
852               *fPosSuffixPattern  == *other->fPosSuffixPattern))) {
853         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
854         debug("Pos Suffix !=");
855     }
856     if (!((fNegPrefixPattern == other->fNegPrefixPattern && // both null
857            fNegativePrefix == other->fNegativePrefix)
858           || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
859               *fNegPrefixPattern  == *other->fNegPrefixPattern))) {
860         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
861         debug("Neg Prefix ");
862         if (fNegPrefixPattern == NULL) {
863             debug("NULL(");
864             debugout(fNegativePrefix);
865             debug(")");
866         } else {
867             debugout(*fNegPrefixPattern);
868         }
869         debug(" != ");
870         if (other->fNegPrefixPattern == NULL) {
871             debug("NULL(");
872             debugout(other->fNegativePrefix);
873             debug(")");
874         } else {
875             debugout(*other->fNegPrefixPattern);
876         }
877     }
878     if (!((fNegSuffixPattern == other->fNegSuffixPattern && // both null
879            fNegativeSuffix == other->fNegativeSuffix)
880           || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
881               *fNegSuffixPattern  == *other->fNegSuffixPattern))) {
882         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
883         debug("Neg Suffix ");
884         if (fNegSuffixPattern == NULL) {
885             debug("NULL(");
886             debugout(fNegativeSuffix);
887             debug(")");
888         } else {
889             debugout(*fNegSuffixPattern);
890         }
891         debug(" != ");
892         if (other->fNegSuffixPattern == NULL) {
893             debug("NULL(");
894             debugout(other->fNegativeSuffix);
895             debug(")");
896         } else {
897             debugout(*other->fNegSuffixPattern);
898         }
899     }
900     if (!((fRoundingIncrement == other->fRoundingIncrement) // both null
901           || (fRoundingIncrement != NULL &&
902               other->fRoundingIncrement != NULL &&
903               *fRoundingIncrement == *other->fRoundingIncrement))) {
904         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
905         debug("Rounding Increment !=");
906               }
907     if (getMultiplier() != other->getMultiplier()) {
908         if (first) { printf("[ "); first = FALSE; }
909         printf("Multiplier %ld != %ld", getMultiplier(), other->getMultiplier());
910     }
911     if (fGroupingSize != other->fGroupingSize) {
912         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
913         printf("Grouping Size %ld != %ld", fGroupingSize, other->fGroupingSize);
914     }
915     if (fGroupingSize2 != other->fGroupingSize2) {
916         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
917         printf("Secondary Grouping Size %ld != %ld", fGroupingSize2, other->fGroupingSize2);
918     }
919     if (fDecimalSeparatorAlwaysShown != other->fDecimalSeparatorAlwaysShown) {
920         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
921         printf("Dec Sep Always %d != %d", fDecimalSeparatorAlwaysShown, other->fDecimalSeparatorAlwaysShown);
922     }
923     if (fUseExponentialNotation != other->fUseExponentialNotation) {
924         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
925         debug("Use Exp !=");
926     }
927     if (!(!fUseExponentialNotation ||
928           fMinExponentDigits != other->fMinExponentDigits)) {
929         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
930         debug("Exp Digits !=");
931     }
932     if (*fSymbols != *(other->fSymbols)) {
933         if (first) { printf("[ "); first = FALSE; } else { printf(", "); }
934         debug("Symbols !=");
935     }
936     // TODO Add debug stuff for significant digits here
937     if (fUseSignificantDigits != other->fUseSignificantDigits) {
938         debug("fUseSignificantDigits !=");
939     }
940     if (fUseSignificantDigits &&
941         fMinSignificantDigits != other->fMinSignificantDigits) {
942         debug("fMinSignificantDigits !=");
943     }
944     if (fUseSignificantDigits &&
945         fMaxSignificantDigits != other->fMaxSignificantDigits) {
946         debug("fMaxSignificantDigits !=");
947     }
948
949     if (!first) { printf(" ]"); }
950     if (fCurrencySignCount != other->fCurrencySignCount) {
951         debug("fCurrencySignCount !=");
952     }
953     if (fCurrencyPluralInfo == other->fCurrencyPluralInfo) {
954         debug("fCurrencyPluralInfo == ");
955         if (fCurrencyPluralInfo == NULL) {
956             debug("fCurrencyPluralInfo == NULL");
957         }
958     }
959     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
960          *fCurrencyPluralInfo != *(other->fCurrencyPluralInfo)) {
961         debug("fCurrencyPluralInfo !=");
962     }
963     if (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo == NULL ||
964         fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo != NULL) {
965         debug("fCurrencyPluralInfo one NULL, the other not");
966     }
967     if (fCurrencyPluralInfo == NULL && other->fCurrencyPluralInfo == NULL) {
968         debug("fCurrencyPluralInfo == ");
969     }
970     }
971 #endif
972
973     return (NumberFormat::operator==(that) &&
974             ((fCurrencySignCount == fgCurrencySignCountInPluralFormat) ?
975             (fAffixPatternsForCurrency->equals(*other->fAffixPatternsForCurrency)) :
976             (((fPosPrefixPattern == other->fPosPrefixPattern && // both null
977               fPositivePrefix == other->fPositivePrefix)
978              || (fPosPrefixPattern != 0 && other->fPosPrefixPattern != 0 &&
979                  *fPosPrefixPattern  == *other->fPosPrefixPattern)) &&
980             ((fPosSuffixPattern == other->fPosSuffixPattern && // both null
981               fPositiveSuffix == other->fPositiveSuffix)
982              || (fPosSuffixPattern != 0 && other->fPosSuffixPattern != 0 &&
983                  *fPosSuffixPattern  == *other->fPosSuffixPattern)) &&
984             ((fNegPrefixPattern == other->fNegPrefixPattern && // both null
985               fNegativePrefix == other->fNegativePrefix)
986              || (fNegPrefixPattern != 0 && other->fNegPrefixPattern != 0 &&
987                  *fNegPrefixPattern  == *other->fNegPrefixPattern)) &&
988             ((fNegSuffixPattern == other->fNegSuffixPattern && // both null
989               fNegativeSuffix == other->fNegativeSuffix)
990              || (fNegSuffixPattern != 0 && other->fNegSuffixPattern != 0 &&
991                  *fNegSuffixPattern  == *other->fNegSuffixPattern)))) &&
992             ((fRoundingIncrement == other->fRoundingIncrement) // both null
993              || (fRoundingIncrement != NULL &&
994                  other->fRoundingIncrement != NULL &&
995                  *fRoundingIncrement == *other->fRoundingIncrement)) &&
996         getMultiplier() == other->getMultiplier() &&
997         fGroupingSize == other->fGroupingSize &&
998         fGroupingSize2 == other->fGroupingSize2 &&
999         fDecimalSeparatorAlwaysShown == other->fDecimalSeparatorAlwaysShown &&
1000         fUseExponentialNotation == other->fUseExponentialNotation &&
1001         (!fUseExponentialNotation ||
1002          fMinExponentDigits == other->fMinExponentDigits) &&
1003         *fSymbols == *(other->fSymbols) &&
1004         fUseSignificantDigits == other->fUseSignificantDigits &&
1005         (!fUseSignificantDigits ||
1006          (fMinSignificantDigits == other->fMinSignificantDigits &&
1007           fMaxSignificantDigits == other->fMaxSignificantDigits)) &&
1008         fCurrencySignCount == other->fCurrencySignCount &&
1009         ((fCurrencyPluralInfo == other->fCurrencyPluralInfo &&
1010           fCurrencyPluralInfo == NULL) ||
1011          (fCurrencyPluralInfo != NULL && other->fCurrencyPluralInfo != NULL &&
1012          *fCurrencyPluralInfo == *(other->fCurrencyPluralInfo))));
1013 }
1014
1015 //------------------------------------------------------------------------------
1016
1017 Format*
1018 DecimalFormat::clone() const
1019 {
1020     return new DecimalFormat(*this);
1021 }
1022
1023
1024 FixedDecimal
1025 DecimalFormat::getFixedDecimal(double number, UErrorCode &status) const {
1026     FixedDecimal result;
1027
1028     if (U_FAILURE(status)) {
1029         return result;
1030     }
1031
1032     if (uprv_isNaN(number) || uprv_isPositiveInfinity(fabs(number))) {
1033         // For NaN and Infinity the state of the formatter is ignored.
1034         result.init(number);
1035         return result;
1036     }
1037
1038     if (fMultiplier == NULL && fScale == 0 && fRoundingIncrement == 0 && areSignificantDigitsUsed() == FALSE &&
1039             result.quickInit(number) && result.visibleDecimalDigitCount <= getMaximumFractionDigits()) {
1040         // Fast Path. Construction of an exact FixedDecimal directly from the double, without passing
1041         //   through a DigitList, was successful, and the formatter is doing nothing tricky with rounding.
1042         // printf("getFixedDecimal(%g): taking fast path.\n", number);
1043         result.adjustForMinFractionDigits(getMinimumFractionDigits());
1044     } else {
1045         // Slow path. Create a DigitList, and have this formatter round it according to the
1046         //     requirements of the format, and fill the fixedDecimal from that.
1047         DigitList digits;
1048         digits.set(number);
1049         result = getFixedDecimal(digits, status);
1050     }
1051     return result;
1052 }
1053
1054 // MSVC optimizer bug? 
1055 // turn off optimization as it causes different behavior in the int64->double->int64 conversion
1056 #if defined (_MSC_VER)
1057 #pragma optimize ( "", off )
1058 #endif
1059 FixedDecimal
1060 DecimalFormat::getFixedDecimal(const Formattable &number, UErrorCode &status) const {
1061     if (U_FAILURE(status)) {
1062         return FixedDecimal();
1063     }
1064     if (!number.isNumeric()) {
1065         status = U_ILLEGAL_ARGUMENT_ERROR;
1066         return FixedDecimal();
1067     }
1068
1069     DigitList *dl = number.getDigitList();
1070     if (dl != NULL) {
1071         DigitList clonedDL(*dl);
1072         return getFixedDecimal(clonedDL, status);
1073     }
1074
1075     Formattable::Type type = number.getType();
1076     if (type == Formattable::kDouble || type == Formattable::kLong) { 
1077         return getFixedDecimal(number.getDouble(status), status);
1078     }
1079
1080     if (type == Formattable::kInt64) {
1081         // "volatile" here is a workaround to avoid optimization issues.
1082         volatile double fdv = number.getDouble(status);
1083         // Note: conversion of int64_t -> double rounds with some compilers to
1084         //       values beyond what can be represented as a 64 bit int. Subsequent
1085         //       testing or conversion with int64_t produces bad results.
1086         //       So filter the problematic values, route them to DigitList.
1087         if (fdv != (double)U_INT64_MAX && fdv != (double)U_INT64_MIN &&
1088                 number.getInt64() == (int64_t)fdv) {
1089             return getFixedDecimal(number.getDouble(status), status);
1090         }
1091     }
1092
1093     // The only case left is type==int64_t, with a value with more digits than a double can represent.
1094     // Any formattable originating as a big decimal will have had a pre-existing digit list.
1095     // Any originating as a double or int32 will have been handled as a double.
1096
1097     U_ASSERT(type == Formattable::kInt64);
1098     DigitList digits;
1099     digits.set(number.getInt64());
1100     return getFixedDecimal(digits, status);
1101 }
1102 // end workaround MSVC optimizer bug
1103 #if defined (_MSC_VER)
1104 #pragma optimize ( "", on )
1105 #endif
1106
1107
1108 // Create a fixed decimal from a DigitList.
1109 //    The digit list may be modified.
1110 //    Internal function only.
1111 FixedDecimal
1112 DecimalFormat::getFixedDecimal(DigitList &number, UErrorCode &status) const {
1113     // Round the number according to the requirements of this Format.
1114     FixedDecimal result;
1115     _round(number, number, result.isNegative, status);
1116
1117     // The int64_t fields in FixedDecimal can easily overflow.
1118     // In deciding what to discard in this event, consider that fixedDecimal
1119     //   is being used only with PluralRules, and those rules mostly look at least significant
1120     //   few digits of the integer part, and whether the fraction part is zero or not.
1121     // 
1122     // So, in case of overflow when filling in the fields of the FixedDecimal object,
1123     //    for the integer part, discard the most significant digits.
1124     //    for the fraction part, discard the least significant digits,
1125     //                           don't truncate the fraction value to zero.
1126     // For simplicity, the int64_t fields are limited to 18 decimal digits, even
1127     // though they could hold most (but not all) 19 digit values.
1128
1129     // Integer Digits.
1130     int32_t di = number.getDecimalAt()-18;  // Take at most 18 digits.
1131     if (di < 0) {
1132         di = 0;
1133     }
1134     result.intValue = 0;
1135     for (; di<number.getDecimalAt(); di++) {
1136         result.intValue = result.intValue * 10 + (number.getDigit(di) & 0x0f);
1137     }
1138     if (result.intValue == 0 && number.getDecimalAt()-18 > 0) {
1139         // The number is something like 100000000000000000000000.
1140         // More than 18 digits integer digits, but the least significant 18 are all zero.
1141         // We don't want to return zero as the int part, but want to keep zeros
1142         //   for several of the least significant digits.
1143         result.intValue = 100000000000000000LL;
1144     }
1145     
1146     // Fraction digits.
1147     result.decimalDigits = result.decimalDigitsWithoutTrailingZeros = result.visibleDecimalDigitCount = 0;
1148     for (di = number.getDecimalAt(); di < number.getCount(); di++) {
1149         result.visibleDecimalDigitCount++;
1150         if (result.decimalDigits <  100000000000000000LL) {
1151                    //              9223372036854775807    Largest 64 bit signed integer
1152             int32_t digitVal = number.getDigit(di) & 0x0f;  // getDigit() returns a char, '0'-'9'.
1153             result.decimalDigits = result.decimalDigits * 10 + digitVal;
1154             if (digitVal > 0) {
1155                 result.decimalDigitsWithoutTrailingZeros = result.decimalDigits;
1156             }
1157         }
1158     }
1159
1160     result.hasIntegerValue = (result.decimalDigits == 0);
1161
1162     // Trailing fraction zeros. The format specification may require more trailing
1163     //    zeros than the numeric value. Add any such on now.
1164
1165     int32_t minFractionDigits;
1166     if (areSignificantDigitsUsed()) {
1167         minFractionDigits = getMinimumSignificantDigits() - number.getDecimalAt();
1168         if (minFractionDigits < 0) {
1169             minFractionDigits = 0;
1170         }
1171     } else {
1172         minFractionDigits = getMinimumFractionDigits();
1173     }
1174     result.adjustForMinFractionDigits(minFractionDigits);
1175
1176     return result;
1177 }
1178
1179
1180 //------------------------------------------------------------------------------
1181
1182 UnicodeString&
1183 DecimalFormat::format(int32_t number,
1184                       UnicodeString& appendTo,
1185                       FieldPosition& fieldPosition) const
1186 {
1187     return format((int64_t)number, appendTo, fieldPosition);
1188 }
1189
1190 UnicodeString&
1191 DecimalFormat::format(int32_t number,
1192                       UnicodeString& appendTo,
1193                       FieldPosition& fieldPosition,
1194                       UErrorCode& status) const
1195 {
1196     return format((int64_t)number, appendTo, fieldPosition, status);
1197 }
1198
1199 UnicodeString&
1200 DecimalFormat::format(int32_t number,
1201                       UnicodeString& appendTo,
1202                       FieldPositionIterator* posIter,
1203                       UErrorCode& status) const
1204 {
1205     return format((int64_t)number, appendTo, posIter, status);
1206 }
1207
1208
1209 #if UCONFIG_FORMAT_FASTPATHS_49
1210 void DecimalFormat::handleChanged() {
1211   DecimalFormatInternal &data = internalData(fReserved);
1212
1213   if(data.fFastFormatStatus == kFastpathUNKNOWN || data.fFastParseStatus == kFastpathUNKNOWN) {
1214     return; // still constructing. Wait.
1215   }
1216
1217   data.fFastParseStatus = data.fFastFormatStatus = kFastpathNO;
1218
1219 #if UCONFIG_HAVE_PARSEALLINPUT
1220   if(fParseAllInput == UNUM_NO) {
1221     debug("No Parse fastpath: fParseAllInput==UNUM_NO");
1222   } else 
1223 #endif
1224   if (fFormatWidth!=0) {
1225       debug("No Parse fastpath: fFormatWidth");
1226   } else if(fPositivePrefix.length()>0) {
1227     debug("No Parse fastpath: positive prefix");
1228   } else if(fPositiveSuffix.length()>0) {
1229     debug("No Parse fastpath: positive suffix");
1230   } else if(fNegativePrefix.length()>1 
1231             || ((fNegativePrefix.length()==1) && (fNegativePrefix.charAt(0)!=0x002D))) {
1232     debug("No Parse fastpath: negative prefix that isn't '-'");
1233   } else if(fNegativeSuffix.length()>0) {
1234     debug("No Parse fastpath: negative suffix");
1235   } else {
1236     data.fFastParseStatus = kFastpathYES;
1237     debug("parse fastpath: YES");
1238   }
1239   
1240   if (fGroupingSize!=0 && isGroupingUsed()) {
1241     debug("No format fastpath: fGroupingSize!=0 and grouping is used");
1242 #ifdef FMT_DEBUG
1243     printf("groupingsize=%d\n", fGroupingSize);
1244 #endif
1245   } else if(fGroupingSize2!=0 && isGroupingUsed()) {
1246     debug("No format fastpath: fGroupingSize2!=0");
1247   } else if(fUseExponentialNotation) {
1248     debug("No format fastpath: fUseExponentialNotation");
1249   } else if(fFormatWidth!=0) {
1250     debug("No format fastpath: fFormatWidth!=0");
1251   } else if(fMinSignificantDigits!=1) {
1252     debug("No format fastpath: fMinSignificantDigits!=1");
1253   } else if(fMultiplier!=NULL) {
1254     debug("No format fastpath: fMultiplier!=NULL");
1255   } else if(fScale!=0) {
1256     debug("No format fastpath: fScale!=0");
1257   } else if(0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)) {
1258     debug("No format fastpath: 0x0030 != getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0)");
1259   } else if(fDecimalSeparatorAlwaysShown) {
1260     debug("No format fastpath: fDecimalSeparatorAlwaysShown");
1261   } else if(getMinimumFractionDigits()>0) {
1262     debug("No format fastpath: fMinFractionDigits>0");
1263   } else if(fCurrencySignCount != fgCurrencySignCountZero) {
1264     debug("No format fastpath: fCurrencySignCount != fgCurrencySignCountZero");
1265   } else if(fRoundingIncrement!=0) {
1266     debug("No format fastpath: fRoundingIncrement!=0");
1267   } else {
1268     data.fFastFormatStatus = kFastpathYES;
1269     debug("format:kFastpathYES!");
1270   }
1271
1272
1273 }
1274 #endif
1275 //------------------------------------------------------------------------------
1276
1277 UnicodeString&
1278 DecimalFormat::format(int64_t number,
1279                       UnicodeString& appendTo,
1280                       FieldPosition& fieldPosition) const
1281 {
1282     UErrorCode status = U_ZERO_ERROR; /* ignored */
1283     FieldPositionOnlyHandler handler(fieldPosition);
1284     return _format(number, appendTo, handler, status);
1285 }
1286
1287 UnicodeString&
1288 DecimalFormat::format(int64_t number,
1289                       UnicodeString& appendTo,
1290                       FieldPosition& fieldPosition,
1291                       UErrorCode& status) const
1292 {
1293     FieldPositionOnlyHandler handler(fieldPosition);
1294     return _format(number, appendTo, handler, status);
1295 }
1296
1297 UnicodeString&
1298 DecimalFormat::format(int64_t number,
1299                       UnicodeString& appendTo,
1300                       FieldPositionIterator* posIter,
1301                       UErrorCode& status) const
1302 {
1303     FieldPositionIteratorHandler handler(posIter, status);
1304     return _format(number, appendTo, handler, status);
1305 }
1306
1307 UnicodeString&
1308 DecimalFormat::_format(int64_t number,
1309                        UnicodeString& appendTo,
1310                        FieldPositionHandler& handler,
1311                        UErrorCode &status) const
1312 {
1313     // Bottleneck function for formatting int64_t
1314     if (U_FAILURE(status)) {
1315         return appendTo;
1316     }
1317
1318 #if UCONFIG_FORMAT_FASTPATHS_49
1319   // const UnicodeString *posPrefix = fPosPrefixPattern;
1320   // const UnicodeString *posSuffix = fPosSuffixPattern;
1321   // const UnicodeString *negSuffix = fNegSuffixPattern;
1322
1323   const DecimalFormatInternal &data = internalData(fReserved);
1324
1325 #ifdef FMT_DEBUG
1326   data.dump();
1327   printf("fastpath? [%d]\n", number);
1328 #endif
1329     
1330   if( data.fFastFormatStatus==kFastpathYES) {
1331
1332 #define kZero 0x0030
1333     const int32_t MAX_IDX = MAX_DIGITS+2;
1334     UChar outputStr[MAX_IDX];
1335     int32_t destIdx = MAX_IDX;
1336     outputStr[--destIdx] = 0;  // term
1337
1338     int64_t  n = number;
1339     if (number < 1) {
1340       // Negative numbers are slightly larger than positive
1341       // output the first digit (or the leading zero)
1342       outputStr[--destIdx] = (-(n % 10) + kZero);
1343       n /= -10;
1344     }
1345     // get any remaining digits
1346     while (n > 0) {
1347       outputStr[--destIdx] = (n % 10) + kZero;
1348       n /= 10;
1349     }
1350     
1351
1352         // Slide the number to the start of the output str
1353     U_ASSERT(destIdx >= 0);
1354     int32_t length = MAX_IDX - destIdx -1;
1355     /*int32_t prefixLen = */ appendAffix(appendTo, number, handler, number<0, TRUE);
1356     int32_t maxIntDig = getMaximumIntegerDigits();
1357     int32_t destlength = length<=maxIntDig?length:maxIntDig; // dest length pinned to max int digits
1358
1359     if(length>maxIntDig && fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
1360       status = U_ILLEGAL_ARGUMENT_ERROR;
1361     }
1362
1363     int32_t prependZero = getMinimumIntegerDigits() - destlength;
1364
1365 #ifdef FMT_DEBUG
1366     printf("prependZero=%d, length=%d, minintdig=%d maxintdig=%d destlength=%d skip=%d\n", prependZero, length, getMinimumIntegerDigits(), maxIntDig, destlength, length-destlength);
1367 #endif    
1368     int32_t intBegin = appendTo.length();
1369
1370     while((prependZero--)>0) {
1371       appendTo.append((UChar)0x0030); // '0'
1372     }
1373
1374     appendTo.append(outputStr+destIdx+
1375                     (length-destlength), // skip any leading digits
1376                     destlength);
1377     handler.addAttribute(kIntegerField, intBegin, appendTo.length());
1378
1379     /*int32_t suffixLen =*/ appendAffix(appendTo, number, handler, number<0, FALSE);
1380
1381     //outputStr[length]=0;
1382     
1383 #ifdef FMT_DEBUG
1384         printf("Writing [%s] length [%d] max %d for [%d]\n", outputStr+destIdx, length, MAX_IDX, number);
1385 #endif
1386
1387 #undef kZero
1388
1389     return appendTo;
1390   } // end fastpath
1391 #endif
1392
1393   // Else the slow way - via DigitList
1394     DigitList digits;
1395     digits.set(number);
1396     return _format(digits, appendTo, handler, status);
1397 }
1398
1399 //------------------------------------------------------------------------------
1400
1401 UnicodeString&
1402 DecimalFormat::format(  double number,
1403                         UnicodeString& appendTo,
1404                         FieldPosition& fieldPosition) const
1405 {
1406     UErrorCode status = U_ZERO_ERROR; /* ignored */
1407     FieldPositionOnlyHandler handler(fieldPosition);
1408     return _format(number, appendTo, handler, status);
1409 }
1410
1411 UnicodeString&
1412 DecimalFormat::format(  double number,
1413                         UnicodeString& appendTo,
1414                         FieldPosition& fieldPosition,
1415                         UErrorCode& status) const
1416 {
1417     FieldPositionOnlyHandler handler(fieldPosition);
1418     return _format(number, appendTo, handler, status);
1419 }
1420
1421 UnicodeString&
1422 DecimalFormat::format(  double number,
1423                         UnicodeString& appendTo,
1424                         FieldPositionIterator* posIter,
1425                         UErrorCode& status) const
1426 {
1427   FieldPositionIteratorHandler handler(posIter, status);
1428   return _format(number, appendTo, handler, status);
1429 }
1430
1431 UnicodeString&
1432 DecimalFormat::_format( double number,
1433                         UnicodeString& appendTo,
1434                         FieldPositionHandler& handler,
1435                         UErrorCode &status) const
1436 {
1437     if (U_FAILURE(status)) {
1438         return appendTo;
1439     }
1440     // Special case for NaN, sets the begin and end index to be the
1441     // the string length of localized name of NaN.
1442     // TODO:  let NaNs go through DigitList.
1443     if (uprv_isNaN(number))
1444     {
1445         int begin = appendTo.length();
1446         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1447
1448         handler.addAttribute(kIntegerField, begin, appendTo.length());
1449
1450         addPadding(appendTo, handler, 0, 0);
1451         return appendTo;
1452     }
1453
1454     DigitList digits;
1455     digits.set(number);
1456     _format(digits, appendTo, handler, status);
1457     // No way to return status from here.
1458     return appendTo;
1459 }
1460
1461 //------------------------------------------------------------------------------
1462
1463
1464 UnicodeString&
1465 DecimalFormat::format(const StringPiece &number,
1466                       UnicodeString &toAppendTo,
1467                       FieldPositionIterator *posIter,
1468                       UErrorCode &status) const
1469 {
1470 #if UCONFIG_FORMAT_FASTPATHS_49
1471   // don't bother if the int64 path is not optimized
1472   int32_t len    = number.length();
1473
1474   if(len>0&&len<10) { /* 10 or more digits may not be an int64 */
1475     const char *data = number.data();
1476     int64_t num = 0;
1477     UBool neg = FALSE;
1478     UBool ok = TRUE;
1479     
1480     int32_t start  = 0;
1481
1482     if(data[start]=='+') {
1483       start++;
1484     } else if(data[start]=='-') {
1485       neg=TRUE;
1486       start++;
1487     }
1488
1489     int32_t place = 1; /* 1, 10, ... */
1490     for(int32_t i=len-1;i>=start;i--) {
1491       if(data[i]>='0'&&data[i]<='9') {
1492         num+=place*(int64_t)(data[i]-'0');
1493       } else {
1494         ok=FALSE;
1495         break;
1496       }
1497       place *= 10;
1498     }
1499
1500     if(ok) {
1501       if(neg) {
1502         num = -num;// add minus bit
1503       }
1504       // format as int64_t
1505       return format(num, toAppendTo, posIter, status);
1506     }
1507     // else fall through
1508   }
1509 #endif
1510
1511     DigitList   dnum;
1512     dnum.set(number, status);
1513     if (U_FAILURE(status)) {
1514         return toAppendTo;
1515     }
1516     FieldPositionIteratorHandler handler(posIter, status);
1517     _format(dnum, toAppendTo, handler, status);
1518     return toAppendTo;
1519 }
1520
1521
1522 UnicodeString&
1523 DecimalFormat::format(const DigitList &number,
1524                       UnicodeString &appendTo,
1525                       FieldPositionIterator *posIter,
1526                       UErrorCode &status) const {
1527     FieldPositionIteratorHandler handler(posIter, status);
1528     _format(number, appendTo, handler, status);
1529     return appendTo;
1530 }
1531
1532
1533
1534 UnicodeString&
1535 DecimalFormat::format(const DigitList &number,
1536                      UnicodeString& appendTo,
1537                      FieldPosition& pos,
1538                      UErrorCode &status) const {
1539     FieldPositionOnlyHandler handler(pos);
1540     _format(number, appendTo, handler, status);
1541     return appendTo;
1542 }
1543
1544 DigitList&
1545 DecimalFormat::_round(const DigitList &number, DigitList &adjustedNum, UBool& isNegative, UErrorCode &status) const {
1546     if (U_FAILURE(status)) {
1547         return adjustedNum;
1548     }
1549
1550     // note: number and adjustedNum may refer to the same DigitList, in cases where a copy
1551     //       is not needed by the caller.
1552
1553     adjustedNum = number;
1554     isNegative = false;
1555     if (number.isNaN()) {
1556         return adjustedNum;
1557     }
1558
1559     // Do this BEFORE checking to see if value is infinite or negative! Sets the
1560     // begin and end index to be length of the string composed of
1561     // localized name of Infinite and the positive/negative localized
1562     // signs.
1563
1564     adjustedNum.setRoundingMode(fRoundingMode);
1565     if (fMultiplier != NULL) {
1566         adjustedNum.mult(*fMultiplier, status);
1567         if (U_FAILURE(status)) {
1568             return adjustedNum;
1569         }
1570     }
1571
1572     if (fScale != 0) {
1573         DigitList ten;
1574         ten.set((int32_t)10);
1575         if (fScale > 0) {
1576             for (int32_t i = fScale ; i > 0 ; i--) {
1577                 adjustedNum.mult(ten, status);
1578                 if (U_FAILURE(status)) {
1579                     return adjustedNum;
1580                 }
1581             }
1582         } else {
1583             for (int32_t i = fScale ; i < 0 ; i++) {
1584                 adjustedNum.div(ten, status);
1585                 if (U_FAILURE(status)) {
1586                     return adjustedNum;
1587                 }
1588             }
1589         }
1590     }
1591
1592     /*
1593      * Note: sign is important for zero as well as non-zero numbers.
1594      * Proper detection of -0.0 is needed to deal with the
1595      * issues raised by bugs 4106658, 4106667, and 4147706.  Liu 7/6/98.
1596      */
1597     isNegative = !adjustedNum.isPositive();
1598
1599     // Apply rounding after multiplier
1600
1601     adjustedNum.fContext.status &= ~DEC_Inexact;
1602     if (fRoundingIncrement != NULL) {
1603         adjustedNum.div(*fRoundingIncrement, status);
1604         adjustedNum.toIntegralValue();
1605         adjustedNum.mult(*fRoundingIncrement, status);
1606         adjustedNum.trim();
1607         if (U_FAILURE(status)) {
1608             return adjustedNum;
1609         }
1610     }
1611     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1612         status = U_FORMAT_INEXACT_ERROR;
1613         return adjustedNum;
1614     }
1615
1616     if (adjustedNum.isInfinite()) {
1617         return adjustedNum;
1618     }
1619
1620     if (fUseExponentialNotation || areSignificantDigitsUsed()) {
1621         int32_t sigDigits = precision();
1622         if (sigDigits > 0) {
1623             adjustedNum.round(sigDigits);
1624         }
1625     } else {
1626         // Fixed point format.  Round to a set number of fraction digits.
1627         int32_t numFractionDigits = precision();
1628         adjustedNum.roundFixedPoint(numFractionDigits);
1629     }
1630     if (fRoundingMode == kRoundUnnecessary && (adjustedNum.fContext.status & DEC_Inexact)) {
1631         status = U_FORMAT_INEXACT_ERROR;
1632         return adjustedNum;
1633     }
1634     return adjustedNum;
1635 }
1636
1637 UnicodeString&
1638 DecimalFormat::_format(const DigitList &number,
1639                         UnicodeString& appendTo,
1640                         FieldPositionHandler& handler,
1641                         UErrorCode &status) const
1642 {
1643     if (U_FAILURE(status)) {
1644         return appendTo;
1645     }
1646
1647     // Special case for NaN, sets the begin and end index to be the
1648     // the string length of localized name of NaN.
1649     if (number.isNaN())
1650     {
1651         int begin = appendTo.length();
1652         appendTo += getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
1653
1654         handler.addAttribute(kIntegerField, begin, appendTo.length());
1655
1656         addPadding(appendTo, handler, 0, 0);
1657         return appendTo;
1658     }
1659
1660     DigitList adjustedNum;
1661     UBool isNegative;
1662     _round(number, adjustedNum, isNegative, status);
1663     if (U_FAILURE(status)) {
1664         return appendTo;
1665     }
1666
1667     // Special case for INFINITE,
1668     if (adjustedNum.isInfinite()) {
1669         int32_t prefixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, TRUE);
1670
1671         int begin = appendTo.length();
1672         appendTo += getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
1673
1674         handler.addAttribute(kIntegerField, begin, appendTo.length());
1675
1676         int32_t suffixLen = appendAffix(appendTo, adjustedNum.getDouble(), handler, isNegative, FALSE);
1677
1678         addPadding(appendTo, handler, prefixLen, suffixLen);
1679         return appendTo;
1680     }
1681     return subformat(appendTo, handler, adjustedNum, FALSE, status);
1682 }
1683
1684 /**
1685  * Return true if a grouping separator belongs at the given
1686  * position, based on whether grouping is in use and the values of
1687  * the primary and secondary grouping interval.
1688  * @param pos the number of integer digits to the right of
1689  * the current position.  Zero indicates the position after the
1690  * rightmost integer digit.
1691  * @return true if a grouping character belongs at the current
1692  * position.
1693  */
1694 UBool DecimalFormat::isGroupingPosition(int32_t pos) const {
1695     UBool result = FALSE;
1696     if (isGroupingUsed() && (pos > 0) && (fGroupingSize > 0)) {
1697         if ((fGroupingSize2 > 0) && (pos > fGroupingSize)) {
1698             result = ((pos - fGroupingSize) % fGroupingSize2) == 0;
1699         } else {
1700             result = pos % fGroupingSize == 0;
1701         }
1702     }
1703     return result;
1704 }
1705
1706 //------------------------------------------------------------------------------
1707
1708 /**
1709  * Complete the formatting of a finite number.  On entry, the DigitList must
1710  * be filled in with the correct digits.
1711  */
1712 UnicodeString&
1713 DecimalFormat::subformat(UnicodeString& appendTo,
1714                          FieldPositionHandler& handler,
1715                          DigitList&     digits,
1716                          UBool          isInteger,
1717                          UErrorCode& status) const
1718 {
1719     // char zero = '0'; 
1720     // DigitList returns digits as '0' thru '9', so we will need to 
1721     // always need to subtract the character 0 to get the numeric value to use for indexing.
1722
1723     UChar32 localizedDigits[10];
1724     localizedDigits[0] = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
1725     localizedDigits[1] = getConstSymbol(DecimalFormatSymbols::kOneDigitSymbol).char32At(0);
1726     localizedDigits[2] = getConstSymbol(DecimalFormatSymbols::kTwoDigitSymbol).char32At(0);
1727     localizedDigits[3] = getConstSymbol(DecimalFormatSymbols::kThreeDigitSymbol).char32At(0);
1728     localizedDigits[4] = getConstSymbol(DecimalFormatSymbols::kFourDigitSymbol).char32At(0);
1729     localizedDigits[5] = getConstSymbol(DecimalFormatSymbols::kFiveDigitSymbol).char32At(0);
1730     localizedDigits[6] = getConstSymbol(DecimalFormatSymbols::kSixDigitSymbol).char32At(0);
1731     localizedDigits[7] = getConstSymbol(DecimalFormatSymbols::kSevenDigitSymbol).char32At(0);
1732     localizedDigits[8] = getConstSymbol(DecimalFormatSymbols::kEightDigitSymbol).char32At(0);
1733     localizedDigits[9] = getConstSymbol(DecimalFormatSymbols::kNineDigitSymbol).char32At(0);
1734
1735     const UnicodeString *grouping ;
1736     if(fCurrencySignCount == fgCurrencySignCountZero) {
1737         grouping = &getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol);
1738     }else{
1739         grouping = &getConstSymbol(DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
1740     }
1741     const UnicodeString *decimal;
1742     if(fCurrencySignCount == fgCurrencySignCountZero) {
1743         decimal = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
1744     } else {
1745         decimal = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
1746     }
1747     UBool useSigDig = areSignificantDigitsUsed();
1748     int32_t maxIntDig = getMaximumIntegerDigits();
1749     int32_t minIntDig = getMinimumIntegerDigits();
1750
1751     // Appends the prefix.
1752     double doubleValue = digits.getDouble();
1753     int32_t prefixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), TRUE);
1754
1755     if (fUseExponentialNotation)
1756     {
1757         int currentLength = appendTo.length();
1758         int intBegin = currentLength;
1759         int intEnd = -1;
1760         int fracBegin = -1;
1761
1762         int32_t minFracDig = 0;
1763         if (useSigDig) {
1764             maxIntDig = minIntDig = 1;
1765             minFracDig = getMinimumSignificantDigits() - 1;
1766         } else {
1767             minFracDig = getMinimumFractionDigits();
1768             if (maxIntDig > kMaxScientificIntegerDigits) {
1769                 maxIntDig = 1;
1770                 if (maxIntDig < minIntDig) {
1771                     maxIntDig = minIntDig;
1772                 }
1773             }
1774             if (maxIntDig > minIntDig) {
1775                 minIntDig = 1;
1776             }
1777         }
1778
1779         // Minimum integer digits are handled in exponential format by
1780         // adjusting the exponent.  For example, 0.01234 with 3 minimum
1781         // integer digits is "123.4E-4".
1782
1783         // Maximum integer digits are interpreted as indicating the
1784         // repeating range.  This is useful for engineering notation, in
1785         // which the exponent is restricted to a multiple of 3.  For
1786         // example, 0.01234 with 3 maximum integer digits is "12.34e-3".
1787         // If maximum integer digits are defined and are larger than
1788         // minimum integer digits, then minimum integer digits are
1789         // ignored.
1790         digits.reduce();   // Removes trailing zero digits.
1791         int32_t exponent = digits.getDecimalAt();
1792         if (maxIntDig > 1 && maxIntDig != minIntDig) {
1793             // A exponent increment is defined; adjust to it.
1794             exponent = (exponent > 0) ? (exponent - 1) / maxIntDig
1795                                       : (exponent / maxIntDig) - 1;
1796             exponent *= maxIntDig;
1797         } else {
1798             // No exponent increment is defined; use minimum integer digits.
1799             // If none is specified, as in "#E0", generate 1 integer digit.
1800             exponent -= (minIntDig > 0 || minFracDig > 0)
1801                         ? minIntDig : 1;
1802         }
1803
1804         // We now output a minimum number of digits, and more if there
1805         // are more digits, up to the maximum number of digits.  We
1806         // place the decimal point after the "integer" digits, which
1807         // are the first (decimalAt - exponent) digits.
1808         int32_t minimumDigits =  minIntDig + minFracDig;
1809         // The number of integer digits is handled specially if the number
1810         // is zero, since then there may be no digits.
1811         int32_t integerDigits = digits.isZero() ? minIntDig :
1812             digits.getDecimalAt() - exponent;
1813         int32_t totalDigits = digits.getCount();
1814         if (minimumDigits > totalDigits)
1815             totalDigits = minimumDigits;
1816         if (integerDigits > totalDigits)
1817             totalDigits = integerDigits;
1818
1819         // totalDigits records total number of digits needs to be processed
1820         int32_t i;
1821         for (i=0; i<totalDigits; ++i)
1822         {
1823             if (i == integerDigits)
1824             {
1825                 intEnd = appendTo.length();
1826                 handler.addAttribute(kIntegerField, intBegin, intEnd);
1827
1828                 appendTo += *decimal;
1829
1830                 fracBegin = appendTo.length();
1831                 handler.addAttribute(kDecimalSeparatorField, fracBegin - 1, fracBegin);
1832             }
1833             // Restores the digit character or pads the buffer with zeros.
1834             UChar32 c = (UChar32)((i < digits.getCount()) ?
1835                           localizedDigits[digits.getDigitValue(i)] :
1836                           localizedDigits[0]);
1837             appendTo += c;
1838         }
1839
1840         currentLength = appendTo.length();
1841
1842         if (intEnd < 0) {
1843             handler.addAttribute(kIntegerField, intBegin, currentLength);
1844         }
1845         if (fracBegin > 0) {
1846             handler.addAttribute(kFractionField, fracBegin, currentLength);
1847         }
1848
1849         // The exponent is output using the pattern-specified minimum
1850         // exponent digits.  There is no maximum limit to the exponent
1851         // digits, since truncating the exponent would appendTo in an
1852         // unacceptable inaccuracy.
1853         appendTo += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
1854
1855         handler.addAttribute(kExponentSymbolField, currentLength, appendTo.length());
1856         currentLength = appendTo.length();
1857
1858         // For zero values, we force the exponent to zero.  We
1859         // must do this here, and not earlier, because the value
1860         // is used to determine integer digit count above.
1861         if (digits.isZero())
1862             exponent = 0;
1863
1864         if (exponent < 0) {
1865             appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
1866             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1867         } else if (fExponentSignAlwaysShown) {
1868             appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
1869             handler.addAttribute(kExponentSignField, currentLength, appendTo.length());
1870         }
1871
1872         currentLength = appendTo.length();
1873
1874         DigitList expDigits;
1875         expDigits.set(exponent);
1876         {
1877             int expDig = fMinExponentDigits;
1878             if (fUseExponentialNotation && expDig < 1) {
1879                 expDig = 1;
1880             }
1881             for (i=expDigits.getDecimalAt(); i<expDig; ++i)
1882                 appendTo += (localizedDigits[0]);
1883         }
1884         for (i=0; i<expDigits.getDecimalAt(); ++i)
1885         {
1886             UChar32 c = (UChar32)((i < expDigits.getCount()) ?
1887                           localizedDigits[expDigits.getDigitValue(i)] : 
1888                           localizedDigits[0]);
1889             appendTo += c;
1890         }
1891
1892         handler.addAttribute(kExponentField, currentLength, appendTo.length());
1893     }
1894     else  // Not using exponential notation
1895     {
1896         int currentLength = appendTo.length();
1897         int intBegin = currentLength;
1898
1899         int32_t sigCount = 0;
1900         int32_t minSigDig = getMinimumSignificantDigits();
1901         int32_t maxSigDig = getMaximumSignificantDigits();
1902         if (!useSigDig) {
1903             minSigDig = 0;
1904             maxSigDig = INT32_MAX;
1905         }
1906
1907         // Output the integer portion.  Here 'count' is the total
1908         // number of integer digits we will display, including both
1909         // leading zeros required to satisfy getMinimumIntegerDigits,
1910         // and actual digits present in the number.
1911         int32_t count = useSigDig ?
1912             _max(1, digits.getDecimalAt()) : minIntDig;
1913         if (digits.getDecimalAt() > 0 && count < digits.getDecimalAt()) {
1914             count = digits.getDecimalAt();
1915         }
1916
1917         // Handle the case where getMaximumIntegerDigits() is smaller
1918         // than the real number of integer digits.  If this is so, we
1919         // output the least significant max integer digits.  For example,
1920         // the value 1997 printed with 2 max integer digits is just "97".
1921
1922         int32_t digitIndex = 0; // Index into digitList.fDigits[]
1923         if (count > maxIntDig && maxIntDig >= 0) {
1924             count = maxIntDig;
1925             digitIndex = digits.getDecimalAt() - count;
1926             if(fBoolFlags.contains(UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS)) {
1927                 status = U_ILLEGAL_ARGUMENT_ERROR;
1928             }
1929         }
1930
1931         int32_t sizeBeforeIntegerPart = appendTo.length();
1932
1933         int32_t i;
1934         for (i=count-1; i>=0; --i)
1935         {
1936             if (i < digits.getDecimalAt() && digitIndex < digits.getCount() &&
1937                 sigCount < maxSigDig) {
1938                 // Output a real digit
1939                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
1940                 ++sigCount;
1941             }
1942             else
1943             {
1944                 // Output a zero (leading or trailing)
1945                 appendTo += localizedDigits[0];
1946                 if (sigCount > 0) {
1947                     ++sigCount;
1948                 }
1949             }
1950
1951             // Output grouping separator if necessary.
1952             if (isGroupingPosition(i)) {
1953                 currentLength = appendTo.length();
1954                 appendTo.append(*grouping);
1955                 handler.addAttribute(kGroupingSeparatorField, currentLength, appendTo.length());
1956             }
1957         }
1958
1959         // This handles the special case of formatting 0. For zero only, we count the
1960         // zero to the left of the decimal point as one signficant digit. Ordinarily we
1961         // do not count any leading 0's as significant. If the number we are formatting
1962         // is not zero, then either sigCount or digits.getCount() will be non-zero.
1963         if (sigCount == 0 && digits.getCount() == 0) {
1964           sigCount = 1;
1965         }
1966
1967         // TODO(dlf): this looks like it was a bug, we marked the int field as ending
1968         // before the zero was generated.
1969         // Record field information for caller.
1970         // if (fieldPosition.getField() == NumberFormat::kIntegerField)
1971         //     fieldPosition.setEndIndex(appendTo.length());
1972
1973         // Determine whether or not there are any printable fractional
1974         // digits.  If we've used up the digits we know there aren't.
1975         UBool fractionPresent = (!isInteger && digitIndex < digits.getCount()) ||
1976             (useSigDig ? (sigCount < minSigDig) : (getMinimumFractionDigits() > 0));
1977
1978         // If there is no fraction present, and we haven't printed any
1979         // integer digits, then print a zero.  Otherwise we won't print
1980         // _any_ digits, and we won't be able to parse this string.
1981         if (!fractionPresent && appendTo.length() == sizeBeforeIntegerPart)
1982             appendTo += localizedDigits[0];
1983
1984         currentLength = appendTo.length();
1985         handler.addAttribute(kIntegerField, intBegin, currentLength);
1986
1987         // Output the decimal separator if we always do so.
1988         if (fDecimalSeparatorAlwaysShown || fractionPresent) {
1989             appendTo += *decimal;
1990             handler.addAttribute(kDecimalSeparatorField, currentLength, appendTo.length());
1991             currentLength = appendTo.length();
1992         }
1993
1994         int fracBegin = currentLength;
1995
1996         count = useSigDig ? INT32_MAX : getMaximumFractionDigits();
1997         if (useSigDig && (sigCount == maxSigDig ||
1998                           (sigCount >= minSigDig && digitIndex == digits.getCount()))) {
1999             count = 0;
2000         }
2001
2002         for (i=0; i < count; ++i) {
2003             // Here is where we escape from the loop.  We escape
2004             // if we've output the maximum fraction digits
2005             // (specified in the for expression above).  We also
2006             // stop when we've output the minimum digits and
2007             // either: we have an integer, so there is no
2008             // fractional stuff to display, or we're out of
2009             // significant digits.
2010             if (!useSigDig && i >= getMinimumFractionDigits() &&
2011                 (isInteger || digitIndex >= digits.getCount())) {
2012                 break;
2013             }
2014
2015             // Output leading fractional zeros.  These are zeros
2016             // that come after the decimal but before any
2017             // significant digits.  These are only output if
2018             // abs(number being formatted) < 1.0.
2019             if (-1-i > (digits.getDecimalAt()-1)) {
2020                 appendTo += localizedDigits[0];
2021                 continue;
2022             }
2023
2024             // Output a digit, if we have any precision left, or a
2025             // zero if we don't.  We don't want to output noise digits.
2026             if (!isInteger && digitIndex < digits.getCount()) {
2027                 appendTo += (UChar32)localizedDigits[digits.getDigitValue(digitIndex++)];
2028             } else {
2029                 appendTo += localizedDigits[0];
2030             }
2031
2032             // If we reach the maximum number of significant
2033             // digits, or if we output all the real digits and
2034             // reach the minimum, then we are done.
2035             ++sigCount;
2036             if (useSigDig &&
2037                 (sigCount == maxSigDig ||
2038                  (digitIndex == digits.getCount() && sigCount >= minSigDig))) {
2039                 break;
2040             }
2041         }
2042
2043         handler.addAttribute(kFractionField, fracBegin, appendTo.length());
2044     }
2045
2046     int32_t suffixLen = appendAffix(appendTo, doubleValue, handler, !digits.isPositive(), FALSE);
2047
2048     addPadding(appendTo, handler, prefixLen, suffixLen);
2049     return appendTo;
2050 }
2051
2052 /**
2053  * Inserts the character fPad as needed to expand result to fFormatWidth.
2054  * @param result the string to be padded
2055  */
2056 void DecimalFormat::addPadding(UnicodeString& appendTo,
2057                                FieldPositionHandler& handler,
2058                                int32_t prefixLen,
2059                                int32_t suffixLen) const
2060 {
2061     if (fFormatWidth > 0) {
2062         int32_t len = fFormatWidth - appendTo.length();
2063         if (len > 0) {
2064             UnicodeString padding;
2065             for (int32_t i=0; i<len; ++i) {
2066                 padding += fPad;
2067             }
2068             switch (fPadPosition) {
2069             case kPadAfterPrefix:
2070                 appendTo.insert(prefixLen, padding);
2071                 break;
2072             case kPadBeforePrefix:
2073                 appendTo.insert(0, padding);
2074                 break;
2075             case kPadBeforeSuffix:
2076                 appendTo.insert(appendTo.length() - suffixLen, padding);
2077                 break;
2078             case kPadAfterSuffix:
2079                 appendTo += padding;
2080                 break;
2081             }
2082             if (fPadPosition == kPadBeforePrefix || fPadPosition == kPadAfterPrefix) {
2083                 handler.shiftLast(len);
2084             }
2085         }
2086     }
2087 }
2088
2089 //------------------------------------------------------------------------------
2090
2091 void
2092 DecimalFormat::parse(const UnicodeString& text,
2093                      Formattable& result,
2094                      ParsePosition& parsePosition) const {
2095     parse(text, result, parsePosition, NULL);
2096 }
2097
2098 CurrencyAmount* DecimalFormat::parseCurrency(const UnicodeString& text,
2099                                              ParsePosition& pos) const {
2100     Formattable parseResult;
2101     int32_t start = pos.getIndex();
2102     UChar curbuf[4] = {};
2103     parse(text, parseResult, pos, curbuf);
2104     if (pos.getIndex() != start) {
2105         UErrorCode ec = U_ZERO_ERROR;
2106         LocalPointer<CurrencyAmount> currAmt(new CurrencyAmount(parseResult, curbuf, ec));
2107         if (U_FAILURE(ec)) {
2108             pos.setIndex(start); // indicate failure
2109         } else {
2110             return currAmt.orphan();
2111         }
2112     }
2113     return NULL;
2114 }
2115
2116 /**
2117  * Parses the given text as a number, optionally providing a currency amount.
2118  * @param text the string to parse
2119  * @param result output parameter for the numeric result.
2120  * @param parsePosition input-output position; on input, the
2121  * position within text to match; must have 0 <= pos.getIndex() <
2122  * text.length(); on output, the position after the last matched
2123  * character. If the parse fails, the position in unchanged upon
2124  * output.
2125  * @param currency if non-NULL, it should point to a 4-UChar buffer.
2126  * In this case the text is parsed as a currency format, and the
2127  * ISO 4217 code for the parsed currency is put into the buffer.
2128  * Otherwise the text is parsed as a non-currency format.
2129  */
2130 void DecimalFormat::parse(const UnicodeString& text,
2131                           Formattable& result,
2132                           ParsePosition& parsePosition,
2133                           UChar* currency) const {
2134     int32_t startIdx, backup;
2135     int32_t i = startIdx = backup = parsePosition.getIndex();
2136
2137     // clear any old contents in the result.  In particular, clears any DigitList
2138     //   that it may be holding.
2139     result.setLong(0);
2140     if (currency != NULL) {
2141         for (int32_t ci=0; ci<4; ci++) {
2142             currency[ci] = 0;
2143         }
2144     }
2145
2146     // Handle NaN as a special case:
2147
2148     // Skip padding characters, if around prefix
2149     if (fFormatWidth > 0 && (fPadPosition == kPadBeforePrefix ||
2150                              fPadPosition == kPadAfterPrefix)) {
2151         i = skipPadding(text, i);
2152     }
2153
2154     if (isLenient()) {
2155         // skip any leading whitespace
2156         i = backup = skipUWhiteSpace(text, i);
2157     }
2158
2159     // If the text is composed of the representation of NaN, returns NaN.length
2160     const UnicodeString *nan = &getConstSymbol(DecimalFormatSymbols::kNaNSymbol);
2161     int32_t nanLen = (text.compare(i, nan->length(), *nan)
2162                       ? 0 : nan->length());
2163     if (nanLen) {
2164         i += nanLen;
2165         if (fFormatWidth > 0 && (fPadPosition == kPadBeforeSuffix ||
2166                                  fPadPosition == kPadAfterSuffix)) {
2167             i = skipPadding(text, i);
2168         }
2169         parsePosition.setIndex(i);
2170         result.setDouble(uprv_getNaN());
2171         return;
2172     }
2173
2174     // NaN parse failed; start over
2175     i = backup;
2176     parsePosition.setIndex(i);
2177
2178     // status is used to record whether a number is infinite.
2179     UBool status[fgStatusLength];
2180
2181     DigitList *digits = result.getInternalDigitList(); // get one from the stack buffer
2182     if (digits == NULL) {
2183         return;    // no way to report error from here.
2184     }
2185
2186     if (fCurrencySignCount != fgCurrencySignCountZero) {
2187         if (!parseForCurrency(text, parsePosition, *digits,
2188                               status, currency)) {
2189           return;
2190         }
2191     } else {
2192         if (!subparse(text,
2193                       fNegPrefixPattern, fNegSuffixPattern,
2194                       fPosPrefixPattern, fPosSuffixPattern,
2195                       FALSE, UCURR_SYMBOL_NAME,
2196                       parsePosition, *digits, status, currency)) {
2197             debug("!subparse(...) - rewind");
2198             parsePosition.setIndex(startIdx);
2199             return;
2200         }
2201     }
2202
2203     // Handle infinity
2204     if (status[fgStatusInfinite]) {
2205         double inf = uprv_getInfinity();
2206         result.setDouble(digits->isPositive() ? inf : -inf);
2207         // TODO:  set the dl to infinity, and let it fall into the code below.
2208     }
2209
2210     else {
2211
2212         if (fMultiplier != NULL) {
2213             UErrorCode ec = U_ZERO_ERROR;
2214             digits->div(*fMultiplier, ec);
2215         }
2216
2217         if (fScale != 0) {
2218             DigitList ten;
2219             ten.set((int32_t)10);
2220             if (fScale > 0) {
2221                 for (int32_t i = fScale; i > 0; i--) {
2222                     UErrorCode ec = U_ZERO_ERROR;
2223                     digits->div(ten,ec);
2224                 }
2225             } else {
2226                 for (int32_t i = fScale; i < 0; i++) {
2227                     UErrorCode ec = U_ZERO_ERROR;
2228                     digits->mult(ten,ec);
2229                 }
2230             }
2231         }
2232
2233         // Negative zero special case:
2234         //    if parsing integerOnly, change to +0, which goes into an int32 in a Formattable.
2235         //    if not parsing integerOnly, leave as -0, which a double can represent.
2236         if (digits->isZero() && !digits->isPositive() && isParseIntegerOnly()) {
2237             digits->setPositive(TRUE);
2238         }
2239         result.adoptDigitList(digits);
2240     }
2241 }
2242
2243
2244
2245 UBool
2246 DecimalFormat::parseForCurrency(const UnicodeString& text,
2247                                 ParsePosition& parsePosition,
2248                                 DigitList& digits,
2249                                 UBool* status,
2250                                 UChar* currency) const {
2251     int origPos = parsePosition.getIndex();
2252     int maxPosIndex = origPos;
2253     int maxErrorPos = -1;
2254     // First, parse against current pattern.
2255     // Since current pattern could be set by applyPattern(),
2256     // it could be an arbitrary pattern, and it may not be the one
2257     // defined in current locale.
2258     UBool tmpStatus[fgStatusLength];
2259     ParsePosition tmpPos(origPos);
2260     DigitList tmpDigitList;
2261     UBool found;
2262     if (fStyle == UNUM_CURRENCY_PLURAL) {
2263         found = subparse(text,
2264                          fNegPrefixPattern, fNegSuffixPattern,
2265                          fPosPrefixPattern, fPosSuffixPattern,
2266                          TRUE, UCURR_LONG_NAME,
2267                          tmpPos, tmpDigitList, tmpStatus, currency);
2268     } else {
2269         found = subparse(text,
2270                          fNegPrefixPattern, fNegSuffixPattern,
2271                          fPosPrefixPattern, fPosSuffixPattern,
2272                          TRUE, UCURR_SYMBOL_NAME,
2273                          tmpPos, tmpDigitList, tmpStatus, currency);
2274     }
2275     if (found) {
2276         if (tmpPos.getIndex() > maxPosIndex) {
2277             maxPosIndex = tmpPos.getIndex();
2278             for (int32_t i = 0; i < fgStatusLength; ++i) {
2279                 status[i] = tmpStatus[i];
2280             }
2281             digits = tmpDigitList;
2282         }
2283     } else {
2284         maxErrorPos = tmpPos.getErrorIndex();
2285     }
2286     // Then, parse against affix patterns.
2287     // Those are currency patterns and currency plural patterns.
2288     int32_t pos = -1;
2289     const UHashElement* element = NULL;
2290     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
2291         const UHashTok valueTok = element->value;
2292         const AffixPatternsForCurrency* affixPtn = (AffixPatternsForCurrency*)valueTok.pointer;
2293         UBool tmpStatus[fgStatusLength];
2294         ParsePosition tmpPos(origPos);
2295         DigitList tmpDigitList;
2296
2297 #ifdef FMT_DEBUG
2298         debug("trying affix for currency..");
2299         affixPtn->dump();
2300 #endif
2301
2302         UBool result = subparse(text,
2303                                 &affixPtn->negPrefixPatternForCurrency,
2304                                 &affixPtn->negSuffixPatternForCurrency,
2305                                 &affixPtn->posPrefixPatternForCurrency,
2306                                 &affixPtn->posSuffixPatternForCurrency,
2307                                 TRUE, affixPtn->patternType,
2308                                 tmpPos, tmpDigitList, tmpStatus, currency);
2309         if (result) {
2310             found = true;
2311             if (tmpPos.getIndex() > maxPosIndex) {
2312                 maxPosIndex = tmpPos.getIndex();
2313                 for (int32_t i = 0; i < fgStatusLength; ++i) {
2314                     status[i] = tmpStatus[i];
2315                 }
2316                 digits = tmpDigitList;
2317             }
2318         } else {
2319             maxErrorPos = (tmpPos.getErrorIndex() > maxErrorPos) ?
2320                           tmpPos.getErrorIndex() : maxErrorPos;
2321         }
2322     }
2323     // Finally, parse against simple affix to find the match.
2324     // For example, in TestMonster suite,
2325     // if the to-be-parsed text is "-\u00A40,00".
2326     // complexAffixCompare will not find match,
2327     // since there is no ISO code matches "\u00A4",
2328     // and the parse stops at "\u00A4".
2329     // We will just use simple affix comparison (look for exact match)
2330     // to pass it.
2331     //
2332     // TODO: We should parse against simple affix first when
2333     // output currency is not requested. After the complex currency
2334     // parsing implementation was introduced, the default currency
2335     // instance parsing slowed down because of the new code flow.
2336     // I filed #10312 - Yoshito
2337     UBool tmpStatus_2[fgStatusLength];
2338     ParsePosition tmpPos_2(origPos);
2339     DigitList tmpDigitList_2;
2340
2341     // Disable complex currency parsing and try it again.
2342     UBool result = subparse(text,
2343                             &fNegativePrefix, &fNegativeSuffix,
2344                             &fPositivePrefix, &fPositiveSuffix,
2345                             FALSE /* disable complex currency parsing */, UCURR_SYMBOL_NAME,
2346                             tmpPos_2, tmpDigitList_2, tmpStatus_2,
2347                             currency);
2348     if (result) {
2349         if (tmpPos_2.getIndex() > maxPosIndex) {
2350             maxPosIndex = tmpPos_2.getIndex();
2351             for (int32_t i = 0; i < fgStatusLength; ++i) {
2352                 status[i] = tmpStatus_2[i];
2353             }
2354             digits = tmpDigitList_2;
2355         }
2356         found = true;
2357     } else {
2358             maxErrorPos = (tmpPos_2.getErrorIndex() > maxErrorPos) ?
2359                           tmpPos_2.getErrorIndex() : maxErrorPos;
2360     }
2361
2362     if (!found) {
2363         //parsePosition.setIndex(origPos);
2364         parsePosition.setErrorIndex(maxErrorPos);
2365     } else {
2366         parsePosition.setIndex(maxPosIndex);
2367         parsePosition.setErrorIndex(-1);
2368     }
2369     return found;
2370 }
2371
2372
2373 /**
2374  * Parse the given text into a number.  The text is parsed beginning at
2375  * parsePosition, until an unparseable character is seen.
2376  * @param text the string to parse.
2377  * @param negPrefix negative prefix.
2378  * @param negSuffix negative suffix.
2379  * @param posPrefix positive prefix.
2380  * @param posSuffix positive suffix.
2381  * @param complexCurrencyParsing whether it is complex currency parsing or not.
2382  * @param type the currency type to parse against, LONG_NAME only or not.
2383  * @param parsePosition The position at which to being parsing.  Upon
2384  * return, the first unparsed character.
2385  * @param digits the DigitList to set to the parsed value.
2386  * @param status output param containing boolean status flags indicating
2387  * whether the value was infinite and whether it was positive.
2388  * @param currency return value for parsed currency, for generic
2389  * currency parsing mode, or NULL for normal parsing. In generic
2390  * currency parsing mode, any currency is parsed, not just the
2391  * currency that this formatter is set to.
2392  */
2393 UBool DecimalFormat::subparse(const UnicodeString& text,
2394                               const UnicodeString* negPrefix,
2395                               const UnicodeString* negSuffix,
2396                               const UnicodeString* posPrefix,
2397                               const UnicodeString* posSuffix,
2398                               UBool complexCurrencyParsing,
2399                               int8_t type,
2400                               ParsePosition& parsePosition,
2401                               DigitList& digits, UBool* status,
2402                               UChar* currency) const
2403 {
2404     //  The parsing process builds up the number as char string, in the neutral format that
2405     //  will be acceptable to the decNumber library, then at the end passes that string
2406     //  off for conversion to a decNumber.
2407     UErrorCode err = U_ZERO_ERROR;
2408     CharString parsedNum;
2409     digits.setToZero();
2410
2411     int32_t position = parsePosition.getIndex();
2412     int32_t oldStart = position;
2413     int32_t textLength = text.length(); // One less pointer to follow
2414     UBool strictParse = !isLenient();
2415     UChar32 zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
2416     const UnicodeString *groupingString = &getConstSymbol(fCurrencySignCount == fgCurrencySignCountZero ?
2417         DecimalFormatSymbols::kGroupingSeparatorSymbol : DecimalFormatSymbols::kMonetaryGroupingSeparatorSymbol);
2418     UChar32 groupingChar = groupingString->char32At(0);
2419     int32_t groupingStringLength = groupingString->length();
2420     int32_t groupingCharLength   = U16_LENGTH(groupingChar);
2421     UBool   groupingUsed = isGroupingUsed();
2422 #ifdef FMT_DEBUG
2423     UChar dbgbuf[300];
2424     UnicodeString s(dbgbuf,0,300);;
2425     s.append((UnicodeString)"PARSE \"").append(text.tempSubString(position)).append((UnicodeString)"\" " );
2426 #define DBGAPPD(x) if(x) { s.append(UnicodeString(#x "="));  if(x->isEmpty()) { s.append(UnicodeString("<empty>")); } else { s.append(*x); } s.append(UnicodeString(" ")); } else { s.append(UnicodeString(#x "=NULL ")); }
2427     DBGAPPD(negPrefix);
2428     DBGAPPD(negSuffix);
2429     DBGAPPD(posPrefix);
2430     DBGAPPD(posSuffix);
2431     debugout(s);
2432     printf("currencyParsing=%d, fFormatWidth=%d, isParseIntegerOnly=%c text.length=%d negPrefLen=%d\n", currencyParsing, fFormatWidth, (isParseIntegerOnly())?'Y':'N', text.length(),  negPrefix!=NULL?negPrefix->length():-1);
2433 #endif
2434
2435     UBool fastParseOk = false; /* TRUE iff fast parse is OK */
2436     // UBool fastParseHadDecimal = FALSE; /* true if fast parse saw a decimal point. */
2437     const DecimalFormatInternal &data = internalData(fReserved);
2438     if((data.fFastParseStatus==kFastpathYES) &&
2439        fCurrencySignCount == fgCurrencySignCountZero &&
2440        //       (negPrefix!=NULL&&negPrefix->isEmpty()) ||
2441        text.length()>0 &&
2442        text.length()<32 &&
2443        (posPrefix==NULL||posPrefix->isEmpty()) &&
2444        (posSuffix==NULL||posSuffix->isEmpty()) &&
2445        //            (negPrefix==NULL||negPrefix->isEmpty()) &&
2446        //            (negSuffix==NULL||(negSuffix->isEmpty()) ) &&
2447        TRUE) {  // optimized path
2448       int j=position;
2449       int l=text.length();
2450       int digitCount=0;
2451       UChar32 ch = text.char32At(j);
2452       const UnicodeString *decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
2453       UChar32 decimalChar = 0;
2454       UBool intOnly = FALSE;
2455       UChar32 lookForGroup = (groupingUsed&&intOnly&&strictParse)?groupingChar:0;
2456
2457       int32_t decimalCount = decimalString->countChar32(0,3);
2458       if(isParseIntegerOnly()) {
2459         decimalChar = 0; // not allowed
2460         intOnly = TRUE; // Don't look for decimals.
2461       } else if(decimalCount==1) {
2462         decimalChar = decimalString->char32At(0); // Look for this decimal
2463       } else if(decimalCount==0) {
2464         decimalChar=0; // NO decimal set
2465       } else {
2466         j=l+1;//Set counter to end of line, so that we break. Unknown decimal situation.
2467       }
2468
2469 #ifdef FMT_DEBUG
2470       printf("Preparing to do fastpath parse: decimalChar=U+%04X, groupingChar=U+%04X, first ch=U+%04X intOnly=%c strictParse=%c\n",
2471         decimalChar, groupingChar, ch,
2472         (intOnly)?'y':'n',
2473         (strictParse)?'y':'n');
2474 #endif
2475       if(ch==0x002D) { // '-'
2476         j=l+1;//=break - negative number.
2477         
2478         /*
2479           parsedNum.append('-',err); 
2480           j+=U16_LENGTH(ch);
2481           if(j<l) ch = text.char32At(j);
2482         */
2483       } else {
2484         parsedNum.append('+',err);
2485       }
2486       while(j<l) {
2487         int32_t digit = ch - zero;
2488         if(digit >=0 && digit <= 9) {
2489           parsedNum.append((char)(digit + '0'), err);
2490           if((digitCount>0) || digit!=0 || j==(l-1)) {
2491             digitCount++;
2492           }
2493         } else if(ch == 0) { // break out
2494           digitCount=-1;
2495           break;
2496         } else if(ch == decimalChar) {
2497           parsedNum.append((char)('.'), err);
2498           decimalChar=0; // no more decimals.
2499           // fastParseHadDecimal=TRUE;
2500         } else if(ch == lookForGroup) {
2501           // ignore grouping char. No decimals, so it has to be an ignorable grouping sep
2502         } else if(intOnly && (lookForGroup!=0) && !u_isdigit(ch)) {
2503           // parsing integer only and can fall through
2504         } else {
2505           digitCount=-1; // fail - fall through to slow parse
2506           break;
2507         }
2508         j+=U16_LENGTH(ch);
2509         ch = text.char32At(j); // for next  
2510       }
2511       if(
2512          ((j==l)||intOnly) // end OR only parsing integer
2513          && (digitCount>0)) { // and have at least one digit
2514 #ifdef FMT_DEBUG
2515         printf("PP -> %d, good = [%s]  digitcount=%d, fGroupingSize=%d fGroupingSize2=%d!\n", j, parsedNum.data(), digitCount, fGroupingSize, fGroupingSize2);
2516 #endif
2517         fastParseOk=true; // Fast parse OK!
2518
2519 #ifdef SKIP_OPT
2520         debug("SKIP_OPT");
2521         /* for testing, try it the slow way. also */
2522         fastParseOk=false;
2523         parsedNum.clear();
2524 #else
2525         parsePosition.setIndex(position=j);
2526         status[fgStatusInfinite]=false;
2527 #endif
2528       } else {
2529         // was not OK. reset, retry
2530 #ifdef FMT_DEBUG
2531         printf("Fall through: j=%d, l=%d, digitCount=%d\n", j, l, digitCount);
2532 #endif
2533         parsedNum.clear();
2534       }
2535     } else {
2536 #ifdef FMT_DEBUG
2537       printf("Could not fastpath parse. ");
2538       printf("fFormatWidth=%d ", fFormatWidth);
2539       printf("text.length()=%d ", text.length());
2540       printf("posPrefix=%p posSuffix=%p ", posPrefix, posSuffix);
2541
2542       printf("\n");
2543 #endif
2544     }
2545
2546   if(!fastParseOk 
2547 #if UCONFIG_HAVE_PARSEALLINPUT
2548      && fParseAllInput!=UNUM_YES
2549 #endif
2550      ) 
2551   {
2552     // Match padding before prefix
2553     if (fFormatWidth > 0 && fPadPosition == kPadBeforePrefix) {
2554         position = skipPadding(text, position);
2555     }
2556
2557     // Match positive and negative prefixes; prefer longest match.
2558     int32_t posMatch = compareAffix(text, position, FALSE, TRUE, posPrefix, complexCurrencyParsing, type, currency);
2559     int32_t negMatch = compareAffix(text, position, TRUE,  TRUE, negPrefix, complexCurrencyParsing, type, currency);
2560     if (posMatch >= 0 && negMatch >= 0) {
2561         if (posMatch > negMatch) {
2562             negMatch = -1;
2563         } else if (negMatch > posMatch) {
2564             posMatch = -1;
2565         }
2566     }
2567     if (posMatch >= 0) {
2568         position += posMatch;
2569         parsedNum.append('+', err);
2570     } else if (negMatch >= 0) {
2571         position += negMatch;
2572         parsedNum.append('-', err);
2573     } else if (strictParse){
2574         parsePosition.setErrorIndex(position);
2575         return FALSE;
2576     } else {
2577         // Temporary set positive. This might be changed after checking suffix
2578         parsedNum.append('+', err);
2579     }
2580
2581     // Match padding before prefix
2582     if (fFormatWidth > 0 && fPadPosition == kPadAfterPrefix) {
2583         position = skipPadding(text, position);
2584     }
2585
2586     if (! strictParse) {
2587         position = skipUWhiteSpace(text, position);
2588     }
2589
2590     // process digits or Inf, find decimal position
2591     const UnicodeString *inf = &getConstSymbol(DecimalFormatSymbols::kInfinitySymbol);
2592     int32_t infLen = (text.compare(position, inf->length(), *inf)
2593         ? 0 : inf->length());
2594     position += infLen; // infLen is non-zero when it does equal to infinity
2595     status[fgStatusInfinite] = infLen != 0;
2596
2597     if (infLen != 0) {
2598         parsedNum.append("Infinity", err);
2599     } else {
2600         // We now have a string of digits, possibly with grouping symbols,
2601         // and decimal points.  We want to process these into a DigitList.
2602         // We don't want to put a bunch of leading zeros into the DigitList
2603         // though, so we keep track of the location of the decimal point,
2604         // put only significant digits into the DigitList, and adjust the
2605         // exponent as needed.
2606
2607
2608         UBool strictFail = FALSE; // did we exit with a strict parse failure?
2609         int32_t lastGroup = -1; // where did we last see a grouping separator?
2610         int32_t digitStart = position;
2611         int32_t gs2 = fGroupingSize2 == 0 ? fGroupingSize : fGroupingSize2;
2612
2613         const UnicodeString *decimalString;
2614         if (fCurrencySignCount != fgCurrencySignCountZero) {
2615             decimalString = &getConstSymbol(DecimalFormatSymbols::kMonetarySeparatorSymbol);
2616         } else {
2617             decimalString = &getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
2618         }
2619         UChar32 decimalChar = decimalString->char32At(0);
2620         int32_t decimalStringLength = decimalString->length();
2621         int32_t decimalCharLength   = U16_LENGTH(decimalChar);
2622
2623         UBool sawDecimal = FALSE;
2624         UChar32 sawDecimalChar = 0xFFFF;
2625         UBool sawGrouping = FALSE;
2626         UChar32 sawGroupingChar = 0xFFFF;
2627         UBool sawDigit = FALSE;
2628         int32_t backup = -1;
2629         int32_t digit;
2630
2631         // equivalent grouping and decimal support
2632         const UnicodeSet *decimalSet = NULL;
2633         const UnicodeSet *groupingSet = NULL;
2634
2635         if (decimalCharLength == decimalStringLength) {
2636             decimalSet = DecimalFormatStaticSets::getSimilarDecimals(decimalChar, strictParse);
2637         }
2638
2639         if (groupingCharLength == groupingStringLength) {
2640             if (strictParse) {
2641                 groupingSet = fStaticSets->fStrictDefaultGroupingSeparators;
2642             } else {
2643                 groupingSet = fStaticSets->fDefaultGroupingSeparators;
2644             }
2645         }
2646
2647         // We need to test groupingChar and decimalChar separately from groupingSet and decimalSet, if the sets are even initialized.
2648         // If sawDecimal is TRUE, only consider sawDecimalChar and NOT decimalSet
2649         // If a character matches decimalSet, don't consider it to be a member of the groupingSet.
2650
2651         // We have to track digitCount ourselves, because digits.fCount will
2652         // pin when the maximum allowable digits is reached.
2653         int32_t digitCount = 0;
2654         int32_t integerDigitCount = 0;
2655
2656         for (; position < textLength; )
2657         {
2658             UChar32 ch = text.char32At(position);
2659
2660             /* We recognize all digit ranges, not only the Latin digit range
2661              * '0'..'9'.  We do so by using the Character.digit() method,
2662              * which converts a valid Unicode digit to the range 0..9.
2663              *
2664              * The character 'ch' may be a digit.  If so, place its value
2665              * from 0 to 9 in 'digit'.  First try using the locale digit,
2666              * which may or MAY NOT be a standard Unicode digit range.  If
2667              * this fails, try using the standard Unicode digit ranges by
2668              * calling Character.digit().  If this also fails, digit will 
2669              * have a value outside the range 0..9.
2670              */
2671             digit = ch - zero;
2672             if (digit < 0 || digit > 9)
2673             {
2674                 digit = u_charDigitValue(ch);
2675             }
2676             
2677             // As a last resort, look through the localized digits if the zero digit
2678             // is not a "standard" Unicode digit.
2679             if ( (digit < 0 || digit > 9) && u_charDigitValue(zero) != 0) {
2680                 digit = 0;
2681                 if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kZeroDigitSymbol)).char32At(0) == ch ) {
2682                     break;
2683                 }
2684                 for (digit = 1 ; digit < 10 ; digit++ ) {
2685                     if ( getConstSymbol((DecimalFormatSymbols::ENumberFormatSymbol)(DecimalFormatSymbols::kOneDigitSymbol+digit-1)).char32At(0) == ch ) {
2686                         break;
2687                     }
2688                 }
2689             }
2690
2691             if (digit >= 0 && digit <= 9)
2692             {
2693                 if (strictParse && backup != -1) {
2694                     // comma followed by digit, so group before comma is a
2695                     // secondary group.  If there was a group separator
2696                     // before that, the group must == the secondary group
2697                     // length, else it can be <= the the secondary group
2698                     // length.
2699                     if ((lastGroup != -1 && backup - lastGroup - 1 != gs2) ||
2700                         (lastGroup == -1 && position - digitStart - 1 > gs2)) {
2701                         strictFail = TRUE;
2702                         break;
2703                     }
2704                     
2705                     lastGroup = backup;
2706                 }
2707                 
2708                 // Cancel out backup setting (see grouping handler below)
2709                 backup = -1;
2710                 sawDigit = TRUE;
2711                 
2712                 // Note: this will append leading zeros
2713                 parsedNum.append((char)(digit + '0'), err);
2714
2715                 // count any digit that's not a leading zero
2716                 if (digit > 0 || digitCount > 0 || sawDecimal) {
2717                     digitCount += 1;
2718                     
2719                     // count any integer digit that's not a leading zero
2720                     if (! sawDecimal) {
2721                         integerDigitCount += 1;
2722                     }
2723                 }
2724                     
2725                 position += U16_LENGTH(ch);
2726             }
2727             else if (groupingStringLength > 0 && 
2728                 matchGrouping(groupingChar, sawGrouping, sawGroupingChar, groupingSet, 
2729                             decimalChar, decimalSet,
2730                             ch) && groupingUsed)
2731             {
2732                 if (sawDecimal) {
2733                     break;
2734                 }
2735
2736                 if (strictParse) {
2737                     if ((!sawDigit || backup != -1)) {
2738                         // leading group, or two group separators in a row
2739                         strictFail = TRUE;
2740                         break;
2741                     }
2742                 }
2743
2744                 // Ignore grouping characters, if we are using them, but require
2745                 // that they be followed by a digit.  Otherwise we backup and
2746                 // reprocess them.
2747                 backup = position;
2748                 position += groupingStringLength;
2749                 sawGrouping=TRUE;
2750                 // Once we see a grouping character, we only accept that grouping character from then on.
2751                 sawGroupingChar=ch;
2752             }
2753             else if (matchDecimal(decimalChar,sawDecimal,sawDecimalChar, decimalSet, ch))
2754             {
2755                 if (strictParse) {
2756                     if (backup != -1 ||
2757                         (lastGroup != -1 && position - lastGroup != fGroupingSize + 1)) {
2758                         strictFail = TRUE;
2759                         break;
2760                     }
2761                 }
2762
2763                 // If we're only parsing integers, or if we ALREADY saw the
2764                 // decimal, then don't parse this one.
2765                 if (isParseIntegerOnly() || sawDecimal) {
2766                     break;
2767                 }
2768
2769                 parsedNum.append('.', err);
2770                 position += decimalStringLength;
2771                 sawDecimal = TRUE;
2772                 // Once we see a decimal character, we only accept that decimal character from then on.
2773                 sawDecimalChar=ch;
2774                 // decimalSet is considered to consist of (ch,ch)
2775             }
2776             else {
2777
2778                 if(!fBoolFlags.contains(UNUM_PARSE_NO_EXPONENT) || // don't parse if this is set unless..
2779                    isScientificNotation()) { // .. it's an exponent format - ignore setting and parse anyways
2780                     const UnicodeString *tmp;
2781                     tmp = &getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
2782                     // TODO: CASE
2783                     if (!text.caseCompare(position, tmp->length(), *tmp, U_FOLD_CASE_DEFAULT))    // error code is set below if !sawDigit 
2784                     {
2785                         // Parse sign, if present
2786                         int32_t pos = position + tmp->length();
2787                         char exponentSign = '+';
2788
2789                         if (pos < textLength)
2790                         {
2791                             tmp = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
2792                             if (!text.compare(pos, tmp->length(), *tmp))
2793                             {
2794                                 pos += tmp->length();
2795                             }
2796                             else {
2797                                 tmp = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
2798                                 if (!text.compare(pos, tmp->length(), *tmp))
2799                                 {
2800                                     exponentSign = '-';
2801                                     pos += tmp->length();
2802                                 }
2803                             }
2804                         }
2805
2806                         UBool sawExponentDigit = FALSE;
2807                         while (pos < textLength) {
2808                             ch = text[(int32_t)pos];
2809                             digit = ch - zero;
2810
2811                             if (digit < 0 || digit > 9) {
2812                                 digit = u_charDigitValue(ch);
2813                             }
2814                             if (0 <= digit && digit <= 9) {
2815                                 if (!sawExponentDigit) {
2816                                     parsedNum.append('E', err);
2817                                     parsedNum.append(exponentSign, err);
2818                                     sawExponentDigit = TRUE;
2819                                 }
2820                                 ++pos;
2821                                 parsedNum.append((char)(digit + '0'), err);
2822                             } else {
2823                                 break;
2824                             }
2825                         }
2826
2827                         if (sawExponentDigit) {
2828                             position = pos; // Advance past the exponent
2829                         }
2830
2831                         break; // Whether we fail or succeed, we exit this loop
2832                     } else {
2833                         break;
2834                     }
2835                 } else { // not parsing exponent
2836                     break;
2837               }
2838             }
2839         }
2840
2841         if (backup != -1)
2842         {
2843             position = backup;
2844         }
2845
2846         if (strictParse && !sawDecimal) {
2847             if (lastGroup != -1 && position - lastGroup != fGroupingSize + 1) {
2848                 strictFail = TRUE;
2849             }
2850         }
2851
2852         if (strictFail) {
2853             // only set with strictParse and a grouping separator error
2854
2855             parsePosition.setIndex(oldStart);
2856             parsePosition.setErrorIndex(position);
2857             debug("strictFail!");
2858             return FALSE;
2859         }
2860
2861         // If there was no decimal point we have an integer
2862
2863         // If none of the text string was recognized.  For example, parse
2864         // "x" with pattern "#0.00" (return index and error index both 0)
2865         // parse "$" with pattern "$#0.00". (return index 0 and error index
2866         // 1).
2867         if (!sawDigit && digitCount == 0) {
2868 #ifdef FMT_DEBUG
2869             debug("none of text rec");
2870             printf("position=%d\n",position);
2871 #endif
2872             parsePosition.setIndex(oldStart);
2873             parsePosition.setErrorIndex(oldStart);
2874             return FALSE;
2875         }
2876     }
2877
2878     // Match padding before suffix
2879     if (fFormatWidth > 0 && fPadPosition == kPadBeforeSuffix) {
2880         position = skipPadding(text, position);
2881     }
2882
2883     int32_t posSuffixMatch = -1, negSuffixMatch = -1;
2884
2885     // Match positive and negative suffixes; prefer longest match.
2886     if (posMatch >= 0 || (!strictParse && negMatch < 0)) {
2887         posSuffixMatch = compareAffix(text, position, FALSE, FALSE, posSuffix, complexCurrencyParsing, type, currency);
2888     }
2889     if (negMatch >= 0) {
2890         negSuffixMatch = compareAffix(text, position, TRUE, FALSE, negSuffix, complexCurrencyParsing, type, currency);
2891     }
2892     if (posSuffixMatch >= 0 && negSuffixMatch >= 0) {
2893         if (posSuffixMatch > negSuffixMatch) {
2894             negSuffixMatch = -1;
2895         } else if (negSuffixMatch > posSuffixMatch) {
2896             posSuffixMatch = -1;
2897         }
2898     }
2899
2900     // Fail if neither or both
2901     if (strictParse && ((posSuffixMatch >= 0) == (negSuffixMatch >= 0))) {
2902         parsePosition.setErrorIndex(position);
2903         debug("neither or both");
2904         return FALSE;
2905     }
2906
2907     position += (posSuffixMatch >= 0 ? posSuffixMatch : (negSuffixMatch >= 0 ? negSuffixMatch : 0));
2908
2909     // Match padding before suffix
2910     if (fFormatWidth > 0 && fPadPosition == kPadAfterSuffix) {
2911         position = skipPadding(text, position);
2912     }
2913
2914     parsePosition.setIndex(position);
2915
2916     parsedNum.data()[0] = (posSuffixMatch >= 0 || (!strictParse && negMatch < 0 && negSuffixMatch < 0)) ? '+' : '-';
2917 #ifdef FMT_DEBUG
2918 printf("PP -> %d, SLOW = [%s]!    pp=%d, os=%d, err=%s\n", position, parsedNum.data(), parsePosition.getIndex(),oldStart,u_errorName(err));
2919 #endif
2920   } /* end SLOW parse */
2921   if(parsePosition.getIndex() == oldStart)
2922     {
2923 #ifdef FMT_DEBUG
2924       printf(" PP didnt move, err\n");
2925 #endif
2926         parsePosition.setErrorIndex(position);
2927         return FALSE;
2928     }
2929 #if UCONFIG_HAVE_PARSEALLINPUT
2930   else if (fParseAllInput==UNUM_YES&&parsePosition.getIndex()!=textLength)
2931     {
2932 #ifdef FMT_DEBUG
2933       printf(" PP didnt consume all (UNUM_YES), err\n");
2934 #endif
2935         parsePosition.setErrorIndex(position);
2936         return FALSE;
2937     }
2938 #endif
2939     // uint32_t bits = (fastParseOk?kFastpathOk:0) |
2940     //   (fastParseHadDecimal?0:kNoDecimal);
2941     //printf("FPOK=%d, FPHD=%d, bits=%08X\n", fastParseOk, fastParseHadDecimal, bits);
2942     digits.set(parsedNum.toStringPiece(),
2943                err,
2944                0//bits
2945                );
2946
2947     if (U_FAILURE(err)) {
2948 #ifdef FMT_DEBUG
2949       printf(" err setting %s\n", u_errorName(err));
2950 #endif
2951         parsePosition.setErrorIndex(position);
2952         return FALSE;
2953     }
2954     return TRUE;
2955 }
2956
2957 /**
2958  * Starting at position, advance past a run of pad characters, if any.
2959  * Return the index of the first character after position that is not a pad
2960  * character.  Result is >= position.
2961  */
2962 int32_t DecimalFormat::skipPadding(const UnicodeString& text, int32_t position) const {
2963     int32_t padLen = U16_LENGTH(fPad);
2964     while (position < text.length() &&
2965            text.char32At(position) == fPad) {
2966         position += padLen;
2967     }
2968     return position;
2969 }
2970
2971 /**
2972  * Return the length matched by the given affix, or -1 if none.
2973  * Runs of white space in the affix, match runs of white space in
2974  * the input.  Pattern white space and input white space are
2975  * determined differently; see code.
2976  * @param text input text
2977  * @param pos offset into input at which to begin matching
2978  * @param isNegative
2979  * @param isPrefix
2980  * @param affixPat affix pattern used for currency affix comparison.
2981  * @param complexCurrencyParsing whether it is currency parsing or not
2982  * @param type the currency type to parse against, LONG_NAME only or not.
2983  * @param currency return value for parsed currency, for generic
2984  * currency parsing mode, or null for normal parsing. In generic
2985  * currency parsing mode, any currency is parsed, not just the
2986  * currency that this formatter is set to.
2987  * @return length of input that matches, or -1 if match failure
2988  */
2989 int32_t DecimalFormat::compareAffix(const UnicodeString& text,
2990                                     int32_t pos,
2991                                     UBool isNegative,
2992                                     UBool isPrefix,
2993                                     const UnicodeString* affixPat,
2994                                     UBool complexCurrencyParsing,
2995                                     int8_t type,
2996                                     UChar* currency) const
2997 {
2998     const UnicodeString *patternToCompare;
2999     if (fCurrencyChoice != NULL || currency != NULL ||
3000         (fCurrencySignCount != fgCurrencySignCountZero && complexCurrencyParsing)) {
3001
3002         if (affixPat != NULL) {
3003             return compareComplexAffix(*affixPat, text, pos, type, currency);
3004         }
3005     }
3006
3007     if (isNegative) {
3008         if (isPrefix) {
3009             patternToCompare = &fNegativePrefix;
3010         }
3011         else {
3012             patternToCompare = &fNegativeSuffix;
3013         }
3014     }
3015     else {
3016         if (isPrefix) {
3017             patternToCompare = &fPositivePrefix;
3018         }
3019         else {
3020             patternToCompare = &fPositiveSuffix;
3021         }
3022     }
3023     return compareSimpleAffix(*patternToCompare, text, pos, isLenient());
3024 }
3025
3026 UBool DecimalFormat::equalWithSignCompatibility(UChar32 lhs, UChar32 rhs) const {
3027     if (lhs == rhs) {
3028         return TRUE;
3029     }
3030     U_ASSERT(fStaticSets != NULL); // should already be loaded
3031     const UnicodeSet *minusSigns = fStaticSets->fMinusSigns;
3032     const UnicodeSet *plusSigns = fStaticSets->fPlusSigns;
3033     return (minusSigns->contains(lhs) && minusSigns->contains(rhs)) ||
3034         (plusSigns->contains(lhs) && plusSigns->contains(rhs));
3035 }
3036
3037 // check for LRM 0x200E, RLM 0x200F, ALM 0x061C
3038 #define IS_BIDI_MARK(c) (c==0x200E || c==0x200F || c==0x061C)
3039
3040 #define TRIM_BUFLEN 32
3041 UnicodeString& DecimalFormat::trimMarksFromAffix(const UnicodeString& affix, UnicodeString& trimmedAffix) {
3042     UChar trimBuf[TRIM_BUFLEN];
3043     int32_t affixLen = affix.length();
3044     int32_t affixPos, trimLen = 0;
3045
3046     for (affixPos = 0; affixPos < affixLen; affixPos++) {
3047         UChar c = affix.charAt(affixPos);
3048         if (!IS_BIDI_MARK(c)) {
3049                 if (trimLen < TRIM_BUFLEN) {
3050                         trimBuf[trimLen++] = c;
3051                 } else {
3052                         trimLen = 0;
3053                         break;
3054                 }
3055         }
3056     }
3057     return (trimLen > 0)? trimmedAffix.setTo(trimBuf, trimLen): trimmedAffix.setTo(affix);
3058 }
3059
3060 /**
3061  * Return the length matched by the given affix, or -1 if none.
3062  * Runs of white space in the affix, match runs of white space in
3063  * the input.  Pattern white space and input white space are
3064  * determined differently; see code.
3065  * @param affix pattern string, taken as a literal
3066  * @param input input text
3067  * @param pos offset into input at which to begin matching
3068  * @return length of input that matches, or -1 if match failure
3069  */
3070 int32_t DecimalFormat::compareSimpleAffix(const UnicodeString& affix,
3071                                           const UnicodeString& input,
3072                                           int32_t pos,
3073                                           UBool lenient) const {
3074     int32_t start = pos;
3075     UnicodeString trimmedAffix;
3076     // For more efficiency we should keep lazily-created trimmed affixes around in
3077     // instance variables instead of trimming each time they are used (the next step)
3078     trimMarksFromAffix(affix, trimmedAffix);
3079     UChar32 affixChar = trimmedAffix.char32At(0);
3080     int32_t affixLength = trimmedAffix.length();
3081     int32_t inputLength = input.length();
3082     int32_t affixCharLength = U16_LENGTH(affixChar);
3083     UnicodeSet *affixSet;
3084     UErrorCode status = U_ZERO_ERROR;
3085
3086     U_ASSERT(fStaticSets != NULL); // should already be loaded
3087
3088     if (U_FAILURE(status)) {
3089         return -1;
3090     }
3091     if (!lenient) {
3092         affixSet = fStaticSets->fStrictDashEquivalents;
3093
3094         // If the trimmedAffix is exactly one character long and that character
3095         // is in the dash set and the very next input character is also
3096         // in the dash set, return a match.
3097         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
3098             UChar32 ic = input.char32At(pos);
3099             if (affixSet->contains(ic)) {
3100                 pos += U16_LENGTH(ic);
3101                 pos = skipBidiMarks(input, pos); // skip any trailing bidi marks
3102                 return pos - start;
3103             }
3104         }
3105
3106         for (int32_t i = 0; i < affixLength; ) {
3107             UChar32 c = trimmedAffix.char32At(i);
3108             int32_t len = U16_LENGTH(c);
3109             if (PatternProps::isWhiteSpace(c)) {
3110                 // We may have a pattern like: \u200F \u0020
3111                 //        and input text like: \u200F \u0020
3112                 // Note that U+200F and U+0020 are Pattern_White_Space but only
3113                 // U+0020 is UWhiteSpace.  So we have to first do a direct
3114                 // match of the run of Pattern_White_Space in the pattern,
3115                 // then match any extra characters.
3116                 UBool literalMatch = FALSE;
3117                 while (pos < inputLength) {
3118                     UChar32 ic = input.char32At(pos);
3119                     if (ic == c) {
3120                         literalMatch = TRUE;
3121                         i += len;
3122                         pos += len;
3123                         if (i == affixLength) {
3124                             break;
3125                         }
3126                         c = trimmedAffix.char32At(i);
3127                         len = U16_LENGTH(c);
3128                         if (!PatternProps::isWhiteSpace(c)) {
3129                             break;
3130                         }
3131                     } else if (IS_BIDI_MARK(ic)) {
3132                         pos ++; // just skip over this input text
3133                     } else {
3134                         break;
3135                     }
3136                 }
3137
3138                 // Advance over run in pattern
3139                 i = skipPatternWhiteSpace(trimmedAffix, i);
3140
3141                 // Advance over run in input text
3142                 // Must see at least one white space char in input,
3143                 // unless we've already matched some characters literally.
3144                 int32_t s = pos;
3145                 pos = skipUWhiteSpace(input, pos);
3146                 if (pos == s && !literalMatch) {
3147                     return -1;
3148                 }
3149
3150                 // If we skip UWhiteSpace in the input text, we need to skip it in the pattern.
3151                 // Otherwise, the previous lines may have skipped over text (such as U+00A0) that
3152                 // is also in the trimmedAffix.
3153                 i = skipUWhiteSpace(trimmedAffix, i);
3154             } else {
3155                 UBool match = FALSE;
3156                 while (pos < inputLength) {
3157                     UChar32 ic = input.char32At(pos);
3158                     if (!match && ic == c) {
3159                         i += len;
3160                         pos += len;
3161                         match = TRUE;
3162                     } else if (IS_BIDI_MARK(ic)) {
3163                         pos++; // just skip over this input text
3164                     } else {
3165                         break;
3166                     }
3167                 }
3168                 if (!match) {
3169                     return -1;
3170                 }
3171             }
3172         }
3173     } else {
3174         UBool match = FALSE;
3175
3176         affixSet = fStaticSets->fDashEquivalents;
3177
3178         if (affixCharLength == affixLength && affixSet->contains(affixChar))  {
3179             pos = skipUWhiteSpaceAndMarks(input, pos);
3180             UChar32 ic = input.char32At(pos);
3181
3182             if (affixSet->contains(ic)) {
3183                 pos += U16_LENGTH(ic);
3184                 pos = skipBidiMarks(input, pos);
3185                 return pos - start;
3186             }
3187         }
3188
3189         for (int32_t i = 0; i < affixLength; )
3190         {
3191             //i = skipRuleWhiteSpace(trimmedAffix, i);
3192             i = skipUWhiteSpace(trimmedAffix, i);
3193             pos = skipUWhiteSpaceAndMarks(input, pos);
3194
3195             if (i >= affixLength || pos >= inputLength) {
3196                 break;
3197             }
3198
3199             UChar32 c = trimmedAffix.char32At(i);
3200             UChar32 ic = input.char32At(pos);
3201
3202             if (!equalWithSignCompatibility(ic, c)) {
3203                 return -1;
3204             }
3205
3206             match = TRUE;
3207             i += U16_LENGTH(c);
3208             pos += U16_LENGTH(ic);
3209             pos = skipBidiMarks(input, pos);
3210         }
3211
3212         if (affixLength > 0 && ! match) {
3213             return -1;
3214         }
3215     }
3216     return pos - start;
3217 }
3218
3219 /**
3220  * Skip over a run of zero or more Pattern_White_Space characters at
3221  * pos in text.
3222  */
3223 int32_t DecimalFormat::skipPatternWhiteSpace(const UnicodeString& text, int32_t pos) {
3224     const UChar* s = text.getBuffer();
3225     return (int32_t)(PatternProps::skipWhiteSpace(s + pos, text.length() - pos) - s);
3226 }
3227
3228 /**
3229  * Skip over a run of zero or more isUWhiteSpace() characters at pos
3230  * in text.
3231  */
3232 int32_t DecimalFormat::skipUWhiteSpace(const UnicodeString& text, int32_t pos) {
3233     while (pos < text.length()) {
3234         UChar32 c = text.char32At(pos);
3235         if (!u_isUWhiteSpace(c)) {
3236             break;
3237         }
3238         pos += U16_LENGTH(c);
3239     }
3240     return pos;
3241 }
3242
3243 /**
3244  * Skip over a run of zero or more isUWhiteSpace() characters or bidi marks at pos
3245  * in text.
3246  */
3247 int32_t DecimalFormat::skipUWhiteSpaceAndMarks(const UnicodeString& text, int32_t pos) {
3248     while (pos < text.length()) {
3249         UChar32 c = text.char32At(pos);
3250         if (!u_isUWhiteSpace(c) && !IS_BIDI_MARK(c)) { // u_isUWhiteSpace doesn't include LRM,RLM,ALM
3251             break;
3252         }
3253         pos += U16_LENGTH(c);
3254     }
3255     return pos;
3256 }
3257
3258 /**
3259  * Skip over a run of zero or more bidi marks at pos in text.
3260  */
3261 int32_t DecimalFormat::skipBidiMarks(const UnicodeString& text, int32_t pos) {
3262     while (pos < text.length()) {
3263         UChar c = text.charAt(pos);
3264         if (!IS_BIDI_MARK(c)) {
3265             break;
3266         }
3267         pos++;
3268     }
3269     return pos;
3270 }
3271
3272 /**
3273  * Return the length matched by the given affix, or -1 if none.
3274  * @param affixPat pattern string
3275  * @param input input text
3276  * @param pos offset into input at which to begin matching
3277  * @param type the currency type to parse against, LONG_NAME only or not.
3278  * @param currency return value for parsed currency, for generic
3279  * currency parsing mode, or null for normal parsing. In generic
3280  * currency parsing mode, any currency is parsed, not just the
3281  * currency that this formatter is set to.
3282  * @return length of input that matches, or -1 if match failure
3283  */
3284 int32_t DecimalFormat::compareComplexAffix(const UnicodeString& affixPat,
3285                                            const UnicodeString& text,
3286                                            int32_t pos,
3287                                            int8_t type,
3288                                            UChar* currency) const
3289 {
3290     int32_t start = pos;
3291     U_ASSERT(currency != NULL ||
3292              (fCurrencyChoice != NULL && *getCurrency() != 0) ||
3293              fCurrencySignCount != fgCurrencySignCountZero);
3294
3295     for (int32_t i=0;
3296          i<affixPat.length() && pos >= 0; ) {
3297         UChar32 c = affixPat.char32At(i);
3298         i += U16_LENGTH(c);
3299
3300         if (c == kQuote) {
3301             U_ASSERT(i <= affixPat.length());
3302             c = affixPat.char32At(i);
3303             i += U16_LENGTH(c);
3304
3305             const UnicodeString* affix = NULL;
3306
3307             switch (c) {
3308             case kCurrencySign: {
3309                 // since the currency names in choice format is saved
3310                 // the same way as other currency names,
3311                 // do not need to do currency choice parsing here.
3312                 // the general currency parsing parse against all names,
3313                 // including names in choice format.
3314                 UBool intl = i<affixPat.length() &&
3315                     affixPat.char32At(i) == kCurrencySign;
3316                 if (intl) {
3317                     ++i;
3318                 }
3319                 UBool plural = i<affixPat.length() &&
3320                     affixPat.char32At(i) == kCurrencySign;
3321                 if (plural) {
3322                     ++i;
3323                     intl = FALSE;
3324                 }
3325                 // Parse generic currency -- anything for which we
3326                 // have a display name, or any 3-letter ISO code.
3327                 // Try to parse display name for our locale; first
3328                 // determine our locale.
3329                 const char* loc = fCurrencyPluralInfo->getLocale().getName();
3330                 ParsePosition ppos(pos);
3331                 UChar curr[4];
3332                 UErrorCode ec = U_ZERO_ERROR;
3333                 // Delegate parse of display name => ISO code to Currency
3334                 uprv_parseCurrency(loc, text, ppos, type, curr, ec);
3335
3336                 // If parse succeeds, populate currency[0]
3337                 if (U_SUCCESS(ec) && ppos.getIndex() != pos) {
3338                     if (currency) {
3339                         u_strcpy(currency, curr);
3340                     } else {
3341                         // The formatter is currency-style but the client has not requested
3342                         // the value of the parsed currency. In this case, if that value does
3343                         // not match the formatter's current value, then the parse fails.
3344                         UChar effectiveCurr[4];
3345                         getEffectiveCurrency(effectiveCurr, ec);
3346                         if ( U_FAILURE(ec) || u_strncmp(curr,effectiveCurr,4) != 0 ) {
3347                                 pos = -1;
3348                                 continue;
3349                         }
3350                     }
3351                     pos = ppos.getIndex();
3352                 } else if (!isLenient()){
3353                     pos = -1;
3354                 }
3355                 continue;
3356             }
3357             case kPatternPercent:
3358                 affix = &getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
3359                 break;
3360             case kPatternPerMill:
3361                 affix = &getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
3362                 break;
3363             case kPatternPlus:
3364                 affix = &getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
3365                 break;
3366             case kPatternMinus:
3367                 affix = &getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
3368                 break;
3369             default:
3370                 // fall through to affix!=0 test, which will fail
3371                 break;
3372             }
3373
3374             if (affix != NULL) {
3375                 pos = match(text, pos, *affix);
3376                 continue;
3377             }
3378         }
3379
3380         pos = match(text, pos, c);
3381         if (PatternProps::isWhiteSpace(c)) {
3382             i = skipPatternWhiteSpace(affixPat, i);
3383         }
3384     }
3385     return pos - start;
3386 }
3387
3388 /**
3389  * Match a single character at text[pos] and return the index of the
3390  * next character upon success.  Return -1 on failure.  If
3391  * ch is a Pattern_White_Space then match a run of white space in text.
3392  */
3393 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, UChar32 ch) {
3394     if (PatternProps::isWhiteSpace(ch)) {
3395         // Advance over run of white space in input text
3396         // Must see at least one white space char in input
3397         int32_t s = pos;
3398         pos = skipPatternWhiteSpace(text, pos);
3399         if (pos == s) {
3400             return -1;
3401         }
3402         return pos;
3403     }
3404     return (pos >= 0 && text.char32At(pos) == ch) ?
3405         (pos + U16_LENGTH(ch)) : -1;
3406 }
3407
3408 /**
3409  * Match a string at text[pos] and return the index of the next
3410  * character upon success.  Return -1 on failure.  Match a run of
3411  * white space in str with a run of white space in text.
3412  */
3413 int32_t DecimalFormat::match(const UnicodeString& text, int32_t pos, const UnicodeString& str) {
3414     for (int32_t i=0; i<str.length() && pos >= 0; ) {
3415         UChar32 ch = str.char32At(i);
3416         i += U16_LENGTH(ch);
3417         if (PatternProps::isWhiteSpace(ch)) {
3418             i = skipPatternWhiteSpace(str, i);
3419         }
3420         pos = match(text, pos, ch);
3421     }
3422     return pos;
3423 }
3424
3425 UBool DecimalFormat::matchSymbol(const UnicodeString &text, int32_t position, int32_t length, const UnicodeString &symbol,
3426                          UnicodeSet *sset, UChar32 schar)
3427 {
3428     if (sset != NULL) {
3429         return sset->contains(schar);
3430     }
3431
3432     return text.compare(position, length, symbol) == 0;
3433 }
3434
3435 UBool DecimalFormat::matchDecimal(UChar32 symbolChar,
3436                             UBool sawDecimal,  UChar32 sawDecimalChar,
3437                              const UnicodeSet *sset, UChar32 schar) {
3438    if(sawDecimal) {
3439        return schar==sawDecimalChar;
3440    } else if(schar==symbolChar) {
3441        return TRUE;
3442    } else if(sset!=NULL) {
3443         return sset->contains(schar);
3444    } else {
3445        return FALSE;
3446    }
3447 }
3448
3449 UBool DecimalFormat::matchGrouping(UChar32 groupingChar,
3450                             UBool sawGrouping, UChar32 sawGroupingChar,
3451                              const UnicodeSet *sset,
3452                              UChar32 /*decimalChar*/, const UnicodeSet *decimalSet,
3453                              UChar32 schar) {
3454     if(sawGrouping) {
3455         return schar==sawGroupingChar;  // previously found
3456     } else if(schar==groupingChar) {
3457         return TRUE; // char from symbols
3458     } else if(sset!=NULL) {
3459         return sset->contains(schar) &&  // in groupingSet but...
3460            ((decimalSet==NULL) || !decimalSet->contains(schar)); // Exclude decimalSet from groupingSet
3461     } else {
3462         return FALSE;
3463     }
3464 }
3465
3466
3467
3468 //------------------------------------------------------------------------------
3469 // Gets the pointer to the localized decimal format symbols
3470
3471 const DecimalFormatSymbols*
3472 DecimalFormat::getDecimalFormatSymbols() const
3473 {
3474     return fSymbols;
3475 }
3476
3477 //------------------------------------------------------------------------------
3478 // De-owning the current localized symbols and adopt the new symbols.
3479
3480 void
3481 DecimalFormat::adoptDecimalFormatSymbols(DecimalFormatSymbols* symbolsToAdopt)
3482 {
3483     if (symbolsToAdopt == NULL) {
3484         return; // do not allow caller to set fSymbols to NULL
3485     }
3486
3487     UBool sameSymbols = FALSE;
3488     if (fSymbols != NULL) {
3489         sameSymbols = (UBool)(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) ==
3490             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) &&
3491             getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) ==
3492             symbolsToAdopt->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
3493         delete fSymbols;
3494     }
3495
3496     fSymbols = symbolsToAdopt;
3497     if (!sameSymbols) {
3498         // If the currency symbols are the same, there is no need to recalculate.
3499         setCurrencyForSymbols();
3500     }
3501     expandAffixes(NULL);
3502 #if UCONFIG_FORMAT_FASTPATHS_49
3503     handleChanged();
3504 #endif
3505 }
3506 //------------------------------------------------------------------------------
3507 // Setting the symbols is equlivalent to adopting a newly created localized
3508 // symbols.
3509
3510 void
3511 DecimalFormat::setDecimalFormatSymbols(const DecimalFormatSymbols& symbols)
3512 {
3513     adoptDecimalFormatSymbols(new DecimalFormatSymbols(symbols));
3514 #if UCONFIG_FORMAT_FASTPATHS_49
3515     handleChanged();
3516 #endif
3517 }
3518
3519
3520 const CurrencyPluralInfo*
3521 DecimalFormat::getCurrencyPluralInfo(void) const
3522 {
3523     return fCurrencyPluralInfo;
3524 }
3525
3526
3527 void
3528 DecimalFormat::adoptCurrencyPluralInfo(CurrencyPluralInfo* toAdopt)
3529 {
3530     if (toAdopt != NULL) {
3531         delete fCurrencyPluralInfo;
3532         fCurrencyPluralInfo = toAdopt;
3533         // re-set currency affix patterns and currency affixes.
3534         if (fCurrencySignCount != fgCurrencySignCountZero) {
3535             UErrorCode status = U_ZERO_ERROR;
3536             if (fAffixPatternsForCurrency) {
3537                 deleteHashForAffixPattern();
3538             }
3539             setupCurrencyAffixPatterns(status);
3540             if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
3541                 // only setup the affixes of the plural pattern.
3542                 setupCurrencyAffixes(fFormatPattern, FALSE, TRUE, status);
3543             }
3544         }
3545     }
3546 #if UCONFIG_FORMAT_FASTPATHS_49
3547     handleChanged();
3548 #endif
3549 }
3550
3551 void
3552 DecimalFormat::setCurrencyPluralInfo(const CurrencyPluralInfo& info)
3553 {
3554     adoptCurrencyPluralInfo(info.clone());
3555 #if UCONFIG_FORMAT_FASTPATHS_49
3556     handleChanged();
3557 #endif
3558 }
3559
3560
3561 /**
3562  * Update the currency object to match the symbols.  This method
3563  * is used only when the caller has passed in a symbols object
3564  * that may not be the default object for its locale.
3565  */
3566 void
3567 DecimalFormat::setCurrencyForSymbols() {
3568     /*Bug 4212072
3569       Update the affix strings accroding to symbols in order to keep
3570       the affix strings up to date.
3571       [Richard/GCL]
3572     */
3573
3574     // With the introduction of the Currency object, the currency
3575     // symbols in the DFS object are ignored.  For backward
3576     // compatibility, we check any explicitly set DFS object.  If it
3577     // is a default symbols object for its locale, we change the
3578     // currency object to one for that locale.  If it is custom,
3579     // we set the currency to null.
3580     UErrorCode ec = U_ZERO_ERROR;
3581     const UChar* c = NULL;
3582     const char* loc = fSymbols->getLocale().getName();
3583     UChar intlCurrencySymbol[4];
3584     ucurr_forLocale(loc, intlCurrencySymbol, 4, &ec);
3585     UnicodeString currencySymbol;
3586
3587     uprv_getStaticCurrencyName(intlCurrencySymbol, loc, currencySymbol, ec);
3588     if (U_SUCCESS(ec)
3589         && getConstSymbol(DecimalFormatSymbols::kCurrencySymbol) == currencySymbol
3590         && getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol) == UnicodeString(intlCurrencySymbol))
3591     {
3592         // Trap an error in mapping locale to currency.  If we can't
3593         // map, then don't fail and set the currency to "".
3594         c = intlCurrencySymbol;
3595     }
3596     ec = U_ZERO_ERROR; // reset local error code!
3597     setCurrencyInternally(c, ec);
3598 #if UCONFIG_FORMAT_FASTPATHS_49
3599     handleChanged();
3600 #endif
3601 }
3602
3603
3604 //------------------------------------------------------------------------------
3605 // Gets the positive prefix of the number pattern.
3606
3607 UnicodeString&
3608 DecimalFormat::getPositivePrefix(UnicodeString& result) const
3609 {
3610     result = fPositivePrefix;
3611     return result;
3612 }
3613
3614 //------------------------------------------------------------------------------
3615 // Sets the positive prefix of the number pattern.
3616
3617 void
3618 DecimalFormat::setPositivePrefix(const UnicodeString& newValue)
3619 {
3620     fPositivePrefix = newValue;
3621     delete fPosPrefixPattern;
3622     fPosPrefixPattern = 0;
3623 #if UCONFIG_FORMAT_FASTPATHS_49
3624     handleChanged();
3625 #endif
3626 }
3627
3628 //------------------------------------------------------------------------------
3629 // Gets the negative prefix  of the number pattern.
3630
3631 UnicodeString&
3632 DecimalFormat::getNegativePrefix(UnicodeString& result) const
3633 {
3634     result = fNegativePrefix;
3635     return result;
3636 }
3637
3638 //------------------------------------------------------------------------------
3639 // Gets the negative prefix  of the number pattern.
3640
3641 void
3642 DecimalFormat::setNegativePrefix(const UnicodeString& newValue)
3643 {
3644     fNegativePrefix = newValue;
3645     delete fNegPrefixPattern;
3646     fNegPrefixPattern = 0;
3647 #if UCONFIG_FORMAT_FASTPATHS_49
3648     handleChanged();
3649 #endif
3650 }
3651
3652 //------------------------------------------------------------------------------
3653 // Gets the positive suffix of the number pattern.
3654
3655 UnicodeString&
3656 DecimalFormat::getPositiveSuffix(UnicodeString& result) const
3657 {
3658     result = fPositiveSuffix;
3659     return result;
3660 }
3661
3662 //------------------------------------------------------------------------------
3663 // Sets the positive suffix of the number pattern.
3664
3665 void
3666 DecimalFormat::setPositiveSuffix(const UnicodeString& newValue)
3667 {
3668     fPositiveSuffix = newValue;
3669     delete fPosSuffixPattern;
3670     fPosSuffixPattern = 0;
3671 #if UCONFIG_FORMAT_FASTPATHS_49
3672     handleChanged();
3673 #endif
3674 }
3675
3676 //------------------------------------------------------------------------------
3677 // Gets the negative suffix of the number pattern.
3678
3679 UnicodeString&
3680 DecimalFormat::getNegativeSuffix(UnicodeString& result) const
3681 {
3682     result = fNegativeSuffix;
3683     return result;
3684 }
3685
3686 //------------------------------------------------------------------------------
3687 // Sets the negative suffix of the number pattern.
3688
3689 void
3690 DecimalFormat::setNegativeSuffix(const UnicodeString& newValue)
3691 {
3692     fNegativeSuffix = newValue;
3693     delete fNegSuffixPattern;
3694     fNegSuffixPattern = 0;
3695 #if UCONFIG_FORMAT_FASTPATHS_49
3696     handleChanged();
3697 #endif
3698 }
3699
3700 //------------------------------------------------------------------------------
3701 // Gets the multiplier of the number pattern.
3702 //   Multipliers are stored as decimal numbers (DigitLists) because that
3703 //      is the most convenient for muliplying or dividing the numbers to be formatted.
3704 //   A NULL multiplier implies one, and the scaling operations are skipped.
3705
3706 int32_t 
3707 DecimalFormat::getMultiplier() const
3708 {
3709     if (fMultiplier == NULL) {
3710         return 1;
3711     } else {
3712         return fMultiplier->getLong();
3713     }
3714 }
3715
3716 //------------------------------------------------------------------------------
3717 // Sets the multiplier of the number pattern.
3718 void
3719 DecimalFormat::setMultiplier(int32_t newValue)
3720 {
3721 //  if (newValue == 0) {
3722 //      throw new IllegalArgumentException("Bad multiplier: " + newValue);
3723 //  }
3724     if (newValue == 0) {
3725         newValue = 1;     // one being the benign default value for a multiplier.
3726     }
3727     if (newValue == 1) {
3728         delete fMultiplier;
3729         fMultiplier = NULL;
3730     } else {
3731         if (fMultiplier == NULL) {
3732             fMultiplier = new DigitList;
3733         }
3734         if (fMultiplier != NULL) {
3735             fMultiplier->set(newValue);
3736         }
3737     }
3738 #if UCONFIG_FORMAT_FASTPATHS_49
3739     handleChanged();
3740 #endif
3741 }
3742
3743 /**
3744  * Get the rounding increment.
3745  * @return A positive rounding increment, or 0.0 if rounding
3746  * is not in effect.
3747  * @see #setRoundingIncrement
3748  * @see #getRoundingMode
3749  * @see #setRoundingMode
3750  */
3751 double DecimalFormat::getRoundingIncrement() const {
3752     if (fRoundingIncrement == NULL) {
3753         return 0.0;
3754     } else {
3755         return fRoundingIncrement->getDouble();
3756     }
3757 }
3758
3759 /**
3760  * Set the rounding increment.  This method also controls whether
3761  * rounding is enabled.
3762  * @param newValue A positive rounding increment, or 0.0 to disable rounding.
3763  * Negative increments are equivalent to 0.0.
3764  * @see #getRoundingIncrement
3765  * @see #getRoundingMode
3766  * @see #setRoundingMode
3767  */
3768 void DecimalFormat::setRoundingIncrement(double newValue) {
3769     if (newValue > 0.0) {
3770         if (fRoundingIncrement == NULL) {
3771             fRoundingIncrement = new DigitList();
3772         }
3773         if (fRoundingIncrement != NULL) {
3774             fRoundingIncrement->set(newValue);
3775             return;
3776         }
3777     }
3778     // These statements are executed if newValue is less than 0.0
3779     // or fRoundingIncrement could not be created.
3780     delete fRoundingIncrement;
3781     fRoundingIncrement = NULL;
3782 #if UCONFIG_FORMAT_FASTPATHS_49
3783     handleChanged();
3784 #endif
3785 }
3786
3787 /**
3788  * Get the rounding mode.
3789  * @return A rounding mode
3790  * @see #setRoundingIncrement
3791  * @see #getRoundingIncrement
3792  * @see #setRoundingMode
3793  */
3794 DecimalFormat::ERoundingMode DecimalFormat::getRoundingMode() const {
3795     return fRoundingMode;
3796 }
3797
3798 /**
3799  * Set the rounding mode.  This has no effect unless the rounding
3800  * increment is greater than zero.
3801  * @param roundingMode A rounding mode
3802  * @see #setRoundingIncrement
3803  * @see #getRoundingIncrement
3804  * @see #getRoundingMode
3805  */
3806 void DecimalFormat::setRoundingMode(ERoundingMode roundingMode) {
3807     fRoundingMode = roundingMode;
3808 #if UCONFIG_FORMAT_FASTPATHS_49
3809     handleChanged();
3810 #endif
3811 }
3812
3813 /**
3814  * Get the width to which the output of <code>format()</code> is padded.
3815  * @return the format width, or zero if no padding is in effect
3816  * @see #setFormatWidth
3817  * @see #getPadCharacter
3818  * @see #setPadCharacter
3819  * @see #getPadPosition
3820  * @see #setPadPosition
3821  */
3822 int32_t DecimalFormat::getFormatWidth() const {
3823     return fFormatWidth;
3824 }
3825
3826 /**
3827  * Set the width to which the output of <code>format()</code> is padded.
3828  * This method also controls whether padding is enabled.
3829  * @param width the width to which to pad the result of
3830  * <code>format()</code>, or zero to disable padding.  A negative
3831  * width is equivalent to 0.
3832  * @see #getFormatWidth
3833  * @see #getPadCharacter
3834  * @see #setPadCharacter
3835  * @see #getPadPosition
3836  * @see #setPadPosition
3837  */
3838 void DecimalFormat::setFormatWidth(int32_t width) {
3839     fFormatWidth = (width > 0) ? width : 0;
3840 #if UCONFIG_FORMAT_FASTPATHS_49
3841     handleChanged();
3842 #endif
3843 }
3844
3845 UnicodeString DecimalFormat::getPadCharacterString() const {
3846     return UnicodeString(fPad);
3847 }
3848
3849 void DecimalFormat::setPadCharacter(const UnicodeString &padChar) {
3850     if (padChar.length() > 0) {
3851         fPad = padChar.char32At(0);
3852     }
3853     else {
3854         fPad = kDefaultPad;
3855     }
3856 #if UCONFIG_FORMAT_FASTPATHS_49
3857     handleChanged();
3858 #endif
3859 }
3860
3861 /**
3862  * Get the position at which padding will take place.  This is the location
3863  * at which padding will be inserted if the result of <code>format()</code>
3864  * is shorter than the format width.
3865  * @return the pad position, one of <code>kPadBeforePrefix</code>,
3866  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3867  * <code>kPadAfterSuffix</code>.
3868  * @see #setFormatWidth
3869  * @see #getFormatWidth
3870  * @see #setPadCharacter
3871  * @see #getPadCharacter
3872  * @see #setPadPosition
3873  * @see #kPadBeforePrefix
3874  * @see #kPadAfterPrefix
3875  * @see #kPadBeforeSuffix
3876  * @see #kPadAfterSuffix
3877  */
3878 DecimalFormat::EPadPosition DecimalFormat::getPadPosition() const {
3879     return fPadPosition;
3880 }
3881
3882 /**
3883  * <strong><font face=helvetica color=red>NEW</font></strong>
3884  * Set the position at which padding will take place.  This is the location
3885  * at which padding will be inserted if the result of <code>format()</code>
3886  * is shorter than the format width.  This has no effect unless padding is
3887  * enabled.
3888  * @param padPos the pad position, one of <code>kPadBeforePrefix</code>,
3889  * <code>kPadAfterPrefix</code>, <code>kPadBeforeSuffix</code>, or
3890  * <code>kPadAfterSuffix</code>.
3891  * @see #setFormatWidth
3892  * @see #getFormatWidth
3893  * @see #setPadCharacter
3894  * @see #getPadCharacter
3895  * @see #getPadPosition
3896  * @see #kPadBeforePrefix
3897  * @see #kPadAfterPrefix
3898  * @see #kPadBeforeSuffix
3899  * @see #kPadAfterSuffix
3900  */
3901 void DecimalFormat::setPadPosition(EPadPosition padPos) {
3902     fPadPosition = padPos;
3903 #if UCONFIG_FORMAT_FASTPATHS_49
3904     handleChanged();
3905 #endif
3906 }
3907
3908 /**
3909  * Return whether or not scientific notation is used.
3910  * @return TRUE if this object formats and parses scientific notation
3911  * @see #setScientificNotation
3912  * @see #getMinimumExponentDigits
3913  * @see #setMinimumExponentDigits
3914  * @see #isExponentSignAlwaysShown
3915  * @see #setExponentSignAlwaysShown
3916  */
3917 UBool DecimalFormat::isScientificNotation() const {
3918     return fUseExponentialNotation;
3919 }
3920
3921 /**
3922  * Set whether or not scientific notation is used.
3923  * @param useScientific TRUE if this object formats and parses scientific
3924  * notation
3925  * @see #isScientificNotation
3926  * @see #getMinimumExponentDigits
3927  * @see #setMinimumExponentDigits
3928  * @see #isExponentSignAlwaysShown
3929  * @see #setExponentSignAlwaysShown
3930  */
3931 void DecimalFormat::setScientificNotation(UBool useScientific) {
3932     fUseExponentialNotation = useScientific;
3933 #if UCONFIG_FORMAT_FASTPATHS_49
3934     handleChanged();
3935 #endif
3936 }
3937
3938 /**
3939  * Return the minimum exponent digits that will be shown.
3940  * @return the minimum exponent digits that will be shown
3941  * @see #setScientificNotation
3942  * @see #isScientificNotation
3943  * @see #setMinimumExponentDigits
3944  * @see #isExponentSignAlwaysShown
3945  * @see #setExponentSignAlwaysShown
3946  */
3947 int8_t DecimalFormat::getMinimumExponentDigits() const {
3948     return fMinExponentDigits;
3949 }
3950
3951 /**
3952  * Set the minimum exponent digits that will be shown.  This has no
3953  * effect unless scientific notation is in use.
3954  * @param minExpDig a value >= 1 indicating the fewest exponent digits
3955  * that will be shown.  Values less than 1 will be treated as 1.
3956  * @see #setScientificNotation
3957  * @see #isScientificNotation
3958  * @see #getMinimumExponentDigits
3959  * @see #isExponentSignAlwaysShown
3960  * @see #setExponentSignAlwaysShown
3961  */
3962 void DecimalFormat::setMinimumExponentDigits(int8_t minExpDig) {
3963     fMinExponentDigits = (int8_t)((minExpDig > 0) ? minExpDig : 1);
3964 #if UCONFIG_FORMAT_FASTPATHS_49
3965     handleChanged();
3966 #endif
3967 }
3968
3969 /**
3970  * Return whether the exponent sign is always shown.
3971  * @return TRUE if the exponent is always prefixed with either the
3972  * localized minus sign or the localized plus sign, false if only negative
3973  * exponents are prefixed with the localized minus sign.
3974  * @see #setScientificNotation
3975  * @see #isScientificNotation
3976  * @see #setMinimumExponentDigits
3977  * @see #getMinimumExponentDigits
3978  * @see #setExponentSignAlwaysShown
3979  */
3980 UBool DecimalFormat::isExponentSignAlwaysShown() const {
3981     return fExponentSignAlwaysShown;
3982 }
3983
3984 /**
3985  * Set whether the exponent sign is always shown.  This has no effect
3986  * unless scientific notation is in use.
3987  * @param expSignAlways TRUE if the exponent is always prefixed with either
3988  * the localized minus sign or the localized plus sign, false if only
3989  * negative exponents are prefixed with the localized minus sign.
3990  * @see #setScientificNotation
3991  * @see #isScientificNotation
3992  * @see #setMinimumExponentDigits
3993  * @see #getMinimumExponentDigits
3994  * @see #isExponentSignAlwaysShown
3995  */
3996 void DecimalFormat::setExponentSignAlwaysShown(UBool expSignAlways) {
3997     fExponentSignAlwaysShown = expSignAlways;
3998 #if UCONFIG_FORMAT_FASTPATHS_49
3999     handleChanged();
4000 #endif
4001 }
4002
4003 //------------------------------------------------------------------------------
4004 // Gets the grouping size of the number pattern.  For example, thousand or 10
4005 // thousand groupings.
4006
4007 int32_t
4008 DecimalFormat::getGroupingSize() const
4009 {
4010     return fGroupingSize;
4011 }
4012
4013 //------------------------------------------------------------------------------
4014 // Gets the grouping size of the number pattern.
4015
4016 void
4017 DecimalFormat::setGroupingSize(int32_t newValue)
4018 {
4019     fGroupingSize = newValue;
4020 #if UCONFIG_FORMAT_FASTPATHS_49
4021     handleChanged();
4022 #endif
4023 }
4024
4025 //------------------------------------------------------------------------------
4026
4027 int32_t
4028 DecimalFormat::getSecondaryGroupingSize() const
4029 {
4030     return fGroupingSize2;
4031 }
4032
4033 //------------------------------------------------------------------------------
4034
4035 void
4036 DecimalFormat::setSecondaryGroupingSize(int32_t newValue)
4037 {
4038     fGroupingSize2 = newValue;
4039 #if UCONFIG_FORMAT_FASTPATHS_49
4040     handleChanged();
4041 #endif
4042 }
4043
4044 //------------------------------------------------------------------------------
4045 // Checks if to show the decimal separator.
4046
4047 UBool
4048 DecimalFormat::isDecimalSeparatorAlwaysShown() const
4049 {
4050     return fDecimalSeparatorAlwaysShown;
4051 }
4052
4053 //------------------------------------------------------------------------------
4054 // Sets to always show the decimal separator.
4055
4056 void
4057 DecimalFormat::setDecimalSeparatorAlwaysShown(UBool newValue)
4058 {
4059     fDecimalSeparatorAlwaysShown = newValue;
4060 #if UCONFIG_FORMAT_FASTPATHS_49
4061     handleChanged();
4062 #endif
4063 }
4064
4065 //------------------------------------------------------------------------------
4066 // Emits the pattern of this DecimalFormat instance.
4067
4068 UnicodeString&
4069 DecimalFormat::toPattern(UnicodeString& result) const
4070 {
4071     return toPattern(result, FALSE);
4072 }
4073
4074 //------------------------------------------------------------------------------
4075 // Emits the localized pattern this DecimalFormat instance.
4076
4077 UnicodeString&
4078 DecimalFormat::toLocalizedPattern(UnicodeString& result) const
4079 {
4080     return toPattern(result, TRUE);
4081 }
4082
4083 //------------------------------------------------------------------------------
4084 /**
4085  * Expand the affix pattern strings into the expanded affix strings.  If any
4086  * affix pattern string is null, do not expand it.  This method should be
4087  * called any time the symbols or the affix patterns change in order to keep
4088  * the expanded affix strings up to date.
4089  * This method also will be called before formatting if format currency
4090  * plural names, since the plural name is not a static one, it is
4091  * based on the currency plural count, the affix will be known only
4092  * after the currency plural count is know.
4093  * In which case, the parameter
4094  * 'pluralCount' will be a non-null currency plural count.
4095  * In all other cases, the 'pluralCount' is null, which means it is not needed.
4096  */
4097 void DecimalFormat::expandAffixes(const UnicodeString* pluralCount) {
4098     FieldPositionHandler none;
4099     if (fPosPrefixPattern != 0) {
4100       expandAffix(*fPosPrefixPattern, fPositivePrefix, 0, none, FALSE, pluralCount);
4101     }
4102     if (fPosSuffixPattern != 0) {
4103       expandAffix(*fPosSuffixPattern, fPositiveSuffix, 0, none, FALSE, pluralCount);
4104     }
4105     if (fNegPrefixPattern != 0) {
4106       expandAffix(*fNegPrefixPattern, fNegativePrefix, 0, none, FALSE, pluralCount);
4107     }
4108     if (fNegSuffixPattern != 0) {
4109       expandAffix(*fNegSuffixPattern, fNegativeSuffix, 0, none, FALSE, pluralCount);
4110     }
4111 #ifdef FMT_DEBUG
4112     UnicodeString s;
4113     s.append(UnicodeString("["))
4114       .append(DEREFSTR(fPosPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fPosSuffixPattern))
4115       .append((UnicodeString)";") .append(DEREFSTR(fNegPrefixPattern)).append((UnicodeString)"|").append(DEREFSTR(fNegSuffixPattern))
4116         .append((UnicodeString)"]->[")
4117         .append(fPositivePrefix).append((UnicodeString)"|").append(fPositiveSuffix)
4118         .append((UnicodeString)";") .append(fNegativePrefix).append((UnicodeString)"|").append(fNegativeSuffix)
4119         .append((UnicodeString)"]\n");
4120     debugout(s);
4121 #endif
4122 }
4123
4124 /**
4125  * Expand an affix pattern into an affix string.  All characters in the
4126  * pattern are literal unless prefixed by kQuote.  The following characters
4127  * after kQuote are recognized: PATTERN_PERCENT, PATTERN_PER_MILLE,
4128  * PATTERN_MINUS, and kCurrencySign.  If kCurrencySign is doubled (kQuote +
4129  * kCurrencySign + kCurrencySign), it is interpreted as an international
4130  * currency sign. If CURRENCY_SIGN is tripled, it is interpreted as
4131  * currency plural long names, such as "US Dollars".
4132  * Any other character after a kQuote represents itself.
4133  * kQuote must be followed by another character; kQuote may not occur by
4134  * itself at the end of the pattern.
4135  *
4136  * This method is used in two distinct ways.  First, it is used to expand
4137  * the stored affix patterns into actual affixes.  For this usage, doFormat
4138  * must be false.  Second, it is used to expand the stored affix patterns
4139  * given a specific number (doFormat == true), for those rare cases in
4140  * which a currency format references a ChoiceFormat (e.g., en_IN display
4141  * name for INR).  The number itself is taken from digitList.
4142  *
4143  * When used in the first way, this method has a side effect: It sets
4144  * currencyChoice to a ChoiceFormat object, if the currency's display name
4145  * in this locale is a ChoiceFormat pattern (very rare).  It only does this
4146  * if currencyChoice is null to start with.
4147  *
4148  * @param pattern the non-null, fPossibly empty pattern
4149  * @param affix string to receive the expanded equivalent of pattern.
4150  * Previous contents are deleted.
4151  * @param doFormat if false, then the pattern will be expanded, and if a
4152  * currency symbol is encountered that expands to a ChoiceFormat, the
4153  * currencyChoice member variable will be initialized if it is null.  If
4154  * doFormat is true, then it is assumed that the currencyChoice has been
4155  * created, and it will be used to format the value in digitList.
4156  * @param pluralCount the plural count. It is only used for currency
4157  *                    plural format. In which case, it is the plural
4158  *                    count of the currency amount. For example,
4159  *                    in en_US, it is the singular "one", or the plural
4160  *                    "other". For all other cases, it is null, and
4161  *                    is not being used.
4162  */
4163 void DecimalFormat::expandAffix(const UnicodeString& pattern,
4164                                 UnicodeString& affix,
4165                                 double number,
4166                                 FieldPositionHandler& handler,
4167                                 UBool doFormat,
4168                                 const UnicodeString* pluralCount) const {
4169     affix.remove();
4170     for (int i=0; i<pattern.length(); ) {
4171         UChar32 c = pattern.char32At(i);
4172         i += U16_LENGTH(c);
4173         if (c == kQuote) {
4174             c = pattern.char32At(i);
4175             i += U16_LENGTH(c);
4176             int beginIdx = affix.length();
4177             switch (c) {
4178             case kCurrencySign: {
4179                 // As of ICU 2.2 we use the currency object, and
4180                 // ignore the currency symbols in the DFS, unless
4181                 // we have a null currency object.  This occurs if
4182                 // resurrecting a pre-2.2 object or if the user
4183                 // sets a custom DFS.
4184                 UBool intl = i<pattern.length() &&
4185                     pattern.char32At(i) == kCurrencySign;
4186                 UBool plural = FALSE;
4187                 if (intl) {
4188                     ++i;
4189                     plural = i<pattern.length() &&
4190                         pattern.char32At(i) == kCurrencySign;
4191                     if (plural) {
4192                         intl = FALSE;
4193                         ++i;
4194                     }
4195                 }
4196                 const UChar* currencyUChars = getCurrency();
4197                 if (currencyUChars[0] != 0) {
4198                     UErrorCode ec = U_ZERO_ERROR;
4199                     if (plural && pluralCount != NULL) {
4200                         // plural name is only needed when pluralCount != null,
4201                         // which means when formatting currency plural names.
4202                         // For other cases, pluralCount == null,
4203                         // and plural names are not needed.
4204                         int32_t len;
4205                         CharString pluralCountChar;
4206                         pluralCountChar.appendInvariantChars(*pluralCount, ec);
4207                         UBool isChoiceFormat;
4208                         const UChar* s = ucurr_getPluralName(currencyUChars,
4209                             fSymbols != NULL ? fSymbols->getLocale().getName() :
4210                             Locale::getDefault().getName(), &isChoiceFormat,
4211                             pluralCountChar.data(), &len, &ec);
4212                         affix += UnicodeString(s, len);
4213                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4214                     } else if(intl) {
4215                         affix.append(currencyUChars, -1);
4216                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4217                     } else {
4218                         int32_t len;
4219                         UBool isChoiceFormat;
4220                         // If fSymbols is NULL, use default locale
4221                         const UChar* s = ucurr_getName(currencyUChars,
4222                             fSymbols != NULL ? fSymbols->getLocale().getName() : Locale::getDefault().getName(),
4223                             UCURR_SYMBOL_NAME, &isChoiceFormat, &len, &ec);
4224                         if (isChoiceFormat) {
4225                             // Two modes here: If doFormat is false, we set up
4226                             // currencyChoice.  If doFormat is true, we use the
4227                             // previously created currencyChoice to format the
4228                             // value in digitList.
4229                             if (!doFormat) {
4230                                 // If the currency is handled by a ChoiceFormat,
4231                                 // then we're not going to use the expanded
4232                                 // patterns.  Instantiate the ChoiceFormat and
4233                                 // return.
4234                                 if (fCurrencyChoice == NULL) {
4235                                     // TODO Replace double-check with proper thread-safe code
4236                                     ChoiceFormat* fmt = new ChoiceFormat(UnicodeString(s), ec);
4237                                     if (U_SUCCESS(ec)) {
4238                                         umtx_lock(NULL);
4239                                         if (fCurrencyChoice == NULL) {
4240                                             // Cast away const
4241                                             ((DecimalFormat*)this)->fCurrencyChoice = fmt;
4242                                             fmt = NULL;
4243                                         }
4244                                         umtx_unlock(NULL);
4245                                         delete fmt;
4246                                     }
4247                                 }
4248                                 // We could almost return null or "" here, since the
4249                                 // expanded affixes are almost not used at all
4250                                 // in this situation.  However, one method --
4251                                 // toPattern() -- still does use the expanded
4252                                 // affixes, in order to set up a padding
4253                                 // pattern.  We use the CURRENCY_SIGN as a
4254                                 // placeholder.
4255                                 affix.append(kCurrencySign);
4256                             } else {
4257                                 if (fCurrencyChoice != NULL) {
4258                                     FieldPosition pos(0); // ignored
4259                                     if (number < 0) {
4260                                         number = -number;
4261                                     }
4262                                     fCurrencyChoice->format(number, affix, pos);
4263                                 } else {
4264                                     // We only arrive here if the currency choice
4265                                     // format in the locale data is INVALID.
4266                                     affix.append(currencyUChars, -1);
4267                                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4268                                 }
4269                             }
4270                             continue;
4271                         }
4272                         affix += UnicodeString(s, len);
4273                         handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4274                     }
4275                 } else {
4276                     if(intl) {
4277                         affix += getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4278                     } else {
4279                         affix += getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
4280                     }
4281                     handler.addAttribute(kCurrencyField, beginIdx, affix.length());
4282                 }
4283                 break;
4284             }
4285             case kPatternPercent:
4286                 affix += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4287                 handler.addAttribute(kPercentField, beginIdx, affix.length());
4288                 break;
4289             case kPatternPerMill:
4290                 affix += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4291                 handler.addAttribute(kPermillField, beginIdx, affix.length());
4292                 break;
4293             case kPatternPlus:
4294                 affix += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4295                 handler.addAttribute(kSignField, beginIdx, affix.length());
4296                 break;
4297             case kPatternMinus:
4298                 affix += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4299                 handler.addAttribute(kSignField, beginIdx, affix.length());
4300                 break;
4301             default:
4302                 affix.append(c);
4303                 break;
4304             }
4305         }
4306         else {
4307             affix.append(c);
4308         }
4309     }
4310 }
4311
4312 /**
4313  * Append an affix to the given StringBuffer.
4314  * @param buf buffer to append to
4315  * @param isNegative
4316  * @param isPrefix
4317  */
4318 int32_t DecimalFormat::appendAffix(UnicodeString& buf, double number,
4319                                    FieldPositionHandler& handler,
4320                                    UBool isNegative, UBool isPrefix) const {
4321     // plural format precedes choice format
4322     if (fCurrencyChoice != 0 &&
4323         fCurrencySignCount != fgCurrencySignCountInPluralFormat) {
4324         const UnicodeString* affixPat;
4325         if (isPrefix) {
4326             affixPat = isNegative ? fNegPrefixPattern : fPosPrefixPattern;
4327         } else {
4328             affixPat = isNegative ? fNegSuffixPattern : fPosSuffixPattern;
4329         }
4330         if (affixPat) {
4331             UnicodeString affixBuf;
4332             expandAffix(*affixPat, affixBuf, number, handler, TRUE, NULL);
4333             buf.append(affixBuf);
4334             return affixBuf.length();
4335         }
4336         // else someone called a function that reset the pattern.
4337     }
4338
4339     const UnicodeString* affix;
4340     if (fCurrencySignCount == fgCurrencySignCountInPluralFormat) {
4341         // TODO: get an accurate count of visible fraction digits.
4342         UnicodeString pluralCount;
4343         int32_t minFractionDigits = this->getMinimumFractionDigits();
4344         if (minFractionDigits > 0) {
4345             FixedDecimal ni(number, this->getMinimumFractionDigits());
4346             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(ni);
4347         } else {
4348             pluralCount = fCurrencyPluralInfo->getPluralRules()->select(number);
4349         }
4350         AffixesForCurrency* oneSet;
4351         if (fStyle == UNUM_CURRENCY_PLURAL) {
4352             oneSet = (AffixesForCurrency*)fPluralAffixesForCurrency->get(pluralCount);
4353         } else {
4354             oneSet = (AffixesForCurrency*)fAffixesForCurrency->get(pluralCount);
4355         }
4356         if (isPrefix) {
4357             affix = isNegative ? &oneSet->negPrefixForCurrency :
4358                                  &oneSet->posPrefixForCurrency;
4359         } else {
4360             affix = isNegative ? &oneSet->negSuffixForCurrency :
4361                                  &oneSet->posSuffixForCurrency;
4362         }
4363     } else {
4364         if (isPrefix) {
4365             affix = isNegative ? &fNegativePrefix : &fPositivePrefix;
4366         } else {
4367             affix = isNegative ? &fNegativeSuffix : &fPositiveSuffix;
4368         }
4369     }
4370
4371     int32_t begin = (int) buf.length();
4372
4373     buf.append(*affix);
4374
4375     if (handler.isRecording()) {
4376       int32_t offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kCurrencySymbol));
4377       if (offset > -1) {
4378         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kCurrencySymbol);
4379         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
4380       }
4381
4382       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol));
4383       if (offset > -1) {
4384         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
4385         handler.addAttribute(kCurrencyField, begin + offset, begin + offset + aff.length());
4386       }
4387
4388       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
4389       if (offset > -1) {
4390         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4391         handler.addAttribute(kSignField, begin + offset, begin + offset + aff.length());
4392       }
4393
4394       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
4395       if (offset > -1) {
4396         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4397         handler.addAttribute(kPercentField, begin + offset, begin + offset + aff.length());
4398       }
4399
4400       offset = (int) (*affix).indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
4401       if (offset > -1) {
4402         UnicodeString aff = getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4403         handler.addAttribute(kPermillField, begin + offset, begin + offset + aff.length());
4404       }
4405     }
4406     return affix->length();
4407 }
4408
4409 /**
4410  * Appends an affix pattern to the given StringBuffer, quoting special
4411  * characters as needed.  Uses the internal affix pattern, if that exists,
4412  * or the literal affix, if the internal affix pattern is null.  The
4413  * appended string will generate the same affix pattern (or literal affix)
4414  * when passed to toPattern().
4415  *
4416  * @param appendTo the affix string is appended to this
4417  * @param affixPattern a pattern such as fPosPrefixPattern; may be null
4418  * @param expAffix a corresponding expanded affix, such as fPositivePrefix.
4419  * Ignored unless affixPattern is null.  If affixPattern is null, then
4420  * expAffix is appended as a literal affix.
4421  * @param localized true if the appended pattern should contain localized
4422  * pattern characters; otherwise, non-localized pattern chars are appended
4423  */
4424 void DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
4425                                        const UnicodeString* affixPattern,
4426                                        const UnicodeString& expAffix,
4427                                        UBool localized) const {
4428     if (affixPattern == 0) {
4429         appendAffixPattern(appendTo, expAffix, localized);
4430     } else {
4431         int i;
4432         for (int pos=0; pos<affixPattern->length(); pos=i) {
4433             i = affixPattern->indexOf(kQuote, pos);
4434             if (i < 0) {
4435                 UnicodeString s;
4436                 affixPattern->extractBetween(pos, affixPattern->length(), s);
4437                 appendAffixPattern(appendTo, s, localized);
4438                 break;
4439             }
4440             if (i > pos) {
4441                 UnicodeString s;
4442                 affixPattern->extractBetween(pos, i, s);
4443                 appendAffixPattern(appendTo, s, localized);
4444             }
4445             UChar32 c = affixPattern->char32At(++i);
4446             ++i;
4447             if (c == kQuote) {
4448                 appendTo.append(c).append(c);
4449                 // Fall through and append another kQuote below
4450             } else if (c == kCurrencySign &&
4451                        i<affixPattern->length() &&
4452                        affixPattern->char32At(i) == kCurrencySign) {
4453                 ++i;
4454                 appendTo.append(c).append(c);
4455             } else if (localized) {
4456                 switch (c) {
4457                 case kPatternPercent:
4458                     appendTo += getConstSymbol(DecimalFormatSymbols::kPercentSymbol);
4459                     break;
4460                 case kPatternPerMill:
4461                     appendTo += getConstSymbol(DecimalFormatSymbols::kPerMillSymbol);
4462                     break;
4463                 case kPatternPlus:
4464                     appendTo += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4465                     break;
4466                 case kPatternMinus:
4467                     appendTo += getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol);
4468                     break;
4469                 default:
4470                     appendTo.append(c);
4471                 }
4472             } else {
4473                 appendTo.append(c);
4474             }
4475         }
4476     }
4477 }
4478
4479 /**
4480  * Append an affix to the given StringBuffer, using quotes if
4481  * there are special characters.  Single quotes themselves must be
4482  * escaped in either case.
4483  */
4484 void
4485 DecimalFormat::appendAffixPattern(UnicodeString& appendTo,
4486                                   const UnicodeString& affix,
4487                                   UBool localized) const {
4488     UBool needQuote;
4489     if(localized) {
4490         needQuote = affix.indexOf(getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol)) >= 0
4491             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol)) >= 0
4492             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol)) >= 0
4493             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPercentSymbol)) >= 0
4494             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol)) >= 0
4495             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kDigitSymbol)) >= 0
4496             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol)) >= 0
4497             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol)) >= 0
4498             || affix.indexOf(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) >= 0
4499             || affix.indexOf(kCurrencySign) >= 0;
4500     }
4501     else {
4502         needQuote = affix.indexOf(kPatternZeroDigit) >= 0
4503             || affix.indexOf(kPatternGroupingSeparator) >= 0
4504             || affix.indexOf(kPatternDecimalSeparator) >= 0
4505             || affix.indexOf(kPatternPercent) >= 0
4506             || affix.indexOf(kPatternPerMill) >= 0
4507             || affix.indexOf(kPatternDigit) >= 0
4508             || affix.indexOf(kPatternSeparator) >= 0
4509             || affix.indexOf(kPatternExponent) >= 0
4510             || affix.indexOf(kPatternPlus) >= 0
4511             || affix.indexOf(kPatternMinus) >= 0
4512             || affix.indexOf(kCurrencySign) >= 0;
4513     }
4514     if (needQuote)
4515         appendTo += (UChar)0x0027 /*'\''*/;
4516     if (affix.indexOf((UChar)0x0027 /*'\''*/) < 0)
4517         appendTo += affix;
4518     else {
4519         for (int32_t j = 0; j < affix.length(); ) {
4520             UChar32 c = affix.char32At(j);
4521             j += U16_LENGTH(c);
4522             appendTo += c;
4523             if (c == 0x0027 /*'\''*/)
4524                 appendTo += c;
4525         }
4526     }
4527     if (needQuote)
4528         appendTo += (UChar)0x0027 /*'\''*/;
4529 }
4530
4531 //------------------------------------------------------------------------------
4532
4533 UnicodeString&
4534 DecimalFormat::toPattern(UnicodeString& result, UBool localized) const
4535 {
4536     if (fStyle == UNUM_CURRENCY_PLURAL) {
4537         // the prefix or suffix pattern might not be defined yet,
4538         // so they can not be synthesized,
4539         // instead, get them directly.
4540         // but it might not be the actual pattern used in formatting.
4541         // the actual pattern used in formatting depends on the
4542         // formatted number's plural count.
4543         result = fFormatPattern;
4544         return result;
4545     }
4546     result.remove();
4547     UChar32 zero, sigDigit = kPatternSignificantDigit;
4548     UnicodeString digit, group;
4549     int32_t i;
4550     int32_t roundingDecimalPos = 0; // Pos of decimal in roundingDigits
4551     UnicodeString roundingDigits;
4552     int32_t padPos = (fFormatWidth > 0) ? fPadPosition : -1;
4553     UnicodeString padSpec;
4554     UBool useSigDig = areSignificantDigitsUsed();
4555
4556     if (localized) {
4557         digit.append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
4558         group.append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
4559         zero = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
4560         if (useSigDig) {
4561             sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
4562         }
4563     }
4564     else {
4565         digit.append((UChar)kPatternDigit);
4566         group.append((UChar)kPatternGroupingSeparator);
4567         zero = (UChar32)kPatternZeroDigit;
4568     }
4569     if (fFormatWidth > 0) {
4570         if (localized) {
4571             padSpec.append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
4572         }
4573         else {
4574             padSpec.append((UChar)kPatternPadEscape);
4575         }
4576         padSpec.append(fPad);
4577     }
4578     if (fRoundingIncrement != NULL) {
4579         for(i=0; i<fRoundingIncrement->getCount(); ++i) {
4580           roundingDigits.append(zero+(fRoundingIncrement->getDigitValue(i))); // Convert to Unicode digit
4581         }
4582         roundingDecimalPos = fRoundingIncrement->getDecimalAt();
4583     }
4584     for (int32_t part=0; part<2; ++part) {
4585         if (padPos == kPadBeforePrefix) {
4586             result.append(padSpec);
4587         }
4588         appendAffixPattern(result,
4589                     (part==0 ? fPosPrefixPattern : fNegPrefixPattern),
4590                     (part==0 ? fPositivePrefix : fNegativePrefix),
4591                     localized);
4592         if (padPos == kPadAfterPrefix && ! padSpec.isEmpty()) {
4593             result.append(padSpec);
4594         }
4595         int32_t sub0Start = result.length();
4596         int32_t g = isGroupingUsed() ? _max(0, fGroupingSize) : 0;
4597         if (g > 0 && fGroupingSize2 > 0 && fGroupingSize2 != fGroupingSize) {
4598             g += fGroupingSize2;
4599         }
4600         int32_t maxDig = 0, minDig = 0, maxSigDig = 0;
4601         if (useSigDig) {
4602             minDig = getMinimumSignificantDigits();
4603             maxDig = maxSigDig = getMaximumSignificantDigits();
4604         } else {
4605             minDig = getMinimumIntegerDigits();
4606             maxDig = getMaximumIntegerDigits();
4607         }
4608         if (fUseExponentialNotation) {
4609             if (maxDig > kMaxScientificIntegerDigits) {
4610                 maxDig = 1;
4611             }
4612         } else if (useSigDig) {
4613             maxDig = _max(maxDig, g+1);
4614         } else {
4615             maxDig = _max(_max(g, getMinimumIntegerDigits()),
4616                           roundingDecimalPos) + 1;
4617         }
4618         for (i = maxDig; i > 0; --i) {
4619             if (!fUseExponentialNotation && i<maxDig &&
4620                 isGroupingPosition(i)) {
4621                 result.append(group);
4622             }
4623             if (useSigDig) {
4624                 //  #@,@###   (maxSigDig == 5, minSigDig == 2)
4625                 //  65 4321   (1-based pos, count from the right)
4626                 // Use # if pos > maxSigDig or 1 <= pos <= (maxSigDig - minSigDig)
4627                 // Use @ if (maxSigDig - minSigDig) < pos <= maxSigDig
4628                 if (maxSigDig >= i && i > (maxSigDig - minDig)) {
4629                     result.append(sigDigit);
4630                 } else {
4631                     result.append(digit);
4632                 }
4633             } else {
4634                 if (! roundingDigits.isEmpty()) {
4635                     int32_t pos = roundingDecimalPos - i;
4636                     if (pos >= 0 && pos < roundingDigits.length()) {
4637                         result.append((UChar) (roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
4638                         continue;
4639                     }
4640                 }
4641                 if (i<=minDig) {
4642                     result.append(zero);
4643                 } else {
4644                     result.append(digit);
4645                 }
4646             }
4647         }
4648         if (!useSigDig) {
4649             if (getMaximumFractionDigits() > 0 || fDecimalSeparatorAlwaysShown) {
4650                 if (localized) {
4651                     result += getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol);
4652                 }
4653                 else {
4654                     result.append((UChar)kPatternDecimalSeparator);
4655                 }
4656             }
4657             int32_t pos = roundingDecimalPos;
4658             for (i = 0; i < getMaximumFractionDigits(); ++i) {
4659                 if (! roundingDigits.isEmpty() && pos < roundingDigits.length()) {
4660                     if (pos < 0) {
4661                         result.append(zero);
4662                     }
4663                     else {
4664                         result.append((UChar)(roundingDigits.char32At(pos) - kPatternZeroDigit + zero));
4665                     }
4666                     ++pos;
4667                     continue;
4668                 }
4669                 if (i<getMinimumFractionDigits()) {
4670                     result.append(zero);
4671                 }
4672                 else {
4673                     result.append(digit);
4674                 }
4675             }
4676         }
4677         if (fUseExponentialNotation) {
4678             if (localized) {
4679                 result += getConstSymbol(DecimalFormatSymbols::kExponentialSymbol);
4680             }
4681             else {
4682                 result.append((UChar)kPatternExponent);
4683             }
4684             if (fExponentSignAlwaysShown) {
4685                 if (localized) {
4686                     result += getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol);
4687                 }
4688                 else {
4689                     result.append((UChar)kPatternPlus);
4690                 }
4691             }
4692             for (i=0; i<fMinExponentDigits; ++i) {
4693                 result.append(zero);
4694             }
4695         }
4696         if (! padSpec.isEmpty() && !fUseExponentialNotation) {
4697             int32_t add = fFormatWidth - result.length() + sub0Start
4698                 - ((part == 0)
4699                    ? fPositivePrefix.length() + fPositiveSuffix.length()
4700                    : fNegativePrefix.length() + fNegativeSuffix.length());
4701             while (add > 0) {
4702                 result.insert(sub0Start, digit);
4703                 ++maxDig;
4704                 --add;
4705                 // Only add a grouping separator if we have at least
4706                 // 2 additional characters to be added, so we don't
4707                 // end up with ",###".
4708                 if (add>1 && isGroupingPosition(maxDig)) {
4709                     result.insert(sub0Start, group);
4710                     --add;
4711                 }
4712             }
4713         }
4714         if (fPadPosition == kPadBeforeSuffix && ! padSpec.isEmpty()) {
4715             result.append(padSpec);
4716         }
4717         if (part == 0) {
4718             appendAffixPattern(result, fPosSuffixPattern, fPositiveSuffix, localized);
4719             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
4720                 result.append(padSpec);
4721             }
4722             UBool isDefault = FALSE;
4723             if ((fNegSuffixPattern == fPosSuffixPattern && // both null
4724                  fNegativeSuffix == fPositiveSuffix)
4725                 || (fNegSuffixPattern != 0 && fPosSuffixPattern != 0 &&
4726                     *fNegSuffixPattern == *fPosSuffixPattern))
4727             {
4728                 if (fNegPrefixPattern != NULL && fPosPrefixPattern != NULL)
4729                 {
4730                     int32_t length = fPosPrefixPattern->length();
4731                     isDefault = fNegPrefixPattern->length() == (length+2) &&
4732                         (*fNegPrefixPattern)[(int32_t)0] == kQuote &&
4733                         (*fNegPrefixPattern)[(int32_t)1] == kPatternMinus &&
4734                         fNegPrefixPattern->compare(2, length, *fPosPrefixPattern, 0, length) == 0;
4735                 }
4736                 if (!isDefault &&
4737                     fNegPrefixPattern == NULL && fPosPrefixPattern == NULL)
4738                 {
4739                     int32_t length = fPositivePrefix.length();
4740                     isDefault = fNegativePrefix.length() == (length+1) &&
4741                         fNegativePrefix.compare(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol)) == 0 &&
4742                         fNegativePrefix.compare(1, length, fPositivePrefix, 0, length) == 0;
4743                 }
4744             }
4745             if (isDefault) {
4746                 break; // Don't output default negative subpattern
4747             } else {
4748                 if (localized) {
4749                     result += getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol);
4750                 }
4751                 else {
4752                     result.append((UChar)kPatternSeparator);
4753                 }
4754             }
4755         } else {
4756             appendAffixPattern(result, fNegSuffixPattern, fNegativeSuffix, localized);
4757             if (fPadPosition == kPadAfterSuffix && ! padSpec.isEmpty()) {
4758                 result.append(padSpec);
4759             }
4760         }
4761     }
4762
4763     return result;
4764 }
4765
4766 //------------------------------------------------------------------------------
4767
4768 void
4769 DecimalFormat::applyPattern(const UnicodeString& pattern, UErrorCode& status)
4770 {
4771     UParseError parseError;
4772     applyPattern(pattern, FALSE, parseError, status);
4773 }
4774
4775 //------------------------------------------------------------------------------
4776
4777 void
4778 DecimalFormat::applyPattern(const UnicodeString& pattern,
4779                             UParseError& parseError,
4780                             UErrorCode& status)
4781 {
4782     applyPattern(pattern, FALSE, parseError, status);
4783 }
4784 //------------------------------------------------------------------------------
4785
4786 void
4787 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern, UErrorCode& status)
4788 {
4789     UParseError parseError;
4790     applyPattern(pattern, TRUE,parseError,status);
4791 }
4792
4793 //------------------------------------------------------------------------------
4794
4795 void
4796 DecimalFormat::applyLocalizedPattern(const UnicodeString& pattern,
4797                                      UParseError& parseError,
4798                                      UErrorCode& status)
4799 {
4800     applyPattern(pattern, TRUE,parseError,status);
4801 }
4802
4803 //------------------------------------------------------------------------------
4804
4805 void
4806 DecimalFormat::applyPatternWithoutExpandAffix(const UnicodeString& pattern,
4807                                               UBool localized,
4808                                               UParseError& parseError,
4809                                               UErrorCode& status)
4810 {
4811     if (U_FAILURE(status))
4812     {
4813         return;
4814     }
4815     // Clear error struct
4816     parseError.offset = -1;
4817     parseError.preContext[0] = parseError.postContext[0] = (UChar)0;
4818
4819     // Set the significant pattern symbols
4820     UChar32 zeroDigit               = kPatternZeroDigit; // '0'
4821     UChar32 sigDigit                = kPatternSignificantDigit; // '@'
4822     UnicodeString groupingSeparator ((UChar)kPatternGroupingSeparator);
4823     UnicodeString decimalSeparator  ((UChar)kPatternDecimalSeparator);
4824     UnicodeString percent           ((UChar)kPatternPercent);
4825     UnicodeString perMill           ((UChar)kPatternPerMill);
4826     UnicodeString digit             ((UChar)kPatternDigit); // '#'
4827     UnicodeString separator         ((UChar)kPatternSeparator);
4828     UnicodeString exponent          ((UChar)kPatternExponent);
4829     UnicodeString plus              ((UChar)kPatternPlus);
4830     UnicodeString minus             ((UChar)kPatternMinus);
4831     UnicodeString padEscape         ((UChar)kPatternPadEscape);
4832     // Substitute with the localized symbols if necessary
4833     if (localized) {
4834         zeroDigit = getConstSymbol(DecimalFormatSymbols::kZeroDigitSymbol).char32At(0);
4835         sigDigit = getConstSymbol(DecimalFormatSymbols::kSignificantDigitSymbol).char32At(0);
4836         groupingSeparator.  remove().append(getConstSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol));
4837         decimalSeparator.   remove().append(getConstSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol));
4838         percent.            remove().append(getConstSymbol(DecimalFormatSymbols::kPercentSymbol));
4839         perMill.            remove().append(getConstSymbol(DecimalFormatSymbols::kPerMillSymbol));
4840         digit.              remove().append(getConstSymbol(DecimalFormatSymbols::kDigitSymbol));
4841         separator.          remove().append(getConstSymbol(DecimalFormatSymbols::kPatternSeparatorSymbol));
4842         exponent.           remove().append(getConstSymbol(DecimalFormatSymbols::kExponentialSymbol));
4843         plus.               remove().append(getConstSymbol(DecimalFormatSymbols::kPlusSignSymbol));
4844         minus.              remove().append(getConstSymbol(DecimalFormatSymbols::kMinusSignSymbol));
4845         padEscape.          remove().append(getConstSymbol(DecimalFormatSymbols::kPadEscapeSymbol));
4846     }
4847     UChar nineDigit = (UChar)(zeroDigit + 9);
4848     int32_t digitLen = digit.length();
4849     int32_t groupSepLen = groupingSeparator.length();
4850     int32_t decimalSepLen = decimalSeparator.length();
4851
4852     int32_t pos = 0;
4853     int32_t patLen = pattern.length();
4854     // Part 0 is the positive pattern.  Part 1, if present, is the negative
4855     // pattern.
4856     for (int32_t part=0; part<2 && pos<patLen; ++part) {
4857         // The subpart ranges from 0 to 4: 0=pattern proper, 1=prefix,
4858         // 2=suffix, 3=prefix in quote, 4=suffix in quote.  Subpart 0 is
4859         // between the prefix and suffix, and consists of pattern
4860         // characters.  In the prefix and suffix, percent, perMill, and
4861         // currency symbols are recognized and translated.
4862         int32_t subpart = 1, sub0Start = 0, sub0Limit = 0, sub2Limit = 0;
4863
4864         // It's important that we don't change any fields of this object
4865         // prematurely.  We set the following variables for the multiplier,
4866         // grouping, etc., and then only change the actual object fields if
4867         // everything parses correctly.  This also lets us register
4868         // the data from part 0 and ignore the part 1, except for the
4869         // prefix and suffix.
4870         UnicodeString prefix;
4871         UnicodeString suffix;
4872         int32_t decimalPos = -1;
4873         int32_t multiplier = 1;
4874         int32_t digitLeftCount = 0, zeroDigitCount = 0, digitRightCount = 0, sigDigitCount = 0;
4875         int8_t groupingCount = -1;
4876         int8_t groupingCount2 = -1;
4877         int32_t padPos = -1;
4878         UChar32 padChar = 0;
4879         int32_t roundingPos = -1;
4880         DigitList roundingInc;
4881         int8_t expDigits = -1;
4882         UBool expSignAlways = FALSE;
4883
4884         // The affix is either the prefix or the suffix.
4885         UnicodeString* affix = &prefix;
4886
4887         int32_t start = pos;
4888         UBool isPartDone = FALSE;
4889         UChar32 ch;
4890
4891         for (; !isPartDone && pos < patLen; ) {
4892             // Todo: account for surrogate pairs
4893             ch = pattern.char32At(pos);
4894             switch (subpart) {
4895             case 0: // Pattern proper subpart (between prefix & suffix)
4896                 // Process the digits, decimal, and grouping characters.  We
4897                 // record five pieces of information.  We expect the digits
4898                 // to occur in the pattern ####00.00####, and we record the
4899                 // number of left digits, zero (central) digits, and right
4900                 // digits.  The position of the last grouping character is
4901                 // recorded (should be somewhere within the first two blocks
4902                 // of characters), as is the position of the decimal point,
4903                 // if any (should be in the zero digits).  If there is no
4904                 // decimal point, then there should be no right digits.
4905                 if (pattern.compare(pos, digitLen, digit) == 0) {
4906                     if (zeroDigitCount > 0 || sigDigitCount > 0) {
4907                         ++digitRightCount;
4908                     } else {
4909                         ++digitLeftCount;
4910                     }
4911                     if (groupingCount >= 0 && decimalPos < 0) {
4912                         ++groupingCount;
4913                     }
4914                     pos += digitLen;
4915                 } else if ((ch >= zeroDigit && ch <= nineDigit) ||
4916                            ch == sigDigit) {
4917                     if (digitRightCount > 0) {
4918                         // Unexpected '0'
4919                         debug("Unexpected '0'")
4920                         status = U_UNEXPECTED_TOKEN;
4921                         syntaxError(pattern,pos,parseError);
4922                         return;
4923                     }
4924                     if (ch == sigDigit) {
4925                         ++sigDigitCount;
4926                     } else {
4927                         if (ch != zeroDigit && roundingPos < 0) {
4928                             roundingPos = digitLeftCount + zeroDigitCount;
4929                         }
4930                         if (roundingPos >= 0) {
4931                             roundingInc.append((char)(ch - zeroDigit + '0'));
4932                         }
4933                         ++zeroDigitCount;
4934                     }
4935                     if (groupingCount >= 0 && decimalPos < 0) {
4936                         ++groupingCount;
4937                     }
4938                     pos += U16_LENGTH(ch);
4939                 } else if (pattern.compare(pos, groupSepLen, groupingSeparator) == 0) {
4940                     if (decimalPos >= 0) {
4941                         // Grouping separator after decimal
4942                         debug("Grouping separator after decimal")
4943                         status = U_UNEXPECTED_TOKEN;
4944                         syntaxError(pattern,pos,parseError);
4945                         return;
4946                     }
4947                     groupingCount2 = groupingCount;
4948                     groupingCount = 0;
4949                     pos += groupSepLen;
4950                 } else if (pattern.compare(pos, decimalSepLen, decimalSeparator) == 0) {
4951                     if (decimalPos >= 0) {
4952                         // Multiple decimal separators
4953                         debug("Multiple decimal separators")
4954                         status = U_MULTIPLE_DECIMAL_SEPARATORS;
4955                         syntaxError(pattern,pos,parseError);
4956                         return;
4957                     }
4958                     // Intentionally incorporate the digitRightCount,
4959                     // even though it is illegal for this to be > 0
4960                     // at this point.  We check pattern syntax below.
4961                     decimalPos = digitLeftCount + zeroDigitCount + digitRightCount;
4962                     pos += decimalSepLen;
4963                 } else {
4964                     if (pattern.compare(pos, exponent.length(), exponent) == 0) {
4965                         if (expDigits >= 0) {
4966                             // Multiple exponential symbols
4967                             debug("Multiple exponential symbols")
4968                             status = U_MULTIPLE_EXPONENTIAL_SYMBOLS;
4969                             syntaxError(pattern,pos,parseError);
4970                             return;
4971                         }
4972                         if (groupingCount >= 0) {
4973                             // Grouping separator in exponential pattern
4974                             debug("Grouping separator in exponential pattern")
4975                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
4976                             syntaxError(pattern,pos,parseError);
4977                             return;
4978                         }
4979                         pos += exponent.length();
4980                         // Check for positive prefix
4981                         if (pos < patLen
4982                             && pattern.compare(pos, plus.length(), plus) == 0) {
4983                             expSignAlways = TRUE;
4984                             pos += plus.length();
4985                         }
4986                         // Use lookahead to parse out the exponential part of the
4987                         // pattern, then jump into suffix subpart.
4988                         expDigits = 0;
4989                         while (pos < patLen &&
4990                                pattern.char32At(pos) == zeroDigit) {
4991                             ++expDigits;
4992                             pos += U16_LENGTH(zeroDigit);
4993                         }
4994
4995                         // 1. Require at least one mantissa pattern digit
4996                         // 2. Disallow "#+ @" in mantissa
4997                         // 3. Require at least one exponent pattern digit
4998                         if (((digitLeftCount + zeroDigitCount) < 1 &&
4999                              (sigDigitCount + digitRightCount) < 1) ||
5000                             (sigDigitCount > 0 && digitLeftCount > 0) ||
5001                             expDigits < 1) {
5002                             // Malformed exponential pattern
5003                             debug("Malformed exponential pattern")
5004                             status = U_MALFORMED_EXPONENTIAL_PATTERN;
5005                             syntaxError(pattern,pos,parseError);
5006                             return;
5007                         }
5008                     }
5009                     // Transition to suffix subpart
5010                     subpart = 2; // suffix subpart
5011                     affix = &suffix;
5012                     sub0Limit = pos;
5013                     continue;
5014                 }
5015                 break;
5016             case 1: // Prefix subpart
5017             case 2: // Suffix subpart
5018                 // Process the prefix / suffix characters
5019                 // Process unquoted characters seen in prefix or suffix
5020                 // subpart.
5021
5022                 // Several syntax characters implicitly begins the
5023                 // next subpart if we are in the prefix; otherwise
5024                 // they are illegal if unquoted.
5025                 if (!pattern.compare(pos, digitLen, digit) ||
5026                     !pattern.compare(pos, groupSepLen, groupingSeparator) ||
5027                     !pattern.compare(pos, decimalSepLen, decimalSeparator) ||
5028                     (ch >= zeroDigit && ch <= nineDigit) ||
5029                     ch == sigDigit) {
5030                     if (subpart == 1) { // prefix subpart
5031                         subpart = 0; // pattern proper subpart
5032                         sub0Start = pos; // Reprocess this character
5033                         continue;
5034                     } else {
5035                         status = U_UNQUOTED_SPECIAL;
5036                         syntaxError(pattern,pos,parseError);
5037                         return;
5038                     }
5039                 } else if (ch == kCurrencySign) {
5040                     affix->append(kQuote); // Encode currency
5041                     // Use lookahead to determine if the currency sign is
5042                     // doubled or not.
5043                     U_ASSERT(U16_LENGTH(kCurrencySign) == 1);
5044                     if ((pos+1) < pattern.length() && pattern[pos+1] == kCurrencySign) {
5045                         affix->append(kCurrencySign);
5046                         ++pos; // Skip over the doubled character
5047                         if ((pos+1) < pattern.length() &&
5048                             pattern[pos+1] == kCurrencySign) {
5049                             affix->append(kCurrencySign);
5050                             ++pos; // Skip over the doubled character
5051                             fCurrencySignCount = fgCurrencySignCountInPluralFormat;
5052                         } else {
5053                             fCurrencySignCount = fgCurrencySignCountInISOFormat;
5054                         }
5055                     } else {
5056                         fCurrencySignCount = fgCurrencySignCountInSymbolFormat;
5057                     }
5058                     // Fall through to append(ch)
5059                 } else if (ch == kQuote) {
5060                     // A quote outside quotes indicates either the opening
5061                     // quote or two quotes, which is a quote literal.  That is,
5062                     // we have the first quote in 'do' or o''clock.
5063                     U_ASSERT(U16_LENGTH(kQuote) == 1);
5064                     ++pos;
5065                     if (pos < pattern.length() && pattern[pos] == kQuote) {
5066                         affix->append(kQuote); // Encode quote
5067                         // Fall through to append(ch)
5068                     } else {
5069                         subpart += 2; // open quote
5070                         continue;
5071                     }
5072                 } else if (pattern.compare(pos, separator.length(), separator) == 0) {
5073                     // Don't allow separators in the prefix, and don't allow
5074                     // separators in the second pattern (part == 1).
5075                     if (subpart == 1 || part == 1) {
5076                         // Unexpected separator
5077                         debug("Unexpected separator")
5078                         status = U_UNEXPECTED_TOKEN;
5079                         syntaxError(pattern,pos,parseError);
5080                         return;
5081                     }
5082                     sub2Limit = pos;
5083                     isPartDone = TRUE; // Go to next part
5084                     pos += separator.length();
5085                     break;
5086                 } else if (pattern.compare(pos, percent.length(), percent) == 0) {
5087                     // Next handle characters which are appended directly.
5088                     if (multiplier != 1) {
5089                         // Too many percent/perMill characters
5090                         debug("Too many percent characters")
5091                         status = U_MULTIPLE_PERCENT_SYMBOLS;
5092                         syntaxError(pattern,pos,parseError);
5093                         return;
5094                     }
5095                     affix->append(kQuote); // Encode percent/perMill
5096                     affix->append(kPatternPercent); // Use unlocalized pattern char
5097                     multiplier = 100;
5098                     pos += percent.length();
5099                     break;
5100                 } else if (pattern.compare(pos, perMill.length(), perMill) == 0) {
5101                     // Next handle characters which are appended directly.
5102                     if (multiplier != 1) {
5103                         // Too many percent/perMill characters
5104                         debug("Too many perMill characters")
5105                         status = U_MULTIPLE_PERMILL_SYMBOLS;
5106                         syntaxError(pattern,pos,parseError);
5107                         return;
5108                     }
5109                     affix->append(kQuote); // Encode percent/perMill
5110                     affix->append(kPatternPerMill); // Use unlocalized pattern char
5111                     multiplier = 1000;
5112                     pos += perMill.length();
5113                     break;
5114                 } else if (pattern.compare(pos, padEscape.length(), padEscape) == 0) {
5115                     if (padPos >= 0 ||               // Multiple pad specifiers
5116                         (pos+1) == pattern.length()) { // Nothing after padEscape
5117                         debug("Multiple pad specifiers")
5118                         status = U_MULTIPLE_PAD_SPECIFIERS;
5119                         syntaxError(pattern,pos,parseError);
5120                         return;
5121                     }
5122                     padPos = pos;
5123                     pos += padEscape.length();
5124                     padChar = pattern.char32At(pos);
5125                     pos += U16_LENGTH(padChar);
5126                     break;
5127                 } else if (pattern.compare(pos, minus.length(), minus) == 0) {
5128                     affix->append(kQuote); // Encode minus
5129                     affix->append(kPatternMinus);
5130                     pos += minus.length();
5131                     break;
5132                 } else if (pattern.compare(pos, plus.length(), plus) == 0) {
5133                     affix->append(kQuote); // Encode plus
5134                     affix->append(kPatternPlus);
5135                     pos += plus.length();
5136                     break;
5137                 }
5138                 // Unquoted, non-special characters fall through to here, as
5139                 // well as other code which needs to append something to the
5140                 // affix.
5141                 affix->append(ch);
5142                 pos += U16_LENGTH(ch);
5143                 break;
5144             case 3: // Prefix subpart, in quote
5145             case 4: // Suffix subpart, in quote
5146                 // A quote within quotes indicates either the closing
5147                 // quote or two quotes, which is a quote literal.  That is,
5148                 // we have the second quote in 'do' or 'don''t'.
5149                 if (ch == kQuote) {
5150                     ++pos;
5151                     if (pos < pattern.length() && pattern[pos] == kQuote) {
5152                         affix->append(kQuote); // Encode quote
5153                         // Fall through to append(ch)
5154                     } else {
5155                         subpart -= 2; // close quote
5156                         continue;
5157                     }
5158                 }
5159                 affix->append(ch);
5160                 pos += U16_LENGTH(ch);
5161                 break;
5162             }
5163         }
5164
5165         if (sub0Limit == 0) {
5166             sub0Limit = pattern.length();
5167         }
5168
5169         if (sub2Limit == 0) {
5170             sub2Limit = pattern.length();
5171         }
5172
5173         /* Handle patterns with no '0' pattern character.  These patterns
5174          * are legal, but must be recodified to make sense.  "##.###" ->
5175          * "#0.###".  ".###" -> ".0##".
5176          *
5177          * We allow patterns of the form "####" to produce a zeroDigitCount
5178          * of zero (got that?); although this seems like it might make it
5179          * possible for format() to produce empty strings, format() checks
5180          * for this condition and outputs a zero digit in this situation.
5181          * Having a zeroDigitCount of zero yields a minimum integer digits
5182          * of zero, which allows proper round-trip patterns.  We don't want
5183          * "#" to become "#0" when toPattern() is called (even though that's
5184          * what it really is, semantically).
5185          */
5186         if (zeroDigitCount == 0 && sigDigitCount == 0 &&
5187             digitLeftCount > 0 && decimalPos >= 0) {
5188             // Handle "###.###" and "###." and ".###"
5189             int n = decimalPos;
5190             if (n == 0)
5191                 ++n; // Handle ".###"
5192             digitRightCount = digitLeftCount - n;
5193             digitLeftCount = n - 1;
5194             zeroDigitCount = 1;
5195         }
5196
5197         // Do syntax checking on the digits, decimal points, and quotes.
5198         if ((decimalPos < 0 && digitRightCount > 0 && sigDigitCount == 0) ||
5199             (decimalPos >= 0 &&
5200              (sigDigitCount > 0 ||
5201               decimalPos < digitLeftCount ||
5202               decimalPos > (digitLeftCount + zeroDigitCount))) ||
5203             groupingCount == 0 || groupingCount2 == 0 ||
5204             (sigDigitCount > 0 && zeroDigitCount > 0) ||
5205             subpart > 2)
5206         { // subpart > 2 == unmatched quote
5207             debug("Syntax error")
5208             status = U_PATTERN_SYNTAX_ERROR;
5209             syntaxError(pattern,pos,parseError);
5210             return;
5211         }
5212
5213         // Make sure pad is at legal position before or after affix.
5214         if (padPos >= 0) {
5215             if (padPos == start) {
5216                 padPos = kPadBeforePrefix;
5217             } else if (padPos+2 == sub0Start) {
5218                 padPos = kPadAfterPrefix;
5219             } else if (padPos == sub0Limit) {
5220                 padPos = kPadBeforeSuffix;
5221             } else if (padPos+2 == sub2Limit) {
5222                 padPos = kPadAfterSuffix;
5223             } else {
5224                 // Illegal pad position
5225                 debug("Illegal pad position")
5226                 status = U_ILLEGAL_PAD_POSITION;
5227                 syntaxError(pattern,pos,parseError);
5228                 return;
5229             }
5230         }
5231
5232         if (part == 0) {
5233             delete fPosPrefixPattern;
5234             delete fPosSuffixPattern;
5235             delete fNegPrefixPattern;
5236             delete fNegSuffixPattern;
5237             fPosPrefixPattern = new UnicodeString(prefix);
5238             /* test for NULL */
5239             if (fPosPrefixPattern == 0) {
5240                 status = U_MEMORY_ALLOCATION_ERROR;
5241                 return;
5242             }
5243             fPosSuffixPattern = new UnicodeString(suffix);
5244             /* test for NULL */
5245             if (fPosSuffixPattern == 0) {
5246                 status = U_MEMORY_ALLOCATION_ERROR;
5247                 delete fPosPrefixPattern;
5248                 return;
5249             }
5250             fNegPrefixPattern = 0;
5251             fNegSuffixPattern = 0;
5252
5253             fUseExponentialNotation = (expDigits >= 0);
5254             if (fUseExponentialNotation) {
5255                 fMinExponentDigits = expDigits;
5256             }
5257             fExponentSignAlwaysShown = expSignAlways;
5258             int32_t digitTotalCount = digitLeftCount + zeroDigitCount + digitRightCount;
5259             // The effectiveDecimalPos is the position the decimal is at or
5260             // would be at if there is no decimal.  Note that if
5261             // decimalPos<0, then digitTotalCount == digitLeftCount +
5262             // zeroDigitCount.
5263             int32_t effectiveDecimalPos = decimalPos >= 0 ? decimalPos : digitTotalCount;
5264             UBool isSigDig = (sigDigitCount > 0);
5265             setSignificantDigitsUsed(isSigDig);
5266             if (isSigDig) {
5267                 setMinimumSignificantDigits(sigDigitCount);
5268                 setMaximumSignificantDigits(sigDigitCount + digitRightCount);
5269             } else {
5270                 int32_t minInt = effectiveDecimalPos - digitLeftCount;
5271                 setMinimumIntegerDigits(minInt);
5272                 setMaximumIntegerDigits(fUseExponentialNotation
5273                     ? digitLeftCount + getMinimumIntegerDigits()
5274                     : NumberFormat::gDefaultMaxIntegerDigits);
5275                 setMaximumFractionDigits(decimalPos >= 0
5276                     ? (digitTotalCount - decimalPos) : 0);
5277                 setMinimumFractionDigits(decimalPos >= 0
5278                     ? (digitLeftCount + zeroDigitCount - decimalPos) : 0);
5279             }
5280             setGroupingUsed(groupingCount > 0);
5281             fGroupingSize = (groupingCount > 0) ? groupingCount : 0;
5282             fGroupingSize2 = (groupingCount2 > 0 && groupingCount2 != groupingCount)
5283                 ? groupingCount2 : 0;
5284             setMultiplier(multiplier);
5285             setDecimalSeparatorAlwaysShown(decimalPos == 0
5286                     || decimalPos == digitTotalCount);
5287             if (padPos >= 0) {
5288                 fPadPosition = (EPadPosition) padPos;
5289                 // To compute the format width, first set up sub0Limit -
5290                 // sub0Start.  Add in prefix/suffix length later.
5291
5292                 // fFormatWidth = prefix.length() + suffix.length() +
5293                 //    sub0Limit - sub0Start;
5294                 fFormatWidth = sub0Limit - sub0Start;
5295                 fPad = padChar;
5296             } else {
5297                 fFormatWidth = 0;
5298             }
5299             if (roundingPos >= 0) {
5300                 roundingInc.setDecimalAt(effectiveDecimalPos - roundingPos);
5301                 if (fRoundingIncrement != NULL) {
5302                     *fRoundingIncrement = roundingInc;
5303                 } else {
5304                     fRoundingIncrement = new DigitList(roundingInc);
5305                     /* test for NULL */
5306                     if (fRoundingIncrement == NULL) {
5307                         status = U_MEMORY_ALLOCATION_ERROR;
5308                         delete fPosPrefixPattern;
5309                         delete fPosSuffixPattern;
5310                         return;
5311                     }
5312                 }
5313                 fRoundingMode = kRoundHalfEven;
5314             } else {
5315                 setRoundingIncrement(0.0);
5316             }
5317         } else {
5318             fNegPrefixPattern = new UnicodeString(prefix);
5319             /* test for NULL */
5320             if (fNegPrefixPattern == 0) {
5321                 status = U_MEMORY_ALLOCATION_ERROR;
5322                 return;
5323             }
5324             fNegSuffixPattern = new UnicodeString(suffix);
5325             /* test for NULL */
5326             if (fNegSuffixPattern == 0) {
5327                 delete fNegPrefixPattern;
5328                 status = U_MEMORY_ALLOCATION_ERROR;
5329                 return;
5330             }
5331         }
5332     }
5333
5334     if (pattern.length() == 0) {
5335         delete fNegPrefixPattern;
5336         delete fNegSuffixPattern;
5337         fNegPrefixPattern = NULL;
5338         fNegSuffixPattern = NULL;
5339         if (fPosPrefixPattern != NULL) {
5340             fPosPrefixPattern->remove();
5341         } else {
5342             fPosPrefixPattern = new UnicodeString();
5343             /* test for NULL */
5344             if (fPosPrefixPattern == 0) {
5345                 status = U_MEMORY_ALLOCATION_ERROR;
5346                 return;
5347             }
5348         }
5349         if (fPosSuffixPattern != NULL) {
5350             fPosSuffixPattern->remove();
5351         } else {
5352             fPosSuffixPattern = new UnicodeString();
5353             /* test for NULL */
5354             if (fPosSuffixPattern == 0) {
5355                 delete fPosPrefixPattern;
5356                 status = U_MEMORY_ALLOCATION_ERROR;
5357                 return;
5358             }
5359         }
5360
5361         setMinimumIntegerDigits(0);
5362         setMaximumIntegerDigits(kDoubleIntegerDigits);
5363         setMinimumFractionDigits(0);
5364         setMaximumFractionDigits(kDoubleFractionDigits);
5365
5366         fUseExponentialNotation = FALSE;
5367         fCurrencySignCount = fgCurrencySignCountZero;
5368         setGroupingUsed(FALSE);
5369         fGroupingSize = 0;
5370         fGroupingSize2 = 0;
5371         setMultiplier(1);
5372         setDecimalSeparatorAlwaysShown(FALSE);
5373         fFormatWidth = 0;
5374         setRoundingIncrement(0.0);
5375     }
5376
5377     // If there was no negative pattern, or if the negative pattern is
5378     // identical to the positive pattern, then prepend the minus sign to the
5379     // positive pattern to form the negative pattern.
5380     if (fNegPrefixPattern == NULL ||
5381         (*fNegPrefixPattern == *fPosPrefixPattern
5382          && *fNegSuffixPattern == *fPosSuffixPattern)) {
5383         _copy_ptr(&fNegSuffixPattern, fPosSuffixPattern);
5384         if (fNegPrefixPattern == NULL) {
5385             fNegPrefixPattern = new UnicodeString();
5386             /* test for NULL */
5387             if (fNegPrefixPattern == 0) {
5388                 status = U_MEMORY_ALLOCATION_ERROR;
5389                 return;
5390             }
5391         } else {
5392             fNegPrefixPattern->remove();
5393         }
5394         fNegPrefixPattern->append(kQuote).append(kPatternMinus)
5395             .append(*fPosPrefixPattern);
5396     }
5397 #ifdef FMT_DEBUG
5398     UnicodeString s;
5399     s.append((UnicodeString)"\"").append(pattern).append((UnicodeString)"\"->");
5400     debugout(s);
5401 #endif
5402
5403     // save the pattern
5404     fFormatPattern = pattern;
5405 }
5406
5407
5408 void
5409 DecimalFormat::expandAffixAdjustWidth(const UnicodeString* pluralCount) {
5410     expandAffixes(pluralCount);
5411     if (fFormatWidth > 0) {
5412         // Finish computing format width (see above)
5413             // TODO: how to handle fFormatWidth,
5414             // need to save in f(Plural)AffixesForCurrecy?
5415             fFormatWidth += fPositivePrefix.length() + fPositiveSuffix.length();
5416     }
5417 }
5418
5419
5420 void
5421 DecimalFormat::applyPattern(const UnicodeString& pattern,
5422                             UBool localized,
5423                             UParseError& parseError,
5424                             UErrorCode& status)
5425 {
5426     // do the following re-set first. since they change private data by
5427     // apply pattern again.
5428     if (pattern.indexOf(kCurrencySign) != -1) {
5429         if (fCurrencyPluralInfo == NULL) {
5430             // initialize currencyPluralInfo if needed
5431             fCurrencyPluralInfo = new CurrencyPluralInfo(fSymbols->getLocale(), status);
5432         }
5433         if (fAffixPatternsForCurrency == NULL) {
5434             setupCurrencyAffixPatterns(status);
5435         }
5436         if (pattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
5437             // only setup the affixes of the current pattern.
5438             setupCurrencyAffixes(pattern, TRUE, FALSE, status);
5439         }
5440     }
5441     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
5442     expandAffixAdjustWidth(NULL);
5443 #if UCONFIG_FORMAT_FASTPATHS_49
5444     handleChanged();
5445 #endif
5446 }
5447
5448
5449 void
5450 DecimalFormat::applyPatternInternally(const UnicodeString& pluralCount,
5451                                       const UnicodeString& pattern,
5452                                       UBool localized,
5453                                       UParseError& parseError,
5454                                       UErrorCode& status) {
5455     applyPatternWithoutExpandAffix(pattern, localized, parseError, status);
5456     expandAffixAdjustWidth(&pluralCount);
5457 #if UCONFIG_FORMAT_FASTPATHS_49
5458     handleChanged();
5459 #endif
5460 }
5461
5462
5463 /**
5464  * Sets the maximum number of digits allowed in the integer portion of a
5465  * number. 
5466  * @see NumberFormat#setMaximumIntegerDigits
5467  */
5468 void DecimalFormat::setMaximumIntegerDigits(int32_t newValue) {
5469     NumberFormat::setMaximumIntegerDigits(_min(newValue, gDefaultMaxIntegerDigits));
5470 #if UCONFIG_FORMAT_FASTPATHS_49
5471     handleChanged();
5472 #endif
5473 }
5474
5475 /**
5476  * Sets the minimum number of digits allowed in the integer portion of a
5477  * number. This override limits the integer digit count to 309.
5478  * @see NumberFormat#setMinimumIntegerDigits
5479  */
5480 void DecimalFormat::setMinimumIntegerDigits(int32_t newValue) {
5481     NumberFormat::setMinimumIntegerDigits(_min(newValue, kDoubleIntegerDigits));
5482 #if UCONFIG_FORMAT_FASTPATHS_49
5483     handleChanged();
5484 #endif
5485 }
5486
5487 /**
5488  * Sets the maximum number of digits allowed in the fraction portion of a
5489  * number. This override limits the fraction digit count to 340.
5490  * @see NumberFormat#setMaximumFractionDigits
5491  */
5492 void DecimalFormat::setMaximumFractionDigits(int32_t newValue) {
5493     NumberFormat::setMaximumFractionDigits(_min(newValue, kDoubleFractionDigits));
5494 #if UCONFIG_FORMAT_FASTPATHS_49
5495     handleChanged();
5496 #endif
5497 }
5498
5499 /**
5500  * Sets the minimum number of digits allowed in the fraction portion of a
5501  * number. This override limits the fraction digit count to 340.
5502  * @see NumberFormat#setMinimumFractionDigits
5503  */
5504 void DecimalFormat::setMinimumFractionDigits(int32_t newValue) {
5505     NumberFormat::setMinimumFractionDigits(_min(newValue, kDoubleFractionDigits));
5506 #if UCONFIG_FORMAT_FASTPATHS_49
5507     handleChanged();
5508 #endif
5509 }
5510
5511 int32_t DecimalFormat::getMinimumSignificantDigits() const {
5512     return fMinSignificantDigits;
5513 }
5514
5515 int32_t DecimalFormat::getMaximumSignificantDigits() const {
5516     return fMaxSignificantDigits;
5517 }
5518
5519 void DecimalFormat::setMinimumSignificantDigits(int32_t min) {
5520     if (min < 1) {
5521         min = 1;
5522     }
5523     // pin max sig dig to >= min
5524     int32_t max = _max(fMaxSignificantDigits, min);
5525     fMinSignificantDigits = min;
5526     fMaxSignificantDigits = max;
5527     fUseSignificantDigits = TRUE;
5528 #if UCONFIG_FORMAT_FASTPATHS_49
5529     handleChanged();
5530 #endif
5531 }
5532
5533 void DecimalFormat::setMaximumSignificantDigits(int32_t max) {
5534     if (max < 1) {
5535         max = 1;
5536     }
5537     // pin min sig dig to 1..max
5538     U_ASSERT(fMinSignificantDigits >= 1);
5539     int32_t min = _min(fMinSignificantDigits, max);
5540     fMinSignificantDigits = min;
5541     fMaxSignificantDigits = max;
5542     fUseSignificantDigits = TRUE;
5543 #if UCONFIG_FORMAT_FASTPATHS_49
5544     handleChanged();
5545 #endif
5546 }
5547
5548 UBool DecimalFormat::areSignificantDigitsUsed() const {
5549     return fUseSignificantDigits;
5550 }
5551
5552 void DecimalFormat::setSignificantDigitsUsed(UBool useSignificantDigits) {
5553     fUseSignificantDigits = useSignificantDigits;
5554 #if UCONFIG_FORMAT_FASTPATHS_49
5555     handleChanged();
5556 #endif
5557 }
5558
5559 void DecimalFormat::setCurrencyInternally(const UChar* theCurrency,
5560                                           UErrorCode& ec) {
5561     // If we are a currency format, then modify our affixes to
5562     // encode the currency symbol for the given currency in our
5563     // locale, and adjust the decimal digits and rounding for the
5564     // given currency.
5565
5566     // Note: The code is ordered so that this object is *not changed*
5567     // until we are sure we are going to succeed.
5568
5569     // NULL or empty currency is *legal* and indicates no currency.
5570     UBool isCurr = (theCurrency && *theCurrency);
5571
5572     double rounding = 0.0;
5573     int32_t frac = 0;
5574     if (fCurrencySignCount != fgCurrencySignCountZero && isCurr) {
5575         rounding = ucurr_getRoundingIncrement(theCurrency, &ec);
5576         frac = ucurr_getDefaultFractionDigits(theCurrency, &ec);
5577     }
5578
5579     NumberFormat::setCurrency(theCurrency, ec);
5580     if (U_FAILURE(ec)) return;
5581
5582     if (fCurrencySignCount != fgCurrencySignCountZero) {
5583         // NULL or empty currency is *legal* and indicates no currency.
5584         if (isCurr) {
5585             setRoundingIncrement(rounding);
5586             setMinimumFractionDigits(frac);
5587             setMaximumFractionDigits(frac);
5588         }
5589         expandAffixes(NULL);
5590     }
5591 #if UCONFIG_FORMAT_FASTPATHS_49
5592     handleChanged();
5593 #endif
5594 }
5595
5596 void DecimalFormat::setCurrency(const UChar* theCurrency, UErrorCode& ec) {
5597     // set the currency before compute affixes to get the right currency names
5598     NumberFormat::setCurrency(theCurrency, ec);
5599     if (fFormatPattern.indexOf(fgTripleCurrencySign, 3, 0) != -1) {
5600         UnicodeString savedPtn = fFormatPattern;
5601         setupCurrencyAffixes(fFormatPattern, TRUE, TRUE, ec);
5602         UParseError parseErr;
5603         applyPattern(savedPtn, FALSE, parseErr, ec);
5604     }
5605     // set the currency after apply pattern to get the correct rounding/fraction
5606     setCurrencyInternally(theCurrency, ec);
5607 #if UCONFIG_FORMAT_FASTPATHS_49
5608     handleChanged();
5609 #endif
5610 }
5611
5612 // Deprecated variant with no UErrorCode parameter
5613 void DecimalFormat::setCurrency(const UChar* theCurrency) {
5614     UErrorCode ec = U_ZERO_ERROR;
5615     setCurrency(theCurrency, ec);
5616 #if UCONFIG_FORMAT_FASTPATHS_49
5617     handleChanged();
5618 #endif
5619 }
5620
5621 void DecimalFormat::getEffectiveCurrency(UChar* result, UErrorCode& ec) const {
5622     if (fSymbols == NULL) {
5623         ec = U_MEMORY_ALLOCATION_ERROR;
5624         return;
5625     }
5626     ec = U_ZERO_ERROR;
5627     const UChar* c = getCurrency();
5628     if (*c == 0) {
5629         const UnicodeString &intl =
5630             fSymbols->getConstSymbol(DecimalFormatSymbols::kIntlCurrencySymbol);
5631         c = intl.getBuffer(); // ok for intl to go out of scope
5632     }
5633     u_strncpy(result, c, 3);
5634     result[3] = 0;
5635 }
5636
5637 /**
5638  * Return the number of fraction digits to display, or the total
5639  * number of digits for significant digit formats and exponential
5640  * formats.
5641  */
5642 int32_t
5643 DecimalFormat::precision() const {
5644     if (areSignificantDigitsUsed()) {
5645         return getMaximumSignificantDigits();
5646     } else if (fUseExponentialNotation) {
5647         return getMinimumIntegerDigits() + getMaximumFractionDigits();
5648     } else {
5649         return getMaximumFractionDigits();
5650     }
5651 }
5652
5653
5654 // TODO: template algorithm
5655 Hashtable*
5656 DecimalFormat::initHashForAffix(UErrorCode& status) {
5657     if ( U_FAILURE(status) ) {
5658         return NULL;
5659     }
5660     Hashtable* hTable;
5661     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
5662         status = U_MEMORY_ALLOCATION_ERROR;
5663         return NULL;
5664     }
5665     if ( U_FAILURE(status) ) {
5666         delete hTable; 
5667         return NULL;
5668     }
5669     hTable->setValueComparator(decimfmtAffixValueComparator);
5670     return hTable;
5671 }
5672
5673 Hashtable*
5674 DecimalFormat::initHashForAffixPattern(UErrorCode& status) {
5675     if ( U_FAILURE(status) ) {
5676         return NULL;
5677     }
5678     Hashtable* hTable;
5679     if ( (hTable = new Hashtable(TRUE, status)) == NULL ) {
5680         status = U_MEMORY_ALLOCATION_ERROR;
5681         return NULL;
5682     }
5683     if ( U_FAILURE(status) ) {
5684         delete hTable; 
5685         return NULL;
5686     }
5687     hTable->setValueComparator(decimfmtAffixPatternValueComparator);
5688     return hTable;
5689 }
5690
5691 void
5692 DecimalFormat::deleteHashForAffix(Hashtable*& table)
5693 {
5694     if ( table == NULL ) {
5695         return;
5696     }
5697     int32_t pos = -1;
5698     const UHashElement* element = NULL;
5699     while ( (element = table->nextElement(pos)) != NULL ) {
5700         const UHashTok valueTok = element->value;
5701         const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
5702         delete value;
5703     }
5704     delete table;
5705     table = NULL;
5706 }
5707
5708
5709
5710 void
5711 DecimalFormat::deleteHashForAffixPattern()
5712 {
5713     if ( fAffixPatternsForCurrency == NULL ) {
5714         return;
5715     }
5716     int32_t pos = -1;
5717     const UHashElement* element = NULL;
5718     while ( (element = fAffixPatternsForCurrency->nextElement(pos)) != NULL ) {
5719         const UHashTok valueTok = element->value;
5720         const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
5721         delete value;
5722     }
5723     delete fAffixPatternsForCurrency;
5724     fAffixPatternsForCurrency = NULL;
5725 }
5726
5727
5728 void
5729 DecimalFormat::copyHashForAffixPattern(const Hashtable* source,
5730                                        Hashtable* target,
5731                                        UErrorCode& status) {
5732     if ( U_FAILURE(status) ) {
5733         return;
5734     }
5735     int32_t pos = -1;
5736     const UHashElement* element = NULL;
5737     if ( source ) {
5738         while ( (element = source->nextElement(pos)) != NULL ) {
5739             const UHashTok keyTok = element->key;
5740             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
5741             const UHashTok valueTok = element->value;
5742             const AffixPatternsForCurrency* value = (AffixPatternsForCurrency*)valueTok.pointer;
5743             AffixPatternsForCurrency* copy = new AffixPatternsForCurrency(
5744                 value->negPrefixPatternForCurrency,
5745                 value->negSuffixPatternForCurrency,
5746                 value->posPrefixPatternForCurrency,
5747                 value->posSuffixPatternForCurrency,
5748                 value->patternType);
5749             target->put(UnicodeString(*key), copy, status);
5750             if ( U_FAILURE(status) ) {
5751                 return;
5752             }
5753         }
5754     }
5755 }
5756
5757 DecimalFormat& DecimalFormat::setAttribute( UNumberFormatAttribute attr,
5758                                             int32_t newValue,
5759                                             UErrorCode &status) {
5760   if(U_FAILURE(status)) return *this;
5761
5762   switch(attr) {
5763   case UNUM_LENIENT_PARSE:
5764     setLenient(newValue!=0);
5765     break;
5766
5767     case UNUM_PARSE_INT_ONLY:
5768       setParseIntegerOnly(newValue!=0);
5769       break;
5770       
5771     case UNUM_GROUPING_USED:
5772       setGroupingUsed(newValue!=0);
5773       break;
5774         
5775     case UNUM_DECIMAL_ALWAYS_SHOWN:
5776       setDecimalSeparatorAlwaysShown(newValue!=0);
5777         break;
5778         
5779     case UNUM_MAX_INTEGER_DIGITS:
5780       setMaximumIntegerDigits(newValue);
5781         break;
5782         
5783     case UNUM_MIN_INTEGER_DIGITS:
5784       setMinimumIntegerDigits(newValue);
5785         break;
5786         
5787     case UNUM_INTEGER_DIGITS:
5788       setMinimumIntegerDigits(newValue);
5789       setMaximumIntegerDigits(newValue);
5790         break;
5791         
5792     case UNUM_MAX_FRACTION_DIGITS:
5793       setMaximumFractionDigits(newValue);
5794         break;
5795         
5796     case UNUM_MIN_FRACTION_DIGITS:
5797       setMinimumFractionDigits(newValue);
5798         break;
5799         
5800     case UNUM_FRACTION_DIGITS:
5801       setMinimumFractionDigits(newValue);
5802       setMaximumFractionDigits(newValue);
5803       break;
5804         
5805     case UNUM_SIGNIFICANT_DIGITS_USED:
5806       setSignificantDigitsUsed(newValue!=0);
5807         break;
5808
5809     case UNUM_MAX_SIGNIFICANT_DIGITS:
5810       setMaximumSignificantDigits(newValue);
5811         break;
5812         
5813     case UNUM_MIN_SIGNIFICANT_DIGITS:
5814       setMinimumSignificantDigits(newValue);
5815         break;
5816         
5817     case UNUM_MULTIPLIER:
5818       setMultiplier(newValue);    
5819        break;
5820         
5821     case UNUM_GROUPING_SIZE:
5822       setGroupingSize(newValue);    
5823         break;
5824         
5825     case UNUM_ROUNDING_MODE:
5826       setRoundingMode((DecimalFormat::ERoundingMode)newValue);
5827         break;
5828         
5829     case UNUM_FORMAT_WIDTH:
5830       setFormatWidth(newValue);
5831         break;
5832         
5833     case UNUM_PADDING_POSITION:
5834         /** The position at which padding will take place. */
5835       setPadPosition((DecimalFormat::EPadPosition)newValue);
5836         break;
5837         
5838     case UNUM_SECONDARY_GROUPING_SIZE:
5839       setSecondaryGroupingSize(newValue);
5840         break;
5841
5842 #if UCONFIG_HAVE_PARSEALLINPUT
5843     case UNUM_PARSE_ALL_INPUT:
5844       setParseAllInput((UNumberFormatAttributeValue)newValue);
5845         break;
5846 #endif
5847
5848     /* These are stored in fBoolFlags */
5849     case UNUM_PARSE_NO_EXPONENT:
5850     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
5851       if(!fBoolFlags.isValidValue(newValue)) {
5852           status = U_ILLEGAL_ARGUMENT_ERROR;
5853       } else {
5854           fBoolFlags.set(attr, newValue);
5855       }
5856       break;
5857
5858     case UNUM_SCALE:
5859         fScale = newValue;
5860         break;
5861
5862     default:
5863       status = U_UNSUPPORTED_ERROR;
5864       break;
5865   }
5866   return *this;
5867 }
5868
5869 int32_t DecimalFormat::getAttribute( UNumberFormatAttribute attr, 
5870                                      UErrorCode &status ) const {
5871   if(U_FAILURE(status)) return -1;
5872   switch(attr) {
5873     case UNUM_LENIENT_PARSE: 
5874         return isLenient();
5875
5876     case UNUM_PARSE_INT_ONLY:
5877         return isParseIntegerOnly();
5878         
5879     case UNUM_GROUPING_USED:
5880         return isGroupingUsed();
5881         
5882     case UNUM_DECIMAL_ALWAYS_SHOWN:
5883         return isDecimalSeparatorAlwaysShown();    
5884         
5885     case UNUM_MAX_INTEGER_DIGITS:
5886         return getMaximumIntegerDigits();
5887         
5888     case UNUM_MIN_INTEGER_DIGITS:
5889         return getMinimumIntegerDigits();
5890         
5891     case UNUM_INTEGER_DIGITS:
5892         // TBD: what should this return?
5893         return getMinimumIntegerDigits();
5894         
5895     case UNUM_MAX_FRACTION_DIGITS:
5896         return getMaximumFractionDigits();
5897         
5898     case UNUM_MIN_FRACTION_DIGITS:
5899         return getMinimumFractionDigits();
5900         
5901     case UNUM_FRACTION_DIGITS:
5902         // TBD: what should this return?
5903         return getMinimumFractionDigits();
5904         
5905     case UNUM_SIGNIFICANT_DIGITS_USED:
5906         return areSignificantDigitsUsed();
5907         
5908     case UNUM_MAX_SIGNIFICANT_DIGITS:
5909         return getMaximumSignificantDigits();
5910         
5911     case UNUM_MIN_SIGNIFICANT_DIGITS:
5912         return getMinimumSignificantDigits();
5913         
5914     case UNUM_MULTIPLIER:
5915         return getMultiplier();    
5916         
5917     case UNUM_GROUPING_SIZE:
5918         return getGroupingSize();    
5919         
5920     case UNUM_ROUNDING_MODE:
5921         return getRoundingMode();
5922         
5923     case UNUM_FORMAT_WIDTH:
5924         return getFormatWidth();
5925         
5926     case UNUM_PADDING_POSITION:
5927         return getPadPosition();
5928         
5929     case UNUM_SECONDARY_GROUPING_SIZE:
5930         return getSecondaryGroupingSize();
5931         
5932     /* These are stored in fBoolFlags */
5933     case UNUM_PARSE_NO_EXPONENT:
5934     case UNUM_FORMAT_FAIL_IF_MORE_THAN_MAX_DIGITS:
5935       return fBoolFlags.get(attr);
5936
5937     case UNUM_SCALE:
5938         return fScale;
5939
5940     default:
5941         status = U_UNSUPPORTED_ERROR;
5942         break;
5943   }
5944
5945   return -1; /* undefined */
5946 }
5947
5948 #if UCONFIG_HAVE_PARSEALLINPUT
5949 void DecimalFormat::setParseAllInput(UNumberFormatAttributeValue value) {
5950   fParseAllInput = value;
5951 #if UCONFIG_FORMAT_FASTPATHS_49
5952   handleChanged();
5953 #endif
5954 }
5955 #endif
5956
5957 void
5958 DecimalFormat::copyHashForAffix(const Hashtable* source,
5959                                 Hashtable* target,
5960                                 UErrorCode& status) {
5961     if ( U_FAILURE(status) ) {
5962         return;
5963     }
5964     int32_t pos = -1;
5965     const UHashElement* element = NULL;
5966     if ( source ) {
5967         while ( (element = source->nextElement(pos)) != NULL ) {
5968             const UHashTok keyTok = element->key;
5969             const UnicodeString* key = (UnicodeString*)keyTok.pointer;
5970
5971             const UHashTok valueTok = element->value;
5972             const AffixesForCurrency* value = (AffixesForCurrency*)valueTok.pointer;
5973             AffixesForCurrency* copy = new AffixesForCurrency(
5974                 value->negPrefixForCurrency,
5975                 value->negSuffixForCurrency,
5976                 value->posPrefixForCurrency,
5977                 value->posSuffixForCurrency);
5978             target->put(UnicodeString(*key), copy, status);
5979             if ( U_FAILURE(status) ) {
5980                 return;
5981             }
5982         }
5983     }
5984 }
5985
5986 U_NAMESPACE_END
5987
5988 #endif /* #if !UCONFIG_NO_FORMATTING */
5989
5990 //eof