Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / ffmpeg / libavcodec / snowdec.c
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "snow_dwt.h"
26 #include "internal.h"
27 #include "snow.h"
28
29 #include "rangecoder.h"
30 #include "mathops.h"
31
32 #include "mpegvideo.h"
33 #include "h263.h"
34
35 static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
36     Plane *p= &s->plane[plane_index];
37     const int mb_w= s->b_width  << s->block_max_depth;
38     const int mb_h= s->b_height << s->block_max_depth;
39     int x, y, mb_x;
40     int block_size = MB_SIZE >> s->block_max_depth;
41     int block_w    = plane_index ? block_size>>s->chroma_h_shift : block_size;
42     int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
43     const uint8_t *obmc  = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
44     int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
45     int ref_stride= s->current_picture->linesize[plane_index];
46     uint8_t *dst8= s->current_picture->data[plane_index];
47     int w= p->width;
48     int h= p->height;
49
50     if(s->keyframe || (s->avctx->debug&512)){
51         if(mb_y==mb_h)
52             return;
53
54         if(add){
55             for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
56 //                DWTELEM * line = slice_buffer_get_line(sb, y);
57                 IDWTELEM * line = sb->line[y];
58                 for(x=0; x<w; x++){
59 //                    int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
60                     int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
61                     v >>= FRAC_BITS;
62                     if(v&(~255)) v= ~(v>>31);
63                     dst8[x + y*ref_stride]= v;
64                 }
65             }
66         }else{
67             for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
68 //                DWTELEM * line = slice_buffer_get_line(sb, y);
69                 IDWTELEM * line = sb->line[y];
70                 for(x=0; x<w; x++){
71                     line[x] -= 128 << FRAC_BITS;
72 //                    buf[x + y*w]-= 128<<FRAC_BITS;
73                 }
74             }
75         }
76
77         return;
78     }
79
80     for(mb_x=0; mb_x<=mb_w; mb_x++){
81         add_yblock(s, 1, sb, old_buffer, dst8, obmc,
82                    block_w*mb_x - block_w/2,
83                    block_h*mb_y - block_h/2,
84                    block_w, block_h,
85                    w, h,
86                    w, ref_stride, obmc_stride,
87                    mb_x - 1, mb_y - 1,
88                    add, 0, plane_index);
89     }
90 }
91
92 static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
93     const int w= b->width;
94     int y;
95     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
96     int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
97     int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
98     int new_index = 0;
99
100     if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
101         qadd= 0;
102         qmul= 1<<QEXPSHIFT;
103     }
104
105     /* If we are on the second or later slice, restore our index. */
106     if (start_y != 0)
107         new_index = save_state[0];
108
109
110     for(y=start_y; y<h; y++){
111         int x = 0;
112         int v;
113         IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
114         memset(line, 0, b->width*sizeof(IDWTELEM));
115         v = b->x_coeff[new_index].coeff;
116         x = b->x_coeff[new_index++].x;
117         while(x < w){
118             register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
119             register int u= -(v&1);
120             line[x] = (t^u) - u;
121
122             v = b->x_coeff[new_index].coeff;
123             x = b->x_coeff[new_index++].x;
124         }
125     }
126
127     /* Save our variables for the next slice. */
128     save_state[0] = new_index;
129
130     return;
131 }
132
133 static int decode_q_branch(SnowContext *s, int level, int x, int y){
134     const int w= s->b_width << s->block_max_depth;
135     const int rem_depth= s->block_max_depth - level;
136     const int index= (x + y*w) << rem_depth;
137     int trx= (x+1)<<rem_depth;
138     const BlockNode *left  = x ? &s->block[index-1] : &null_block;
139     const BlockNode *top   = y ? &s->block[index-w] : &null_block;
140     const BlockNode *tl    = y && x ? &s->block[index-w-1] : left;
141     const BlockNode *tr    = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
142     int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
143     int res;
144
145     if(s->keyframe){
146         set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
147         return 0;
148     }
149
150     if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
151         int type, mx, my;
152         int l = left->color[0];
153         int cb= left->color[1];
154         int cr= left->color[2];
155         int ref = 0;
156         int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
157         int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
158         int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
159
160         type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
161
162         if(type){
163             pred_mv(s, &mx, &my, 0, left, top, tr);
164             l += get_symbol(&s->c, &s->block_state[32], 1);
165             if (s->nb_planes > 2) {
166                 cb+= get_symbol(&s->c, &s->block_state[64], 1);
167                 cr+= get_symbol(&s->c, &s->block_state[96], 1);
168             }
169         }else{
170             if(s->ref_frames > 1)
171                 ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
172             if (ref >= s->ref_frames) {
173                 av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
174                 return AVERROR_INVALIDDATA;
175             }
176             pred_mv(s, &mx, &my, ref, left, top, tr);
177             mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
178             my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
179         }
180         set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
181     }else{
182         if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
183             (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
184             (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
185             (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
186             return res;
187     }
188     return 0;
189 }
190
191 static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
192     const int w= b->width;
193     const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
194     const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
195     const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
196     int x,y;
197
198     if(s->qlog == LOSSLESS_QLOG) return;
199
200     for(y=start_y; y<end_y; y++){
201 //        DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
202         IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
203         for(x=0; x<w; x++){
204             int i= line[x];
205             if(i<0){
206                 line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
207             }else if(i>0){
208                 line[x]=  (( i*qmul + qadd)>>(QEXPSHIFT));
209             }
210         }
211     }
212 }
213
214 static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
215     const int w= b->width;
216     int x,y;
217
218     IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
219     IDWTELEM * prev;
220
221     if (start_y != 0)
222         line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
223
224     for(y=start_y; y<end_y; y++){
225         prev = line;
226 //        line = slice_buffer_get_line_from_address(sb, src + (y * stride));
227         line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
228         for(x=0; x<w; x++){
229             if(x){
230                 if(use_median){
231                     if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
232                     else  line[x] += line[x - 1];
233                 }else{
234                     if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
235                     else  line[x] += line[x - 1];
236                 }
237             }else{
238                 if(y) line[x] += prev[x];
239             }
240         }
241     }
242 }
243
244 static void decode_qlogs(SnowContext *s){
245     int plane_index, level, orientation;
246
247     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
248         for(level=0; level<s->spatial_decomposition_count; level++){
249             for(orientation=level ? 1:0; orientation<4; orientation++){
250                 int q;
251                 if     (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
252                 else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
253                 else                    q= get_symbol(&s->c, s->header_state, 1);
254                 s->plane[plane_index].band[level][orientation].qlog= q;
255             }
256         }
257     }
258 }
259
260 #define GET_S(dst, check) \
261     tmp= get_symbol(&s->c, s->header_state, 0);\
262     if(!(check)){\
263         av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
264         return AVERROR_INVALIDDATA;\
265     }\
266     dst= tmp;
267
268 static int decode_header(SnowContext *s){
269     int plane_index, tmp;
270     uint8_t kstate[32];
271
272     memset(kstate, MID_STATE, sizeof(kstate));
273
274     s->keyframe= get_rac(&s->c, kstate);
275     if(s->keyframe || s->always_reset){
276         ff_snow_reset_contexts(s);
277         s->spatial_decomposition_type=
278         s->qlog=
279         s->qbias=
280         s->mv_scale=
281         s->block_max_depth= 0;
282     }
283     if(s->keyframe){
284         GET_S(s->version, tmp <= 0U)
285         s->always_reset= get_rac(&s->c, s->header_state);
286         s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
287         s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
288         GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
289         s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
290         if (s->colorspace_type == 1) {
291             s->avctx->pix_fmt= AV_PIX_FMT_GRAY8;
292             s->nb_planes = 1;
293         } else if(s->colorspace_type == 0) {
294             s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
295             s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
296
297             if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
298                 s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
299             }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
300                 s->avctx->pix_fmt= AV_PIX_FMT_YUV444P;
301             }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
302                 s->avctx->pix_fmt= AV_PIX_FMT_YUV410P;
303             } else {
304                 av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
305                 s->chroma_h_shift = s->chroma_v_shift = 1;
306                 s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
307                 return AVERROR_INVALIDDATA;
308             }
309             s->nb_planes = 3;
310         } else {
311             av_log(s, AV_LOG_ERROR, "unsupported color space\n");
312             s->chroma_h_shift = s->chroma_v_shift = 1;
313             s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
314             return AVERROR_INVALIDDATA;
315         }
316
317
318         s->spatial_scalability= get_rac(&s->c, s->header_state);
319 //        s->rate_scalability= get_rac(&s->c, s->header_state);
320         GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
321         s->max_ref_frames++;
322
323         decode_qlogs(s);
324     }
325
326     if(!s->keyframe){
327         if(get_rac(&s->c, s->header_state)){
328             for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
329                 int htaps, i, sum=0;
330                 Plane *p= &s->plane[plane_index];
331                 p->diag_mc= get_rac(&s->c, s->header_state);
332                 htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
333                 if((unsigned)htaps > HTAPS_MAX || htaps==0)
334                     return AVERROR_INVALIDDATA;
335                 p->htaps= htaps;
336                 for(i= htaps/2; i; i--){
337                     p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
338                     sum += p->hcoeff[i];
339                 }
340                 p->hcoeff[0]= 32-sum;
341             }
342             s->plane[2].diag_mc= s->plane[1].diag_mc;
343             s->plane[2].htaps  = s->plane[1].htaps;
344             memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
345         }
346         if(get_rac(&s->c, s->header_state)){
347             GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
348             decode_qlogs(s);
349         }
350     }
351
352     s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
353     if(s->spatial_decomposition_type > 1U){
354         av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
355         return AVERROR_INVALIDDATA;
356     }
357     if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
358              s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){
359         av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
360         return AVERROR_INVALIDDATA;
361     }
362
363
364     s->qlog           += get_symbol(&s->c, s->header_state, 1);
365     s->mv_scale       += get_symbol(&s->c, s->header_state, 1);
366     s->qbias          += get_symbol(&s->c, s->header_state, 1);
367     s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
368     if(s->block_max_depth > 1 || s->block_max_depth < 0){
369         av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
370         s->block_max_depth= 0;
371         return AVERROR_INVALIDDATA;
372     }
373
374     return 0;
375 }
376
377 static av_cold int decode_init(AVCodecContext *avctx)
378 {
379     int ret;
380
381     if ((ret = ff_snow_common_init(avctx)) < 0) {
382         ff_snow_common_end(avctx->priv_data);
383         return ret;
384     }
385
386     return 0;
387 }
388
389 static int decode_blocks(SnowContext *s){
390     int x, y;
391     int w= s->b_width;
392     int h= s->b_height;
393     int res;
394
395     for(y=0; y<h; y++){
396         for(x=0; x<w; x++){
397             if ((res = decode_q_branch(s, 0, x, y)) < 0)
398                 return res;
399         }
400     }
401     return 0;
402 }
403
404 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
405                         AVPacket *avpkt)
406 {
407     const uint8_t *buf = avpkt->data;
408     int buf_size = avpkt->size;
409     SnowContext *s = avctx->priv_data;
410     RangeCoder * const c= &s->c;
411     int bytes_read;
412     AVFrame *picture = data;
413     int level, orientation, plane_index;
414     int res;
415
416     ff_init_range_decoder(c, buf, buf_size);
417     ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
418
419     s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
420     if ((res = decode_header(s)) < 0)
421         return res;
422     if ((res=ff_snow_common_init_after_header(avctx)) < 0)
423         return res;
424
425     // realloc slice buffer for the case that spatial_decomposition_count changed
426     ff_slice_buffer_destroy(&s->sb);
427     if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
428                                     (MB_SIZE >> s->block_max_depth) +
429                                     s->spatial_decomposition_count * 11 + 1,
430                                     s->plane[0].width,
431                                     s->spatial_idwt_buffer)) < 0)
432         return res;
433
434     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
435         Plane *p= &s->plane[plane_index];
436         p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
437                                               && p->hcoeff[1]==-10
438                                               && p->hcoeff[2]==2;
439     }
440
441     ff_snow_alloc_blocks(s);
442
443     if((res = ff_snow_frame_start(s)) < 0)
444         return res;
445     //keyframe flag duplication mess FIXME
446     if(avctx->debug&FF_DEBUG_PICT_INFO)
447         av_log(avctx, AV_LOG_ERROR,
448                "keyframe:%d qlog:%d qbias: %d mvscale: %d "
449                "decomposition_type:%d decomposition_count:%d\n",
450                s->keyframe, s->qlog, s->qbias, s->mv_scale,
451                s->spatial_decomposition_type,
452                s->spatial_decomposition_count
453               );
454
455     if ((res = decode_blocks(s)) < 0)
456         return res;
457
458     for(plane_index=0; plane_index < s->nb_planes; plane_index++){
459         Plane *p= &s->plane[plane_index];
460         int w= p->width;
461         int h= p->height;
462         int x, y;
463         int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
464
465         if(s->avctx->debug&2048){
466             memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
467             predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
468
469             for(y=0; y<h; y++){
470                 for(x=0; x<w; x++){
471                     int v= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x];
472                     s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v;
473                 }
474             }
475         }
476
477         {
478         for(level=0; level<s->spatial_decomposition_count; level++){
479             for(orientation=level ? 1 : 0; orientation<4; orientation++){
480                 SubBand *b= &p->band[level][orientation];
481                 unpack_coeffs(s, b, b->parent, orientation);
482             }
483         }
484         }
485
486         {
487         const int mb_h= s->b_height << s->block_max_depth;
488         const int block_size = MB_SIZE >> s->block_max_depth;
489         const int block_h    = plane_index ? block_size>>s->chroma_v_shift : block_size;
490         int mb_y;
491         DWTCompose cs[MAX_DECOMPOSITIONS];
492         int yd=0, yq=0;
493         int y;
494         int end_y;
495
496         ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
497         for(mb_y=0; mb_y<=mb_h; mb_y++){
498
499             int slice_starty = block_h*mb_y;
500             int slice_h = block_h*(mb_y+1);
501
502             if (!(s->keyframe || s->avctx->debug&512)){
503                 slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
504                 slice_h -= (block_h >> 1);
505             }
506
507             for(level=0; level<s->spatial_decomposition_count; level++){
508                 for(orientation=level ? 1 : 0; orientation<4; orientation++){
509                     SubBand *b= &p->band[level][orientation];
510                     int start_y;
511                     int end_y;
512                     int our_mb_start = mb_y;
513                     int our_mb_end = (mb_y + 1);
514                     const int extra= 3;
515                     start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
516                     end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
517                     if (!(s->keyframe || s->avctx->debug&512)){
518                         start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
519                         end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
520                     }
521                     start_y = FFMIN(b->height, start_y);
522                     end_y = FFMIN(b->height, end_y);
523
524                     if (start_y != end_y){
525                         if (orientation == 0){
526                             SubBand * correlate_band = &p->band[0][0];
527                             int correlate_end_y = FFMIN(b->height, end_y + 1);
528                             int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
529                             decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
530                             correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
531                             dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
532                         }
533                         else
534                             decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
535                     }
536                 }
537             }
538
539             for(; yd<slice_h; yd+=4){
540                 ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
541             }
542
543             if(s->qlog == LOSSLESS_QLOG){
544                 for(; yq<slice_h && yq<h; yq++){
545                     IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
546                     for(x=0; x<w; x++){
547                         line[x] <<= FRAC_BITS;
548                     }
549                 }
550             }
551
552             predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
553
554             y = FFMIN(p->height, slice_starty);
555             end_y = FFMIN(p->height, slice_h);
556             while(y < end_y)
557                 ff_slice_buffer_release(&s->sb, y++);
558         }
559
560         ff_slice_buffer_flush(&s->sb);
561         }
562
563     }
564
565     emms_c();
566
567     ff_snow_release_buffer(avctx);
568
569     if(!(s->avctx->debug&2048))
570         res = av_frame_ref(picture, s->current_picture);
571     else
572         res = av_frame_ref(picture, s->mconly_picture);
573
574     if (res < 0)
575         return res;
576
577     *got_frame = 1;
578
579     bytes_read= c->bytestream - c->bytestream_start;
580     if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
581
582     return bytes_read;
583 }
584
585 static av_cold int decode_end(AVCodecContext *avctx)
586 {
587     SnowContext *s = avctx->priv_data;
588
589     ff_slice_buffer_destroy(&s->sb);
590
591     ff_snow_common_end(s);
592
593     return 0;
594 }
595
596 AVCodec ff_snow_decoder = {
597     .name           = "snow",
598     .long_name      = NULL_IF_CONFIG_SMALL("Snow"),
599     .type           = AVMEDIA_TYPE_VIDEO,
600     .id             = AV_CODEC_ID_SNOW,
601     .priv_data_size = sizeof(SnowContext),
602     .init           = decode_init,
603     .close          = decode_end,
604     .decode         = decode_frame,
605     .capabilities   = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
606 };