- add sources.
[platform/framework/web/crosswalk.git] / src / net / disk_cache / disk_cache.h
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Defines the public interface of the disk cache. For more details see
6 // http://dev.chromium.org/developers/design-documents/network-stack/disk-cache
7
8 #ifndef NET_DISK_CACHE_DISK_CACHE_H_
9 #define NET_DISK_CACHE_DISK_CACHE_H_
10
11 #include <string>
12 #include <vector>
13
14 #include "base/basictypes.h"
15 #include "base/time/time.h"
16 #include "net/base/cache_type.h"
17 #include "net/base/completion_callback.h"
18 #include "net/base/net_export.h"
19
20 namespace base {
21 class FilePath;
22 class MessageLoopProxy;
23 }
24
25 namespace net {
26 class IOBuffer;
27 class NetLog;
28 }
29
30 namespace disk_cache {
31
32 class Entry;
33 class Backend;
34
35 // Returns an instance of a Backend of the given |type|. |path| points to a
36 // folder where the cached data will be stored (if appropriate). This cache
37 // instance must be the only object that will be reading or writing files to
38 // that folder. The returned object should be deleted when not needed anymore.
39 // If |force| is true, and there is a problem with the cache initialization, the
40 // files will be deleted and a new set will be created. |max_bytes| is the
41 // maximum size the cache can grow to. If zero is passed in as |max_bytes|, the
42 // cache will determine the value to use. |thread| can be used to perform IO
43 // operations if a dedicated thread is required; a valid value is expected for
44 // any backend that performs operations on a disk. The returned pointer can be
45 // NULL if a fatal error is found. The actual return value of the function is a
46 // net error code. If this function returns ERR_IO_PENDING, the |callback| will
47 // be invoked when a backend is available or a fatal error condition is reached.
48 // The pointer to receive the |backend| must remain valid until the operation
49 // completes (the callback is notified).
50 NET_EXPORT int CreateCacheBackend(net::CacheType type,
51                                   net::BackendType backend_type,
52                                   const base::FilePath& path,
53                                   int max_bytes,
54                                   bool force,
55                                   base::MessageLoopProxy* thread,
56                                   net::NetLog* net_log,
57                                   scoped_ptr<Backend>* backend,
58                                   const net::CompletionCallback& callback);
59
60 // The root interface for a disk cache instance.
61 class NET_EXPORT Backend {
62  public:
63   typedef net::CompletionCallback CompletionCallback;
64
65   // If the backend is destroyed when there are operations in progress (any
66   // callback that has not been invoked yet), this method cancels said
67   // operations so the callbacks are not invoked, possibly leaving the work
68   // half way (for instance, dooming just a few entries). Note that pending IO
69   // for a given Entry (as opposed to the Backend) will still generate a
70   // callback from within this method.
71   virtual ~Backend() {}
72
73   // Returns the type of this cache.
74   virtual net::CacheType GetCacheType() const = 0;
75
76   // Returns the number of entries in the cache.
77   virtual int32 GetEntryCount() const = 0;
78
79   // Opens an existing entry. Upon success, |entry| holds a pointer to an Entry
80   // object representing the specified disk cache entry. When the entry pointer
81   // is no longer needed, its Close method should be called. The return value is
82   // a net error code. If this method returns ERR_IO_PENDING, the |callback|
83   // will be invoked when the entry is available. The pointer to receive the
84   // |entry| must remain valid until the operation completes.
85   virtual int OpenEntry(const std::string& key, Entry** entry,
86                         const CompletionCallback& callback) = 0;
87
88   // Creates a new entry. Upon success, the out param holds a pointer to an
89   // Entry object representing the newly created disk cache entry. When the
90   // entry pointer is no longer needed, its Close method should be called. The
91   // return value is a net error code. If this method returns ERR_IO_PENDING,
92   // the |callback| will be invoked when the entry is available. The pointer to
93   // receive the |entry| must remain valid until the operation completes.
94   virtual int CreateEntry(const std::string& key, Entry** entry,
95                           const CompletionCallback& callback) = 0;
96
97   // Marks the entry, specified by the given key, for deletion. The return value
98   // is a net error code. If this method returns ERR_IO_PENDING, the |callback|
99   // will be invoked after the entry is doomed.
100   virtual int DoomEntry(const std::string& key,
101                         const CompletionCallback& callback) = 0;
102
103   // Marks all entries for deletion. The return value is a net error code. If
104   // this method returns ERR_IO_PENDING, the |callback| will be invoked when the
105   // operation completes.
106   virtual int DoomAllEntries(const CompletionCallback& callback) = 0;
107
108   // Marks a range of entries for deletion. This supports unbounded deletes in
109   // either direction by using null Time values for either argument. The return
110   // value is a net error code. If this method returns ERR_IO_PENDING, the
111   // |callback| will be invoked when the operation completes.
112   virtual int DoomEntriesBetween(base::Time initial_time,
113                                  base::Time end_time,
114                                  const CompletionCallback& callback) = 0;
115
116   // Marks all entries accessed since |initial_time| for deletion. The return
117   // value is a net error code. If this method returns ERR_IO_PENDING, the
118   // |callback| will be invoked when the operation completes.
119   virtual int DoomEntriesSince(base::Time initial_time,
120                                const CompletionCallback& callback) = 0;
121
122   // Enumerates the cache. Initialize |iter| to NULL before calling this method
123   // the first time. That will cause the enumeration to start at the head of
124   // the cache. For subsequent calls, pass the same |iter| pointer again without
125   // changing its value. This method returns ERR_FAILED when there are no more
126   // entries to enumerate. When the entry pointer is no longer needed, its
127   // Close method should be called. The return value is a net error code. If
128   // this method returns ERR_IO_PENDING, the |callback| will be invoked when the
129   // |next_entry| is available. The pointer to receive the |next_entry| must
130   // remain valid until the operation completes.
131   //
132   // NOTE: This method does not modify the last_used field of the entry, and
133   // therefore it does not impact the eviction ranking of the entry. However,
134   // an enumeration will go through all entries on the cache only if the cache
135   // is not modified while the enumeration is taking place. Significantly
136   // altering the entry pointed by |iter| (for example, deleting the entry) will
137   // invalidate |iter|. Performing operations on an entry that modify the entry
138   // may result in loops in the iteration, skipped entries or similar.
139   virtual int OpenNextEntry(void** iter, Entry** next_entry,
140                             const CompletionCallback& callback) = 0;
141
142   // Releases iter without returning the next entry. Whenever OpenNextEntry()
143   // returns true, but the caller is not interested in continuing the
144   // enumeration by calling OpenNextEntry() again, the enumeration must be
145   // ended by calling this method with iter returned by OpenNextEntry().
146   virtual void EndEnumeration(void** iter) = 0;
147
148   // Return a list of cache statistics.
149   virtual void GetStats(
150       std::vector<std::pair<std::string, std::string> >* stats) = 0;
151
152   // Called whenever an external cache in the system reuses the resource
153   // referred to by |key|.
154   virtual void OnExternalCacheHit(const std::string& key) = 0;
155 };
156
157 // This interface represents an entry in the disk cache.
158 class NET_EXPORT Entry {
159  public:
160   typedef net::CompletionCallback CompletionCallback;
161   typedef net::IOBuffer IOBuffer;
162
163   // Marks this cache entry for deletion.
164   virtual void Doom() = 0;
165
166   // Releases this entry. Calling this method does not cancel pending IO
167   // operations on this entry. Even after the last reference to this object has
168   // been released, pending completion callbacks may be invoked.
169   virtual void Close() = 0;
170
171   // Returns the key associated with this cache entry.
172   virtual std::string GetKey() const = 0;
173
174   // Returns the time when this cache entry was last used.
175   virtual base::Time GetLastUsed() const = 0;
176
177   // Returns the time when this cache entry was last modified.
178   virtual base::Time GetLastModified() const = 0;
179
180   // Returns the size of the cache data with the given index.
181   virtual int32 GetDataSize(int index) const = 0;
182
183   // Copies cached data into the given buffer of length |buf_len|. Returns the
184   // number of bytes read or a network error code. If this function returns
185   // ERR_IO_PENDING, the completion callback will be called on the current
186   // thread when the operation completes, and a reference to |buf| will be
187   // retained until the callback is called. Note that as long as the function
188   // does not complete immediately, the callback will always be invoked, even
189   // after Close has been called; in other words, the caller may close this
190   // entry without having to wait for all the callbacks, and still rely on the
191   // cleanup performed from the callback code.
192   virtual int ReadData(int index, int offset, IOBuffer* buf, int buf_len,
193                        const CompletionCallback& callback) = 0;
194
195   // Copies data from the given buffer of length |buf_len| into the cache.
196   // Returns the number of bytes written or a network error code. If this
197   // function returns ERR_IO_PENDING, the completion callback will be called
198   // on the current thread when the operation completes, and a reference to
199   // |buf| will be retained until the callback is called. Note that as long as
200   // the function does not complete immediately, the callback will always be
201   // invoked, even after Close has been called; in other words, the caller may
202   // close this entry without having to wait for all the callbacks, and still
203   // rely on the cleanup performed from the callback code.
204   // If truncate is true, this call will truncate the stored data at the end of
205   // what we are writing here.
206   virtual int WriteData(int index, int offset, IOBuffer* buf, int buf_len,
207                         const CompletionCallback& callback,
208                         bool truncate) = 0;
209
210   // Sparse entries support:
211   //
212   // A Backend implementation can support sparse entries, so the cache keeps
213   // track of which parts of the entry have been written before. The backend
214   // will never return data that was not written previously, so reading from
215   // such region will return 0 bytes read (or actually the number of bytes read
216   // before reaching that region).
217   //
218   // There are only two streams for sparse entries: a regular control stream
219   // (index 0) that must be accessed through the regular API (ReadData and
220   // WriteData), and one sparse stream that must me accessed through the sparse-
221   // aware API that follows. Calling a non-sparse aware method with an index
222   // argument other than 0 is a mistake that results in implementation specific
223   // behavior. Using a sparse-aware method with an entry that was not stored
224   // using the same API, or with a backend that doesn't support sparse entries
225   // will return ERR_CACHE_OPERATION_NOT_SUPPORTED.
226   //
227   // The storage granularity of the implementation should be at least 1 KB. In
228   // other words, storing less than 1 KB may result in an implementation
229   // dropping the data completely, and writing at offsets not aligned with 1 KB,
230   // or with lengths not a multiple of 1 KB may result in the first or last part
231   // of the data being discarded. However, two consecutive writes should not
232   // result in a hole in between the two parts as long as they are sequential
233   // (the second one starts where the first one ended), and there is no other
234   // write between them.
235   //
236   // The Backend implementation is free to evict any range from the cache at any
237   // moment, so in practice, the previously stated granularity of 1 KB is not
238   // as bad as it sounds.
239   //
240   // The sparse methods don't support multiple simultaneous IO operations to the
241   // same physical entry, so in practice a single object should be instantiated
242   // for a given key at any given time. Once an operation has been issued, the
243   // caller should wait until it completes before starting another one. This
244   // requirement includes the case when an entry is closed while some operation
245   // is in progress and another object is instantiated; any IO operation will
246   // fail while the previous operation is still in-flight. In order to deal with
247   // this requirement, the caller could either wait until the operation
248   // completes before closing the entry, or call CancelSparseIO() before closing
249   // the entry, and call ReadyForSparseIO() on the new entry and wait for the
250   // callback before issuing new operations.
251
252   // Behaves like ReadData() except that this method is used to access sparse
253   // entries.
254   virtual int ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
255                              const CompletionCallback& callback) = 0;
256
257   // Behaves like WriteData() except that this method is used to access sparse
258   // entries. |truncate| is not part of this interface because a sparse entry
259   // is not expected to be reused with new data. To delete the old data and
260   // start again, or to reduce the total size of the stream data (which implies
261   // that the content has changed), the whole entry should be doomed and
262   // re-created.
263   virtual int WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
264                               const CompletionCallback& callback) = 0;
265
266   // Returns information about the currently stored portion of a sparse entry.
267   // |offset| and |len| describe a particular range that should be scanned to
268   // find out if it is stored or not. |start| will contain the offset of the
269   // first byte that is stored within this range, and the return value is the
270   // minimum number of consecutive stored bytes. Note that it is possible that
271   // this entry has stored more than the returned value. This method returns a
272   // net error code whenever the request cannot be completed successfully. If
273   // this method returns ERR_IO_PENDING, the |callback| will be invoked when the
274   // operation completes, and |start| must remain valid until that point.
275   virtual int GetAvailableRange(int64 offset, int len, int64* start,
276                                 const CompletionCallback& callback) = 0;
277
278   // Returns true if this entry could be a sparse entry or false otherwise. This
279   // is a quick test that may return true even if the entry is not really
280   // sparse. This method doesn't modify the state of this entry (it will not
281   // create sparse tracking data). GetAvailableRange or ReadSparseData can be
282   // used to perform a definitive test of whether an existing entry is sparse or
283   // not, but that method may modify the current state of the entry (making it
284   // sparse, for instance). The purpose of this method is to test an existing
285   // entry, but without generating actual IO to perform a thorough check.
286   virtual bool CouldBeSparse() const = 0;
287
288   // Cancels any pending sparse IO operation (if any). The completion callback
289   // of the operation in question will still be called when the operation
290   // finishes, but the operation will finish sooner when this method is used.
291   virtual void CancelSparseIO() = 0;
292
293   // Returns OK if this entry can be used immediately. If that is not the
294   // case, returns ERR_IO_PENDING and invokes the provided callback when this
295   // entry is ready to use. This method always returns OK for non-sparse
296   // entries, and returns ERR_IO_PENDING when a previous operation was cancelled
297   // (by calling CancelSparseIO), but the cache is still busy with it. If there
298   // is a pending operation that has not been cancelled, this method will return
299   // OK although another IO operation cannot be issued at this time; in this
300   // case the caller should just wait for the regular callback to be invoked
301   // instead of using this method to provide another callback.
302   //
303   // Note that CancelSparseIO may have been called on another instance of this
304   // object that refers to the same physical disk entry.
305   // Note: This method is deprecated.
306   virtual int ReadyForSparseIO(const CompletionCallback& callback) = 0;
307
308  protected:
309   virtual ~Entry() {}
310 };
311
312 struct EntryDeleter {
313   void operator()(Entry* entry) {
314     // Note that |entry| is ref-counted.
315     entry->Close();
316   }
317 };
318
319 // Automatically closes an entry when it goes out of scope.
320 typedef scoped_ptr<Entry, EntryDeleter> ScopedEntryPtr;
321
322 }  // namespace disk_cache
323
324 #endif  // NET_DISK_CACHE_DISK_CACHE_H_