Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / core / xml / XPathNodeSet.cpp
1 /*
2  * Copyright (C) 2007 Alexey Proskuryakov <ap@webkit.org>
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25
26 #include "config.h"
27 #include "core/xml/XPathNodeSet.h"
28
29 #include "core/dom/Attr.h"
30 #include "core/dom/Document.h"
31 #include "core/dom/Element.h"
32 #include "core/dom/NodeTraversal.h"
33
34 namespace blink {
35 namespace XPath {
36
37 // When a node set is large, sorting it by traversing the whole document is
38 // better (we can assume that we aren't dealing with documents that we cannot
39 // even traverse in reasonable time).
40 const unsigned traversalSortCutoff = 10000;
41
42 typedef WillBeHeapVector<RawPtrWillBeMember<Node> > NodeSetVector;
43
44 PassOwnPtrWillBeRawPtr<NodeSet> NodeSet::create(const NodeSet& other)
45 {
46     OwnPtrWillBeRawPtr<NodeSet> nodeSet = NodeSet::create();
47     nodeSet->m_isSorted = other.m_isSorted;
48     nodeSet->m_subtreesAreDisjoint = other.m_subtreesAreDisjoint;
49     nodeSet->m_nodes.appendVector(other.m_nodes);
50     return nodeSet.release();
51 }
52
53 static inline Node* parentWithDepth(unsigned depth, const NodeSetVector& parents)
54 {
55     ASSERT(parents.size() >= depth + 1);
56     return parents[parents.size() - 1 - depth];
57 }
58
59 static void sortBlock(unsigned from, unsigned to, WillBeHeapVector<NodeSetVector>& parentMatrix, bool mayContainAttributeNodes)
60 {
61     // Should not call this function with less that two nodes to sort.
62     ASSERT(from + 1 < to);
63     unsigned minDepth = UINT_MAX;
64     for (unsigned i = from; i < to; ++i) {
65         unsigned depth = parentMatrix[i].size() - 1;
66         if (minDepth > depth)
67             minDepth = depth;
68     }
69
70     // Find the common ancestor.
71     unsigned commonAncestorDepth = minDepth;
72     Node* commonAncestor;
73     while (true) {
74         commonAncestor = parentWithDepth(commonAncestorDepth, parentMatrix[from]);
75         if (commonAncestorDepth == 0)
76             break;
77
78         bool allEqual = true;
79         for (unsigned i = from + 1; i < to; ++i) {
80             if (commonAncestor != parentWithDepth(commonAncestorDepth, parentMatrix[i])) {
81                 allEqual = false;
82                 break;
83             }
84         }
85         if (allEqual)
86             break;
87
88         --commonAncestorDepth;
89     }
90
91     if (commonAncestorDepth == minDepth) {
92         // One of the nodes is the common ancestor => it is the first in
93         // document order. Find it and move it to the beginning.
94         for (unsigned i = from; i < to; ++i) {
95             if (commonAncestor == parentMatrix[i][0]) {
96                 parentMatrix[i].swap(parentMatrix[from]);
97                 if (from + 2 < to)
98                     sortBlock(from + 1, to, parentMatrix, mayContainAttributeNodes);
99                 return;
100             }
101         }
102     }
103
104     if (mayContainAttributeNodes && commonAncestor->isElementNode()) {
105         // The attribute nodes and namespace nodes of an element occur before
106         // the children of the element. The namespace nodes are defined to occur
107         // before the attribute nodes. The relative order of namespace nodes is
108         // implementation-dependent. The relative order of attribute nodes is
109         // implementation-dependent.
110         unsigned sortedEnd = from;
111         // FIXME: namespace nodes are not implemented.
112         for (unsigned i = sortedEnd; i < to; ++i) {
113             Node* n = parentMatrix[i][0];
114             if (n->isAttributeNode() && toAttr(n)->ownerElement() == commonAncestor)
115                 parentMatrix[i].swap(parentMatrix[sortedEnd++]);
116         }
117         if (sortedEnd != from) {
118             if (to - sortedEnd > 1)
119                 sortBlock(sortedEnd, to, parentMatrix, mayContainAttributeNodes);
120             return;
121         }
122     }
123
124     // Children nodes of the common ancestor induce a subdivision of our
125     // node-set. Sort it according to this subdivision, and recursively sort
126     // each group.
127     WillBeHeapHashSet<RawPtrWillBeMember<Node> > parentNodes;
128     for (unsigned i = from; i < to; ++i)
129         parentNodes.add(parentWithDepth(commonAncestorDepth + 1, parentMatrix[i]));
130
131     unsigned previousGroupEnd = from;
132     unsigned groupEnd = from;
133     for (Node* n = commonAncestor->firstChild(); n; n = n->nextSibling()) {
134         // If parentNodes contains the node, perform a linear search to move its
135         // children in the node-set to the beginning.
136         if (parentNodes.contains(n)) {
137             for (unsigned i = groupEnd; i < to; ++i) {
138                 if (parentWithDepth(commonAncestorDepth + 1, parentMatrix[i]) == n)
139                     parentMatrix[i].swap(parentMatrix[groupEnd++]);
140             }
141
142             if (groupEnd - previousGroupEnd > 1)
143                 sortBlock(previousGroupEnd, groupEnd, parentMatrix, mayContainAttributeNodes);
144
145             ASSERT(previousGroupEnd != groupEnd);
146             previousGroupEnd = groupEnd;
147 #if ENABLE(ASSERT)
148             parentNodes.remove(n);
149 #endif
150         }
151     }
152
153     ASSERT(parentNodes.isEmpty());
154 }
155
156 void NodeSet::sort() const
157 {
158     if (m_isSorted)
159         return;
160
161     unsigned nodeCount = m_nodes.size();
162     if (nodeCount < 2) {
163         const_cast<bool&>(m_isSorted) = true;
164         return;
165     }
166
167     if (nodeCount > traversalSortCutoff) {
168         traversalSort();
169         return;
170     }
171
172     bool containsAttributeNodes = false;
173
174     WillBeHeapVector<NodeSetVector> parentMatrix(nodeCount);
175     for (unsigned i = 0; i < nodeCount; ++i) {
176         NodeSetVector& parentsVector = parentMatrix[i];
177         Node* n = m_nodes[i].get();
178         parentsVector.append(n);
179         if (n->isAttributeNode()) {
180             n = toAttr(n)->ownerElement();
181             parentsVector.append(n);
182             containsAttributeNodes = true;
183         }
184         for (n = n->parentNode(); n; n = n->parentNode())
185             parentsVector.append(n);
186     }
187     sortBlock(0, nodeCount, parentMatrix, containsAttributeNodes);
188
189     // It is not possible to just assign the result to m_nodes, because some
190     // nodes may get dereferenced and destroyed.
191     WillBeHeapVector<RefPtrWillBeMember<Node> > sortedNodes;
192     sortedNodes.reserveInitialCapacity(nodeCount);
193     for (unsigned i = 0; i < nodeCount; ++i)
194         sortedNodes.append(parentMatrix[i][0]);
195
196     const_cast<WillBeHeapVector<RefPtrWillBeMember<Node> >&>(m_nodes).swap(sortedNodes);
197 }
198
199 static Node* findRootNode(Node* node)
200 {
201     if (node->isAttributeNode())
202         node = toAttr(node)->ownerElement();
203     if (node->inDocument()) {
204         node = &node->document();
205     } else {
206         while (Node* parent = node->parentNode())
207             node = parent;
208     }
209     return node;
210 }
211
212 void NodeSet::traversalSort() const
213 {
214     WillBeHeapHashSet<RawPtrWillBeMember<Node> > nodes;
215     bool containsAttributeNodes = false;
216
217     unsigned nodeCount = m_nodes.size();
218     ASSERT(nodeCount > 1);
219     for (unsigned i = 0; i < nodeCount; ++i) {
220         Node* node = m_nodes[i].get();
221         nodes.add(node);
222         if (node->isAttributeNode())
223             containsAttributeNodes = true;
224     }
225
226     WillBeHeapVector<RefPtrWillBeMember<Node> > sortedNodes;
227     sortedNodes.reserveInitialCapacity(nodeCount);
228
229     for (Node& n : NodeTraversal::startsAt(findRootNode(m_nodes.first().get()))) {
230         if (nodes.contains(&n))
231             sortedNodes.append(&n);
232
233         if (!containsAttributeNodes || !n.isElementNode())
234             continue;
235
236         Element* element = toElement(&n);
237         AttributeCollection attributes = element->attributes();
238         AttributeCollection::iterator end = attributes.end();
239         for (AttributeCollection::iterator it = attributes.begin(); it != end; ++it) {
240             RefPtrWillBeRawPtr<Attr> attr = element->attrIfExists(it->name());
241             if (attr && nodes.contains(attr.get()))
242                 sortedNodes.append(attr);
243         }
244     }
245
246     ASSERT(sortedNodes.size() == nodeCount);
247     const_cast<WillBeHeapVector<RefPtrWillBeMember<Node> >&>(m_nodes).swap(sortedNodes);
248 }
249
250 void NodeSet::reverse()
251 {
252     if (m_nodes.isEmpty())
253         return;
254
255     unsigned from = 0;
256     unsigned to = m_nodes.size() - 1;
257     while (from < to) {
258         m_nodes[from].swap(m_nodes[to]);
259         ++from;
260         --to;
261     }
262 }
263
264 Node* NodeSet::firstNode() const
265 {
266     if (isEmpty())
267         return 0;
268
269     // FIXME: fully sorting the node-set just to find its first node is
270     // wasteful.
271     sort();
272     return m_nodes.at(0).get();
273 }
274
275 Node* NodeSet::anyNode() const
276 {
277     if (isEmpty())
278         return 0;
279
280     return m_nodes.at(0).get();
281 }
282
283 }
284 }