Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / modules / webaudio / PeriodicWave.cpp
1 /*
2  * Copyright (C) 2012 Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1.  Redistributions of source code must retain the above copyright
9  *     notice, this list of conditions and the following disclaimer.
10  * 2.  Redistributions in binary form must reproduce the above copyright
11  *     notice, this list of conditions and the following disclaimer in the
12  *     documentation and/or other materials provided with the distribution.
13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14  *     its contributors may be used to endorse or promote products derived
15  *     from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include "config.h"
30
31 #if ENABLE(WEB_AUDIO)
32
33 #include "modules/webaudio/PeriodicWave.h"
34
35 #include "platform/audio/FFTFrame.h"
36 #include "platform/audio/VectorMath.h"
37 #include "modules/webaudio/OscillatorNode.h"
38 #include <algorithm>
39
40 const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
41 const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
42 const float CentsPerRange = 1200 / 3; // 1/3 Octave.
43
44 namespace blink {
45
46 using namespace VectorMath;
47
48 PeriodicWave* PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
49 {
50     bool isGood = real && imag && real->length() == imag->length();
51     ASSERT(isGood);
52     if (isGood) {
53         PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
54         size_t numberOfComponents = real->length();
55         periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
56         return periodicWave;
57     }
58     return 0;
59 }
60
61 PeriodicWave* PeriodicWave::createSine(float sampleRate)
62 {
63     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
64     periodicWave->generateBasicWaveform(OscillatorNode::SINE);
65     return periodicWave;
66 }
67
68 PeriodicWave* PeriodicWave::createSquare(float sampleRate)
69 {
70     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
71     periodicWave->generateBasicWaveform(OscillatorNode::SQUARE);
72     return periodicWave;
73 }
74
75 PeriodicWave* PeriodicWave::createSawtooth(float sampleRate)
76 {
77     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
78     periodicWave->generateBasicWaveform(OscillatorNode::SAWTOOTH);
79     return periodicWave;
80 }
81
82 PeriodicWave* PeriodicWave::createTriangle(float sampleRate)
83 {
84     PeriodicWave* periodicWave = new PeriodicWave(sampleRate);
85     periodicWave->generateBasicWaveform(OscillatorNode::TRIANGLE);
86     return periodicWave;
87 }
88
89 PeriodicWave::PeriodicWave(float sampleRate)
90     : m_sampleRate(sampleRate)
91     , m_periodicWaveSize(PeriodicWaveSize)
92     , m_numberOfRanges(NumberOfRanges)
93     , m_centsPerRange(CentsPerRange)
94 {
95     float nyquist = 0.5 * m_sampleRate;
96     m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
97     m_rateScale = m_periodicWaveSize / m_sampleRate;
98 }
99
100 void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
101 {
102     // Negative frequencies are allowed, in which case we alias to the positive frequency.
103     fundamentalFrequency = fabsf(fundamentalFrequency);
104
105     // Calculate the pitch range.
106     float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
107     float centsAboveLowestFrequency = log2f(ratio) * 1200;
108
109     // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
110     float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
111
112     pitchRange = std::max(pitchRange, 0.0f);
113     pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
114
115     // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
116     // It's a little confusing since the range index gets larger the more partials we cull out.
117     // So the lower table data will have a larger range index.
118     unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
119     unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
120
121     lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
122     higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
123
124     // Ranges from 0 -> 1 to interpolate between lower -> higher.
125     tableInterpolationFactor = pitchRange - rangeIndex1;
126 }
127
128 unsigned PeriodicWave::maxNumberOfPartials() const
129 {
130     return m_periodicWaveSize / 2;
131 }
132
133 unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
134 {
135     // Number of cents below nyquist where we cull partials.
136     float centsToCull = rangeIndex * m_centsPerRange;
137
138     // A value from 0 -> 1 representing what fraction of the partials to keep.
139     float cullingScale = pow(2, -centsToCull / 1200);
140
141     // The very top range will have all the partials culled.
142     unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
143
144     return numberOfPartials;
145 }
146
147 // Convert into time-domain wave buffers.
148 // One table is created for each range for non-aliasing playback at different playback rates.
149 // Thus, higher ranges have more high-frequency partials culled out.
150 void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
151 {
152     float normalizationScale = 1;
153
154     unsigned fftSize = m_periodicWaveSize;
155     unsigned halfSize = fftSize / 2;
156     unsigned i;
157
158     numberOfComponents = std::min(numberOfComponents, halfSize);
159
160     m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
161
162     for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
163         // This FFTFrame is used to cull partials (represented by frequency bins).
164         FFTFrame frame(fftSize);
165         float* realP = frame.realData();
166         float* imagP = frame.imagData();
167
168         // Copy from loaded frequency data and scale.
169         float scale = fftSize;
170         vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
171         vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
172
173         // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
174         for (i = numberOfComponents; i < halfSize; ++i) {
175             realP[i] = 0;
176             imagP[i] = 0;
177         }
178
179         // Generate complex conjugate because of the way the inverse FFT is defined.
180         float minusOne = -1;
181         vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
182
183         // Find the starting bin where we should start culling.
184         // We need to clear out the highest frequencies to band-limit the waveform.
185         unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
186
187         // Cull the aliasing partials for this pitch range.
188         for (i = numberOfPartials + 1; i < halfSize; ++i) {
189             realP[i] = 0;
190             imagP[i] = 0;
191         }
192         // Clear packed-nyquist if necessary.
193         if (numberOfPartials < halfSize)
194             imagP[0] = 0;
195
196         // Clear any DC-offset.
197         realP[0] = 0;
198
199         // Create the band-limited table.
200         OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize));
201         m_bandLimitedTables.append(table.release());
202
203         // Apply an inverse FFT to generate the time-domain table data.
204         float* data = m_bandLimitedTables[rangeIndex]->data();
205         frame.doInverseFFT(data);
206
207         // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
208         if (!rangeIndex) {
209             float maxValue;
210             vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);
211
212             if (maxValue)
213                 normalizationScale = 1.0f / maxValue;
214         }
215
216         // Apply normalization scale.
217         vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);
218     }
219 }
220
221 void PeriodicWave::generateBasicWaveform(int shape)
222 {
223     unsigned fftSize = periodicWaveSize();
224     unsigned halfSize = fftSize / 2;
225
226     AudioFloatArray real(halfSize);
227     AudioFloatArray imag(halfSize);
228     float* realP = real.data();
229     float* imagP = imag.data();
230
231     // Clear DC and Nyquist.
232     realP[0] = 0;
233     imagP[0] = 0;
234
235     for (unsigned n = 1; n < halfSize; ++n) {
236         float piFactor = 2 / (n * piFloat);
237
238         // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients
239         // for cos() are always 0.
240
241         // Fourier coefficients according to standard definition:
242         // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
243         //   = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
244         // since f(x) is an odd function.
245
246         float b; // Coefficient for sin().
247
248         // Calculate Fourier coefficients depending on the shape. Note that the overall scaling
249         // (magnitude) of the waveforms is normalized in createBandLimitedTables().
250         switch (shape) {
251         case OscillatorNode::SINE:
252             // Standard sine wave function.
253             b = (n == 1) ? 1 : 0;
254             break;
255         case OscillatorNode::SQUARE:
256             // Square-shaped waveform with the first half its maximum value and the second half its
257             // minimum value.
258             //
259             // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
260             //
261             // b[n] = 2/n/pi*(1-(-1)^n)
262             //      = 4/n/pi for n odd and 0 otherwise.
263             //      = 2*(2/(n*pi)) for n odd
264             b = (n & 1) ? 2 * piFactor : 0;
265             break;
266         case OscillatorNode::SAWTOOTH:
267             // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the
268             // second half from minimum to zero.
269             //
270             // b[n] = -2*(-1)^n/pi/n
271             //      = (2/(n*pi))*(-1)^(n+1)
272             b = piFactor * ((n & 1) ? 1 : -1);
273             break;
274         case OscillatorNode::TRIANGLE:
275             // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at
276             // time pi.
277             //
278             // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
279             //
280             // b[n] = 8*sin(pi*k/2)/(pi*k)^2
281             //      = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
282             //      = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
283             if (n & 1) {
284                 b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
285             } else {
286                 b = 0;
287             }
288             break;
289         default:
290             ASSERT_NOT_REACHED();
291             b = 0;
292             break;
293         }
294
295         realP[n] = 0;
296         imagP[n] = b;
297     }
298
299     createBandLimitedTables(realP, imagP, halfSize);
300 }
301
302 } // namespace blink
303
304 #endif // ENABLE(WEB_AUDIO)