Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / modules / webaudio / PeriodicWave.cpp
1 /*
2  * Copyright (C) 2012 Google Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1.  Redistributions of source code must retain the above copyright
9  *     notice, this list of conditions and the following disclaimer.
10  * 2.  Redistributions in binary form must reproduce the above copyright
11  *     notice, this list of conditions and the following disclaimer in the
12  *     documentation and/or other materials provided with the distribution.
13  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
14  *     its contributors may be used to endorse or promote products derived
15  *     from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include "config.h"
30
31 #if ENABLE(WEB_AUDIO)
32
33 #include "modules/webaudio/PeriodicWave.h"
34
35 #include "platform/audio/FFTFrame.h"
36 #include "platform/audio/VectorMath.h"
37 #include "modules/webaudio/OscillatorNode.h"
38 #include <algorithm>
39
40 const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
41 const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
42 const float CentsPerRange = 1200 / 3; // 1/3 Octave.
43
44 namespace WebCore {
45
46 using namespace VectorMath;
47
48 PassRefPtrWillBeRawPtr<PeriodicWave> PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
49 {
50     bool isGood = real && imag && real->length() == imag->length();
51     ASSERT(isGood);
52     if (isGood) {
53         RefPtrWillBeRawPtr<PeriodicWave> periodicWave = adoptRefWillBeNoop(new PeriodicWave(sampleRate));
54         size_t numberOfComponents = real->length();
55         periodicWave->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
56         return periodicWave;
57     }
58     return nullptr;
59 }
60
61 PassRefPtrWillBeRawPtr<PeriodicWave> PeriodicWave::createSine(float sampleRate)
62 {
63     RefPtrWillBeRawPtr<PeriodicWave> periodicWave = adoptRefWillBeNoop(new PeriodicWave(sampleRate));
64     periodicWave->generateBasicWaveform(OscillatorNode::SINE);
65     return periodicWave;
66 }
67
68 PassRefPtrWillBeRawPtr<PeriodicWave> PeriodicWave::createSquare(float sampleRate)
69 {
70     RefPtrWillBeRawPtr<PeriodicWave> periodicWave = adoptRefWillBeNoop(new PeriodicWave(sampleRate));
71     periodicWave->generateBasicWaveform(OscillatorNode::SQUARE);
72     return periodicWave;
73 }
74
75 PassRefPtrWillBeRawPtr<PeriodicWave> PeriodicWave::createSawtooth(float sampleRate)
76 {
77     RefPtrWillBeRawPtr<PeriodicWave> periodicWave = adoptRefWillBeNoop(new PeriodicWave(sampleRate));
78     periodicWave->generateBasicWaveform(OscillatorNode::SAWTOOTH);
79     return periodicWave;
80 }
81
82 PassRefPtrWillBeRawPtr<PeriodicWave> PeriodicWave::createTriangle(float sampleRate)
83 {
84     RefPtrWillBeRawPtr<PeriodicWave> periodicWave = adoptRefWillBeNoop(new PeriodicWave(sampleRate));
85     periodicWave->generateBasicWaveform(OscillatorNode::TRIANGLE);
86     return periodicWave;
87 }
88
89 PeriodicWave::PeriodicWave(float sampleRate)
90     : m_sampleRate(sampleRate)
91     , m_periodicWaveSize(PeriodicWaveSize)
92     , m_numberOfRanges(NumberOfRanges)
93     , m_centsPerRange(CentsPerRange)
94 {
95     ScriptWrappable::init(this);
96     float nyquist = 0.5 * m_sampleRate;
97     m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
98     m_rateScale = m_periodicWaveSize / m_sampleRate;
99 }
100
101 void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
102 {
103     // Negative frequencies are allowed, in which case we alias to the positive frequency.
104     fundamentalFrequency = fabsf(fundamentalFrequency);
105
106     // Calculate the pitch range.
107     float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
108     float centsAboveLowestFrequency = log2f(ratio) * 1200;
109
110     // Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
111     float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
112
113     pitchRange = std::max(pitchRange, 0.0f);
114     pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
115
116     // The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
117     // It's a little confusing since the range index gets larger the more partials we cull out.
118     // So the lower table data will have a larger range index.
119     unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
120     unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
121
122     lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
123     higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
124
125     // Ranges from 0 -> 1 to interpolate between lower -> higher.
126     tableInterpolationFactor = pitchRange - rangeIndex1;
127 }
128
129 unsigned PeriodicWave::maxNumberOfPartials() const
130 {
131     return m_periodicWaveSize / 2;
132 }
133
134 unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
135 {
136     // Number of cents below nyquist where we cull partials.
137     float centsToCull = rangeIndex * m_centsPerRange;
138
139     // A value from 0 -> 1 representing what fraction of the partials to keep.
140     float cullingScale = pow(2, -centsToCull / 1200);
141
142     // The very top range will have all the partials culled.
143     unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
144
145     return numberOfPartials;
146 }
147
148 // Convert into time-domain wave buffers.
149 // One table is created for each range for non-aliasing playback at different playback rates.
150 // Thus, higher ranges have more high-frequency partials culled out.
151 void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
152 {
153     float normalizationScale = 1;
154
155     unsigned fftSize = m_periodicWaveSize;
156     unsigned halfSize = fftSize / 2;
157     unsigned i;
158
159     numberOfComponents = std::min(numberOfComponents, halfSize);
160
161     m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
162
163     for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
164         // This FFTFrame is used to cull partials (represented by frequency bins).
165         FFTFrame frame(fftSize);
166         float* realP = frame.realData();
167         float* imagP = frame.imagData();
168
169         // Copy from loaded frequency data and scale.
170         float scale = fftSize;
171         vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
172         vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
173
174         // If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
175         for (i = numberOfComponents; i < halfSize; ++i) {
176             realP[i] = 0;
177             imagP[i] = 0;
178         }
179
180         // Generate complex conjugate because of the way the inverse FFT is defined.
181         float minusOne = -1;
182         vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
183
184         // Find the starting bin where we should start culling.
185         // We need to clear out the highest frequencies to band-limit the waveform.
186         unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
187
188         // Cull the aliasing partials for this pitch range.
189         for (i = numberOfPartials + 1; i < halfSize; ++i) {
190             realP[i] = 0;
191             imagP[i] = 0;
192         }
193         // Clear packed-nyquist if necessary.
194         if (numberOfPartials < halfSize)
195             imagP[0] = 0;
196
197         // Clear any DC-offset.
198         realP[0] = 0;
199
200         // Create the band-limited table.
201         OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize));
202         m_bandLimitedTables.append(table.release());
203
204         // Apply an inverse FFT to generate the time-domain table data.
205         float* data = m_bandLimitedTables[rangeIndex]->data();
206         frame.doInverseFFT(data);
207
208         // For the first range (which has the highest power), calculate its peak value then compute normalization scale.
209         if (!rangeIndex) {
210             float maxValue;
211             vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);
212
213             if (maxValue)
214                 normalizationScale = 1.0f / maxValue;
215         }
216
217         // Apply normalization scale.
218         vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);
219     }
220 }
221
222 void PeriodicWave::generateBasicWaveform(int shape)
223 {
224     unsigned fftSize = periodicWaveSize();
225     unsigned halfSize = fftSize / 2;
226
227     AudioFloatArray real(halfSize);
228     AudioFloatArray imag(halfSize);
229     float* realP = real.data();
230     float* imagP = imag.data();
231
232     // Clear DC and Nyquist.
233     realP[0] = 0;
234     imagP[0] = 0;
235
236     for (unsigned n = 1; n < halfSize; ++n) {
237         float piFactor = 2 / (n * piFloat);
238
239         // All waveforms are odd functions with a positive slope at time 0. Hence the coefficients
240         // for cos() are always 0.
241
242         // Fourier coefficients according to standard definition:
243         // b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
244         //   = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
245         // since f(x) is an odd function.
246
247         float b; // Coefficient for sin().
248
249         // Calculate Fourier coefficients depending on the shape. Note that the overall scaling
250         // (magnitude) of the waveforms is normalized in createBandLimitedTables().
251         switch (shape) {
252         case OscillatorNode::SINE:
253             // Standard sine wave function.
254             b = (n == 1) ? 1 : 0;
255             break;
256         case OscillatorNode::SQUARE:
257             // Square-shaped waveform with the first half its maximum value and the second half its
258             // minimum value.
259             //
260             // See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
261             //
262             // b[n] = 2/n/pi*(1-(-1)^n)
263             //      = 4/n/pi for n odd and 0 otherwise.
264             //      = 2*(2/(n*pi)) for n odd
265             b = (n & 1) ? 2 * piFactor : 0;
266             break;
267         case OscillatorNode::SAWTOOTH:
268             // Sawtooth-shaped waveform with the first half ramping from zero to maximum and the
269             // second half from minimum to zero.
270             //
271             // b[n] = -2*(-1)^n/pi/n
272             //      = (2/(n*pi))*(-1)^(n+1)
273             b = piFactor * ((n & 1) ? 1 : -1);
274             break;
275         case OscillatorNode::TRIANGLE:
276             // Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and back to 0 at
277             // time pi.
278             //
279             // See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
280             //
281             // b[n] = 8*sin(pi*k/2)/(pi*k)^2
282             //      = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
283             //      = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
284             if (n & 1) {
285                 b = 2 * (piFactor * piFactor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
286             } else {
287                 b = 0;
288             }
289             break;
290         default:
291             ASSERT_NOT_REACHED();
292             b = 0;
293             break;
294         }
295
296         realP[n] = 0;
297         imagP[n] = b;
298     }
299
300     createBandLimitedTables(realP, imagP, halfSize);
301 }
302
303 } // namespace WebCore
304
305 #endif // ENABLE(WEB_AUDIO)