Upstream version 5.34.104.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / platform / graphics / Path.cpp
1 /*
2  * Copyright (C) 2003, 2006 Apple Computer, Inc.  All rights reserved.
3  *                     2006 Rob Buis <buis@kde.org>
4  * Copyright (C) 2007 Eric Seidel <eric@webkit.org>
5  * Copyright (C) 2013 Google Inc. All rights reserved.
6  * Copyright (C) 2013 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
21  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29
30 #include "config.h"
31 #include "platform/graphics/Path.h"
32
33 #include <math.h>
34 #include "platform/geometry/FloatPoint.h"
35 #include "platform/geometry/FloatRect.h"
36 #include "platform/graphics/GraphicsContext.h"
37 #include "platform/graphics/skia/SkiaUtils.h"
38 #include "platform/transforms/AffineTransform.h"
39 #include "third_party/skia/include/pathops/SkPathOps.h"
40 #include "wtf/MathExtras.h"
41
42 namespace WebCore {
43
44 Path::Path()
45     : m_path()
46 {
47 }
48
49 Path::Path(const Path& other)
50 {
51     m_path = SkPath(other.m_path);
52 }
53
54 Path::~Path()
55 {
56 }
57
58 Path& Path::operator=(const Path& other)
59 {
60     m_path = SkPath(other.m_path);
61     return *this;
62 }
63
64 bool Path::operator==(const Path& other) const
65 {
66     return m_path == other.m_path;
67 }
68
69 bool Path::contains(const FloatPoint& point, WindRule rule) const
70 {
71     return SkPathContainsPoint(m_path, point, rule == RULE_NONZERO ? SkPath::kWinding_FillType : SkPath::kEvenOdd_FillType);
72 }
73
74 bool Path::strokeContains(const FloatPoint& point, const StrokeData& strokeData) const
75 {
76     SkPaint paint;
77     strokeData.setupPaint(&paint);
78     SkPath strokePath;
79     paint.getFillPath(m_path, &strokePath);
80
81     return SkPathContainsPoint(strokePath, point, SkPath::kWinding_FillType);
82 }
83
84 FloatRect Path::boundingRect() const
85 {
86     return m_path.getBounds();
87 }
88
89 FloatRect Path::strokeBoundingRect(const StrokeData& strokeData) const
90 {
91     SkPaint paint;
92     strokeData.setupPaint(&paint);
93     SkPath boundingPath;
94     paint.getFillPath(m_path, &boundingPath);
95
96     return boundingPath.getBounds();
97 }
98
99 static FloatPoint* convertPathPoints(FloatPoint dst[], const SkPoint src[], int count)
100 {
101     for (int i = 0; i < count; i++) {
102         dst[i].setX(SkScalarToFloat(src[i].fX));
103         dst[i].setY(SkScalarToFloat(src[i].fY));
104     }
105     return dst;
106 }
107
108 void Path::apply(void* info, PathApplierFunction function) const
109 {
110     SkPath::RawIter iter(m_path);
111     SkPoint pts[4];
112     PathElement pathElement;
113     FloatPoint pathPoints[3];
114
115     for (;;) {
116         switch (iter.next(pts)) {
117         case SkPath::kMove_Verb:
118             pathElement.type = PathElementMoveToPoint;
119             pathElement.points = convertPathPoints(pathPoints, &pts[0], 1);
120             break;
121         case SkPath::kLine_Verb:
122             pathElement.type = PathElementAddLineToPoint;
123             pathElement.points = convertPathPoints(pathPoints, &pts[1], 1);
124             break;
125         case SkPath::kQuad_Verb:
126             pathElement.type = PathElementAddQuadCurveToPoint;
127             pathElement.points = convertPathPoints(pathPoints, &pts[1], 2);
128             break;
129         case SkPath::kCubic_Verb:
130             pathElement.type = PathElementAddCurveToPoint;
131             pathElement.points = convertPathPoints(pathPoints, &pts[1], 3);
132             break;
133         case SkPath::kClose_Verb:
134             pathElement.type = PathElementCloseSubpath;
135             pathElement.points = convertPathPoints(pathPoints, 0, 0);
136             break;
137         case SkPath::kDone_Verb:
138             return;
139         default: // place-holder for kConic_Verb, when that lands from skia
140             break;
141         }
142         function(info, &pathElement);
143     }
144 }
145
146 void Path::transform(const AffineTransform& xform)
147 {
148     m_path.transform(affineTransformToSkMatrix(xform));
149 }
150
151 float Path::length() const
152 {
153     SkScalar length = 0;
154     SkPathMeasure measure(m_path, false);
155
156     do {
157         length += measure.getLength();
158     } while (measure.nextContour());
159
160     return SkScalarToFloat(length);
161 }
162
163 FloatPoint Path::pointAtLength(float length, bool& ok) const
164 {
165     FloatPoint point;
166     float normal;
167     ok = pointAndNormalAtLength(length, point, normal);
168     return point;
169 }
170
171 float Path::normalAngleAtLength(float length, bool& ok) const
172 {
173     FloatPoint point;
174     float normal;
175     ok = pointAndNormalAtLength(length, point, normal);
176     return normal;
177 }
178
179 static bool calculatePointAndNormalOnPath(SkPathMeasure& measure, SkScalar length, FloatPoint& point, float& normalAngle, SkScalar* accumulatedLength = 0)
180 {
181     do {
182         SkScalar contourLength = measure.getLength();
183         if (length <= contourLength) {
184             SkVector tangent;
185             SkPoint position;
186
187             if (measure.getPosTan(length, &position, &tangent)) {
188                 normalAngle = rad2deg(SkScalarToFloat(SkScalarATan2(tangent.fY, tangent.fX)));
189                 point = FloatPoint(SkScalarToFloat(position.fX), SkScalarToFloat(position.fY));
190                 return true;
191             }
192         }
193         length -= contourLength;
194         if (accumulatedLength)
195             *accumulatedLength += contourLength;
196     } while (measure.nextContour());
197     return false;
198 }
199
200 bool Path::pointAndNormalAtLength(float length, FloatPoint& point, float& normal) const
201 {
202     SkPathMeasure measure(m_path, false);
203
204     if (calculatePointAndNormalOnPath(measure, WebCoreFloatToSkScalar(length), point, normal))
205         return true;
206
207     normal = 0;
208     point = FloatPoint(0, 0);
209     return false;
210 }
211
212 Path::PositionCalculator::PositionCalculator(const Path& path)
213     : m_path(path.skPath())
214     , m_pathMeasure(path.skPath(), false)
215     , m_accumulatedLength(0)
216 {
217 }
218
219 bool Path::PositionCalculator::pointAndNormalAtLength(float length, FloatPoint& point, float& normalAngle)
220 {
221     SkScalar skLength = WebCoreFloatToSkScalar(length);
222     if (skLength >= 0) {
223         if (skLength < m_accumulatedLength) {
224             // Reset path measurer to rewind (and restart from 0).
225             m_pathMeasure.setPath(&m_path, false);
226             m_accumulatedLength = 0;
227         } else {
228             skLength -= m_accumulatedLength;
229         }
230
231         if (calculatePointAndNormalOnPath(m_pathMeasure, skLength, point, normalAngle, &m_accumulatedLength))
232             return true;
233     }
234
235     normalAngle = 0;
236     point = FloatPoint(0, 0);
237     return false;
238 }
239
240 void Path::clear()
241 {
242     m_path.reset();
243 }
244
245 bool Path::isEmpty() const
246 {
247     return m_path.isEmpty();
248 }
249
250 bool Path::hasCurrentPoint() const
251 {
252     return m_path.getPoints(0, 0);
253 }
254
255 FloatPoint Path::currentPoint() const
256 {
257     if (m_path.countPoints() > 0) {
258         SkPoint skResult;
259         m_path.getLastPt(&skResult);
260         FloatPoint result;
261         result.setX(SkScalarToFloat(skResult.fX));
262         result.setY(SkScalarToFloat(skResult.fY));
263         return result;
264     }
265
266     // FIXME: Why does this return quietNaN? Other ports return 0,0.
267     float quietNaN = std::numeric_limits<float>::quiet_NaN();
268     return FloatPoint(quietNaN, quietNaN);
269 }
270
271 WindRule Path::windRule() const
272 {
273     return m_path.getFillType() == SkPath::kEvenOdd_FillType
274         ? RULE_EVENODD
275         : RULE_NONZERO;
276 }
277
278 void Path::setWindRule(const WindRule rule)
279 {
280     m_path.setFillType(rule == RULE_EVENODD
281         ? SkPath::kEvenOdd_FillType
282         : SkPath::kWinding_FillType);
283 }
284
285 void Path::moveTo(const FloatPoint& point)
286 {
287     m_path.moveTo(point);
288 }
289
290 void Path::addLineTo(const FloatPoint& point)
291 {
292     m_path.lineTo(point);
293 }
294
295 void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& ep)
296 {
297     m_path.quadTo(cp, ep);
298 }
299
300 void Path::addBezierCurveTo(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& ep)
301 {
302     m_path.cubicTo(p1, p2, ep);
303 }
304
305 void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
306 {
307     m_path.arcTo(p1, p2, WebCoreFloatToSkScalar(radius));
308 }
309
310 void Path::closeSubpath()
311 {
312     m_path.close();
313 }
314
315 void Path::addEllipse(const FloatPoint& p, float radiusX, float radiusY, float startAngle, float endAngle, bool anticlockwise)
316 {
317     ASSERT(ellipseIsRenderable(startAngle, endAngle));
318     ASSERT(startAngle >= 0 && startAngle < 2 * piFloat);
319     ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise && (endAngle - startAngle) >= 0));
320
321     SkScalar cx = WebCoreFloatToSkScalar(p.x());
322     SkScalar cy = WebCoreFloatToSkScalar(p.y());
323     SkScalar radiusXScalar = WebCoreFloatToSkScalar(radiusX);
324     SkScalar radiusYScalar = WebCoreFloatToSkScalar(radiusY);
325
326     SkRect oval;
327     oval.set(cx - radiusXScalar, cy - radiusYScalar, cx + radiusXScalar, cy + radiusYScalar);
328
329     float sweep = endAngle - startAngle;
330     SkScalar startDegrees = WebCoreFloatToSkScalar(startAngle * 180 / piFloat);
331     SkScalar sweepDegrees = WebCoreFloatToSkScalar(sweep * 180 / piFloat);
332     SkScalar s360 = SkIntToScalar(360);
333
334     // We can't use SkPath::addOval(), because addOval() makes new sub-path. addOval() calls moveTo() and close() internally.
335
336     // Use s180, not s360, because SkPath::arcTo(oval, angle, s360, false) draws nothing.
337     SkScalar s180 = SkIntToScalar(180);
338     if (SkScalarNearlyEqual(sweepDegrees, s360)) {
339         // SkPath::arcTo can't handle the sweepAngle that is equal to or greater than 2Pi.
340         m_path.arcTo(oval, startDegrees, s180, false);
341         m_path.arcTo(oval, startDegrees + s180, s180, false);
342         return;
343     }
344     if (SkScalarNearlyEqual(sweepDegrees, -s360)) {
345         m_path.arcTo(oval, startDegrees, -s180, false);
346         m_path.arcTo(oval, startDegrees - s180, -s180, false);
347         return;
348     }
349
350     m_path.arcTo(oval, startDegrees, sweepDegrees, false);
351 }
352
353 void Path::addArc(const FloatPoint& p, float radius, float startAngle, float endAngle, bool anticlockwise)
354 {
355     addEllipse(p, radius, radius, startAngle, endAngle, anticlockwise);
356 }
357
358 void Path::addRect(const FloatRect& rect)
359 {
360     m_path.addRect(rect);
361 }
362
363 void Path::addEllipse(const FloatPoint& p, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
364 {
365     ASSERT(ellipseIsRenderable(startAngle, endAngle));
366     ASSERT(startAngle >= 0 && startAngle < 2 * piFloat);
367     ASSERT((anticlockwise && (startAngle - endAngle) >= 0) || (!anticlockwise && (endAngle - startAngle) >= 0));
368
369     if (!rotation) {
370         addEllipse(FloatPoint(p.x(), p.y()), radiusX, radiusY, startAngle, endAngle, anticlockwise);
371         return;
372     }
373
374     // Add an arc after the relevant transform.
375     AffineTransform ellipseTransform = AffineTransform::translation(p.x(), p.y()).rotate(rad2deg(rotation));
376     ASSERT(ellipseTransform.isInvertible());
377     AffineTransform inverseEllipseTransform = ellipseTransform.inverse();
378     transform(inverseEllipseTransform);
379     addEllipse(FloatPoint::zero(), radiusX, radiusY, startAngle, endAngle, anticlockwise);
380     transform(ellipseTransform);
381 }
382
383 void Path::addEllipse(const FloatRect& rect)
384 {
385     m_path.addOval(rect);
386 }
387
388 void Path::addRoundedRect(const RoundedRect& r)
389 {
390     addRoundedRect(r.rect(), r.radii().topLeft(), r.radii().topRight(), r.radii().bottomLeft(), r.radii().bottomRight());
391 }
392
393 void Path::addRoundedRect(const FloatRect& rect, const FloatSize& roundingRadii)
394 {
395     if (rect.isEmpty())
396         return;
397
398     FloatSize radius(roundingRadii);
399     FloatSize halfSize(rect.width() / 2, rect.height() / 2);
400
401     // Apply the SVG corner radius constraints, per the rect section of the SVG shapes spec: if
402     // one of rx,ry is negative, then the other corner radius value is used. If both values are
403     // negative then rx = ry = 0. If rx is greater than half of the width of the rectangle
404     // then set rx to half of the width; ry is handled similarly.
405
406     if (radius.width() < 0)
407         radius.setWidth((radius.height() < 0) ? 0 : radius.height());
408
409     if (radius.height() < 0)
410         radius.setHeight(radius.width());
411
412     if (radius.width() > halfSize.width())
413         radius.setWidth(halfSize.width());
414
415     if (radius.height() > halfSize.height())
416         radius.setHeight(halfSize.height());
417
418     addPathForRoundedRect(rect, radius, radius, radius, radius);
419 }
420
421 void Path::addRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
422 {
423     if (rect.isEmpty())
424         return;
425
426     if (rect.width() < topLeftRadius.width() + topRightRadius.width()
427             || rect.width() < bottomLeftRadius.width() + bottomRightRadius.width()
428             || rect.height() < topLeftRadius.height() + bottomLeftRadius.height()
429             || rect.height() < topRightRadius.height() + bottomRightRadius.height()) {
430         // If all the radii cannot be accommodated, return a rect.
431         addRect(rect);
432         return;
433     }
434
435     addPathForRoundedRect(rect, topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
436 }
437
438 void Path::addPathForRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
439 {
440     addBeziersForRoundedRect(rect, topLeftRadius, topRightRadius, bottomLeftRadius, bottomRightRadius);
441 }
442
443 // Approximation of control point positions on a bezier to simulate a quarter of a circle.
444 // This is 1-kappa, where kappa = 4 * (sqrt(2) - 1) / 3
445 static const float gCircleControlPoint = 0.447715f;
446
447 void Path::addBeziersForRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius)
448 {
449     moveTo(FloatPoint(rect.x() + topLeftRadius.width(), rect.y()));
450
451     addLineTo(FloatPoint(rect.maxX() - topRightRadius.width(), rect.y()));
452     if (topRightRadius.width() > 0 || topRightRadius.height() > 0)
453         addBezierCurveTo(FloatPoint(rect.maxX() - topRightRadius.width() * gCircleControlPoint, rect.y()),
454             FloatPoint(rect.maxX(), rect.y() + topRightRadius.height() * gCircleControlPoint),
455             FloatPoint(rect.maxX(), rect.y() + topRightRadius.height()));
456     addLineTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height()));
457     if (bottomRightRadius.width() > 0 || bottomRightRadius.height() > 0)
458         addBezierCurveTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height() * gCircleControlPoint),
459             FloatPoint(rect.maxX() - bottomRightRadius.width() * gCircleControlPoint, rect.maxY()),
460             FloatPoint(rect.maxX() - bottomRightRadius.width(), rect.maxY()));
461     addLineTo(FloatPoint(rect.x() + bottomLeftRadius.width(), rect.maxY()));
462     if (bottomLeftRadius.width() > 0 || bottomLeftRadius.height() > 0)
463         addBezierCurveTo(FloatPoint(rect.x() + bottomLeftRadius.width() * gCircleControlPoint, rect.maxY()),
464             FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height() * gCircleControlPoint),
465             FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height()));
466     addLineTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height()));
467     if (topLeftRadius.width() > 0 || topLeftRadius.height() > 0)
468         addBezierCurveTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height() * gCircleControlPoint),
469             FloatPoint(rect.x() + topLeftRadius.width() * gCircleControlPoint, rect.y()),
470             FloatPoint(rect.x() + topLeftRadius.width(), rect.y()));
471
472     closeSubpath();
473 }
474
475 void Path::translate(const FloatSize& size)
476 {
477     m_path.offset(WebCoreFloatToSkScalar(size.width()), WebCoreFloatToSkScalar(size.height()));
478 }
479
480 bool Path::unionPath(const Path& other)
481 {
482     return Op(m_path, other.m_path, kUnion_PathOp, &m_path);
483 }
484
485 #if !ASSERT_DISABLED
486 bool ellipseIsRenderable(float startAngle, float endAngle)
487 {
488     return (std::abs(endAngle - startAngle) < 2 * piFloat)
489         || WebCoreFloatNearlyEqual(std::abs(endAngle - startAngle), 2 * piFloat);
490 }
491 #endif
492
493 }