Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / icu / source / common / ucnvsel.cpp
1 /*
2 *******************************************************************************
3 *
4 *   Copyright (C) 2008-2011, International Business Machines
5 *   Corporation, Google and others.  All Rights Reserved.
6 *
7 *******************************************************************************
8 */
9 // Author : eldawy@google.com (Mohamed Eldawy)
10 // ucnvsel.cpp
11 //
12 // Purpose: To generate a list of encodings capable of handling
13 // a given Unicode text
14 //
15 // Started 09-April-2008
16
17 /**
18  * \file
19  *
20  * This is an implementation of an encoding selector.
21  * The goal is, given a unicode string, find the encodings
22  * this string can be mapped to. To make processing faster
23  * a trie is built when you call ucnvsel_open() that
24  * stores all encodings a codepoint can map to
25  */
26
27 #include "unicode/ucnvsel.h"
28
29 #if !UCONFIG_NO_CONVERSION
30
31 #include <string.h>
32
33 #include "unicode/uchar.h"
34 #include "unicode/uniset.h"
35 #include "unicode/ucnv.h"
36 #include "unicode/ustring.h"
37 #include "unicode/uchriter.h"
38 #include "utrie2.h"
39 #include "propsvec.h"
40 #include "uassert.h"
41 #include "ucmndata.h"
42 #include "uenumimp.h"
43 #include "cmemory.h"
44 #include "cstring.h"
45
46 U_NAMESPACE_USE
47
48 struct UConverterSelector {
49   UTrie2 *trie;              // 16 bit trie containing offsets into pv
50   uint32_t* pv;              // table of bits!
51   int32_t pvCount;
52   char** encodings;          // which encodings did user ask to use?
53   int32_t encodingsCount;
54   int32_t encodingStrLength;
55   uint8_t* swapped;
56   UBool ownPv, ownEncodingStrings;
57 };
58
59 static void generateSelectorData(UConverterSelector* result,
60                                  UPropsVectors *upvec,
61                                  const USet* excludedCodePoints,
62                                  const UConverterUnicodeSet whichSet,
63                                  UErrorCode* status) {
64   if (U_FAILURE(*status)) {
65     return;
66   }
67
68   int32_t columns = (result->encodingsCount+31)/32;
69
70   // set errorValue to all-ones
71   for (int32_t col = 0; col < columns; col++) {
72     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
73                    col, ~0, ~0, status);
74   }
75
76   for (int32_t i = 0; i < result->encodingsCount; ++i) {
77     uint32_t mask;
78     uint32_t column;
79     int32_t item_count;
80     int32_t j;
81     UConverter* test_converter = ucnv_open(result->encodings[i], status);
82     if (U_FAILURE(*status)) {
83       return;
84     }
85     USet* unicode_point_set;
86     unicode_point_set = uset_open(1, 0);  // empty set
87
88     ucnv_getUnicodeSet(test_converter, unicode_point_set,
89                        whichSet, status);
90     if (U_FAILURE(*status)) {
91       ucnv_close(test_converter);
92       return;
93     }
94
95     column = i / 32;
96     mask = 1 << (i%32);
97     // now iterate over intervals on set i!
98     item_count = uset_getItemCount(unicode_point_set);
99
100     for (j = 0; j < item_count; ++j) {
101       UChar32 start_char;
102       UChar32 end_char;
103       UErrorCode smallStatus = U_ZERO_ERROR;
104       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
105                    &smallStatus);
106       if (U_FAILURE(smallStatus)) {
107         // this will be reached for the converters that fill the set with
108         // strings. Those should be ignored by our system
109       } else {
110         upvec_setValue(upvec, start_char, end_char, column, ~0, mask,
111                        status);
112       }
113     }
114     ucnv_close(test_converter);
115     uset_close(unicode_point_set);
116     if (U_FAILURE(*status)) {
117       return;
118     }
119   }
120
121   // handle excluded encodings! Simply set their values to all 1's in the upvec
122   if (excludedCodePoints) {
123     int32_t item_count = uset_getItemCount(excludedCodePoints);
124     for (int32_t j = 0; j < item_count; ++j) {
125       UChar32 start_char;
126       UChar32 end_char;
127
128       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
129                    status);
130       for (int32_t col = 0; col < columns; col++) {
131         upvec_setValue(upvec, start_char, end_char, col, ~0, ~0,
132                       status);
133       }
134     }
135   }
136
137   // alright. Now, let's put things in the same exact form you'd get when you
138   // unserialize things.
139   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
140   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
141   result->pvCount *= columns;  // number of uint32_t = rows * columns
142   result->ownPv = TRUE;
143 }
144
145 /* open a selector. If converterListSize is 0, build for all converters.
146    If excludedCodePoints is NULL, don't exclude any codepoints */
147 U_CAPI UConverterSelector* U_EXPORT2
148 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
149              const USet* excludedCodePoints,
150              const UConverterUnicodeSet whichSet, UErrorCode* status) {
151   // check if already failed
152   if (U_FAILURE(*status)) {
153     return NULL;
154   }
155   // ensure args make sense!
156   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
157     *status = U_ILLEGAL_ARGUMENT_ERROR;
158     return NULL;
159   }
160
161   // allocate a new converter
162   LocalUConverterSelectorPointer newSelector(
163     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
164   if (newSelector.isNull()) {
165     *status = U_MEMORY_ALLOCATION_ERROR;
166     return NULL;
167   }
168   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
169
170   if (converterListSize == 0) {
171     converterList = NULL;
172     converterListSize = ucnv_countAvailable();
173   }
174   newSelector->encodings =
175     (char**)uprv_malloc(converterListSize * sizeof(char*));
176   if (!newSelector->encodings) {
177     *status = U_MEMORY_ALLOCATION_ERROR;
178     return NULL;
179   }
180   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
181
182   // make a backup copy of the list of converters
183   int32_t totalSize = 0;
184   int32_t i;
185   for (i = 0; i < converterListSize; i++) {
186     totalSize +=
187       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
188   }
189   // 4-align the totalSize to 4-align the size of the serialized form
190   int32_t encodingStrPadding = totalSize & 3;
191   if (encodingStrPadding != 0) {
192     encodingStrPadding = 4 - encodingStrPadding;
193   }
194   newSelector->encodingStrLength = totalSize += encodingStrPadding;
195   char* allStrings = (char*) uprv_malloc(totalSize);
196   if (!allStrings) {
197     *status = U_MEMORY_ALLOCATION_ERROR;
198     return NULL;
199   }
200
201   for (i = 0; i < converterListSize; i++) {
202     newSelector->encodings[i] = allStrings;
203     uprv_strcpy(newSelector->encodings[i],
204                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
205     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
206   }
207   while (encodingStrPadding > 0) {
208     *allStrings++ = 0;
209     --encodingStrPadding;
210   }
211
212   newSelector->ownEncodingStrings = TRUE;
213   newSelector->encodingsCount = converterListSize;
214   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
215   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
216   upvec_close(upvec);
217
218   if (U_FAILURE(*status)) {
219     return NULL;
220   }
221
222   return newSelector.orphan();
223 }
224
225 /* close opened selector */
226 U_CAPI void U_EXPORT2
227 ucnvsel_close(UConverterSelector *sel) {
228   if (!sel) {
229     return;
230   }
231   if (sel->ownEncodingStrings) {
232     uprv_free(sel->encodings[0]);
233   }
234   uprv_free(sel->encodings);
235   if (sel->ownPv) {
236     uprv_free(sel->pv);
237   }
238   utrie2_close(sel->trie);
239   uprv_free(sel->swapped);
240   uprv_free(sel);
241 }
242
243 static const UDataInfo dataInfo = {
244   sizeof(UDataInfo),
245   0,
246
247   U_IS_BIG_ENDIAN,
248   U_CHARSET_FAMILY,
249   U_SIZEOF_UCHAR,
250   0,
251
252   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
253   { 1, 0, 0, 0 },               /* formatVersion */
254   { 0, 0, 0, 0 }                /* dataVersion */
255 };
256
257 enum {
258   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
259   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
260   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
261   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
262   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
263   UCNVSEL_INDEX_COUNT = 16
264 };
265
266 /*
267  * Serialized form of a UConverterSelector, formatVersion 1:
268  *
269  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
270  * as the template above.
271  * This is followed by:
272  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
273  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
274  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
275  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
276  */
277
278 /* serialize a selector */
279 U_CAPI int32_t U_EXPORT2
280 ucnvsel_serialize(const UConverterSelector* sel,
281                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
282   // check if already failed
283   if (U_FAILURE(*status)) {
284     return 0;
285   }
286   // ensure args make sense!
287   uint8_t *p = (uint8_t *)buffer;
288   if (bufferCapacity < 0 ||
289       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
290   ) {
291     *status = U_ILLEGAL_ARGUMENT_ERROR;
292     return 0;
293   }
294   // add up the size of the serialized form
295   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
296   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
297     return 0;
298   }
299   *status = U_ZERO_ERROR;
300
301   DataHeader header;
302   uprv_memset(&header, 0, sizeof(header));
303   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
304   header.dataHeader.magic1 = 0xda;
305   header.dataHeader.magic2 = 0x27;
306   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
307
308   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
309     serializedTrieSize,
310     sel->pvCount,
311     sel->encodingsCount,
312     sel->encodingStrLength
313   };
314
315   int32_t totalSize =
316     header.dataHeader.headerSize +
317     (int32_t)sizeof(indexes) +
318     serializedTrieSize +
319     sel->pvCount * 4 +
320     sel->encodingStrLength;
321   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
322   if (totalSize > bufferCapacity) {
323     *status = U_BUFFER_OVERFLOW_ERROR;
324     return totalSize;
325   }
326   // ok, save!
327   int32_t length = header.dataHeader.headerSize;
328   uprv_memcpy(p, &header, sizeof(header));
329   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
330   p += length;
331
332   length = (int32_t)sizeof(indexes);
333   uprv_memcpy(p, indexes, length);
334   p += length;
335
336   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
337   p += serializedTrieSize;
338
339   length = sel->pvCount * 4;
340   uprv_memcpy(p, sel->pv, length);
341   p += length;
342
343   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
344   p += sel->encodingStrLength;
345
346   return totalSize;
347 }
348
349 /**
350  * swap a selector into the desired Endianness and Asciiness of
351  * the system. Just as FYI, selectors are always saved in the format
352  * of the system that created them. They are only converted if used
353  * on another system. In other words, selectors created on different
354  * system can be different even if the params are identical (endianness
355  * and Asciiness differences only)
356  *
357  * @param ds pointer to data swapper containing swapping info
358  * @param inData pointer to incoming data
359  * @param length length of inData in bytes
360  * @param outData pointer to output data. Capacity should
361  *                be at least equal to capacity of inData
362  * @param status an in/out ICU UErrorCode
363  * @return 0 on failure, number of bytes swapped on success
364  *         number of bytes swapped can be smaller than length
365  */
366 static int32_t
367 ucnvsel_swap(const UDataSwapper *ds,
368              const void *inData, int32_t length,
369              void *outData, UErrorCode *status) {
370   /* udata_swapDataHeader checks the arguments */
371   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
372   if(U_FAILURE(*status)) {
373     return 0;
374   }
375
376   /* check data format and format version */
377   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
378   if(!(
379     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
380     pInfo->dataFormat[1] == 0x53 &&
381     pInfo->dataFormat[2] == 0x65 &&
382     pInfo->dataFormat[3] == 0x6c
383   )) {
384     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
385                      pInfo->dataFormat[0], pInfo->dataFormat[1],
386                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
387     *status = U_INVALID_FORMAT_ERROR;
388     return 0;
389   }
390   if(pInfo->formatVersion[0] != 1) {
391     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
392                      pInfo->formatVersion[0]);
393     *status = U_UNSUPPORTED_ERROR;
394     return 0;
395   }
396
397   if(length >= 0) {
398     length -= headerSize;
399     if(length < 16*4) {
400       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
401                        length);
402       *status = U_INDEX_OUTOFBOUNDS_ERROR;
403       return 0;
404     }
405   }
406
407   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
408   uint8_t *outBytes = (uint8_t *)outData + headerSize;
409
410   /* read the indexes */
411   const int32_t *inIndexes = (const int32_t *)inBytes;
412   int32_t indexes[16];
413   int32_t i;
414   for(i = 0; i < 16; ++i) {
415     indexes[i] = udata_readInt32(ds, inIndexes[i]);
416   }
417
418   /* get the total length of the data */
419   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
420   if(length >= 0) {
421     if(length < size) {
422       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
423                        length);
424       *status = U_INDEX_OUTOFBOUNDS_ERROR;
425       return 0;
426     }
427
428     /* copy the data for inaccessible bytes */
429     if(inBytes != outBytes) {
430       uprv_memcpy(outBytes, inBytes, size);
431     }
432
433     int32_t offset = 0, count;
434
435     /* swap the int32_t indexes[] */
436     count = UCNVSEL_INDEX_COUNT*4;
437     ds->swapArray32(ds, inBytes, count, outBytes, status);
438     offset += count;
439
440     /* swap the UTrie2 */
441     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
442     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
443     offset += count;
444
445     /* swap the uint32_t pv[] */
446     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
447     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
448     offset += count;
449
450     /* swap the encoding names */
451     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
452     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
453     offset += count;
454
455     U_ASSERT(offset == size);
456   }
457
458   return headerSize + size;
459 }
460
461 /* unserialize a selector */
462 U_CAPI UConverterSelector* U_EXPORT2
463 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
464   // check if already failed
465   if (U_FAILURE(*status)) {
466     return NULL;
467   }
468   // ensure args make sense!
469   const uint8_t *p = (const uint8_t *)buffer;
470   if (length <= 0 ||
471       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
472   ) {
473     *status = U_ILLEGAL_ARGUMENT_ERROR;
474     return NULL;
475   }
476   // header
477   if (length < 32) {
478     // not even enough space for a minimal header
479     *status = U_INDEX_OUTOFBOUNDS_ERROR;
480     return NULL;
481   }
482   const DataHeader *pHeader = (const DataHeader *)p;
483   if (!(
484     pHeader->dataHeader.magic1==0xda &&
485     pHeader->dataHeader.magic2==0x27 &&
486     pHeader->info.dataFormat[0] == 0x43 &&
487     pHeader->info.dataFormat[1] == 0x53 &&
488     pHeader->info.dataFormat[2] == 0x65 &&
489     pHeader->info.dataFormat[3] == 0x6c
490   )) {
491     /* header not valid or dataFormat not recognized */
492     *status = U_INVALID_FORMAT_ERROR;
493     return NULL;
494   }
495   if (pHeader->info.formatVersion[0] != 1) {
496     *status = U_UNSUPPORTED_ERROR;
497     return NULL;
498   }
499   uint8_t* swapped = NULL;
500   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
501       pHeader->info.charsetFamily != U_CHARSET_FAMILY
502   ) {
503     // swap the data
504     UDataSwapper *ds =
505       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
506     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
507     if (U_FAILURE(*status)) {
508       udata_closeSwapper(ds);
509       return NULL;
510     }
511     if (length < totalSize) {
512       udata_closeSwapper(ds);
513       *status = U_INDEX_OUTOFBOUNDS_ERROR;
514       return NULL;
515     }
516     swapped = (uint8_t*)uprv_malloc(totalSize);
517     if (swapped == NULL) {
518       udata_closeSwapper(ds);
519       *status = U_MEMORY_ALLOCATION_ERROR;
520       return NULL;
521     }
522     ucnvsel_swap(ds, p, length, swapped, status);
523     udata_closeSwapper(ds);
524     if (U_FAILURE(*status)) {
525       uprv_free(swapped);
526       return NULL;
527     }
528     p = swapped;
529     pHeader = (const DataHeader *)p;
530   }
531   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
532     // not even enough space for the header and the indexes
533     uprv_free(swapped);
534     *status = U_INDEX_OUTOFBOUNDS_ERROR;
535     return NULL;
536   }
537   p += pHeader->dataHeader.headerSize;
538   length -= pHeader->dataHeader.headerSize;
539   // indexes
540   const int32_t *indexes = (const int32_t *)p;
541   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
542     uprv_free(swapped);
543     *status = U_INDEX_OUTOFBOUNDS_ERROR;
544     return NULL;
545   }
546   p += UCNVSEL_INDEX_COUNT * 4;
547   // create and populate the selector object
548   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
549   char **encodings =
550     (char **)uprv_malloc(
551       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
552   if (sel == NULL || encodings == NULL) {
553     uprv_free(swapped);
554     uprv_free(sel);
555     uprv_free(encodings);
556     *status = U_MEMORY_ALLOCATION_ERROR;
557     return NULL;
558   }
559   uprv_memset(sel, 0, sizeof(UConverterSelector));
560   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
561   sel->encodings = encodings;
562   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
563   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
564   sel->swapped = swapped;
565   // trie
566   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
567                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
568                                         status);
569   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
570   if (U_FAILURE(*status)) {
571     ucnvsel_close(sel);
572     return NULL;
573   }
574   // bit vectors
575   sel->pv = (uint32_t *)p;
576   p += sel->pvCount * 4;
577   // encoding names
578   char* s = (char*)p;
579   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
580     sel->encodings[i] = s;
581     s += uprv_strlen(s) + 1;
582   }
583   p += sel->encodingStrLength;
584
585   return sel;
586 }
587
588 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
589 // iterate over the selected encodings
590 struct Enumerator {
591   int16_t* index;
592   int16_t length;
593   int16_t cur;
594   const UConverterSelector* sel;
595 };
596
597 U_CDECL_BEGIN
598
599 static void U_CALLCONV
600 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
601   uprv_free(((Enumerator*)(enumerator->context))->index);
602   uprv_free(enumerator->context);
603   uprv_free(enumerator);
604 }
605
606
607 static int32_t U_CALLCONV
608 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
609   // check if already failed
610   if (U_FAILURE(*status)) {
611     return 0;
612   }
613   return ((Enumerator*)(enumerator->context))->length;
614 }
615
616
617 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
618                                                  int32_t* resultLength,
619                                                  UErrorCode* status) {
620   // check if already failed
621   if (U_FAILURE(*status)) {
622     return NULL;
623   }
624
625   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
626   const UConverterSelector* sel;
627   const char* result;
628   if (cur >= ((Enumerator*)(enumerator->context))->length) {
629     return NULL;
630   }
631   sel = ((Enumerator*)(enumerator->context))->sel;
632   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
633   ((Enumerator*)(enumerator->context))->cur++;
634   if (resultLength) {
635     *resultLength = (int32_t)uprv_strlen(result);
636   }
637   return result;
638 }
639
640 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
641                                            UErrorCode* status) {
642   // check if already failed
643   if (U_FAILURE(*status)) {
644     return ;
645   }
646   ((Enumerator*)(enumerator->context))->cur = 0;
647 }
648
649 U_CDECL_END
650
651
652 static const UEnumeration defaultEncodings = {
653   NULL,
654     NULL,
655     ucnvsel_close_selector_iterator,
656     ucnvsel_count_encodings,
657     uenum_unextDefault,
658     ucnvsel_next_encoding, 
659     ucnvsel_reset_iterator
660 };
661
662
663 // internal fn to intersect two sets of masks
664 // returns whether the mask has reduced to all zeros
665 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
666   int32_t i;
667   uint32_t oredDest = 0;
668   for (i = 0 ; i < len ; ++i) {
669     oredDest |= (dest[i] &= source1[i]);
670   }
671   return oredDest == 0;
672 }
673
674 // internal fn to count how many 1's are there in a mask
675 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
676 static int16_t countOnes(uint32_t* mask, int32_t len) {
677   int32_t i, totalOnes = 0;
678   for (i = 0 ; i < len ; ++i) {
679     uint32_t ent = mask[i];
680     for (; ent; totalOnes++)
681     {
682       ent &= ent - 1; // clear the least significant bit set
683     }
684   }
685   return totalOnes;
686 }
687
688
689 /* internal function! */
690 static UEnumeration *selectForMask(const UConverterSelector* sel,
691                                    uint32_t *mask, UErrorCode *status) {
692   // this is the context we will use. Store a table of indices to which
693   // encodings are legit.
694   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
695   if (result == NULL) {
696     uprv_free(mask);
697     *status = U_MEMORY_ALLOCATION_ERROR;
698     return NULL;
699   }
700   result->index = NULL;  // this will be allocated later!
701   result->length = result->cur = 0;
702   result->sel = sel;
703
704   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
705   if (en == NULL) {
706     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
707     uprv_free(mask);
708     uprv_free(result);
709     *status = U_MEMORY_ALLOCATION_ERROR;
710     return NULL;
711   }
712   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
713   en->context = result;
714
715   int32_t columns = (sel->encodingsCount+31)/32;
716   int16_t numOnes = countOnes(mask, columns);
717   // now, we know the exact space we need for index
718   if (numOnes > 0) {
719     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
720
721     int32_t i, j;
722     int16_t k = 0;
723     for (j = 0 ; j < columns; j++) {
724       uint32_t v = mask[j];
725       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
726         if ((v & 1) != 0) {
727           result->index[result->length++] = k;
728         }
729         v >>= 1;
730       }
731     }
732   } //otherwise, index will remain NULL (and will never be touched by
733     //the enumerator code anyway)
734   uprv_free(mask);
735   return en;
736 }
737
738 /* check a string against the selector - UTF16 version */
739 U_CAPI UEnumeration * U_EXPORT2
740 ucnvsel_selectForString(const UConverterSelector* sel,
741                         const UChar *s, int32_t length, UErrorCode *status) {
742   // check if already failed
743   if (U_FAILURE(*status)) {
744     return NULL;
745   }
746   // ensure args make sense!
747   if (sel == NULL || (s == NULL && length != 0)) {
748     *status = U_ILLEGAL_ARGUMENT_ERROR;
749     return NULL;
750   }
751
752   int32_t columns = (sel->encodingsCount+31)/32;
753   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
754   if (mask == NULL) {
755     *status = U_MEMORY_ALLOCATION_ERROR;
756     return NULL;
757   }
758   uprv_memset(mask, ~0, columns *4);
759
760   if(s!=NULL) {
761     const UChar *limit;
762     if (length >= 0) {
763       limit = s + length;
764     } else {
765       limit = NULL;
766     }
767     
768     while (limit == NULL ? *s != 0 : s != limit) {
769       UChar32 c;
770       uint16_t pvIndex;
771       UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
772       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
773         break;
774       }
775     }
776   }
777   return selectForMask(sel, mask, status);
778 }
779
780 /* check a string against the selector - UTF8 version */
781 U_CAPI UEnumeration * U_EXPORT2
782 ucnvsel_selectForUTF8(const UConverterSelector* sel,
783                       const char *s, int32_t length, UErrorCode *status) {
784   // check if already failed
785   if (U_FAILURE(*status)) {
786     return NULL;
787   }
788   // ensure args make sense!
789   if (sel == NULL || (s == NULL && length != 0)) {
790     *status = U_ILLEGAL_ARGUMENT_ERROR;
791     return NULL;
792   }
793
794   int32_t columns = (sel->encodingsCount+31)/32;
795   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
796   if (mask == NULL) {
797     *status = U_MEMORY_ALLOCATION_ERROR;
798     return NULL;
799   }
800   uprv_memset(mask, ~0, columns *4);
801
802   if (length < 0) {
803     length = (int32_t)uprv_strlen(s);
804   }
805
806   if(s!=NULL) {
807     const char *limit = s + length;
808     
809     while (s != limit) {
810       uint16_t pvIndex;
811       UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
812       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
813         break;
814       }
815     }
816   }
817   return selectForMask(sel, mask, status);
818 }
819
820 #endif  // !UCONFIG_NO_CONVERSION