Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / third_party / WebKit / Source / core / page / TouchAdjustment.cpp
1 /*
2  * Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
3  *
4  * This library is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU Library General Public
6  * License as published by the Free Software Foundation; either
7  * version 2 of the License, or (at your option) any later version.
8  *
9  * This library is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * Library General Public License for more details.
13  *
14  * You should have received a copy of the GNU Library General Public License
15  * along with this library; see the file COPYING.LIB.  If not, write to
16  * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
17  * Boston, MA 02110-1301, USA.
18  */
19
20 #include "config.h"
21
22 #include "core/page/TouchAdjustment.h"
23
24 #include "core/dom/ContainerNode.h"
25 #include "core/dom/Node.h"
26 #include "core/dom/NodeRenderStyle.h"
27 #include "core/dom/Text.h"
28 #include "core/editing/Editor.h"
29 #include "core/frame/FrameView.h"
30 #include "core/frame/LocalFrame.h"
31 #include "core/html/HTMLFrameOwnerElement.h"
32 #include "core/rendering/RenderBox.h"
33 #include "core/rendering/RenderObject.h"
34 #include "core/rendering/RenderText.h"
35 #include "core/rendering/style/RenderStyle.h"
36 #include "platform/geometry/FloatPoint.h"
37 #include "platform/geometry/FloatQuad.h"
38 #include "platform/geometry/IntSize.h"
39 #include "platform/text/TextBreakIterator.h"
40
41 namespace blink {
42
43 namespace TouchAdjustment {
44
45 const float zeroTolerance = 1e-6f;
46
47 // Class for remembering absolute quads of a target node and what node they represent.
48 class SubtargetGeometry {
49     ALLOW_ONLY_INLINE_ALLOCATION();
50 public:
51     SubtargetGeometry(Node* node, const FloatQuad& quad)
52         : m_node(node)
53         , m_quad(quad)
54     { }
55     void trace(Visitor* visitor) { visitor->trace(m_node); }
56
57     Node* node() const { return m_node; }
58     FloatQuad quad() const { return m_quad; }
59     IntRect boundingBox() const { return m_quad.enclosingBoundingBox(); }
60
61 private:
62     RawPtrWillBeMember<Node> m_node;
63     FloatQuad m_quad;
64 };
65
66 }
67
68 }
69
70 WTF_ALLOW_MOVE_INIT_AND_COMPARE_WITH_MEM_FUNCTIONS(blink::TouchAdjustment::SubtargetGeometry)
71
72 namespace blink {
73
74 namespace TouchAdjustment {
75
76 typedef WillBeHeapVector<SubtargetGeometry> SubtargetGeometryList;
77 typedef bool (*NodeFilter)(Node*);
78 typedef void (*AppendSubtargetsForNode)(Node*, SubtargetGeometryList&);
79 typedef float (*DistanceFunction)(const IntPoint&, const IntRect&, const SubtargetGeometry&);
80
81 // Takes non-const Node* because isContentEditable is a non-const function.
82 bool nodeRespondsToTapGesture(Node* node)
83 {
84     if (node->willRespondToMouseClickEvents() || node->willRespondToMouseMoveEvents())
85         return true;
86     if (node->isElementNode()) {
87         Element* element = toElement(node);
88         if (element->isMouseFocusable())
89             return true;
90         // Accept nodes that has a CSS effect when touched.
91         if (element->childrenOrSiblingsAffectedByActive() || element->childrenOrSiblingsAffectedByHover())
92             return true;
93     }
94     if (RenderStyle* renderStyle = node->renderStyle()) {
95         if (renderStyle->affectedByActive() || renderStyle->affectedByHover())
96             return true;
97     }
98     return false;
99 }
100
101 bool nodeIsZoomTarget(Node* node)
102 {
103     if (node->isTextNode() || node->isShadowRoot())
104         return false;
105
106     ASSERT(node->renderer());
107     return node->renderer()->isBox();
108 }
109
110 bool providesContextMenuItems(Node* node)
111 {
112     // This function tries to match the nodes that receive special context-menu items in
113     // ContextMenuController::populate(), and should be kept uptodate with those.
114     ASSERT(node->renderer() || node->isShadowRoot());
115     if (!node->renderer())
116         return false;
117     if (node->isContentEditable())
118         return true;
119     if (node->isLink())
120         return true;
121     if (node->renderer()->isImage())
122         return true;
123     if (node->renderer()->isMedia())
124         return true;
125     if (node->renderer()->canBeSelectionLeaf()) {
126         // If the context menu gesture will trigger a selection all selectable nodes are valid targets.
127         if (node->renderer()->frame()->editor().behavior().shouldSelectOnContextualMenuClick())
128             return true;
129         // Only the selected part of the renderer is a valid target, but this will be corrected in
130         // appendContextSubtargetsForNode.
131         if (node->renderer()->selectionState() != RenderObject::SelectionNone)
132             return true;
133     }
134     return false;
135 }
136
137 static inline void appendQuadsToSubtargetList(Vector<FloatQuad>& quads, Node* node, SubtargetGeometryList& subtargets)
138 {
139     Vector<FloatQuad>::const_iterator it = quads.begin();
140     const Vector<FloatQuad>::const_iterator end = quads.end();
141     for (; it != end; ++it)
142         subtargets.append(SubtargetGeometry(node, *it));
143 }
144
145 static inline void appendBasicSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
146 {
147     // Node guaranteed to have renderer due to check in node filter.
148     ASSERT(node->renderer());
149
150     Vector<FloatQuad> quads;
151     node->renderer()->absoluteQuads(quads);
152
153     appendQuadsToSubtargetList(quads, node, subtargets);
154 }
155
156 static inline void appendContextSubtargetsForNode(Node* node, SubtargetGeometryList& subtargets)
157 {
158     // This is a variant of appendBasicSubtargetsForNode that adds special subtargets for
159     // selected or auto-selectable parts of text nodes.
160     ASSERT(node->renderer());
161
162     if (!node->isTextNode())
163         return appendBasicSubtargetsForNode(node, subtargets);
164
165     Text* textNode = toText(node);
166     RenderText* textRenderer = textNode->renderer();
167
168     if (textRenderer->frame()->editor().behavior().shouldSelectOnContextualMenuClick()) {
169         // Make subtargets out of every word.
170         String textValue = textNode->data();
171         TextBreakIterator* wordIterator = wordBreakIterator(textValue, 0, textValue.length());
172         int lastOffset = wordIterator->first();
173         if (lastOffset == -1)
174             return;
175         int offset;
176         while ((offset = wordIterator->next()) != -1) {
177             if (isWordTextBreak(wordIterator)) {
178                 Vector<FloatQuad> quads;
179                 textRenderer->absoluteQuadsForRange(quads, lastOffset, offset);
180                 appendQuadsToSubtargetList(quads, textNode, subtargets);
181             }
182             lastOffset = offset;
183         }
184     } else {
185         if (textRenderer->selectionState() == RenderObject::SelectionNone)
186             return appendBasicSubtargetsForNode(node, subtargets);
187         // If selected, make subtargets out of only the selected part of the text.
188         int startPos, endPos;
189         switch (textRenderer->selectionState()) {
190         case RenderObject::SelectionInside:
191             startPos = 0;
192             endPos = textRenderer->textLength();
193             break;
194         case RenderObject::SelectionStart:
195             textRenderer->selectionStartEnd(startPos, endPos);
196             endPos = textRenderer->textLength();
197             break;
198         case RenderObject::SelectionEnd:
199             textRenderer->selectionStartEnd(startPos, endPos);
200             startPos = 0;
201             break;
202         case RenderObject::SelectionBoth:
203             textRenderer->selectionStartEnd(startPos, endPos);
204             break;
205         default:
206             ASSERT_NOT_REACHED();
207             return;
208         }
209         Vector<FloatQuad> quads;
210         textRenderer->absoluteQuadsForRange(quads, startPos, endPos);
211         appendQuadsToSubtargetList(quads, textNode, subtargets);
212     }
213 }
214
215 static inline void appendZoomableSubtargets(Node* node, SubtargetGeometryList& subtargets)
216 {
217     RenderBox* renderer = toRenderBox(node->renderer());
218     ASSERT(renderer);
219
220     Vector<FloatQuad> quads;
221     FloatRect borderBoxRect = renderer->borderBoxRect();
222     FloatRect contentBoxRect = renderer->contentBoxRect();
223     quads.append(renderer->localToAbsoluteQuad(borderBoxRect));
224     if (borderBoxRect != contentBoxRect)
225         quads.append(renderer->localToAbsoluteQuad(contentBoxRect));
226     // FIXME: For RenderBlocks, add column boxes and content boxes cleared for floats.
227
228     Vector<FloatQuad>::const_iterator it = quads.begin();
229     const Vector<FloatQuad>::const_iterator end = quads.end();
230     for (; it != end; ++it)
231         subtargets.append(SubtargetGeometry(node, *it));
232 }
233
234 static inline Node* parentShadowHostOrOwner(const Node* node)
235 {
236     if (Node* ancestor = node->parentOrShadowHostNode())
237         return ancestor;
238     if (node->isDocumentNode())
239         return toDocument(node)->ownerElement();
240     return 0;
241 }
242
243 // Compiles a list of subtargets of all the relevant target nodes.
244 void compileSubtargetList(const WillBeHeapVector<RefPtrWillBeMember<Node> >& intersectedNodes, SubtargetGeometryList& subtargets, NodeFilter nodeFilter, AppendSubtargetsForNode appendSubtargetsForNode)
245 {
246     // Find candidates responding to tap gesture events in O(n) time.
247     WillBeHeapHashMap<RawPtrWillBeMember<Node>, RawPtrWillBeMember<Node> > responderMap;
248     WillBeHeapHashSet<RawPtrWillBeMember<Node> > ancestorsToRespondersSet;
249     WillBeHeapVector<RawPtrWillBeMember<Node> > candidates;
250     WillBeHeapHashSet<RawPtrWillBeMember<Node> > editableAncestors;
251
252     // A node matching the NodeFilter is called a responder. Candidate nodes must either be a
253     // responder or have an ancestor that is a responder.
254     // This iteration tests all ancestors at most once by caching earlier results.
255     for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
256         Node* node = intersectedNodes[i].get();
257         WillBeHeapVector<RawPtrWillBeMember<Node> > visitedNodes;
258         Node* respondingNode = 0;
259         for (Node* visitedNode = node; visitedNode; visitedNode = visitedNode->parentOrShadowHostNode()) {
260             // Check if we already have a result for a common ancestor from another candidate.
261             respondingNode = responderMap.get(visitedNode);
262             if (respondingNode)
263                 break;
264             visitedNodes.append(visitedNode);
265             // Check if the node filter applies, which would mean we have found a responding node.
266             if (nodeFilter(visitedNode)) {
267                 respondingNode = visitedNode;
268                 // Continue the iteration to collect the ancestors of the responder, which we will need later.
269                 for (visitedNode = parentShadowHostOrOwner(visitedNode); visitedNode; visitedNode = parentShadowHostOrOwner(visitedNode)) {
270                     WillBeHeapHashSet<RawPtrWillBeMember<Node> >::AddResult addResult = ancestorsToRespondersSet.add(visitedNode);
271                     if (!addResult.isNewEntry)
272                         break;
273                 }
274                 break;
275             }
276         }
277         // Insert the detected responder for all the visited nodes.
278         for (unsigned j = 0; j < visitedNodes.size(); j++)
279             responderMap.add(visitedNodes[j], respondingNode);
280
281         if (respondingNode)
282             candidates.append(node);
283     }
284
285     // We compile the list of component absolute quads instead of using the bounding rect
286     // to be able to perform better hit-testing on inline links on line-breaks.
287     for (unsigned i = 0; i < candidates.size(); i++) {
288         Node* candidate = candidates[i];
289         // Skip nodes who's responders are ancestors of other responders. This gives preference to
290         // the inner-most event-handlers. So that a link is always preferred even when contained
291         // in an element that monitors all click-events.
292         Node* respondingNode = responderMap.get(candidate);
293         ASSERT(respondingNode);
294         if (ancestorsToRespondersSet.contains(respondingNode))
295             continue;
296         // Consolidate bounds for editable content.
297         if (editableAncestors.contains(candidate))
298             continue;
299         if (candidate->isContentEditable()) {
300             Node* replacement = candidate;
301             Node* parent = candidate->parentOrShadowHostNode();
302             while (parent && parent->isContentEditable()) {
303                 replacement = parent;
304                 if (editableAncestors.contains(replacement)) {
305                     replacement = 0;
306                     break;
307                 }
308                 editableAncestors.add(replacement);
309                 parent = parent->parentOrShadowHostNode();
310             }
311             candidate = replacement;
312         }
313         if (candidate)
314             appendSubtargetsForNode(candidate, subtargets);
315     }
316 }
317
318 // Compiles a list of zoomable subtargets.
319 void compileZoomableSubtargets(const WillBeHeapVector<RefPtrWillBeMember<Node> >& intersectedNodes, SubtargetGeometryList& subtargets)
320 {
321     for (unsigned i = 0; i < intersectedNodes.size(); ++i) {
322         Node* candidate = intersectedNodes[i].get();
323         if (nodeIsZoomTarget(candidate))
324             appendZoomableSubtargets(candidate, subtargets);
325     }
326 }
327
328 // This returns quotient of the target area and its intersection with the touch area.
329 // This will prioritize largest intersection and smallest area, while balancing the two against each other.
330 float zoomableIntersectionQuotient(const IntPoint& touchHotspot, const IntRect& touchArea, const SubtargetGeometry& subtarget)
331 {
332     IntRect rect = subtarget.boundingBox();
333
334     // Convert from frame coordinates to window coordinates.
335     rect = subtarget.node()->document().view()->contentsToWindow(rect);
336
337     // Check the rectangle is meaningful zoom target. It should at least contain the hotspot.
338     if (!rect.contains(touchHotspot))
339         return std::numeric_limits<float>::infinity();
340     IntRect intersection = rect;
341     intersection.intersect(touchArea);
342
343     // Return the quotient of the intersection.
344     return rect.size().area() / (float)intersection.size().area();
345 }
346
347 // Uses a hybrid of distance to adjust and intersect ratio, normalizing each score between 0 and 1
348 // and combining them. The distance to adjust works best for disambiguating clicks on targets such
349 // as links, where the width may be significantly larger than the touch width. Using area of overlap
350 // in such cases can lead to a bias towards shorter links. Conversely, percentage of overlap can
351 // provide strong confidence in tapping on a small target, where the overlap is often quite high,
352 // and works well for tightly packed controls.
353 float hybridDistanceFunction(const IntPoint& touchHotspot, const IntRect& touchRect, const SubtargetGeometry& subtarget)
354 {
355     IntRect rect = subtarget.boundingBox();
356
357     // Convert from frame coordinates to window coordinates.
358     rect = subtarget.node()->document().view()->contentsToWindow(rect);
359
360     float radiusSquared = 0.25f * (touchRect.size().diagonalLengthSquared());
361     float distanceToAdjustScore = rect.distanceSquaredToPoint(touchHotspot) / radiusSquared;
362
363     int maxOverlapWidth = std::min(touchRect.width(), rect.width());
364     int maxOverlapHeight = std::min(touchRect.height(), rect.height());
365     float maxOverlapArea = std::max(maxOverlapWidth * maxOverlapHeight, 1);
366     rect.intersect(touchRect);
367     float intersectArea = rect.size().area();
368     float intersectionScore = 1 - intersectArea / maxOverlapArea;
369
370     float hybridScore = intersectionScore + distanceToAdjustScore;
371
372     return hybridScore;
373 }
374
375 FloatPoint contentsToWindow(FrameView *view, FloatPoint pt)
376 {
377     int x = static_cast<int>(pt.x() + 0.5f);
378     int y = static_cast<int>(pt.y() + 0.5f);
379     IntPoint adjusted = view->contentsToWindow(IntPoint(x, y));
380     return FloatPoint(adjusted.x(), adjusted.y());
381 }
382
383 // Adjusts 'point' to the nearest point inside rect, and leaves it unchanged if already inside.
384 void adjustPointToRect(FloatPoint& point, const FloatRect& rect)
385 {
386     if (point.x() < rect.x())
387         point.setX(rect.x());
388     else if (point.x() > rect.maxX())
389         point.setX(rect.maxX());
390
391     if (point.y() < rect.y())
392         point.setY(rect.y());
393     else if (point.y() > rect.maxY())
394         point.setY(rect.maxY());
395 }
396
397 bool snapTo(const SubtargetGeometry& geom, const IntPoint& touchPoint, const IntRect& touchArea, IntPoint& adjustedPoint)
398 {
399     FrameView* view = geom.node()->document().view();
400     FloatQuad quad = geom.quad();
401
402     if (quad.isRectilinear()) {
403         IntRect contentBounds = geom.boundingBox();
404         // Convert from frame coordinates to window coordinates.
405         IntRect bounds = view->contentsToWindow(contentBounds);
406         if (bounds.contains(touchPoint)) {
407             adjustedPoint = touchPoint;
408             return true;
409         }
410         if (bounds.intersects(touchArea)) {
411             bounds.intersect(touchArea);
412             adjustedPoint = bounds.center();
413             return true;
414         }
415         return false;
416     }
417
418     // The following code tries to adjust the point to place inside a both the touchArea and the non-rectilinear quad.
419     // FIXME: This will return the point inside the touch area that is the closest to the quad center, but does not
420     // guarantee that the point will be inside the quad. Corner-cases exist where the quad will intersect but this
421     // will fail to adjust the point to somewhere in the intersection.
422
423     // Convert quad from content to window coordinates.
424     FloatPoint p1 = contentsToWindow(view, quad.p1());
425     FloatPoint p2 = contentsToWindow(view, quad.p2());
426     FloatPoint p3 = contentsToWindow(view, quad.p3());
427     FloatPoint p4 = contentsToWindow(view, quad.p4());
428     quad = FloatQuad(p1, p2, p3, p4);
429
430     if (quad.containsPoint(touchPoint)) {
431         adjustedPoint = touchPoint;
432         return true;
433     }
434
435     // Pull point towards the center of the element.
436     FloatPoint center = quad.center();
437
438     adjustPointToRect(center, touchArea);
439     adjustedPoint = roundedIntPoint(center);
440
441     return quad.containsPoint(adjustedPoint);
442 }
443
444 // A generic function for finding the target node with the lowest distance metric. A distance metric here is the result
445 // of a distance-like function, that computes how well the touch hits the node.
446 // Distance functions could for instance be distance squared or area of intersection.
447 bool findNodeWithLowestDistanceMetric(Node*& targetNode, IntPoint& targetPoint, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, SubtargetGeometryList& subtargets, DistanceFunction distanceFunction)
448 {
449     targetNode = 0;
450     float bestDistanceMetric = std::numeric_limits<float>::infinity();
451     SubtargetGeometryList::const_iterator it = subtargets.begin();
452     const SubtargetGeometryList::const_iterator end = subtargets.end();
453     IntPoint adjustedPoint;
454
455     for (; it != end; ++it) {
456         Node* node = it->node();
457         float distanceMetric = distanceFunction(touchHotspot, touchArea, *it);
458         if (distanceMetric < bestDistanceMetric) {
459             if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
460                 targetPoint = adjustedPoint;
461                 targetArea = it->boundingBox();
462                 targetNode = node;
463                 bestDistanceMetric = distanceMetric;
464             }
465         } else if (distanceMetric - bestDistanceMetric < zeroTolerance) {
466             if (snapTo(*it, touchHotspot, touchArea, adjustedPoint)) {
467                 if (node->isDescendantOf(targetNode)) {
468                     // Try to always return the inner-most element.
469                     targetPoint = adjustedPoint;
470                     targetNode = node;
471                     targetArea = it->boundingBox();
472                 }
473             }
474         }
475     }
476
477     // As for HitTestResult.innerNode, we skip over pseudo elements.
478     if (targetNode && targetNode->isPseudoElement())
479         targetNode = targetNode->parentOrShadowHostNode();
480
481     if (targetNode) {
482         targetArea = targetNode->document().view()->contentsToWindow(targetArea);
483     }
484     return (targetNode);
485 }
486
487 } // namespace TouchAdjustment
488
489 bool findBestClickableCandidate(Node*& targetNode, IntPoint& targetPoint, const IntPoint& touchHotspot, const IntRect& touchArea, const WillBeHeapVector<RefPtrWillBeMember<Node> >& nodes)
490 {
491     IntRect targetArea;
492     TouchAdjustment::SubtargetGeometryList subtargets;
493     TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::nodeRespondsToTapGesture, TouchAdjustment::appendBasicSubtargetsForNode);
494     return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
495 }
496
497 bool findBestContextMenuCandidate(Node*& targetNode, IntPoint& targetPoint, const IntPoint& touchHotspot, const IntRect& touchArea, const WillBeHeapVector<RefPtrWillBeMember<Node> >& nodes)
498 {
499     IntRect targetArea;
500     TouchAdjustment::SubtargetGeometryList subtargets;
501     TouchAdjustment::compileSubtargetList(nodes, subtargets, TouchAdjustment::providesContextMenuItems, TouchAdjustment::appendContextSubtargetsForNode);
502     return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::hybridDistanceFunction);
503 }
504
505 bool findBestZoomableArea(Node*& targetNode, IntRect& targetArea, const IntPoint& touchHotspot, const IntRect& touchArea, const WillBeHeapVector<RefPtrWillBeMember<Node> >& nodes)
506 {
507     IntPoint targetPoint;
508     TouchAdjustment::SubtargetGeometryList subtargets;
509     TouchAdjustment::compileZoomableSubtargets(nodes, subtargets);
510     return TouchAdjustment::findNodeWithLowestDistanceMetric(targetNode, targetPoint, targetArea, touchHotspot, touchArea, subtargets, TouchAdjustment::zoomableIntersectionQuotient);
511 }
512
513 } // namespace blink