- add sources.
[platform/framework/web/crosswalk.git] / src / net / dns / host_resolver_impl.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/dns/host_resolver_impl.h"
6
7 #if defined(OS_WIN)
8 #include <Winsock2.h>
9 #elif defined(OS_POSIX)
10 #include <netdb.h>
11 #endif
12
13 #include <cmath>
14 #include <utility>
15 #include <vector>
16
17 #include "base/basictypes.h"
18 #include "base/bind.h"
19 #include "base/bind_helpers.h"
20 #include "base/callback.h"
21 #include "base/compiler_specific.h"
22 #include "base/debug/debugger.h"
23 #include "base/debug/stack_trace.h"
24 #include "base/message_loop/message_loop_proxy.h"
25 #include "base/metrics/field_trial.h"
26 #include "base/metrics/histogram.h"
27 #include "base/stl_util.h"
28 #include "base/strings/string_util.h"
29 #include "base/strings/utf_string_conversions.h"
30 #include "base/threading/worker_pool.h"
31 #include "base/time/time.h"
32 #include "base/values.h"
33 #include "net/base/address_family.h"
34 #include "net/base/address_list.h"
35 #include "net/base/dns_reloader.h"
36 #include "net/base/dns_util.h"
37 #include "net/base/host_port_pair.h"
38 #include "net/base/net_errors.h"
39 #include "net/base/net_log.h"
40 #include "net/base/net_util.h"
41 #include "net/dns/address_sorter.h"
42 #include "net/dns/dns_client.h"
43 #include "net/dns/dns_config_service.h"
44 #include "net/dns/dns_protocol.h"
45 #include "net/dns/dns_response.h"
46 #include "net/dns/dns_transaction.h"
47 #include "net/dns/host_resolver_proc.h"
48 #include "net/socket/client_socket_factory.h"
49 #include "net/udp/datagram_client_socket.h"
50
51 #if defined(OS_WIN)
52 #include "net/base/winsock_init.h"
53 #endif
54
55 namespace net {
56
57 namespace {
58
59 // Limit the size of hostnames that will be resolved to combat issues in
60 // some platform's resolvers.
61 const size_t kMaxHostLength = 4096;
62
63 // Default TTL for successful resolutions with ProcTask.
64 const unsigned kCacheEntryTTLSeconds = 60;
65
66 // Default TTL for unsuccessful resolutions with ProcTask.
67 const unsigned kNegativeCacheEntryTTLSeconds = 0;
68
69 // Minimum TTL for successful resolutions with DnsTask.
70 const unsigned kMinimumTTLSeconds = kCacheEntryTTLSeconds;
71
72 // We use a separate histogram name for each platform to facilitate the
73 // display of error codes by their symbolic name (since each platform has
74 // different mappings).
75 const char kOSErrorsForGetAddrinfoHistogramName[] =
76 #if defined(OS_WIN)
77     "Net.OSErrorsForGetAddrinfo_Win";
78 #elif defined(OS_MACOSX)
79     "Net.OSErrorsForGetAddrinfo_Mac";
80 #elif defined(OS_LINUX)
81     "Net.OSErrorsForGetAddrinfo_Linux";
82 #else
83     "Net.OSErrorsForGetAddrinfo";
84 #endif
85
86 // Gets a list of the likely error codes that getaddrinfo() can return
87 // (non-exhaustive). These are the error codes that we will track via
88 // a histogram.
89 std::vector<int> GetAllGetAddrinfoOSErrors() {
90   int os_errors[] = {
91 #if defined(OS_POSIX)
92 #if !defined(OS_FREEBSD)
93 #if !defined(OS_ANDROID)
94     // EAI_ADDRFAMILY has been declared obsolete in Android's and
95     // FreeBSD's netdb.h.
96     EAI_ADDRFAMILY,
97 #endif
98     // EAI_NODATA has been declared obsolete in FreeBSD's netdb.h.
99     EAI_NODATA,
100 #endif
101     EAI_AGAIN,
102     EAI_BADFLAGS,
103     EAI_FAIL,
104     EAI_FAMILY,
105     EAI_MEMORY,
106     EAI_NONAME,
107     EAI_SERVICE,
108     EAI_SOCKTYPE,
109     EAI_SYSTEM,
110 #elif defined(OS_WIN)
111     // See: http://msdn.microsoft.com/en-us/library/ms738520(VS.85).aspx
112     WSA_NOT_ENOUGH_MEMORY,
113     WSAEAFNOSUPPORT,
114     WSAEINVAL,
115     WSAESOCKTNOSUPPORT,
116     WSAHOST_NOT_FOUND,
117     WSANO_DATA,
118     WSANO_RECOVERY,
119     WSANOTINITIALISED,
120     WSATRY_AGAIN,
121     WSATYPE_NOT_FOUND,
122     // The following are not in doc, but might be to appearing in results :-(.
123     WSA_INVALID_HANDLE,
124 #endif
125   };
126
127   // Ensure all errors are positive, as histogram only tracks positive values.
128   for (size_t i = 0; i < arraysize(os_errors); ++i) {
129     os_errors[i] = std::abs(os_errors[i]);
130   }
131
132   return base::CustomHistogram::ArrayToCustomRanges(os_errors,
133                                                     arraysize(os_errors));
134 }
135
136 enum DnsResolveStatus {
137   RESOLVE_STATUS_DNS_SUCCESS = 0,
138   RESOLVE_STATUS_PROC_SUCCESS,
139   RESOLVE_STATUS_FAIL,
140   RESOLVE_STATUS_SUSPECT_NETBIOS,
141   RESOLVE_STATUS_MAX
142 };
143
144 void UmaAsyncDnsResolveStatus(DnsResolveStatus result) {
145   UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ResolveStatus",
146                             result,
147                             RESOLVE_STATUS_MAX);
148 }
149
150 bool ResemblesNetBIOSName(const std::string& hostname) {
151   return (hostname.size() < 16) && (hostname.find('.') == std::string::npos);
152 }
153
154 // True if |hostname| ends with either ".local" or ".local.".
155 bool ResemblesMulticastDNSName(const std::string& hostname) {
156   DCHECK(!hostname.empty());
157   const char kSuffix[] = ".local.";
158   const size_t kSuffixLen = sizeof(kSuffix) - 1;
159   const size_t kSuffixLenTrimmed = kSuffixLen - 1;
160   if (hostname[hostname.size() - 1] == '.') {
161     return hostname.size() > kSuffixLen &&
162         !hostname.compare(hostname.size() - kSuffixLen, kSuffixLen, kSuffix);
163   }
164   return hostname.size() > kSuffixLenTrimmed &&
165       !hostname.compare(hostname.size() - kSuffixLenTrimmed, kSuffixLenTrimmed,
166                         kSuffix, kSuffixLenTrimmed);
167 }
168
169 // Attempts to connect a UDP socket to |dest|:53.
170 bool IsGloballyReachable(const IPAddressNumber& dest,
171                          const BoundNetLog& net_log) {
172   scoped_ptr<DatagramClientSocket> socket(
173       ClientSocketFactory::GetDefaultFactory()->CreateDatagramClientSocket(
174           DatagramSocket::DEFAULT_BIND,
175           RandIntCallback(),
176           net_log.net_log(),
177           net_log.source()));
178   int rv = socket->Connect(IPEndPoint(dest, 53));
179   if (rv != OK)
180     return false;
181   IPEndPoint endpoint;
182   rv = socket->GetLocalAddress(&endpoint);
183   if (rv != OK)
184     return false;
185   DCHECK(endpoint.GetFamily() == ADDRESS_FAMILY_IPV6);
186   const IPAddressNumber& address = endpoint.address();
187   bool is_link_local = (address[0] == 0xFE) && ((address[1] & 0xC0) == 0x80);
188   if (is_link_local)
189     return false;
190   const uint8 kTeredoPrefix[] = { 0x20, 0x01, 0, 0 };
191   bool is_teredo = std::equal(kTeredoPrefix,
192                               kTeredoPrefix + arraysize(kTeredoPrefix),
193                               address.begin());
194   if (is_teredo)
195     return false;
196   return true;
197 }
198
199 // Provide a common macro to simplify code and readability. We must use a
200 // macro as the underlying HISTOGRAM macro creates static variables.
201 #define DNS_HISTOGRAM(name, time) UMA_HISTOGRAM_CUSTOM_TIMES(name, time, \
202     base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromHours(1), 100)
203
204 // A macro to simplify code and readability.
205 #define DNS_HISTOGRAM_BY_PRIORITY(basename, priority, time) \
206   do { \
207     switch (priority) { \
208       case HIGHEST: DNS_HISTOGRAM(basename "_HIGHEST", time); break; \
209       case MEDIUM: DNS_HISTOGRAM(basename "_MEDIUM", time); break; \
210       case LOW: DNS_HISTOGRAM(basename "_LOW", time); break; \
211       case LOWEST: DNS_HISTOGRAM(basename "_LOWEST", time); break; \
212       case IDLE: DNS_HISTOGRAM(basename "_IDLE", time); break; \
213       default: NOTREACHED(); break; \
214     } \
215     DNS_HISTOGRAM(basename, time); \
216   } while (0)
217
218 // Record time from Request creation until a valid DNS response.
219 void RecordTotalTime(bool had_dns_config,
220                      bool speculative,
221                      base::TimeDelta duration) {
222   if (had_dns_config) {
223     if (speculative) {
224       DNS_HISTOGRAM("AsyncDNS.TotalTime_speculative", duration);
225     } else {
226       DNS_HISTOGRAM("AsyncDNS.TotalTime", duration);
227     }
228   } else {
229     if (speculative) {
230       DNS_HISTOGRAM("DNS.TotalTime_speculative", duration);
231     } else {
232       DNS_HISTOGRAM("DNS.TotalTime", duration);
233     }
234   }
235 }
236
237 void RecordTTL(base::TimeDelta ttl) {
238   UMA_HISTOGRAM_CUSTOM_TIMES("AsyncDNS.TTL", ttl,
239                              base::TimeDelta::FromSeconds(1),
240                              base::TimeDelta::FromDays(1), 100);
241 }
242
243 bool ConfigureAsyncDnsNoFallbackFieldTrial() {
244   const bool kDefault = false;
245
246   // Configure the AsyncDns field trial as follows:
247   // groups AsyncDnsNoFallbackA and AsyncDnsNoFallbackB: return true,
248   // groups AsyncDnsA and AsyncDnsB: return false,
249   // groups SystemDnsA and SystemDnsB: return false,
250   // otherwise (trial absent): return default.
251   std::string group_name = base::FieldTrialList::FindFullName("AsyncDns");
252   if (!group_name.empty())
253     return StartsWithASCII(group_name, "AsyncDnsNoFallback", false);
254   return kDefault;
255 }
256
257 //-----------------------------------------------------------------------------
258
259 AddressList EnsurePortOnAddressList(const AddressList& list, uint16 port) {
260   if (list.empty() || list.front().port() == port)
261     return list;
262   return AddressList::CopyWithPort(list, port);
263 }
264
265 // Returns true if |addresses| contains only IPv4 loopback addresses.
266 bool IsAllIPv4Loopback(const AddressList& addresses) {
267   for (unsigned i = 0; i < addresses.size(); ++i) {
268     const IPAddressNumber& address = addresses[i].address();
269     switch (addresses[i].GetFamily()) {
270       case ADDRESS_FAMILY_IPV4:
271         if (address[0] != 127)
272           return false;
273         break;
274       case ADDRESS_FAMILY_IPV6:
275         return false;
276       default:
277         NOTREACHED();
278         return false;
279     }
280   }
281   return true;
282 }
283
284 // Creates NetLog parameters when the resolve failed.
285 base::Value* NetLogProcTaskFailedCallback(uint32 attempt_number,
286                                           int net_error,
287                                           int os_error,
288                                           NetLog::LogLevel /* log_level */) {
289   base::DictionaryValue* dict = new base::DictionaryValue();
290   if (attempt_number)
291     dict->SetInteger("attempt_number", attempt_number);
292
293   dict->SetInteger("net_error", net_error);
294
295   if (os_error) {
296     dict->SetInteger("os_error", os_error);
297 #if defined(OS_POSIX)
298     dict->SetString("os_error_string", gai_strerror(os_error));
299 #elif defined(OS_WIN)
300     // Map the error code to a human-readable string.
301     LPWSTR error_string = NULL;
302     int size = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
303                              FORMAT_MESSAGE_FROM_SYSTEM,
304                              0,  // Use the internal message table.
305                              os_error,
306                              0,  // Use default language.
307                              (LPWSTR)&error_string,
308                              0,  // Buffer size.
309                              0);  // Arguments (unused).
310     dict->SetString("os_error_string", WideToUTF8(error_string));
311     LocalFree(error_string);
312 #endif
313   }
314
315   return dict;
316 }
317
318 // Creates NetLog parameters when the DnsTask failed.
319 base::Value* NetLogDnsTaskFailedCallback(int net_error,
320                                          int dns_error,
321                                          NetLog::LogLevel /* log_level */) {
322   base::DictionaryValue* dict = new base::DictionaryValue();
323   dict->SetInteger("net_error", net_error);
324   if (dns_error)
325     dict->SetInteger("dns_error", dns_error);
326   return dict;
327 };
328
329 // Creates NetLog parameters containing the information in a RequestInfo object,
330 // along with the associated NetLog::Source.
331 base::Value* NetLogRequestInfoCallback(const NetLog::Source& source,
332                                        const HostResolver::RequestInfo* info,
333                                        NetLog::LogLevel /* log_level */) {
334   base::DictionaryValue* dict = new base::DictionaryValue();
335   source.AddToEventParameters(dict);
336
337   dict->SetString("host", info->host_port_pair().ToString());
338   dict->SetInteger("address_family",
339                    static_cast<int>(info->address_family()));
340   dict->SetBoolean("allow_cached_response", info->allow_cached_response());
341   dict->SetBoolean("is_speculative", info->is_speculative());
342   return dict;
343 }
344
345 // Creates NetLog parameters for the creation of a HostResolverImpl::Job.
346 base::Value* NetLogJobCreationCallback(const NetLog::Source& source,
347                                        const std::string* host,
348                                        NetLog::LogLevel /* log_level */) {
349   base::DictionaryValue* dict = new base::DictionaryValue();
350   source.AddToEventParameters(dict);
351   dict->SetString("host", *host);
352   return dict;
353 }
354
355 // Creates NetLog parameters for HOST_RESOLVER_IMPL_JOB_ATTACH/DETACH events.
356 base::Value* NetLogJobAttachCallback(const NetLog::Source& source,
357                                      RequestPriority priority,
358                                      NetLog::LogLevel /* log_level */) {
359   base::DictionaryValue* dict = new base::DictionaryValue();
360   source.AddToEventParameters(dict);
361   dict->SetString("priority", RequestPriorityToString(priority));
362   return dict;
363 }
364
365 // Creates NetLog parameters for the DNS_CONFIG_CHANGED event.
366 base::Value* NetLogDnsConfigCallback(const DnsConfig* config,
367                                      NetLog::LogLevel /* log_level */) {
368   return config->ToValue();
369 }
370
371 // The logging routines are defined here because some requests are resolved
372 // without a Request object.
373
374 // Logs when a request has just been started.
375 void LogStartRequest(const BoundNetLog& source_net_log,
376                      const BoundNetLog& request_net_log,
377                      const HostResolver::RequestInfo& info) {
378   source_net_log.BeginEvent(
379       NetLog::TYPE_HOST_RESOLVER_IMPL,
380       request_net_log.source().ToEventParametersCallback());
381
382   request_net_log.BeginEvent(
383       NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST,
384       base::Bind(&NetLogRequestInfoCallback, source_net_log.source(), &info));
385 }
386
387 // Logs when a request has just completed (before its callback is run).
388 void LogFinishRequest(const BoundNetLog& source_net_log,
389                       const BoundNetLog& request_net_log,
390                       const HostResolver::RequestInfo& info,
391                       int net_error) {
392   request_net_log.EndEventWithNetErrorCode(
393       NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, net_error);
394   source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
395 }
396
397 // Logs when a request has been cancelled.
398 void LogCancelRequest(const BoundNetLog& source_net_log,
399                       const BoundNetLog& request_net_log,
400                       const HostResolverImpl::RequestInfo& info) {
401   request_net_log.AddEvent(NetLog::TYPE_CANCELLED);
402   request_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST);
403   source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
404 }
405
406 //-----------------------------------------------------------------------------
407
408 // Keeps track of the highest priority.
409 class PriorityTracker {
410  public:
411   explicit PriorityTracker(RequestPriority initial_priority)
412       : highest_priority_(initial_priority), total_count_(0) {
413     memset(counts_, 0, sizeof(counts_));
414   }
415
416   RequestPriority highest_priority() const {
417     return highest_priority_;
418   }
419
420   size_t total_count() const {
421     return total_count_;
422   }
423
424   void Add(RequestPriority req_priority) {
425     ++total_count_;
426     ++counts_[req_priority];
427     if (highest_priority_ < req_priority)
428       highest_priority_ = req_priority;
429   }
430
431   void Remove(RequestPriority req_priority) {
432     DCHECK_GT(total_count_, 0u);
433     DCHECK_GT(counts_[req_priority], 0u);
434     --total_count_;
435     --counts_[req_priority];
436     size_t i;
437     for (i = highest_priority_; i > MINIMUM_PRIORITY && !counts_[i]; --i);
438     highest_priority_ = static_cast<RequestPriority>(i);
439
440     // In absence of requests, default to MINIMUM_PRIORITY.
441     if (total_count_ == 0)
442       DCHECK_EQ(MINIMUM_PRIORITY, highest_priority_);
443   }
444
445  private:
446   RequestPriority highest_priority_;
447   size_t total_count_;
448   size_t counts_[NUM_PRIORITIES];
449 };
450
451 }  // namespace
452
453 //-----------------------------------------------------------------------------
454
455 const unsigned HostResolverImpl::kMaximumDnsFailures = 16;
456
457 // Holds the data for a request that could not be completed synchronously.
458 // It is owned by a Job. Canceled Requests are only marked as canceled rather
459 // than removed from the Job's |requests_| list.
460 class HostResolverImpl::Request {
461  public:
462   Request(const BoundNetLog& source_net_log,
463           const BoundNetLog& request_net_log,
464           const RequestInfo& info,
465           RequestPriority priority,
466           const CompletionCallback& callback,
467           AddressList* addresses)
468       : source_net_log_(source_net_log),
469         request_net_log_(request_net_log),
470         info_(info),
471         priority_(priority),
472         job_(NULL),
473         callback_(callback),
474         addresses_(addresses),
475         request_time_(base::TimeTicks::Now()) {}
476
477   // Mark the request as canceled.
478   void MarkAsCanceled() {
479     job_ = NULL;
480     addresses_ = NULL;
481     callback_.Reset();
482   }
483
484   bool was_canceled() const {
485     return callback_.is_null();
486   }
487
488   void set_job(Job* job) {
489     DCHECK(job);
490     // Identify which job the request is waiting on.
491     job_ = job;
492   }
493
494   // Prepare final AddressList and call completion callback.
495   void OnComplete(int error, const AddressList& addr_list) {
496     DCHECK(!was_canceled());
497     if (error == OK)
498       *addresses_ = EnsurePortOnAddressList(addr_list, info_.port());
499     CompletionCallback callback = callback_;
500     MarkAsCanceled();
501     callback.Run(error);
502   }
503
504   Job* job() const {
505     return job_;
506   }
507
508   // NetLog for the source, passed in HostResolver::Resolve.
509   const BoundNetLog& source_net_log() {
510     return source_net_log_;
511   }
512
513   // NetLog for this request.
514   const BoundNetLog& request_net_log() {
515     return request_net_log_;
516   }
517
518   const RequestInfo& info() const {
519     return info_;
520   }
521
522   RequestPriority priority() const { return priority_; }
523
524   base::TimeTicks request_time() const { return request_time_; }
525
526  private:
527   BoundNetLog source_net_log_;
528   BoundNetLog request_net_log_;
529
530   // The request info that started the request.
531   const RequestInfo info_;
532
533   // TODO(akalin): Support reprioritization.
534   const RequestPriority priority_;
535
536   // The resolve job that this request is dependent on.
537   Job* job_;
538
539   // The user's callback to invoke when the request completes.
540   CompletionCallback callback_;
541
542   // The address list to save result into.
543   AddressList* addresses_;
544
545   const base::TimeTicks request_time_;
546
547   DISALLOW_COPY_AND_ASSIGN(Request);
548 };
549
550 //------------------------------------------------------------------------------
551
552 // Calls HostResolverProc on the WorkerPool. Performs retries if necessary.
553 //
554 // Whenever we try to resolve the host, we post a delayed task to check if host
555 // resolution (OnLookupComplete) is completed or not. If the original attempt
556 // hasn't completed, then we start another attempt for host resolution. We take
557 // the results from the first attempt that finishes and ignore the results from
558 // all other attempts.
559 //
560 // TODO(szym): Move to separate source file for testing and mocking.
561 //
562 class HostResolverImpl::ProcTask
563     : public base::RefCountedThreadSafe<HostResolverImpl::ProcTask> {
564  public:
565   typedef base::Callback<void(int net_error,
566                               const AddressList& addr_list)> Callback;
567
568   ProcTask(const Key& key,
569            const ProcTaskParams& params,
570            const Callback& callback,
571            const BoundNetLog& job_net_log)
572       : key_(key),
573         params_(params),
574         callback_(callback),
575         origin_loop_(base::MessageLoopProxy::current()),
576         attempt_number_(0),
577         completed_attempt_number_(0),
578         completed_attempt_error_(ERR_UNEXPECTED),
579         had_non_speculative_request_(false),
580         net_log_(job_net_log) {
581     if (!params_.resolver_proc.get())
582       params_.resolver_proc = HostResolverProc::GetDefault();
583     // If default is unset, use the system proc.
584     if (!params_.resolver_proc.get())
585       params_.resolver_proc = new SystemHostResolverProc();
586   }
587
588   void Start() {
589     DCHECK(origin_loop_->BelongsToCurrentThread());
590     net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
591     StartLookupAttempt();
592   }
593
594   // Cancels this ProcTask. It will be orphaned. Any outstanding resolve
595   // attempts running on worker threads will continue running. Only once all the
596   // attempts complete will the final reference to this ProcTask be released.
597   void Cancel() {
598     DCHECK(origin_loop_->BelongsToCurrentThread());
599
600     if (was_canceled() || was_completed())
601       return;
602
603     callback_.Reset();
604     net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
605   }
606
607   void set_had_non_speculative_request() {
608     DCHECK(origin_loop_->BelongsToCurrentThread());
609     had_non_speculative_request_ = true;
610   }
611
612   bool was_canceled() const {
613     DCHECK(origin_loop_->BelongsToCurrentThread());
614     return callback_.is_null();
615   }
616
617   bool was_completed() const {
618     DCHECK(origin_loop_->BelongsToCurrentThread());
619     return completed_attempt_number_ > 0;
620   }
621
622  private:
623   friend class base::RefCountedThreadSafe<ProcTask>;
624   ~ProcTask() {}
625
626   void StartLookupAttempt() {
627     DCHECK(origin_loop_->BelongsToCurrentThread());
628     base::TimeTicks start_time = base::TimeTicks::Now();
629     ++attempt_number_;
630     // Dispatch the lookup attempt to a worker thread.
631     if (!base::WorkerPool::PostTask(
632             FROM_HERE,
633             base::Bind(&ProcTask::DoLookup, this, start_time, attempt_number_),
634             true)) {
635       NOTREACHED();
636
637       // Since we could be running within Resolve() right now, we can't just
638       // call OnLookupComplete().  Instead we must wait until Resolve() has
639       // returned (IO_PENDING).
640       origin_loop_->PostTask(
641           FROM_HERE,
642           base::Bind(&ProcTask::OnLookupComplete, this, AddressList(),
643                      start_time, attempt_number_, ERR_UNEXPECTED, 0));
644       return;
645     }
646
647     net_log_.AddEvent(
648         NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_STARTED,
649         NetLog::IntegerCallback("attempt_number", attempt_number_));
650
651     // If we don't get the results within a given time, RetryIfNotComplete
652     // will start a new attempt on a different worker thread if none of our
653     // outstanding attempts have completed yet.
654     if (attempt_number_ <= params_.max_retry_attempts) {
655       origin_loop_->PostDelayedTask(
656           FROM_HERE,
657           base::Bind(&ProcTask::RetryIfNotComplete, this),
658           params_.unresponsive_delay);
659     }
660   }
661
662   // WARNING: This code runs inside a worker pool. The shutdown code cannot
663   // wait for it to finish, so we must be very careful here about using other
664   // objects (like MessageLoops, Singletons, etc). During shutdown these objects
665   // may no longer exist. Multiple DoLookups() could be running in parallel, so
666   // any state inside of |this| must not mutate .
667   void DoLookup(const base::TimeTicks& start_time,
668                 const uint32 attempt_number) {
669     AddressList results;
670     int os_error = 0;
671     // Running on the worker thread
672     int error = params_.resolver_proc->Resolve(key_.hostname,
673                                                key_.address_family,
674                                                key_.host_resolver_flags,
675                                                &results,
676                                                &os_error);
677
678     origin_loop_->PostTask(
679         FROM_HERE,
680         base::Bind(&ProcTask::OnLookupComplete, this, results, start_time,
681                    attempt_number, error, os_error));
682   }
683
684   // Makes next attempt if DoLookup() has not finished (runs on origin thread).
685   void RetryIfNotComplete() {
686     DCHECK(origin_loop_->BelongsToCurrentThread());
687
688     if (was_completed() || was_canceled())
689       return;
690
691     params_.unresponsive_delay *= params_.retry_factor;
692     StartLookupAttempt();
693   }
694
695   // Callback for when DoLookup() completes (runs on origin thread).
696   void OnLookupComplete(const AddressList& results,
697                         const base::TimeTicks& start_time,
698                         const uint32 attempt_number,
699                         int error,
700                         const int os_error) {
701     DCHECK(origin_loop_->BelongsToCurrentThread());
702     // If results are empty, we should return an error.
703     bool empty_list_on_ok = (error == OK && results.empty());
704     UMA_HISTOGRAM_BOOLEAN("DNS.EmptyAddressListAndNoError", empty_list_on_ok);
705     if (empty_list_on_ok)
706       error = ERR_NAME_NOT_RESOLVED;
707
708     bool was_retry_attempt = attempt_number > 1;
709
710     // Ideally the following code would be part of host_resolver_proc.cc,
711     // however it isn't safe to call NetworkChangeNotifier from worker threads.
712     // So we do it here on the IO thread instead.
713     if (error != OK && NetworkChangeNotifier::IsOffline())
714       error = ERR_INTERNET_DISCONNECTED;
715
716     // If this is the first attempt that is finishing later, then record data
717     // for the first attempt. Won't contaminate with retry attempt's data.
718     if (!was_retry_attempt)
719       RecordPerformanceHistograms(start_time, error, os_error);
720
721     RecordAttemptHistograms(start_time, attempt_number, error, os_error);
722
723     if (was_canceled())
724       return;
725
726     NetLog::ParametersCallback net_log_callback;
727     if (error != OK) {
728       net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
729                                     attempt_number,
730                                     error,
731                                     os_error);
732     } else {
733       net_log_callback = NetLog::IntegerCallback("attempt_number",
734                                                  attempt_number);
735     }
736     net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_FINISHED,
737                       net_log_callback);
738
739     if (was_completed())
740       return;
741
742     // Copy the results from the first worker thread that resolves the host.
743     results_ = results;
744     completed_attempt_number_ = attempt_number;
745     completed_attempt_error_ = error;
746
747     if (was_retry_attempt) {
748       // If retry attempt finishes before 1st attempt, then get stats on how
749       // much time is saved by having spawned an extra attempt.
750       retry_attempt_finished_time_ = base::TimeTicks::Now();
751     }
752
753     if (error != OK) {
754       net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
755                                     0, error, os_error);
756     } else {
757       net_log_callback = results_.CreateNetLogCallback();
758     }
759     net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK,
760                       net_log_callback);
761
762     callback_.Run(error, results_);
763   }
764
765   void RecordPerformanceHistograms(const base::TimeTicks& start_time,
766                                    const int error,
767                                    const int os_error) const {
768     DCHECK(origin_loop_->BelongsToCurrentThread());
769     enum Category {  // Used in HISTOGRAM_ENUMERATION.
770       RESOLVE_SUCCESS,
771       RESOLVE_FAIL,
772       RESOLVE_SPECULATIVE_SUCCESS,
773       RESOLVE_SPECULATIVE_FAIL,
774       RESOLVE_MAX,  // Bounding value.
775     };
776     int category = RESOLVE_MAX;  // Illegal value for later DCHECK only.
777
778     base::TimeDelta duration = base::TimeTicks::Now() - start_time;
779     if (error == OK) {
780       if (had_non_speculative_request_) {
781         category = RESOLVE_SUCCESS;
782         DNS_HISTOGRAM("DNS.ResolveSuccess", duration);
783       } else {
784         category = RESOLVE_SPECULATIVE_SUCCESS;
785         DNS_HISTOGRAM("DNS.ResolveSpeculativeSuccess", duration);
786       }
787
788       // Log DNS lookups based on |address_family|. This will help us determine
789       // if IPv4 or IPv4/6 lookups are faster or slower.
790       switch(key_.address_family) {
791         case ADDRESS_FAMILY_IPV4:
792           DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV4", duration);
793           break;
794         case ADDRESS_FAMILY_IPV6:
795           DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV6", duration);
796           break;
797         case ADDRESS_FAMILY_UNSPECIFIED:
798           DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_UNSPEC", duration);
799           break;
800       }
801     } else {
802       if (had_non_speculative_request_) {
803         category = RESOLVE_FAIL;
804         DNS_HISTOGRAM("DNS.ResolveFail", duration);
805       } else {
806         category = RESOLVE_SPECULATIVE_FAIL;
807         DNS_HISTOGRAM("DNS.ResolveSpeculativeFail", duration);
808       }
809       // Log DNS lookups based on |address_family|. This will help us determine
810       // if IPv4 or IPv4/6 lookups are faster or slower.
811       switch(key_.address_family) {
812         case ADDRESS_FAMILY_IPV4:
813           DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV4", duration);
814           break;
815         case ADDRESS_FAMILY_IPV6:
816           DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV6", duration);
817           break;
818         case ADDRESS_FAMILY_UNSPECIFIED:
819           DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_UNSPEC", duration);
820           break;
821       }
822       UMA_HISTOGRAM_CUSTOM_ENUMERATION(kOSErrorsForGetAddrinfoHistogramName,
823                                        std::abs(os_error),
824                                        GetAllGetAddrinfoOSErrors());
825     }
826     DCHECK_LT(category, static_cast<int>(RESOLVE_MAX));  // Be sure it was set.
827
828     UMA_HISTOGRAM_ENUMERATION("DNS.ResolveCategory", category, RESOLVE_MAX);
829   }
830
831   void RecordAttemptHistograms(const base::TimeTicks& start_time,
832                                const uint32 attempt_number,
833                                const int error,
834                                const int os_error) const {
835     DCHECK(origin_loop_->BelongsToCurrentThread());
836     bool first_attempt_to_complete =
837         completed_attempt_number_ == attempt_number;
838     bool is_first_attempt = (attempt_number == 1);
839
840     if (first_attempt_to_complete) {
841       // If this was first attempt to complete, then record the resolution
842       // status of the attempt.
843       if (completed_attempt_error_ == OK) {
844         UMA_HISTOGRAM_ENUMERATION(
845             "DNS.AttemptFirstSuccess", attempt_number, 100);
846       } else {
847         UMA_HISTOGRAM_ENUMERATION(
848             "DNS.AttemptFirstFailure", attempt_number, 100);
849       }
850     }
851
852     if (error == OK)
853       UMA_HISTOGRAM_ENUMERATION("DNS.AttemptSuccess", attempt_number, 100);
854     else
855       UMA_HISTOGRAM_ENUMERATION("DNS.AttemptFailure", attempt_number, 100);
856
857     // If first attempt didn't finish before retry attempt, then calculate stats
858     // on how much time is saved by having spawned an extra attempt.
859     if (!first_attempt_to_complete && is_first_attempt && !was_canceled()) {
860       DNS_HISTOGRAM("DNS.AttemptTimeSavedByRetry",
861                     base::TimeTicks::Now() - retry_attempt_finished_time_);
862     }
863
864     if (was_canceled() || !first_attempt_to_complete) {
865       // Count those attempts which completed after the job was already canceled
866       // OR after the job was already completed by an earlier attempt (so in
867       // effect).
868       UMA_HISTOGRAM_ENUMERATION("DNS.AttemptDiscarded", attempt_number, 100);
869
870       // Record if job is canceled.
871       if (was_canceled())
872         UMA_HISTOGRAM_ENUMERATION("DNS.AttemptCancelled", attempt_number, 100);
873     }
874
875     base::TimeDelta duration = base::TimeTicks::Now() - start_time;
876     if (error == OK)
877       DNS_HISTOGRAM("DNS.AttemptSuccessDuration", duration);
878     else
879       DNS_HISTOGRAM("DNS.AttemptFailDuration", duration);
880   }
881
882   // Set on the origin thread, read on the worker thread.
883   Key key_;
884
885   // Holds an owning reference to the HostResolverProc that we are going to use.
886   // This may not be the current resolver procedure by the time we call
887   // ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning
888   // reference ensures that it remains valid until we are done.
889   ProcTaskParams params_;
890
891   // The listener to the results of this ProcTask.
892   Callback callback_;
893
894   // Used to post ourselves onto the origin thread.
895   scoped_refptr<base::MessageLoopProxy> origin_loop_;
896
897   // Keeps track of the number of attempts we have made so far to resolve the
898   // host. Whenever we start an attempt to resolve the host, we increase this
899   // number.
900   uint32 attempt_number_;
901
902   // The index of the attempt which finished first (or 0 if the job is still in
903   // progress).
904   uint32 completed_attempt_number_;
905
906   // The result (a net error code) from the first attempt to complete.
907   int completed_attempt_error_;
908
909   // The time when retry attempt was finished.
910   base::TimeTicks retry_attempt_finished_time_;
911
912   // True if a non-speculative request was ever attached to this job
913   // (regardless of whether or not it was later canceled.
914   // This boolean is used for histogramming the duration of jobs used to
915   // service non-speculative requests.
916   bool had_non_speculative_request_;
917
918   AddressList results_;
919
920   BoundNetLog net_log_;
921
922   DISALLOW_COPY_AND_ASSIGN(ProcTask);
923 };
924
925 //-----------------------------------------------------------------------------
926
927 // Wraps a call to HaveOnlyLoopbackAddresses to be executed on the WorkerPool as
928 // it takes 40-100ms and should not block initialization.
929 class HostResolverImpl::LoopbackProbeJob {
930  public:
931   explicit LoopbackProbeJob(const base::WeakPtr<HostResolverImpl>& resolver)
932       : resolver_(resolver),
933         result_(false) {
934     DCHECK(resolver.get());
935     const bool kIsSlow = true;
936     base::WorkerPool::PostTaskAndReply(
937         FROM_HERE,
938         base::Bind(&LoopbackProbeJob::DoProbe, base::Unretained(this)),
939         base::Bind(&LoopbackProbeJob::OnProbeComplete, base::Owned(this)),
940         kIsSlow);
941   }
942
943   virtual ~LoopbackProbeJob() {}
944
945  private:
946   // Runs on worker thread.
947   void DoProbe() {
948     result_ = HaveOnlyLoopbackAddresses();
949   }
950
951   void OnProbeComplete() {
952     if (!resolver_.get())
953       return;
954     resolver_->SetHaveOnlyLoopbackAddresses(result_);
955   }
956
957   // Used/set only on origin thread.
958   base::WeakPtr<HostResolverImpl> resolver_;
959
960   bool result_;
961
962   DISALLOW_COPY_AND_ASSIGN(LoopbackProbeJob);
963 };
964
965 //-----------------------------------------------------------------------------
966
967 // Resolves the hostname using DnsTransaction.
968 // TODO(szym): This could be moved to separate source file as well.
969 class HostResolverImpl::DnsTask : public base::SupportsWeakPtr<DnsTask> {
970  public:
971   class Delegate {
972    public:
973     virtual void OnDnsTaskComplete(base::TimeTicks start_time,
974                                    int net_error,
975                                    const AddressList& addr_list,
976                                    base::TimeDelta ttl) = 0;
977
978     // Called when the first of two jobs succeeds.  If the first completed
979     // transaction fails, this is not called.  Also not called when the DnsTask
980     // only needs to run one transaction.
981     virtual void OnFirstDnsTransactionComplete() = 0;
982
983    protected:
984     Delegate() {}
985     virtual ~Delegate() {}
986   };
987
988   DnsTask(DnsClient* client,
989           const Key& key,
990           Delegate* delegate,
991           const BoundNetLog& job_net_log)
992       : client_(client),
993         key_(key),
994         delegate_(delegate),
995         net_log_(job_net_log),
996         num_completed_transactions_(0),
997         task_start_time_(base::TimeTicks::Now()) {
998     DCHECK(client);
999     DCHECK(delegate_);
1000   }
1001
1002   bool needs_two_transactions() const {
1003     return key_.address_family == ADDRESS_FAMILY_UNSPECIFIED;
1004   }
1005
1006   bool needs_another_transaction() const {
1007     return needs_two_transactions() && !transaction_aaaa_;
1008   }
1009
1010   void StartFirstTransaction() {
1011     DCHECK_EQ(0u, num_completed_transactions_);
1012     net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK);
1013     if (key_.address_family == ADDRESS_FAMILY_IPV6) {
1014       StartAAAA();
1015     } else {
1016       StartA();
1017     }
1018   }
1019
1020   void StartSecondTransaction() {
1021     DCHECK(needs_two_transactions());
1022     StartAAAA();
1023   }
1024
1025  private:
1026   void StartA() {
1027     DCHECK(!transaction_a_);
1028     DCHECK_NE(ADDRESS_FAMILY_IPV6, key_.address_family);
1029     transaction_a_ = CreateTransaction(ADDRESS_FAMILY_IPV4);
1030     transaction_a_->Start();
1031   }
1032
1033   void StartAAAA() {
1034     DCHECK(!transaction_aaaa_);
1035     DCHECK_NE(ADDRESS_FAMILY_IPV4, key_.address_family);
1036     transaction_aaaa_ = CreateTransaction(ADDRESS_FAMILY_IPV6);
1037     transaction_aaaa_->Start();
1038   }
1039
1040   scoped_ptr<DnsTransaction> CreateTransaction(AddressFamily family) {
1041     DCHECK_NE(ADDRESS_FAMILY_UNSPECIFIED, family);
1042     return client_->GetTransactionFactory()->CreateTransaction(
1043         key_.hostname,
1044         family == ADDRESS_FAMILY_IPV6 ? dns_protocol::kTypeAAAA :
1045                                         dns_protocol::kTypeA,
1046         base::Bind(&DnsTask::OnTransactionComplete, base::Unretained(this),
1047                    base::TimeTicks::Now()),
1048         net_log_);
1049   }
1050
1051   void OnTransactionComplete(const base::TimeTicks& start_time,
1052                              DnsTransaction* transaction,
1053                              int net_error,
1054                              const DnsResponse* response) {
1055     DCHECK(transaction);
1056     base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1057     if (net_error != OK) {
1058       DNS_HISTOGRAM("AsyncDNS.TransactionFailure", duration);
1059       OnFailure(net_error, DnsResponse::DNS_PARSE_OK);
1060       return;
1061     }
1062
1063     DNS_HISTOGRAM("AsyncDNS.TransactionSuccess", duration);
1064     switch (transaction->GetType()) {
1065       case dns_protocol::kTypeA:
1066         DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_A", duration);
1067         break;
1068       case dns_protocol::kTypeAAAA:
1069         DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_AAAA", duration);
1070         break;
1071     }
1072
1073     AddressList addr_list;
1074     base::TimeDelta ttl;
1075     DnsResponse::Result result = response->ParseToAddressList(&addr_list, &ttl);
1076     UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ParseToAddressList",
1077                               result,
1078                               DnsResponse::DNS_PARSE_RESULT_MAX);
1079     if (result != DnsResponse::DNS_PARSE_OK) {
1080       // Fail even if the other query succeeds.
1081       OnFailure(ERR_DNS_MALFORMED_RESPONSE, result);
1082       return;
1083     }
1084
1085     ++num_completed_transactions_;
1086     if (num_completed_transactions_ == 1) {
1087       ttl_ = ttl;
1088     } else {
1089       ttl_ = std::min(ttl_, ttl);
1090     }
1091
1092     if (transaction->GetType() == dns_protocol::kTypeA) {
1093       DCHECK_EQ(transaction_a_.get(), transaction);
1094       // Place IPv4 addresses after IPv6.
1095       addr_list_.insert(addr_list_.end(), addr_list.begin(), addr_list.end());
1096     } else {
1097       DCHECK_EQ(transaction_aaaa_.get(), transaction);
1098       // Place IPv6 addresses before IPv4.
1099       addr_list_.insert(addr_list_.begin(), addr_list.begin(), addr_list.end());
1100     }
1101
1102     if (needs_two_transactions() && num_completed_transactions_ == 1) {
1103       // No need to repeat the suffix search.
1104       key_.hostname = transaction->GetHostname();
1105       delegate_->OnFirstDnsTransactionComplete();
1106       return;
1107     }
1108
1109     if (addr_list_.empty()) {
1110       // TODO(szym): Don't fallback to ProcTask in this case.
1111       OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1112       return;
1113     }
1114
1115     // If there are multiple addresses, and at least one is IPv6, need to sort
1116     // them.  Note that IPv6 addresses are always put before IPv4 ones, so it's
1117     // sufficient to just check the family of the first address.
1118     if (addr_list_.size() > 1 &&
1119         addr_list_[0].GetFamily() == ADDRESS_FAMILY_IPV6) {
1120       // Sort addresses if needed.  Sort could complete synchronously.
1121       client_->GetAddressSorter()->Sort(
1122           addr_list_,
1123           base::Bind(&DnsTask::OnSortComplete,
1124                      AsWeakPtr(),
1125                      base::TimeTicks::Now()));
1126     } else {
1127       OnSuccess(addr_list_);
1128     }
1129   }
1130
1131   void OnSortComplete(base::TimeTicks start_time,
1132                       bool success,
1133                       const AddressList& addr_list) {
1134     if (!success) {
1135       DNS_HISTOGRAM("AsyncDNS.SortFailure",
1136                     base::TimeTicks::Now() - start_time);
1137       OnFailure(ERR_DNS_SORT_ERROR, DnsResponse::DNS_PARSE_OK);
1138       return;
1139     }
1140
1141     DNS_HISTOGRAM("AsyncDNS.SortSuccess",
1142                   base::TimeTicks::Now() - start_time);
1143
1144     // AddressSorter prunes unusable destinations.
1145     if (addr_list.empty()) {
1146       LOG(WARNING) << "Address list empty after RFC3484 sort";
1147       OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1148       return;
1149     }
1150
1151     OnSuccess(addr_list);
1152   }
1153
1154   void OnFailure(int net_error, DnsResponse::Result result) {
1155     DCHECK_NE(OK, net_error);
1156     net_log_.EndEvent(
1157         NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1158         base::Bind(&NetLogDnsTaskFailedCallback, net_error, result));
1159     delegate_->OnDnsTaskComplete(task_start_time_, net_error, AddressList(),
1160                                  base::TimeDelta());
1161   }
1162
1163   void OnSuccess(const AddressList& addr_list) {
1164     net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1165                       addr_list.CreateNetLogCallback());
1166     delegate_->OnDnsTaskComplete(task_start_time_, OK, addr_list, ttl_);
1167   }
1168
1169   DnsClient* client_;
1170   Key key_;
1171
1172   // The listener to the results of this DnsTask.
1173   Delegate* delegate_;
1174   const BoundNetLog net_log_;
1175
1176   scoped_ptr<DnsTransaction> transaction_a_;
1177   scoped_ptr<DnsTransaction> transaction_aaaa_;
1178
1179   unsigned num_completed_transactions_;
1180
1181   // These are updated as each transaction completes.
1182   base::TimeDelta ttl_;
1183   // IPv6 addresses must appear first in the list.
1184   AddressList addr_list_;
1185
1186   base::TimeTicks task_start_time_;
1187
1188   DISALLOW_COPY_AND_ASSIGN(DnsTask);
1189 };
1190
1191 //-----------------------------------------------------------------------------
1192
1193 // Aggregates all Requests for the same Key. Dispatched via PriorityDispatch.
1194 class HostResolverImpl::Job : public PrioritizedDispatcher::Job,
1195                               public HostResolverImpl::DnsTask::Delegate {
1196  public:
1197   // Creates new job for |key| where |request_net_log| is bound to the
1198   // request that spawned it.
1199   Job(const base::WeakPtr<HostResolverImpl>& resolver,
1200       const Key& key,
1201       RequestPriority priority,
1202       const BoundNetLog& request_net_log)
1203       : resolver_(resolver),
1204         key_(key),
1205         priority_tracker_(priority),
1206         had_non_speculative_request_(false),
1207         had_dns_config_(false),
1208         num_occupied_job_slots_(0),
1209         dns_task_error_(OK),
1210         creation_time_(base::TimeTicks::Now()),
1211         priority_change_time_(creation_time_),
1212         net_log_(BoundNetLog::Make(request_net_log.net_log(),
1213                                    NetLog::SOURCE_HOST_RESOLVER_IMPL_JOB)) {
1214     request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CREATE_JOB);
1215
1216     net_log_.BeginEvent(
1217         NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1218         base::Bind(&NetLogJobCreationCallback,
1219                    request_net_log.source(),
1220                    &key_.hostname));
1221   }
1222
1223   virtual ~Job() {
1224     if (is_running()) {
1225       // |resolver_| was destroyed with this Job still in flight.
1226       // Clean-up, record in the log, but don't run any callbacks.
1227       if (is_proc_running()) {
1228         proc_task_->Cancel();
1229         proc_task_ = NULL;
1230       }
1231       // Clean up now for nice NetLog.
1232       KillDnsTask();
1233       net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1234                                         ERR_ABORTED);
1235     } else if (is_queued()) {
1236       // |resolver_| was destroyed without running this Job.
1237       // TODO(szym): is there any benefit in having this distinction?
1238       net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1239       net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB);
1240     }
1241     // else CompleteRequests logged EndEvent.
1242
1243     // Log any remaining Requests as cancelled.
1244     for (RequestsList::const_iterator it = requests_.begin();
1245          it != requests_.end(); ++it) {
1246       Request* req = *it;
1247       if (req->was_canceled())
1248         continue;
1249       DCHECK_EQ(this, req->job());
1250       LogCancelRequest(req->source_net_log(), req->request_net_log(),
1251                        req->info());
1252     }
1253   }
1254
1255   // Add this job to the dispatcher.  If "at_head" is true, adds at the front
1256   // of the queue.
1257   void Schedule(bool at_head) {
1258     DCHECK(!is_queued());
1259     PrioritizedDispatcher::Handle handle;
1260     if (!at_head) {
1261       handle = resolver_->dispatcher_.Add(this, priority());
1262     } else {
1263       handle = resolver_->dispatcher_.AddAtHead(this, priority());
1264     }
1265     // The dispatcher could have started |this| in the above call to Add, which
1266     // could have called Schedule again. In that case |handle| will be null,
1267     // but |handle_| may have been set by the other nested call to Schedule.
1268     if (!handle.is_null()) {
1269       DCHECK(handle_.is_null());
1270       handle_ = handle;
1271     }
1272   }
1273
1274   void AddRequest(scoped_ptr<Request> req) {
1275     DCHECK_EQ(key_.hostname, req->info().hostname());
1276
1277     req->set_job(this);
1278     priority_tracker_.Add(req->priority());
1279
1280     req->request_net_log().AddEvent(
1281         NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH,
1282         net_log_.source().ToEventParametersCallback());
1283
1284     net_log_.AddEvent(
1285         NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_ATTACH,
1286         base::Bind(&NetLogJobAttachCallback,
1287                    req->request_net_log().source(),
1288                    priority()));
1289
1290     // TODO(szym): Check if this is still needed.
1291     if (!req->info().is_speculative()) {
1292       had_non_speculative_request_ = true;
1293       if (proc_task_.get())
1294         proc_task_->set_had_non_speculative_request();
1295     }
1296
1297     requests_.push_back(req.release());
1298
1299     UpdatePriority();
1300   }
1301
1302   // Marks |req| as cancelled. If it was the last active Request, also finishes
1303   // this Job, marking it as cancelled, and deletes it.
1304   void CancelRequest(Request* req) {
1305     DCHECK_EQ(key_.hostname, req->info().hostname());
1306     DCHECK(!req->was_canceled());
1307
1308     // Don't remove it from |requests_| just mark it canceled.
1309     req->MarkAsCanceled();
1310     LogCancelRequest(req->source_net_log(), req->request_net_log(),
1311                      req->info());
1312
1313     priority_tracker_.Remove(req->priority());
1314     net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_DETACH,
1315                       base::Bind(&NetLogJobAttachCallback,
1316                                  req->request_net_log().source(),
1317                                  priority()));
1318
1319     if (num_active_requests() > 0) {
1320       UpdatePriority();
1321     } else {
1322       // If we were called from a Request's callback within CompleteRequests,
1323       // that Request could not have been cancelled, so num_active_requests()
1324       // could not be 0. Therefore, we are not in CompleteRequests().
1325       CompleteRequestsWithError(OK /* cancelled */);
1326     }
1327   }
1328
1329   // Called from AbortAllInProgressJobs. Completes all requests and destroys
1330   // the job. This currently assumes the abort is due to a network change.
1331   void Abort() {
1332     DCHECK(is_running());
1333     CompleteRequestsWithError(ERR_NETWORK_CHANGED);
1334   }
1335
1336   // If DnsTask present, abort it and fall back to ProcTask.
1337   void AbortDnsTask() {
1338     if (dns_task_) {
1339       KillDnsTask();
1340       dns_task_error_ = OK;
1341       StartProcTask();
1342     }
1343   }
1344
1345   // Called by HostResolverImpl when this job is evicted due to queue overflow.
1346   // Completes all requests and destroys the job.
1347   void OnEvicted() {
1348     DCHECK(!is_running());
1349     DCHECK(is_queued());
1350     handle_.Reset();
1351
1352     net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_EVICTED);
1353
1354     // This signals to CompleteRequests that this job never ran.
1355     CompleteRequestsWithError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1356   }
1357
1358   // Attempts to serve the job from HOSTS. Returns true if succeeded and
1359   // this Job was destroyed.
1360   bool ServeFromHosts() {
1361     DCHECK_GT(num_active_requests(), 0u);
1362     AddressList addr_list;
1363     if (resolver_->ServeFromHosts(key(),
1364                                   requests_.front()->info(),
1365                                   &addr_list)) {
1366       // This will destroy the Job.
1367       CompleteRequests(
1368           HostCache::Entry(OK, MakeAddressListForRequest(addr_list)),
1369           base::TimeDelta());
1370       return true;
1371     }
1372     return false;
1373   }
1374
1375   const Key key() const {
1376     return key_;
1377   }
1378
1379   bool is_queued() const {
1380     return !handle_.is_null();
1381   }
1382
1383   bool is_running() const {
1384     return is_dns_running() || is_proc_running();
1385   }
1386
1387  private:
1388   void KillDnsTask() {
1389     if (dns_task_) {
1390       ReduceToOneJobSlot();
1391       dns_task_.reset();
1392     }
1393   }
1394
1395   // Reduce the number of job slots occupied and queued in the dispatcher
1396   // to one. If the second Job slot is queued in the dispatcher, cancels the
1397   // queued job. Otherwise, the second Job has been started by the
1398   // PrioritizedDispatcher, so signals it is complete.
1399   void ReduceToOneJobSlot() {
1400     DCHECK_GE(num_occupied_job_slots_, 1u);
1401     if (is_queued()) {
1402       resolver_->dispatcher_.Cancel(handle_);
1403       handle_.Reset();
1404     } else if (num_occupied_job_slots_ > 1) {
1405       resolver_->dispatcher_.OnJobFinished();
1406       --num_occupied_job_slots_;
1407     }
1408     DCHECK_EQ(1u, num_occupied_job_slots_);
1409   }
1410
1411   void UpdatePriority() {
1412     if (is_queued()) {
1413       if (priority() != static_cast<RequestPriority>(handle_.priority()))
1414         priority_change_time_ = base::TimeTicks::Now();
1415       handle_ = resolver_->dispatcher_.ChangePriority(handle_, priority());
1416     }
1417   }
1418
1419   AddressList MakeAddressListForRequest(const AddressList& list) const {
1420     if (requests_.empty())
1421       return list;
1422     return AddressList::CopyWithPort(list, requests_.front()->info().port());
1423   }
1424
1425   // PriorityDispatch::Job:
1426   virtual void Start() OVERRIDE {
1427     DCHECK_LE(num_occupied_job_slots_, 1u);
1428
1429     handle_.Reset();
1430     ++num_occupied_job_slots_;
1431
1432     if (num_occupied_job_slots_ == 2) {
1433       StartSecondDnsTransaction();
1434       return;
1435     }
1436
1437     DCHECK(!is_running());
1438
1439     net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_STARTED);
1440
1441     had_dns_config_ = resolver_->HaveDnsConfig();
1442
1443     base::TimeTicks now = base::TimeTicks::Now();
1444     base::TimeDelta queue_time = now - creation_time_;
1445     base::TimeDelta queue_time_after_change = now - priority_change_time_;
1446
1447     if (had_dns_config_) {
1448       DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTime", priority(),
1449                                 queue_time);
1450       DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTimeAfterChange", priority(),
1451                                 queue_time_after_change);
1452     } else {
1453       DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTime", priority(), queue_time);
1454       DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTimeAfterChange", priority(),
1455                                 queue_time_after_change);
1456     }
1457
1458     bool system_only =
1459         (key_.host_resolver_flags & HOST_RESOLVER_SYSTEM_ONLY) != 0;
1460
1461     // Caution: Job::Start must not complete synchronously.
1462     if (!system_only && had_dns_config_ &&
1463         !ResemblesMulticastDNSName(key_.hostname)) {
1464       StartDnsTask();
1465     } else {
1466       StartProcTask();
1467     }
1468   }
1469
1470   // TODO(szym): Since DnsTransaction does not consume threads, we can increase
1471   // the limits on |dispatcher_|. But in order to keep the number of WorkerPool
1472   // threads low, we will need to use an "inner" PrioritizedDispatcher with
1473   // tighter limits.
1474   void StartProcTask() {
1475     DCHECK(!is_dns_running());
1476     proc_task_ = new ProcTask(
1477         key_,
1478         resolver_->proc_params_,
1479         base::Bind(&Job::OnProcTaskComplete, base::Unretained(this),
1480                    base::TimeTicks::Now()),
1481         net_log_);
1482
1483     if (had_non_speculative_request_)
1484       proc_task_->set_had_non_speculative_request();
1485     // Start() could be called from within Resolve(), hence it must NOT directly
1486     // call OnProcTaskComplete, for example, on synchronous failure.
1487     proc_task_->Start();
1488   }
1489
1490   // Called by ProcTask when it completes.
1491   void OnProcTaskComplete(base::TimeTicks start_time,
1492                           int net_error,
1493                           const AddressList& addr_list) {
1494     DCHECK(is_proc_running());
1495
1496     if (!resolver_->resolved_known_ipv6_hostname_ &&
1497         net_error == OK &&
1498         key_.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
1499       if (key_.hostname == "www.google.com") {
1500         resolver_->resolved_known_ipv6_hostname_ = true;
1501         bool got_ipv6_address = false;
1502         for (size_t i = 0; i < addr_list.size(); ++i) {
1503           if (addr_list[i].GetFamily() == ADDRESS_FAMILY_IPV6) {
1504             got_ipv6_address = true;
1505             break;
1506           }
1507         }
1508         UMA_HISTOGRAM_BOOLEAN("Net.UnspecResolvedIPv6", got_ipv6_address);
1509       }
1510     }
1511
1512     if (dns_task_error_ != OK) {
1513       base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1514       if (net_error == OK) {
1515         DNS_HISTOGRAM("AsyncDNS.FallbackSuccess", duration);
1516         if ((dns_task_error_ == ERR_NAME_NOT_RESOLVED) &&
1517             ResemblesNetBIOSName(key_.hostname)) {
1518           UmaAsyncDnsResolveStatus(RESOLVE_STATUS_SUSPECT_NETBIOS);
1519         } else {
1520           UmaAsyncDnsResolveStatus(RESOLVE_STATUS_PROC_SUCCESS);
1521         }
1522         UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.ResolveError",
1523                                          std::abs(dns_task_error_),
1524                                          GetAllErrorCodesForUma());
1525         resolver_->OnDnsTaskResolve(dns_task_error_);
1526       } else {
1527         DNS_HISTOGRAM("AsyncDNS.FallbackFail", duration);
1528         UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1529       }
1530     }
1531
1532     base::TimeDelta ttl =
1533         base::TimeDelta::FromSeconds(kNegativeCacheEntryTTLSeconds);
1534     if (net_error == OK)
1535       ttl = base::TimeDelta::FromSeconds(kCacheEntryTTLSeconds);
1536
1537     // Don't store the |ttl| in cache since it's not obtained from the server.
1538     CompleteRequests(
1539         HostCache::Entry(net_error, MakeAddressListForRequest(addr_list)),
1540         ttl);
1541   }
1542
1543   void StartDnsTask() {
1544     DCHECK(resolver_->HaveDnsConfig());
1545     dns_task_.reset(new DnsTask(resolver_->dns_client_.get(), key_, this,
1546                                 net_log_));
1547
1548     dns_task_->StartFirstTransaction();
1549     // Schedule a second transaction, if needed.
1550     if (dns_task_->needs_two_transactions())
1551       Schedule(true);
1552   }
1553
1554   void StartSecondDnsTransaction() {
1555     DCHECK(dns_task_->needs_two_transactions());
1556     dns_task_->StartSecondTransaction();
1557   }
1558
1559   // Called if DnsTask fails. It is posted from StartDnsTask, so Job may be
1560   // deleted before this callback. In this case dns_task is deleted as well,
1561   // so we use it as indicator whether Job is still valid.
1562   void OnDnsTaskFailure(const base::WeakPtr<DnsTask>& dns_task,
1563                         base::TimeDelta duration,
1564                         int net_error) {
1565     DNS_HISTOGRAM("AsyncDNS.ResolveFail", duration);
1566
1567     if (dns_task == NULL)
1568       return;
1569
1570     dns_task_error_ = net_error;
1571
1572     // TODO(szym): Run ServeFromHosts now if nsswitch.conf says so.
1573     // http://crbug.com/117655
1574
1575     // TODO(szym): Some net errors indicate lack of connectivity. Starting
1576     // ProcTask in that case is a waste of time.
1577     if (resolver_->fallback_to_proctask_) {
1578       KillDnsTask();
1579       StartProcTask();
1580     } else {
1581       UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1582       CompleteRequestsWithError(net_error);
1583     }
1584   }
1585
1586
1587   // HostResolverImpl::DnsTask::Delegate implementation:
1588
1589   virtual void OnDnsTaskComplete(base::TimeTicks start_time,
1590                                  int net_error,
1591                                  const AddressList& addr_list,
1592                                  base::TimeDelta ttl) OVERRIDE {
1593     DCHECK(is_dns_running());
1594
1595     base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1596     if (net_error != OK) {
1597       OnDnsTaskFailure(dns_task_->AsWeakPtr(), duration, net_error);
1598       return;
1599     }
1600     DNS_HISTOGRAM("AsyncDNS.ResolveSuccess", duration);
1601     // Log DNS lookups based on |address_family|.
1602     switch(key_.address_family) {
1603       case ADDRESS_FAMILY_IPV4:
1604         DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV4", duration);
1605         break;
1606       case ADDRESS_FAMILY_IPV6:
1607         DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV6", duration);
1608         break;
1609       case ADDRESS_FAMILY_UNSPECIFIED:
1610         DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_UNSPEC", duration);
1611         break;
1612     }
1613
1614     UmaAsyncDnsResolveStatus(RESOLVE_STATUS_DNS_SUCCESS);
1615     RecordTTL(ttl);
1616
1617     resolver_->OnDnsTaskResolve(OK);
1618
1619     base::TimeDelta bounded_ttl =
1620         std::max(ttl, base::TimeDelta::FromSeconds(kMinimumTTLSeconds));
1621
1622     CompleteRequests(
1623         HostCache::Entry(net_error, MakeAddressListForRequest(addr_list), ttl),
1624         bounded_ttl);
1625   }
1626
1627   virtual void OnFirstDnsTransactionComplete() OVERRIDE {
1628     DCHECK(dns_task_->needs_two_transactions());
1629     DCHECK_EQ(dns_task_->needs_another_transaction(), is_queued());
1630     // No longer need to occupy two dispatcher slots.
1631     ReduceToOneJobSlot();
1632
1633     // We already have a job slot at the dispatcher, so if the second
1634     // transaction hasn't started, reuse it now instead of waiting in the queue
1635     // for the second slot.
1636     if (dns_task_->needs_another_transaction())
1637       dns_task_->StartSecondTransaction();
1638   }
1639
1640   // Performs Job's last rites. Completes all Requests. Deletes this.
1641   void CompleteRequests(const HostCache::Entry& entry,
1642                         base::TimeDelta ttl) {
1643     CHECK(resolver_.get());
1644
1645     // This job must be removed from resolver's |jobs_| now to make room for a
1646     // new job with the same key in case one of the OnComplete callbacks decides
1647     // to spawn one. Consequently, the job deletes itself when CompleteRequests
1648     // is done.
1649     scoped_ptr<Job> self_deleter(this);
1650
1651     resolver_->RemoveJob(this);
1652
1653     if (is_running()) {
1654       if (is_proc_running()) {
1655         DCHECK(!is_queued());
1656         proc_task_->Cancel();
1657         proc_task_ = NULL;
1658       }
1659       KillDnsTask();
1660
1661       // Signal dispatcher that a slot has opened.
1662       resolver_->dispatcher_.OnJobFinished();
1663     } else if (is_queued()) {
1664       resolver_->dispatcher_.Cancel(handle_);
1665       handle_.Reset();
1666     }
1667
1668     if (num_active_requests() == 0) {
1669       net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1670       net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1671                                         OK);
1672       return;
1673     }
1674
1675     net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1676                                       entry.error);
1677
1678     DCHECK(!requests_.empty());
1679
1680     if (entry.error == OK) {
1681       // Record this histogram here, when we know the system has a valid DNS
1682       // configuration.
1683       UMA_HISTOGRAM_BOOLEAN("AsyncDNS.HaveDnsConfig",
1684                             resolver_->received_dns_config_);
1685     }
1686
1687     bool did_complete = (entry.error != ERR_NETWORK_CHANGED) &&
1688                         (entry.error != ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1689     if (did_complete)
1690       resolver_->CacheResult(key_, entry, ttl);
1691
1692     // Complete all of the requests that were attached to the job.
1693     for (RequestsList::const_iterator it = requests_.begin();
1694          it != requests_.end(); ++it) {
1695       Request* req = *it;
1696
1697       if (req->was_canceled())
1698         continue;
1699
1700       DCHECK_EQ(this, req->job());
1701       // Update the net log and notify registered observers.
1702       LogFinishRequest(req->source_net_log(), req->request_net_log(),
1703                        req->info(), entry.error);
1704       if (did_complete) {
1705         // Record effective total time from creation to completion.
1706         RecordTotalTime(had_dns_config_, req->info().is_speculative(),
1707                         base::TimeTicks::Now() - req->request_time());
1708       }
1709       req->OnComplete(entry.error, entry.addrlist);
1710
1711       // Check if the resolver was destroyed as a result of running the
1712       // callback. If it was, we could continue, but we choose to bail.
1713       if (!resolver_.get())
1714         return;
1715     }
1716   }
1717
1718   // Convenience wrapper for CompleteRequests in case of failure.
1719   void CompleteRequestsWithError(int net_error) {
1720     CompleteRequests(HostCache::Entry(net_error, AddressList()),
1721                      base::TimeDelta());
1722   }
1723
1724   RequestPriority priority() const {
1725     return priority_tracker_.highest_priority();
1726   }
1727
1728   // Number of non-canceled requests in |requests_|.
1729   size_t num_active_requests() const {
1730     return priority_tracker_.total_count();
1731   }
1732
1733   bool is_dns_running() const {
1734     return dns_task_.get() != NULL;
1735   }
1736
1737   bool is_proc_running() const {
1738     return proc_task_.get() != NULL;
1739   }
1740
1741   base::WeakPtr<HostResolverImpl> resolver_;
1742
1743   Key key_;
1744
1745   // Tracks the highest priority across |requests_|.
1746   PriorityTracker priority_tracker_;
1747
1748   bool had_non_speculative_request_;
1749
1750   // Distinguishes measurements taken while DnsClient was fully configured.
1751   bool had_dns_config_;
1752
1753   // Number of slots occupied by this Job in resolver's PrioritizedDispatcher.
1754   unsigned num_occupied_job_slots_;
1755
1756   // Result of DnsTask.
1757   int dns_task_error_;
1758
1759   const base::TimeTicks creation_time_;
1760   base::TimeTicks priority_change_time_;
1761
1762   BoundNetLog net_log_;
1763
1764   // Resolves the host using a HostResolverProc.
1765   scoped_refptr<ProcTask> proc_task_;
1766
1767   // Resolves the host using a DnsTransaction.
1768   scoped_ptr<DnsTask> dns_task_;
1769
1770   // All Requests waiting for the result of this Job. Some can be canceled.
1771   RequestsList requests_;
1772
1773   // A handle used in |HostResolverImpl::dispatcher_|.
1774   PrioritizedDispatcher::Handle handle_;
1775 };
1776
1777 //-----------------------------------------------------------------------------
1778
1779 HostResolverImpl::ProcTaskParams::ProcTaskParams(
1780     HostResolverProc* resolver_proc,
1781     size_t max_retry_attempts)
1782     : resolver_proc(resolver_proc),
1783       max_retry_attempts(max_retry_attempts),
1784       unresponsive_delay(base::TimeDelta::FromMilliseconds(6000)),
1785       retry_factor(2) {
1786 }
1787
1788 HostResolverImpl::ProcTaskParams::~ProcTaskParams() {}
1789
1790 HostResolverImpl::HostResolverImpl(
1791     scoped_ptr<HostCache> cache,
1792     const PrioritizedDispatcher::Limits& job_limits,
1793     const ProcTaskParams& proc_params,
1794     NetLog* net_log)
1795     : cache_(cache.Pass()),
1796       dispatcher_(job_limits),
1797       max_queued_jobs_(job_limits.total_jobs * 100u),
1798       proc_params_(proc_params),
1799       net_log_(net_log),
1800       default_address_family_(ADDRESS_FAMILY_UNSPECIFIED),
1801       weak_ptr_factory_(this),
1802       probe_weak_ptr_factory_(this),
1803       received_dns_config_(false),
1804       num_dns_failures_(0),
1805       probe_ipv6_support_(true),
1806       use_local_ipv6_(false),
1807       resolved_known_ipv6_hostname_(false),
1808       additional_resolver_flags_(0),
1809       fallback_to_proctask_(true) {
1810
1811   DCHECK_GE(dispatcher_.num_priorities(), static_cast<size_t>(NUM_PRIORITIES));
1812
1813   // Maximum of 4 retry attempts for host resolution.
1814   static const size_t kDefaultMaxRetryAttempts = 4u;
1815
1816   if (proc_params_.max_retry_attempts == HostResolver::kDefaultRetryAttempts)
1817     proc_params_.max_retry_attempts = kDefaultMaxRetryAttempts;
1818
1819 #if defined(OS_WIN)
1820   EnsureWinsockInit();
1821 #endif
1822 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
1823   new LoopbackProbeJob(weak_ptr_factory_.GetWeakPtr());
1824 #endif
1825   NetworkChangeNotifier::AddIPAddressObserver(this);
1826   NetworkChangeNotifier::AddDNSObserver(this);
1827 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) && \
1828     !defined(OS_ANDROID)
1829   EnsureDnsReloaderInit();
1830 #endif
1831
1832   {
1833     DnsConfig dns_config;
1834     NetworkChangeNotifier::GetDnsConfig(&dns_config);
1835     received_dns_config_ = dns_config.IsValid();
1836     // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
1837     use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
1838   }
1839
1840   fallback_to_proctask_ = !ConfigureAsyncDnsNoFallbackFieldTrial();
1841 }
1842
1843 HostResolverImpl::~HostResolverImpl() {
1844   // Prevent the dispatcher from starting new jobs.
1845   dispatcher_.SetLimitsToZero();
1846   // It's now safe for Jobs to call KillDsnTask on destruction, because
1847   // OnJobComplete will not start any new jobs.
1848   STLDeleteValues(&jobs_);
1849
1850   NetworkChangeNotifier::RemoveIPAddressObserver(this);
1851   NetworkChangeNotifier::RemoveDNSObserver(this);
1852 }
1853
1854 void HostResolverImpl::SetMaxQueuedJobs(size_t value) {
1855   DCHECK_EQ(0u, dispatcher_.num_queued_jobs());
1856   DCHECK_GT(value, 0u);
1857   max_queued_jobs_ = value;
1858 }
1859
1860 int HostResolverImpl::Resolve(const RequestInfo& info,
1861                               RequestPriority priority,
1862                               AddressList* addresses,
1863                               const CompletionCallback& callback,
1864                               RequestHandle* out_req,
1865                               const BoundNetLog& source_net_log) {
1866   DCHECK(addresses);
1867   DCHECK(CalledOnValidThread());
1868   DCHECK_EQ(false, callback.is_null());
1869
1870   // Check that the caller supplied a valid hostname to resolve.
1871   std::string labeled_hostname;
1872   if (!DNSDomainFromDot(info.hostname(), &labeled_hostname))
1873     return ERR_NAME_NOT_RESOLVED;
1874
1875   // Make a log item for the request.
1876   BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1877       NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1878
1879   LogStartRequest(source_net_log, request_net_log, info);
1880
1881   // Build a key that identifies the request in the cache and in the
1882   // outstanding jobs map.
1883   Key key = GetEffectiveKeyForRequest(info, request_net_log);
1884
1885   int rv = ResolveHelper(key, info, addresses, request_net_log);
1886   if (rv != ERR_DNS_CACHE_MISS) {
1887     LogFinishRequest(source_net_log, request_net_log, info, rv);
1888     RecordTotalTime(HaveDnsConfig(), info.is_speculative(), base::TimeDelta());
1889     return rv;
1890   }
1891
1892   // Next we need to attach our request to a "job". This job is responsible for
1893   // calling "getaddrinfo(hostname)" on a worker thread.
1894
1895   JobMap::iterator jobit = jobs_.find(key);
1896   Job* job;
1897   if (jobit == jobs_.end()) {
1898     job =
1899         new Job(weak_ptr_factory_.GetWeakPtr(), key, priority, request_net_log);
1900     job->Schedule(false);
1901
1902     // Check for queue overflow.
1903     if (dispatcher_.num_queued_jobs() > max_queued_jobs_) {
1904       Job* evicted = static_cast<Job*>(dispatcher_.EvictOldestLowest());
1905       DCHECK(evicted);
1906       evicted->OnEvicted();  // Deletes |evicted|.
1907       if (evicted == job) {
1908         rv = ERR_HOST_RESOLVER_QUEUE_TOO_LARGE;
1909         LogFinishRequest(source_net_log, request_net_log, info, rv);
1910         return rv;
1911       }
1912     }
1913     jobs_.insert(jobit, std::make_pair(key, job));
1914   } else {
1915     job = jobit->second;
1916   }
1917
1918   // Can't complete synchronously. Create and attach request.
1919   scoped_ptr<Request> req(new Request(
1920       source_net_log, request_net_log, info, priority, callback, addresses));
1921   if (out_req)
1922     *out_req = reinterpret_cast<RequestHandle>(req.get());
1923
1924   job->AddRequest(req.Pass());
1925   // Completion happens during Job::CompleteRequests().
1926   return ERR_IO_PENDING;
1927 }
1928
1929 int HostResolverImpl::ResolveHelper(const Key& key,
1930                                     const RequestInfo& info,
1931                                     AddressList* addresses,
1932                                     const BoundNetLog& request_net_log) {
1933   // The result of |getaddrinfo| for empty hosts is inconsistent across systems.
1934   // On Windows it gives the default interface's address, whereas on Linux it
1935   // gives an error. We will make it fail on all platforms for consistency.
1936   if (info.hostname().empty() || info.hostname().size() > kMaxHostLength)
1937     return ERR_NAME_NOT_RESOLVED;
1938
1939   int net_error = ERR_UNEXPECTED;
1940   if (ResolveAsIP(key, info, &net_error, addresses))
1941     return net_error;
1942   if (ServeFromCache(key, info, &net_error, addresses)) {
1943     request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CACHE_HIT);
1944     return net_error;
1945   }
1946   // TODO(szym): Do not do this if nsswitch.conf instructs not to.
1947   // http://crbug.com/117655
1948   if (ServeFromHosts(key, info, addresses)) {
1949     request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_HOSTS_HIT);
1950     return OK;
1951   }
1952   return ERR_DNS_CACHE_MISS;
1953 }
1954
1955 int HostResolverImpl::ResolveFromCache(const RequestInfo& info,
1956                                        AddressList* addresses,
1957                                        const BoundNetLog& source_net_log) {
1958   DCHECK(CalledOnValidThread());
1959   DCHECK(addresses);
1960
1961   // Make a log item for the request.
1962   BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1963       NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1964
1965   // Update the net log and notify registered observers.
1966   LogStartRequest(source_net_log, request_net_log, info);
1967
1968   Key key = GetEffectiveKeyForRequest(info, request_net_log);
1969
1970   int rv = ResolveHelper(key, info, addresses, request_net_log);
1971   LogFinishRequest(source_net_log, request_net_log, info, rv);
1972   return rv;
1973 }
1974
1975 void HostResolverImpl::CancelRequest(RequestHandle req_handle) {
1976   DCHECK(CalledOnValidThread());
1977   Request* req = reinterpret_cast<Request*>(req_handle);
1978   DCHECK(req);
1979   Job* job = req->job();
1980   DCHECK(job);
1981   job->CancelRequest(req);
1982 }
1983
1984 void HostResolverImpl::SetDefaultAddressFamily(AddressFamily address_family) {
1985   DCHECK(CalledOnValidThread());
1986   default_address_family_ = address_family;
1987   probe_ipv6_support_ = false;
1988 }
1989
1990 AddressFamily HostResolverImpl::GetDefaultAddressFamily() const {
1991   return default_address_family_;
1992 }
1993
1994 void HostResolverImpl::SetDnsClientEnabled(bool enabled) {
1995   DCHECK(CalledOnValidThread());
1996 #if defined(ENABLE_BUILT_IN_DNS)
1997   if (enabled && !dns_client_) {
1998     SetDnsClient(DnsClient::CreateClient(net_log_));
1999   } else if (!enabled && dns_client_) {
2000     SetDnsClient(scoped_ptr<DnsClient>());
2001   }
2002 #endif
2003 }
2004
2005 HostCache* HostResolverImpl::GetHostCache() {
2006   return cache_.get();
2007 }
2008
2009 base::Value* HostResolverImpl::GetDnsConfigAsValue() const {
2010   // Check if async DNS is disabled.
2011   if (!dns_client_.get())
2012     return NULL;
2013
2014   // Check if async DNS is enabled, but we currently have no configuration
2015   // for it.
2016   const DnsConfig* dns_config = dns_client_->GetConfig();
2017   if (dns_config == NULL)
2018     return new base::DictionaryValue();
2019
2020   return dns_config->ToValue();
2021 }
2022
2023 bool HostResolverImpl::ResolveAsIP(const Key& key,
2024                                    const RequestInfo& info,
2025                                    int* net_error,
2026                                    AddressList* addresses) {
2027   DCHECK(addresses);
2028   DCHECK(net_error);
2029   IPAddressNumber ip_number;
2030   if (!ParseIPLiteralToNumber(key.hostname, &ip_number))
2031     return false;
2032
2033   DCHECK_EQ(key.host_resolver_flags &
2034       ~(HOST_RESOLVER_CANONNAME | HOST_RESOLVER_LOOPBACK_ONLY |
2035         HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6),
2036             0) << " Unhandled flag";
2037   bool ipv6_disabled = (default_address_family_ == ADDRESS_FAMILY_IPV4) &&
2038       !probe_ipv6_support_;
2039   *net_error = OK;
2040   if ((ip_number.size() == kIPv6AddressSize) && ipv6_disabled) {
2041     *net_error = ERR_NAME_NOT_RESOLVED;
2042   } else {
2043     *addresses = AddressList::CreateFromIPAddress(ip_number, info.port());
2044     if (key.host_resolver_flags & HOST_RESOLVER_CANONNAME)
2045       addresses->SetDefaultCanonicalName();
2046   }
2047   return true;
2048 }
2049
2050 bool HostResolverImpl::ServeFromCache(const Key& key,
2051                                       const RequestInfo& info,
2052                                       int* net_error,
2053                                       AddressList* addresses) {
2054   DCHECK(addresses);
2055   DCHECK(net_error);
2056   if (!info.allow_cached_response() || !cache_.get())
2057     return false;
2058
2059   const HostCache::Entry* cache_entry = cache_->Lookup(
2060       key, base::TimeTicks::Now());
2061   if (!cache_entry)
2062     return false;
2063
2064   *net_error = cache_entry->error;
2065   if (*net_error == OK) {
2066     if (cache_entry->has_ttl())
2067       RecordTTL(cache_entry->ttl);
2068     *addresses = EnsurePortOnAddressList(cache_entry->addrlist, info.port());
2069   }
2070   return true;
2071 }
2072
2073 bool HostResolverImpl::ServeFromHosts(const Key& key,
2074                                       const RequestInfo& info,
2075                                       AddressList* addresses) {
2076   DCHECK(addresses);
2077   if (!HaveDnsConfig())
2078     return false;
2079   addresses->clear();
2080
2081   // HOSTS lookups are case-insensitive.
2082   std::string hostname = StringToLowerASCII(key.hostname);
2083
2084   const DnsHosts& hosts = dns_client_->GetConfig()->hosts;
2085
2086   // If |address_family| is ADDRESS_FAMILY_UNSPECIFIED other implementations
2087   // (glibc and c-ares) return the first matching line. We have more
2088   // flexibility, but lose implicit ordering.
2089   // We prefer IPv6 because "happy eyeballs" will fall back to IPv4 if
2090   // necessary.
2091   if (key.address_family == ADDRESS_FAMILY_IPV6 ||
2092       key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2093     DnsHosts::const_iterator it = hosts.find(
2094         DnsHostsKey(hostname, ADDRESS_FAMILY_IPV6));
2095     if (it != hosts.end())
2096       addresses->push_back(IPEndPoint(it->second, info.port()));
2097   }
2098
2099   if (key.address_family == ADDRESS_FAMILY_IPV4 ||
2100       key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2101     DnsHosts::const_iterator it = hosts.find(
2102         DnsHostsKey(hostname, ADDRESS_FAMILY_IPV4));
2103     if (it != hosts.end())
2104       addresses->push_back(IPEndPoint(it->second, info.port()));
2105   }
2106
2107   // If got only loopback addresses and the family was restricted, resolve
2108   // again, without restrictions. See SystemHostResolverCall for rationale.
2109   if ((key.host_resolver_flags &
2110           HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6) &&
2111       IsAllIPv4Loopback(*addresses)) {
2112     Key new_key(key);
2113     new_key.address_family = ADDRESS_FAMILY_UNSPECIFIED;
2114     new_key.host_resolver_flags &=
2115         ~HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2116     return ServeFromHosts(new_key, info, addresses);
2117   }
2118   return !addresses->empty();
2119 }
2120
2121 void HostResolverImpl::CacheResult(const Key& key,
2122                                    const HostCache::Entry& entry,
2123                                    base::TimeDelta ttl) {
2124   if (cache_.get())
2125     cache_->Set(key, entry, base::TimeTicks::Now(), ttl);
2126 }
2127
2128 void HostResolverImpl::RemoveJob(Job* job) {
2129   DCHECK(job);
2130   JobMap::iterator it = jobs_.find(job->key());
2131   if (it != jobs_.end() && it->second == job)
2132     jobs_.erase(it);
2133 }
2134
2135 void HostResolverImpl::SetHaveOnlyLoopbackAddresses(bool result) {
2136   if (result) {
2137     additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY;
2138   } else {
2139     additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY;
2140   }
2141 }
2142
2143 HostResolverImpl::Key HostResolverImpl::GetEffectiveKeyForRequest(
2144     const RequestInfo& info, const BoundNetLog& net_log) const {
2145   HostResolverFlags effective_flags =
2146       info.host_resolver_flags() | additional_resolver_flags_;
2147   AddressFamily effective_address_family = info.address_family();
2148
2149   if (info.address_family() == ADDRESS_FAMILY_UNSPECIFIED) {
2150     if (probe_ipv6_support_ && !use_local_ipv6_) {
2151       base::TimeTicks start_time = base::TimeTicks::Now();
2152       // Google DNS address.
2153       const uint8 kIPv6Address[] =
2154           { 0x20, 0x01, 0x48, 0x60, 0x48, 0x60, 0x00, 0x00,
2155             0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88, 0x88 };
2156       IPAddressNumber address(kIPv6Address,
2157                               kIPv6Address + arraysize(kIPv6Address));
2158       bool rv6 = IsGloballyReachable(address, net_log);
2159       if (rv6)
2160         net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_IPV6_SUPPORTED);
2161
2162       UMA_HISTOGRAM_TIMES("Net.IPv6ConnectDuration",
2163                           base::TimeTicks::Now() - start_time);
2164       if (rv6) {
2165         UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectSuccessMatch",
2166             default_address_family_ == ADDRESS_FAMILY_UNSPECIFIED);
2167       } else {
2168         UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectFailureMatch",
2169             default_address_family_ != ADDRESS_FAMILY_UNSPECIFIED);
2170
2171         effective_address_family = ADDRESS_FAMILY_IPV4;
2172         effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2173       }
2174     } else {
2175       effective_address_family = default_address_family_;
2176     }
2177   }
2178
2179   return Key(info.hostname(), effective_address_family, effective_flags);
2180 }
2181
2182 void HostResolverImpl::AbortAllInProgressJobs() {
2183   // In Abort, a Request callback could spawn new Jobs with matching keys, so
2184   // first collect and remove all running jobs from |jobs_|.
2185   ScopedVector<Job> jobs_to_abort;
2186   for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ) {
2187     Job* job = it->second;
2188     if (job->is_running()) {
2189       jobs_to_abort.push_back(job);
2190       jobs_.erase(it++);
2191     } else {
2192       DCHECK(job->is_queued());
2193       ++it;
2194     }
2195   }
2196
2197   // Pause the dispatcher so it won't start any new dispatcher jobs while
2198   // aborting the old ones.  This is needed so that it won't start the second
2199   // DnsTransaction for a job in |jobs_to_abort| if the DnsConfig just became
2200   // invalid.
2201   PrioritizedDispatcher::Limits limits = dispatcher_.GetLimits();
2202   dispatcher_.SetLimits(
2203       PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2204
2205   // Life check to bail once |this| is deleted.
2206   base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2207
2208   // Then Abort them.
2209   for (size_t i = 0; self.get() && i < jobs_to_abort.size(); ++i) {
2210     jobs_to_abort[i]->Abort();
2211     jobs_to_abort[i] = NULL;
2212   }
2213
2214   if (self)
2215     dispatcher_.SetLimits(limits);
2216 }
2217
2218 void HostResolverImpl::AbortDnsTasks() {
2219   // Pause the dispatcher so it won't start any new dispatcher jobs while
2220   // aborting the old ones.  This is needed so that it won't start the second
2221   // DnsTransaction for a job if the DnsConfig just changed.
2222   PrioritizedDispatcher::Limits limits = dispatcher_.GetLimits();
2223   dispatcher_.SetLimits(
2224       PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2225
2226   for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ++it)
2227     it->second->AbortDnsTask();
2228   dispatcher_.SetLimits(limits);
2229 }
2230
2231 void HostResolverImpl::TryServingAllJobsFromHosts() {
2232   if (!HaveDnsConfig())
2233     return;
2234
2235   // TODO(szym): Do not do this if nsswitch.conf instructs not to.
2236   // http://crbug.com/117655
2237
2238   // Life check to bail once |this| is deleted.
2239   base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2240
2241   for (JobMap::iterator it = jobs_.begin(); self.get() && it != jobs_.end();) {
2242     Job* job = it->second;
2243     ++it;
2244     // This could remove |job| from |jobs_|, but iterator will remain valid.
2245     job->ServeFromHosts();
2246   }
2247 }
2248
2249 void HostResolverImpl::OnIPAddressChanged() {
2250   resolved_known_ipv6_hostname_ = false;
2251   // Abandon all ProbeJobs.
2252   probe_weak_ptr_factory_.InvalidateWeakPtrs();
2253   if (cache_.get())
2254     cache_->clear();
2255 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
2256   new LoopbackProbeJob(probe_weak_ptr_factory_.GetWeakPtr());
2257 #endif
2258   AbortAllInProgressJobs();
2259   // |this| may be deleted inside AbortAllInProgressJobs().
2260 }
2261
2262 void HostResolverImpl::OnDNSChanged() {
2263   DnsConfig dns_config;
2264   NetworkChangeNotifier::GetDnsConfig(&dns_config);
2265
2266   if (net_log_) {
2267     net_log_->AddGlobalEntry(
2268         NetLog::TYPE_DNS_CONFIG_CHANGED,
2269         base::Bind(&NetLogDnsConfigCallback, &dns_config));
2270   }
2271
2272   // TODO(szym): Remove once http://crbug.com/137914 is resolved.
2273   received_dns_config_ = dns_config.IsValid();
2274   // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
2275   use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
2276
2277   num_dns_failures_ = 0;
2278
2279   // We want a new DnsSession in place, before we Abort running Jobs, so that
2280   // the newly started jobs use the new config.
2281   if (dns_client_.get()) {
2282     dns_client_->SetConfig(dns_config);
2283     if (dns_client_->GetConfig())
2284       UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2285   }
2286
2287   // If the DNS server has changed, existing cached info could be wrong so we
2288   // have to drop our internal cache :( Note that OS level DNS caches, such
2289   // as NSCD's cache should be dropped automatically by the OS when
2290   // resolv.conf changes so we don't need to do anything to clear that cache.
2291   if (cache_.get())
2292     cache_->clear();
2293
2294   // Life check to bail once |this| is deleted.
2295   base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2296
2297   // Existing jobs will have been sent to the original server so they need to
2298   // be aborted.
2299   AbortAllInProgressJobs();
2300
2301   // |this| may be deleted inside AbortAllInProgressJobs().
2302   if (self.get())
2303     TryServingAllJobsFromHosts();
2304 }
2305
2306 bool HostResolverImpl::HaveDnsConfig() const {
2307   // Use DnsClient only if it's fully configured and there is no override by
2308   // ScopedDefaultHostResolverProc.
2309   // The alternative is to use NetworkChangeNotifier to override DnsConfig,
2310   // but that would introduce construction order requirements for NCN and SDHRP.
2311   return (dns_client_.get() != NULL) && (dns_client_->GetConfig() != NULL) &&
2312          !(proc_params_.resolver_proc.get() == NULL &&
2313            HostResolverProc::GetDefault() != NULL);
2314 }
2315
2316 void HostResolverImpl::OnDnsTaskResolve(int net_error) {
2317   DCHECK(dns_client_);
2318   if (net_error == OK) {
2319     num_dns_failures_ = 0;
2320     return;
2321   }
2322   ++num_dns_failures_;
2323   if (num_dns_failures_ < kMaximumDnsFailures)
2324     return;
2325
2326   // Disable DnsClient until the next DNS change.  Must be done before aborting
2327   // DnsTasks, since doing so may start new jobs.
2328   dns_client_->SetConfig(DnsConfig());
2329
2330   // Switch jobs with active DnsTasks over to using ProcTasks.
2331   AbortDnsTasks();
2332
2333   UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", false);
2334   UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.DnsClientDisabledReason",
2335                                    std::abs(net_error),
2336                                    GetAllErrorCodesForUma());
2337 }
2338
2339 void HostResolverImpl::SetDnsClient(scoped_ptr<DnsClient> dns_client) {
2340   // DnsClient and config must be updated before aborting DnsTasks, since doing
2341   // so may start new jobs.
2342   dns_client_ = dns_client.Pass();
2343   if (dns_client_ && !dns_client_->GetConfig() &&
2344       num_dns_failures_ < kMaximumDnsFailures) {
2345     DnsConfig dns_config;
2346     NetworkChangeNotifier::GetDnsConfig(&dns_config);
2347     dns_client_->SetConfig(dns_config);
2348     num_dns_failures_ = 0;
2349     if (dns_client_->GetConfig())
2350       UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2351   }
2352
2353   AbortDnsTasks();
2354 }
2355
2356 }  // namespace net