Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / net / quic / crypto / strike_register.cc
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/quic/crypto/strike_register.h"
6
7 #include <limits>
8
9 #include "base/logging.h"
10
11 using std::make_pair;
12 using std::max;
13 using std::min;
14 using std::pair;
15 using std::set;
16 using std::vector;
17
18 namespace net {
19
20 namespace {
21
22 uint32 GetInitialHorizon(uint32 current_time_internal,
23                          uint32 window_secs,
24                          StrikeRegister::StartupType startup) {
25   if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
26     // The horizon is initially set |window_secs| into the future because, if
27     // we just crashed, then we may have accepted nonces in the span
28     // [current_time...current_time+window_secs] and so we conservatively
29     // reject the whole timespan unless |startup| tells us otherwise.
30     return current_time_internal + window_secs + 1;
31   } else {  // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
32     // The orbit can be assumed to be globally unique.  Use a horizon
33     // in the past.
34     return 0;
35   }
36 }
37
38 }  // namespace
39
40 // static
41 const uint32 StrikeRegister::kExternalNodeSize = 24;
42 // static
43 const uint32 StrikeRegister::kNil = (1u << 31) | 1;
44 // static
45 const uint32 StrikeRegister::kExternalFlag = 1 << 23;
46
47 // InternalNode represents a non-leaf node in the critbit tree. See the comment
48 // in the .h file for details.
49 class StrikeRegister::InternalNode {
50  public:
51   void SetChild(unsigned direction, uint32 child) {
52     data_[direction] = (data_[direction] & 0xff) | (child << 8);
53   }
54
55   void SetCritByte(uint8 critbyte) {
56     data_[0] = (data_[0] & 0xffffff00) | critbyte;
57   }
58
59   void SetOtherBits(uint8 otherbits) {
60     data_[1] = (data_[1] & 0xffffff00) | otherbits;
61   }
62
63   void SetNextPtr(uint32 next) { data_[0] = next; }
64
65   uint32 next() const { return data_[0]; }
66
67   uint32 child(unsigned n) const { return data_[n] >> 8; }
68
69   uint8 critbyte() const { return data_[0]; }
70
71   uint8 otherbits() const { return data_[1]; }
72
73   // These bytes are organised thus:
74   //   <24 bits> left child
75   //   <8 bits> crit-byte
76   //   <24 bits> right child
77   //   <8 bits> other-bits
78   uint32 data_[2];
79 };
80
81 // kCreationTimeFromInternalEpoch contains the number of seconds between the
82 // start of the internal epoch and the creation time. This allows us
83 // to consider times that are before the creation time.
84 static const uint32 kCreationTimeFromInternalEpoch = 63115200;  // 2 years.
85
86 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
87   // We only have 23 bits of index available.
88   CHECK_LT(max_entries, 1u << 23);
89   CHECK_GT(max_entries, 1u);           // There must be at least two entries.
90   CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
91 }
92
93 StrikeRegister::StrikeRegister(unsigned max_entries,
94                                uint32 current_time,
95                                uint32 window_secs,
96                                const uint8 orbit[8],
97                                StartupType startup)
98     : max_entries_(max_entries),
99       window_secs_(window_secs),
100       internal_epoch_(current_time > kCreationTimeFromInternalEpoch
101                           ? current_time - kCreationTimeFromInternalEpoch
102                           : 0),
103       horizon_(GetInitialHorizon(
104           ExternalTimeToInternal(current_time), window_secs, startup)) {
105   memcpy(orbit_, orbit, sizeof(orbit_));
106
107   ValidateStrikeRegisterConfig(max_entries);
108   internal_nodes_ = new InternalNode[max_entries];
109   external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
110
111   Reset();
112 }
113
114 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
115
116 void StrikeRegister::Reset() {
117   // Thread a free list through all of the internal nodes.
118   internal_node_free_head_ = 0;
119   for (unsigned i = 0; i < max_entries_ - 1; i++)
120     internal_nodes_[i].SetNextPtr(i + 1);
121   internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
122
123   // Also thread a free list through the external nodes.
124   external_node_free_head_ = 0;
125   for (unsigned i = 0; i < max_entries_ - 1; i++)
126     external_node_next_ptr(i) = i + 1;
127   external_node_next_ptr(max_entries_ - 1) = kNil;
128
129   // This is the root of the tree.
130   internal_node_head_ = kNil;
131 }
132
133 InsertStatus StrikeRegister::Insert(const uint8 nonce[32],
134                                     uint32 current_time_external) {
135   // Make space for the insertion if the strike register is full.
136   while (external_node_free_head_ == kNil ||
137          internal_node_free_head_ == kNil) {
138     DropOldestNode();
139   }
140
141   const uint32 current_time = ExternalTimeToInternal(current_time_external);
142
143   // Check to see if the orbit is correct.
144   if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
145     return NONCE_INVALID_ORBIT_FAILURE;
146   }
147
148   const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
149
150   // Check that the timestamp is in the valid range.
151   pair<uint32, uint32> valid_range =
152       StrikeRegister::GetValidRange(current_time);
153   if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
154     return NONCE_INVALID_TIME_FAILURE;
155   }
156
157   // We strip the orbit out of the nonce.
158   uint8 value[24];
159   memcpy(value, nonce, sizeof(nonce_time));
160   memcpy(value + sizeof(nonce_time),
161          nonce + sizeof(nonce_time) + sizeof(orbit_),
162          sizeof(value) - sizeof(nonce_time));
163
164   // Find the best match to |value| in the crit-bit tree. The best match is
165   // simply the value which /could/ match |value|, if any does, so we still
166   // need a memcmp to check.
167   uint32 best_match_index = BestMatch(value);
168   if (best_match_index == kNil) {
169     // Empty tree. Just insert the new value at the root.
170     uint32 index = GetFreeExternalNode();
171     memcpy(external_node(index), value, sizeof(value));
172     internal_node_head_ = (index | kExternalFlag) << 8;
173     DCHECK_LE(horizon_, nonce_time);
174     return NONCE_OK;
175   }
176
177   const uint8* best_match = external_node(best_match_index);
178   if (memcmp(best_match, value, sizeof(value)) == 0) {
179     // We found the value in the tree.
180     return NONCE_NOT_UNIQUE_FAILURE;
181   }
182
183   // We are going to insert a new entry into the tree, so get the nodes now.
184   uint32 internal_node_index = GetFreeInternalNode();
185   uint32 external_node_index = GetFreeExternalNode();
186
187   // If we just evicted the best match, then we have to try and match again.
188   // We know that we didn't just empty the tree because we require that
189   // max_entries_ >= 2. Also, we know that it doesn't match because, if it
190   // did, it would have been returned previously.
191   if (external_node_index == best_match_index) {
192     best_match_index = BestMatch(value);
193     best_match = external_node(best_match_index);
194   }
195
196   // Now we need to find the first bit where we differ from |best_match|.
197   unsigned differing_byte;
198   uint8 new_other_bits;
199   for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
200     new_other_bits = value[differing_byte] ^ best_match[differing_byte];
201     if (new_other_bits) {
202       break;
203     }
204   }
205
206   // Once we have the XOR the of first differing byte in new_other_bits we need
207   // to find the most significant differing bit. We could do this with a simple
208   // for loop, testing bits 7..0. Instead we fold the bits so that we end up
209   // with a byte where all the bits below the most significant one, are set.
210   new_other_bits |= new_other_bits >> 1;
211   new_other_bits |= new_other_bits >> 2;
212   new_other_bits |= new_other_bits >> 4;
213   // Now this bit trick results in all the bits set, except the original
214   // most-significant one.
215   new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
216
217   // Consider the effect of ORing against |new_other_bits|. If |value| did not
218   // have the critical bit set, the result is the same as |new_other_bits|. If
219   // it did, the result is all ones.
220
221   unsigned newdirection;
222   if ((new_other_bits | value[differing_byte]) == 0xff) {
223     newdirection = 1;
224   } else {
225     newdirection = 0;
226   }
227
228   memcpy(external_node(external_node_index), value, sizeof(value));
229   InternalNode* inode = &internal_nodes_[internal_node_index];
230
231   inode->SetChild(newdirection, external_node_index | kExternalFlag);
232   inode->SetCritByte(differing_byte);
233   inode->SetOtherBits(new_other_bits);
234
235   // |where_index| is a pointer to the uint32 which needs to be updated in
236   // order to insert the new internal node into the tree. The internal nodes
237   // store the child indexes in the top 24-bits of a 32-bit word and, to keep
238   // the code simple, we define that |internal_node_head_| is organised the
239   // same way.
240   DCHECK_EQ(internal_node_head_ & 0xff, 0u);
241   uint32* where_index = &internal_node_head_;
242   while (((*where_index >> 8) & kExternalFlag) == 0) {
243     InternalNode* node = &internal_nodes_[*where_index >> 8];
244     if (node->critbyte() > differing_byte) {
245       break;
246     }
247     if (node->critbyte() == differing_byte &&
248         node->otherbits() > new_other_bits) {
249       break;
250     }
251     if (node->critbyte() == differing_byte &&
252         node->otherbits() == new_other_bits) {
253       CHECK(false);
254     }
255
256     uint8 c = value[node->critbyte()];
257     const int direction =
258         (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
259     where_index = &node->data_[direction];
260   }
261
262   inode->SetChild(newdirection ^ 1, *where_index >> 8);
263   *where_index = (*where_index & 0xff) | (internal_node_index << 8);
264
265   DCHECK_LE(horizon_, nonce_time);
266   return NONCE_OK;
267 }
268
269 const uint8* StrikeRegister::orbit() const {
270   return orbit_;
271 }
272
273 uint32 StrikeRegister::GetCurrentValidWindowSecs(
274     uint32 current_time_external) const {
275   uint32 current_time = ExternalTimeToInternal(current_time_external);
276   pair<uint32, uint32> valid_range = StrikeRegister::GetValidRange(
277       current_time);
278   if (valid_range.second >= valid_range.first) {
279     return valid_range.second - current_time + 1;
280   } else {
281     return 0;
282   }
283 }
284
285 void StrikeRegister::Validate() {
286   set<uint32> free_internal_nodes;
287   for (uint32 i = internal_node_free_head_; i != kNil;
288        i = internal_nodes_[i].next()) {
289     CHECK_LT(i, max_entries_);
290     CHECK_EQ(free_internal_nodes.count(i), 0u);
291     free_internal_nodes.insert(i);
292   }
293
294   set<uint32> free_external_nodes;
295   for (uint32 i = external_node_free_head_; i != kNil;
296        i = external_node_next_ptr(i)) {
297     CHECK_LT(i, max_entries_);
298     CHECK_EQ(free_external_nodes.count(i), 0u);
299     free_external_nodes.insert(i);
300   }
301
302   set<uint32> used_external_nodes;
303   set<uint32> used_internal_nodes;
304
305   if (internal_node_head_ != kNil &&
306       ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
307     vector<pair<unsigned, bool> > bits;
308     ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
309                  free_external_nodes, &used_internal_nodes,
310                  &used_external_nodes);
311   }
312 }
313
314 // static
315 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
316   return static_cast<uint32>(d[0]) << 24 |
317          static_cast<uint32>(d[1]) << 16 |
318          static_cast<uint32>(d[2]) << 8 |
319          static_cast<uint32>(d[3]);
320 }
321
322 pair<uint32, uint32> StrikeRegister::GetValidRange(
323     uint32 current_time_internal) const {
324   if (current_time_internal < horizon_) {
325     // Empty valid range.
326     return make_pair(std::numeric_limits<uint32>::max(), 0);
327   }
328
329   uint32 lower_bound;
330   if (current_time_internal >= window_secs_) {
331     lower_bound = max(horizon_, current_time_internal - window_secs_);
332   } else {
333     lower_bound = horizon_;
334   }
335
336   // Also limit the upper range based on horizon_.  This makes the
337   // strike register reject inserts that are far in the future and
338   // would consume strike register resources for a long time.  This
339   // allows the strike server to degrade optimally in cases where the
340   // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
341   // per second.
342   uint32 upper_bound =
343       current_time_internal + min(current_time_internal - horizon_,
344                                   window_secs_);
345
346   return make_pair(lower_bound, upper_bound);
347 }
348
349 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const {
350   return external_time - internal_epoch_;
351 }
352
353 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
354   if (internal_node_head_ == kNil) {
355     return kNil;
356   }
357
358   uint32 next = internal_node_head_ >> 8;
359   while ((next & kExternalFlag) == 0) {
360     InternalNode* node = &internal_nodes_[next];
361     uint8 b = v[node->critbyte()];
362     unsigned direction =
363         (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
364     next = node->child(direction);
365   }
366
367   return next & ~kExternalFlag;
368 }
369
370 uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
371   return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
372 }
373
374 uint8* StrikeRegister::external_node(unsigned i) {
375   return &external_nodes_[i * kExternalNodeSize];
376 }
377
378 uint32 StrikeRegister::GetFreeExternalNode() {
379   uint32 index = external_node_free_head_;
380   DCHECK(index != kNil);
381   external_node_free_head_ = external_node_next_ptr(index);
382   return index;
383 }
384
385 uint32 StrikeRegister::GetFreeInternalNode() {
386   uint32 index = internal_node_free_head_;
387   DCHECK(index != kNil);
388   internal_node_free_head_ = internal_nodes_[index].next();
389   return index;
390 }
391
392 void StrikeRegister::DropOldestNode() {
393   // DropOldestNode should never be called on an empty tree.
394   DCHECK(internal_node_head_ != kNil);
395
396   // An internal node in a crit-bit tree always has exactly two children.
397   // This means that, if we are removing an external node (which is one of
398   // those children), then we also need to remove an internal node. In order
399   // to do that we keep pointers to the parent (wherep) and grandparent
400   // (whereq) when walking down the tree.
401
402   uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
403          *whereq = nullptr;
404   while ((p & kExternalFlag) == 0) {
405     whereq = wherep;
406     InternalNode* inode = &internal_nodes_[p];
407     // We always go left, towards the smallest element, exploiting the fact
408     // that the timestamp is big-endian and at the start of the value.
409     wherep = &inode->data_[0];
410     p = (*wherep) >> 8;
411   }
412
413   const uint32 ext_index = p & ~kExternalFlag;
414   const uint8* ext_node = external_node(ext_index);
415   uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
416   DCHECK_LE(horizon_, new_horizon);
417   horizon_ = new_horizon;
418
419   if (!whereq) {
420     // We are removing the last element in a tree.
421     internal_node_head_ = kNil;
422     FreeExternalNode(ext_index);
423     return;
424   }
425
426   // |wherep| points to the left child pointer in the parent so we can add
427   // one and dereference to get the right child.
428   const uint32 other_child = wherep[1];
429   FreeInternalNode((*whereq) >> 8);
430   *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
431   FreeExternalNode(ext_index);
432 }
433
434 void StrikeRegister::FreeExternalNode(uint32 index) {
435   external_node_next_ptr(index) = external_node_free_head_;
436   external_node_free_head_ = index;
437 }
438
439 void StrikeRegister::FreeInternalNode(uint32 index) {
440   internal_nodes_[index].SetNextPtr(internal_node_free_head_);
441   internal_node_free_head_ = index;
442 }
443
444 void StrikeRegister::ValidateTree(
445     uint32 internal_node,
446     int last_bit,
447     const vector<pair<unsigned, bool> >& bits,
448     const set<uint32>& free_internal_nodes,
449     const set<uint32>& free_external_nodes,
450     set<uint32>* used_internal_nodes,
451     set<uint32>* used_external_nodes) {
452   CHECK_LT(internal_node, max_entries_);
453   const InternalNode* i = &internal_nodes_[internal_node];
454   unsigned bit = 0;
455   switch (i->otherbits()) {
456     case 0xff & ~(1 << 7):
457       bit = 0;
458       break;
459     case 0xff & ~(1 << 6):
460       bit = 1;
461       break;
462     case 0xff & ~(1 << 5):
463       bit = 2;
464       break;
465     case 0xff & ~(1 << 4):
466       bit = 3;
467       break;
468     case 0xff & ~(1 << 3):
469       bit = 4;
470       break;
471     case 0xff & ~(1 << 2):
472       bit = 5;
473       break;
474     case 0xff & ~(1 << 1):
475       bit = 6;
476       break;
477     case 0xff & ~1:
478       bit = 7;
479       break;
480     default:
481       CHECK(false);
482   }
483
484   bit += 8 * i->critbyte();
485   if (last_bit > -1) {
486     CHECK_GT(bit, static_cast<unsigned>(last_bit));
487   }
488
489   CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
490
491   for (unsigned child = 0; child < 2; child++) {
492     if (i->child(child) & kExternalFlag) {
493       uint32 ext = i->child(child) & ~kExternalFlag;
494       CHECK_EQ(free_external_nodes.count(ext), 0u);
495       CHECK_EQ(used_external_nodes->count(ext), 0u);
496       used_external_nodes->insert(ext);
497       const uint8* bytes = external_node(ext);
498       for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
499            i != bits.end(); i++) {
500         unsigned byte = i->first / 8;
501         DCHECK_LE(byte, 0xffu);
502         unsigned bit = i->first % 8;
503         static const uint8 kMasks[8] =
504             {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
505         CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
506       }
507     } else {
508       uint32 inter = i->child(child);
509       vector<pair<unsigned, bool> > new_bits(bits);
510       new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
511       CHECK_EQ(free_internal_nodes.count(inter), 0u);
512       CHECK_EQ(used_internal_nodes->count(inter), 0u);
513       used_internal_nodes->insert(inter);
514       ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
515                    used_internal_nodes, used_external_nodes);
516     }
517   }
518 }
519
520 }  // namespace net