Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / platform / Timer.cpp
1 /*
2  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
3  * Copyright (C) 2009 Google Inc. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
15  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
18  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
19  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
20  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
22  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26
27 #include "config.h"
28 #include "platform/Timer.h"
29
30 #include "platform/PlatformThreadData.h"
31 #include "platform/ThreadTimers.h"
32 #include "wtf/CurrentTime.h"
33 #include "wtf/HashSet.h"
34 #include <limits.h>
35 #include <math.h>
36 #include <limits>
37
38 namespace blink {
39
40 class TimerHeapReference;
41
42 // Timers are stored in a heap data structure, used to implement a priority queue.
43 // This allows us to efficiently determine which timer needs to fire the soonest.
44 // Then we set a single shared system timer to fire at that time.
45 //
46 // When a timer's "next fire time" changes, we need to move it around in the priority queue.
47 static Vector<TimerBase*>& threadGlobalTimerHeap()
48 {
49     return PlatformThreadData::current().threadTimers().timerHeap();
50 }
51 // ----------------
52
53 class TimerHeapPointer {
54 public:
55     TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
56     TimerHeapReference operator*() const;
57     TimerBase* operator->() const { return *m_pointer; }
58 private:
59     TimerBase** m_pointer;
60 };
61
62 class TimerHeapReference {
63 public:
64     TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
65     operator TimerBase*() const { return m_reference; }
66     TimerHeapPointer operator&() const { return &m_reference; }
67     TimerHeapReference& operator=(TimerBase*);
68     TimerHeapReference& operator=(TimerHeapReference);
69 private:
70     TimerBase*& m_reference;
71 };
72
73 inline TimerHeapReference TimerHeapPointer::operator*() const
74 {
75     return *m_pointer;
76 }
77
78 inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
79 {
80     m_reference = timer;
81     Vector<TimerBase*>& heap = timer->timerHeap();
82     if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
83         timer->m_heapIndex = &m_reference - heap.data();
84     return *this;
85 }
86
87 inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
88 {
89     TimerBase* timer = b;
90     return *this = timer;
91 }
92
93 inline void swap(TimerHeapReference a, TimerHeapReference b)
94 {
95     TimerBase* timerA = a;
96     TimerBase* timerB = b;
97
98     // Invoke the assignment operator, since that takes care of updating m_heapIndex.
99     a = timerB;
100     b = timerA;
101 }
102
103 // ----------------
104
105 // Class to represent iterators in the heap when calling the standard library heap algorithms.
106 // Uses a custom pointer and reference type that update indices for pointers in the heap.
107 class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
108 public:
109     explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
110
111     TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
112     TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
113
114     TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
115     TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
116
117     TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
118     TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
119
120     TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
121     TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
122     TimerBase* operator->() const { return *m_pointer; }
123
124 private:
125     void checkConsistency(ptrdiff_t offset = 0) const
126     {
127         ASSERT(m_pointer >= threadGlobalTimerHeap().data());
128         ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
129         ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
130         ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
131     }
132
133     friend bool operator==(TimerHeapIterator, TimerHeapIterator);
134     friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
135     friend bool operator<(TimerHeapIterator, TimerHeapIterator);
136     friend bool operator>(TimerHeapIterator, TimerHeapIterator);
137     friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
138     friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
139
140     friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
141     friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
142
143     friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
144     friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
145
146     TimerBase** m_pointer;
147 };
148
149 inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
150 inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
151 inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
152 inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
153 inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
154 inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
155
156 inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
157 inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
158
159 inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
160 inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
161
162 // ----------------
163
164 class TimerHeapLessThanFunction {
165 public:
166     bool operator()(const TimerBase*, const TimerBase*) const;
167 };
168
169 inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
170 {
171     // The comparisons below are "backwards" because the heap puts the largest
172     // element first and we want the lowest time to be the first one in the heap.
173     double aFireTime = a->m_nextFireTime;
174     double bFireTime = b->m_nextFireTime;
175     if (bFireTime != aFireTime)
176         return bFireTime < aFireTime;
177
178     // We need to look at the difference of the insertion orders instead of comparing the two
179     // outright in case of overflow.
180     unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
181     return difference < std::numeric_limits<unsigned>::max() / 2;
182 }
183
184 // ----------------
185
186 TimerBase::TimerBase()
187     : m_nextFireTime(0)
188     , m_unalignedNextFireTime(0)
189     , m_repeatInterval(0)
190     , m_heapIndex(-1)
191     , m_cachedThreadGlobalTimerHeap(0)
192 #if ENABLE(ASSERT)
193     , m_thread(currentThread())
194 #endif
195 {
196 }
197
198 TimerBase::~TimerBase()
199 {
200     stop();
201     ASSERT(!inHeap());
202 }
203
204 void TimerBase::start(double nextFireInterval, double repeatInterval, const TraceLocation& caller)
205 {
206     ASSERT(m_thread == currentThread());
207
208     m_location = caller;
209     m_repeatInterval = repeatInterval;
210     setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
211 }
212
213 void TimerBase::stop()
214 {
215     ASSERT(m_thread == currentThread());
216
217     m_repeatInterval = 0;
218     setNextFireTime(0);
219
220     ASSERT(m_nextFireTime == 0);
221     ASSERT(m_repeatInterval == 0);
222     ASSERT(!inHeap());
223 }
224
225 double TimerBase::nextFireInterval() const
226 {
227     ASSERT(isActive());
228     double current = monotonicallyIncreasingTime();
229     if (m_nextFireTime < current)
230         return 0;
231     return m_nextFireTime - current;
232 }
233
234 inline void TimerBase::checkHeapIndex() const
235 {
236     ASSERT(timerHeap() == threadGlobalTimerHeap());
237     ASSERT(!timerHeap().isEmpty());
238     ASSERT(m_heapIndex >= 0);
239     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
240     ASSERT(timerHeap()[m_heapIndex] == this);
241 }
242
243 inline void TimerBase::checkConsistency() const
244 {
245     // Timers should be in the heap if and only if they have a non-zero next fire time.
246     ASSERT(inHeap() == (m_nextFireTime != 0));
247     if (inHeap())
248         checkHeapIndex();
249 }
250
251 void TimerBase::heapDecreaseKey()
252 {
253     ASSERT(m_nextFireTime != 0);
254     checkHeapIndex();
255     TimerBase** heapData = timerHeap().data();
256     push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
257     checkHeapIndex();
258 }
259
260 inline void TimerBase::heapDelete()
261 {
262     ASSERT(m_nextFireTime == 0);
263     heapPop();
264     timerHeap().removeLast();
265     m_heapIndex = -1;
266 }
267
268 void TimerBase::heapDeleteMin()
269 {
270     ASSERT(m_nextFireTime == 0);
271     heapPopMin();
272     timerHeap().removeLast();
273     m_heapIndex = -1;
274 }
275
276 inline void TimerBase::heapIncreaseKey()
277 {
278     ASSERT(m_nextFireTime != 0);
279     heapPop();
280     heapDecreaseKey();
281 }
282
283 inline void TimerBase::heapInsert()
284 {
285     ASSERT(!inHeap());
286     timerHeap().append(this);
287     m_heapIndex = timerHeap().size() - 1;
288     heapDecreaseKey();
289 }
290
291 inline void TimerBase::heapPop()
292 {
293     // Temporarily force this timer to have the minimum key so we can pop it.
294     double fireTime = m_nextFireTime;
295     m_nextFireTime = -std::numeric_limits<double>::infinity();
296     heapDecreaseKey();
297     heapPopMin();
298     m_nextFireTime = fireTime;
299 }
300
301 void TimerBase::heapPopMin()
302 {
303     ASSERT(this == timerHeap().first());
304     checkHeapIndex();
305     Vector<TimerBase*>& heap = timerHeap();
306     TimerBase** heapData = heap.data();
307     pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
308     checkHeapIndex();
309     ASSERT(this == timerHeap().last());
310 }
311
312 static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
313 {
314     if (!currentIndex)
315         return true;
316     unsigned parentIndex = (currentIndex - 1) / 2;
317     TimerHeapLessThanFunction compareHeapPosition;
318     return compareHeapPosition(current, heap[parentIndex]);
319 }
320
321 static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
322 {
323     if (childIndex >= heap.size())
324         return true;
325     TimerHeapLessThanFunction compareHeapPosition;
326     return compareHeapPosition(heap[childIndex], current);
327 }
328
329 bool TimerBase::hasValidHeapPosition() const
330 {
331     ASSERT(m_nextFireTime);
332     if (!inHeap())
333         return false;
334     // Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
335     // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
336     // in updateHeapIfNeeded() will get hit.
337     const Vector<TimerBase*>& heap = timerHeap();
338     if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
339         return false;
340     unsigned childIndex1 = 2 * m_heapIndex + 1;
341     unsigned childIndex2 = childIndex1 + 1;
342     return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
343 }
344
345 void TimerBase::updateHeapIfNeeded(double oldTime)
346 {
347     if (m_nextFireTime && hasValidHeapPosition())
348         return;
349 #if ENABLE(ASSERT)
350     int oldHeapIndex = m_heapIndex;
351 #endif
352     if (!oldTime)
353         heapInsert();
354     else if (!m_nextFireTime)
355         heapDelete();
356     else if (m_nextFireTime < oldTime)
357         heapDecreaseKey();
358     else
359         heapIncreaseKey();
360     ASSERT(m_heapIndex != oldHeapIndex);
361     ASSERT(!inHeap() || hasValidHeapPosition());
362 }
363
364 void TimerBase::setNextFireTime(double newUnalignedTime)
365 {
366     ASSERT(m_thread == currentThread());
367
368     if (m_unalignedNextFireTime != newUnalignedTime)
369         m_unalignedNextFireTime = newUnalignedTime;
370
371     // Accessing thread global data is slow. Cache the heap pointer.
372     if (!m_cachedThreadGlobalTimerHeap)
373         m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
374
375     // Keep heap valid while changing the next-fire time.
376     double oldTime = m_nextFireTime;
377     double newTime = alignedFireTime(newUnalignedTime);
378     if (oldTime != newTime) {
379         m_nextFireTime = newTime;
380         static unsigned currentHeapInsertionOrder;
381         m_heapInsertionOrder = currentHeapInsertionOrder++;
382
383         bool wasFirstTimerInHeap = m_heapIndex == 0;
384
385         updateHeapIfNeeded(oldTime);
386
387         bool isFirstTimerInHeap = m_heapIndex == 0;
388
389         if (wasFirstTimerInHeap || isFirstTimerInHeap)
390             PlatformThreadData::current().threadTimers().updateSharedTimer();
391     }
392
393     checkConsistency();
394 }
395
396 void TimerBase::fireTimersInNestedEventLoop()
397 {
398     // Redirect to ThreadTimers.
399     PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop();
400 }
401
402 void TimerBase::didChangeAlignmentInterval()
403 {
404     setNextFireTime(m_unalignedNextFireTime);
405 }
406
407 double TimerBase::nextUnalignedFireInterval() const
408 {
409     ASSERT(isActive());
410     return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
411 }
412
413 } // namespace blink
414