Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / native_client_sdk / src / libraries / nacl_io / kernel_intercept.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "nacl_io/kernel_intercept.h"
6
7 #include <assert.h>
8 #include <errno.h>
9 #include <string.h>
10
11 #include "nacl_io/kernel_proxy.h"
12 #include "nacl_io/kernel_wrap.h"
13 #include "nacl_io/kernel_wrap_real.h"
14 #include "nacl_io/log.h"
15 #include "nacl_io/osmman.h"
16 #include "nacl_io/ossocket.h"
17 #include "nacl_io/ostime.h"
18 #include "nacl_io/pepper_interface.h"
19 #include "nacl_io/real_pepper_interface.h"
20
21 using namespace nacl_io;
22
23 #define ON_NOSYS_RETURN(x)    \
24   if (!ki_is_initialized()) { \
25     errno = ENOSYS;           \
26     return x;                 \
27   }
28
29 struct KernelInterceptState {
30   KernelProxy* kp;
31   PepperInterface* ppapi;
32   bool kp_owned;
33 };
34
35 static KernelInterceptState s_state;
36
37 // The the test code we want to be able to save the previous kernel
38 // proxy when intialising and restore it on uninit.
39 static KernelInterceptState s_saved_state;
40
41 int ki_push_state_for_testing() {
42   assert(s_saved_state.kp == NULL);
43   if (s_saved_state.kp != NULL)
44     return 1;
45   s_saved_state = s_state;
46   s_state.kp = NULL;
47   s_state.ppapi = NULL;
48   s_state.kp_owned = false;
49   return 0;
50 }
51
52 static void ki_pop_state() {
53   // Swap out the KernelProxy. This will normally reset the
54   // proxy to NULL, aside from in test code that has called
55   // ki_push_state_for_testing().
56   s_state = s_saved_state;
57   s_saved_state.kp = NULL;
58   s_saved_state.ppapi = NULL;
59   s_saved_state.kp_owned = false;
60 }
61
62 int ki_pop_state_for_testing() {
63   ki_pop_state();
64   return 0;
65 }
66
67 int ki_init(void* kp) {
68   LOG_TRACE("ki_init: %p", kp);
69   return ki_init_ppapi(kp, 0, NULL);
70 }
71
72 int ki_init_ppapi(void* kp,
73                   PP_Instance instance,
74                   PPB_GetInterface get_browser_interface) {
75   assert(!s_state.kp);
76   if (s_state.kp != NULL)
77     return 1;
78   PepperInterface* ppapi = NULL;
79   if (instance && get_browser_interface) {
80     ppapi = new RealPepperInterface(instance, get_browser_interface);
81     s_state.ppapi = ppapi;
82   }
83   int rtn = ki_init_interface(kp, ppapi);
84   return rtn;
85 }
86
87 int ki_init_interface(void* kp, void* pepper_interface) {
88   LOG_TRACE("ki_init_interface: %p %p", kp, pepper_interface);
89   assert(!s_state.kp);
90   if (s_state.kp != NULL)
91     return 1;
92   PepperInterface* ppapi = static_cast<PepperInterface*>(pepper_interface);
93   kernel_wrap_init();
94
95   if (kp == NULL) {
96     s_state.kp = new KernelProxy();
97     s_state.kp_owned = true;
98   } else {
99     s_state.kp = static_cast<KernelProxy*>(kp);
100     s_state.kp_owned = false;
101   }
102
103   if (s_state.kp->Init(ppapi) != 0)
104     return 1;
105
106   return 0;
107 }
108
109 int ki_is_initialized() {
110   return s_state.kp != NULL;
111 }
112
113 int ki_uninit() {
114   LOG_TRACE("ki_uninit");
115   assert(s_state.kp);
116   if (s_state.kp == NULL)
117     return 1;
118
119   if (s_saved_state.kp == NULL)
120     kernel_wrap_uninit();
121
122   // If we are going to delete the KernelProxy don't do it
123   // until we've swapped it out.
124   KernelInterceptState state_to_delete = s_state;
125
126   ki_pop_state();
127
128   if (state_to_delete.kp_owned)
129     delete state_to_delete.kp;
130
131   delete state_to_delete.ppapi;
132   return 0;
133 }
134
135 nacl_io::KernelProxy* ki_get_proxy() {
136   return s_state.kp;
137 }
138
139 int ki_chdir(const char* path) {
140   ON_NOSYS_RETURN(-1);
141   return s_state.kp->chdir(path);
142 }
143
144 void ki_exit(int status) {
145   if (ki_is_initialized())
146     s_state.kp->exit(status);
147
148   _real_exit(status);
149 }
150
151 char* ki_getcwd(char* buf, size_t size) {
152   // gtest uses getcwd in a static initializer and expects it to always
153   // succeed.  If we haven't initialized kernel-intercept yet, then try
154   // the IRT's getcwd, and fall back to just returning ".".
155   if (!ki_is_initialized()) {
156     int rtn = _real_getcwd(buf, size);
157     if (rtn != 0) {
158       if (rtn == ENOSYS) {
159         buf[0] = '.';
160         buf[1] = 0;
161       } else {
162         errno = rtn;
163         return NULL;
164       }
165     }
166     return buf;
167   }
168   return s_state.kp->getcwd(buf, size);
169 }
170
171 char* ki_getwd(char* buf) {
172   ON_NOSYS_RETURN(NULL);
173   return s_state.kp->getwd(buf);
174 }
175
176 int ki_dup(int oldfd) {
177   ON_NOSYS_RETURN(-1);
178   return s_state.kp->dup(oldfd);
179 }
180
181 int ki_dup2(int oldfd, int newfd) {
182   ON_NOSYS_RETURN(-1);
183   return s_state.kp->dup2(oldfd, newfd);
184 }
185
186 int ki_chmod(const char* path, mode_t mode) {
187   ON_NOSYS_RETURN(-1);
188   return s_state.kp->chmod(path, mode);
189 }
190
191 int ki_fchdir(int fd) {
192   ON_NOSYS_RETURN(-1);
193   return s_state.kp->fchdir(fd);
194 }
195
196 int ki_fchmod(int fd, mode_t mode) {
197   ON_NOSYS_RETURN(-1);
198   return s_state.kp->fchmod(fd, mode);
199 }
200
201 int ki_stat(const char* path, struct stat* buf) {
202   ON_NOSYS_RETURN(-1);
203   return s_state.kp->stat(path, buf);
204 }
205
206 int ki_mkdir(const char* path, mode_t mode) {
207   ON_NOSYS_RETURN(-1);
208   return s_state.kp->mkdir(path, mode);
209 }
210
211 int ki_rmdir(const char* path) {
212   ON_NOSYS_RETURN(-1);
213   return s_state.kp->rmdir(path);
214 }
215
216 int ki_mount(const char* source,
217              const char* target,
218              const char* filesystemtype,
219              unsigned long mountflags,
220              const void* data) {
221   ON_NOSYS_RETURN(-1);
222   return s_state.kp->mount(source, target, filesystemtype, mountflags, data);
223 }
224
225 int ki_umount(const char* path) {
226   ON_NOSYS_RETURN(-1);
227   return s_state.kp->umount(path);
228 }
229
230 int ki_open(const char* path, int oflag, mode_t mode) {
231   ON_NOSYS_RETURN(-1);
232   return s_state.kp->open(path, oflag, mode);
233 }
234
235 int ki_pipe(int pipefds[2]) {
236   ON_NOSYS_RETURN(-1);
237   return s_state.kp->pipe(pipefds);
238 }
239
240 ssize_t ki_read(int fd, void* buf, size_t nbyte) {
241   ON_NOSYS_RETURN(-1);
242   return s_state.kp->read(fd, buf, nbyte);
243 }
244
245 ssize_t ki_write(int fd, const void* buf, size_t nbyte) {
246   ON_NOSYS_RETURN(-1);
247   return s_state.kp->write(fd, buf, nbyte);
248 }
249
250 int ki_fstat(int fd, struct stat* buf) {
251   ON_NOSYS_RETURN(-1);
252   return s_state.kp->fstat(fd, buf);
253 }
254
255 int ki_getdents(int fd, void* buf, unsigned int count) {
256   ON_NOSYS_RETURN(-1);
257   return s_state.kp->getdents(fd, buf, count);
258 }
259
260 int ki_ftruncate(int fd, off_t length) {
261   ON_NOSYS_RETURN(-1);
262   return s_state.kp->ftruncate(fd, length);
263 }
264
265 int ki_fsync(int fd) {
266   ON_NOSYS_RETURN(-1);
267   return s_state.kp->fsync(fd);
268 }
269
270 int ki_fdatasync(int fd) {
271   ON_NOSYS_RETURN(-1);
272   return s_state.kp->fdatasync(fd);
273 }
274
275 int ki_isatty(int fd) {
276   ON_NOSYS_RETURN(0);
277   return s_state.kp->isatty(fd);
278 }
279
280 int ki_close(int fd) {
281   ON_NOSYS_RETURN(-1);
282   return s_state.kp->close(fd);
283 }
284
285 off_t ki_lseek(int fd, off_t offset, int whence) {
286   ON_NOSYS_RETURN(-1);
287   return s_state.kp->lseek(fd, offset, whence);
288 }
289
290 int ki_remove(const char* path) {
291   ON_NOSYS_RETURN(-1);
292   return s_state.kp->remove(path);
293 }
294
295 int ki_unlink(const char* path) {
296   ON_NOSYS_RETURN(-1);
297   return s_state.kp->unlink(path);
298 }
299
300 int ki_truncate(const char* path, off_t length) {
301   ON_NOSYS_RETURN(-1);
302   return s_state.kp->truncate(path, length);
303 }
304
305 int ki_lstat(const char* path, struct stat* buf) {
306   ON_NOSYS_RETURN(-1);
307   return s_state.kp->lstat(path, buf);
308 }
309
310 int ki_link(const char* oldpath, const char* newpath) {
311   ON_NOSYS_RETURN(-1);
312   return s_state.kp->link(oldpath, newpath);
313 }
314
315 int ki_rename(const char* path, const char* newpath) {
316   ON_NOSYS_RETURN(-1);
317   return s_state.kp->rename(path, newpath);
318 }
319
320 int ki_symlink(const char* oldpath, const char* newpath) {
321   ON_NOSYS_RETURN(-1);
322   return s_state.kp->symlink(oldpath, newpath);
323 }
324
325 int ki_access(const char* path, int amode) {
326   ON_NOSYS_RETURN(-1);
327   return s_state.kp->access(path, amode);
328 }
329
330 int ki_readlink(const char* path, char* buf, size_t count) {
331   ON_NOSYS_RETURN(-1);
332   return s_state.kp->readlink(path, buf, count);
333 }
334
335 int ki_utimes(const char* path, const struct timeval times[2]) {
336   ON_NOSYS_RETURN(-1);
337   // Implement in terms of utimens.
338   struct timespec ts[2];
339   ts[0].tv_sec = times[0].tv_sec;
340   ts[0].tv_nsec = times[0].tv_usec * 1000;
341   ts[1].tv_sec = times[1].tv_sec;
342   ts[1].tv_nsec = times[1].tv_usec * 1000;
343   return s_state.kp->utimens(path, ts);
344 }
345
346 int ki_futimes(int fd, const struct timeval times[2]) {
347   ON_NOSYS_RETURN(-1);
348   // Implement in terms of futimens.
349   struct timespec ts[2];
350   ts[0].tv_sec = times[0].tv_sec;
351   ts[0].tv_nsec = times[0].tv_usec * 1000;
352   ts[1].tv_sec = times[1].tv_sec;
353   ts[1].tv_nsec = times[1].tv_usec * 1000;
354   return s_state.kp->futimens(fd, ts);
355 }
356
357 void* ki_mmap(void* addr,
358               size_t length,
359               int prot,
360               int flags,
361               int fd,
362               off_t offset) {
363   ON_NOSYS_RETURN(MAP_FAILED);
364   return s_state.kp->mmap(addr, length, prot, flags, fd, offset);
365 }
366
367 int ki_munmap(void* addr, size_t length) {
368   ON_NOSYS_RETURN(-1);
369   return s_state.kp->munmap(addr, length);
370 }
371
372 int ki_open_resource(const char* file) {
373   ON_NOSYS_RETURN(-1);
374   return s_state.kp->open_resource(file);
375 }
376
377 int ki_fcntl(int d, int request, va_list args) {
378   ON_NOSYS_RETURN(-1);
379   return s_state.kp->fcntl(d, request, args);
380 }
381
382 int ki_ioctl(int d, int request, va_list args) {
383   ON_NOSYS_RETURN(-1);
384   return s_state.kp->ioctl(d, request, args);
385 }
386
387 int ki_chown(const char* path, uid_t owner, gid_t group) {
388   ON_NOSYS_RETURN(-1);
389   return s_state.kp->chown(path, owner, group);
390 }
391
392 int ki_fchown(int fd, uid_t owner, gid_t group) {
393   ON_NOSYS_RETURN(-1);
394   return s_state.kp->fchown(fd, owner, group);
395 }
396
397 int ki_lchown(const char* path, uid_t owner, gid_t group) {
398   ON_NOSYS_RETURN(-1);
399   return s_state.kp->lchown(path, owner, group);
400 }
401
402 int ki_utime(const char* filename, const struct utimbuf* times) {
403   ON_NOSYS_RETURN(-1);
404   // Implement in terms of utimens.
405   struct timespec ts[2];
406   ts[0].tv_sec = times->actime;
407   ts[0].tv_nsec = 0;
408   ts[1].tv_sec = times->modtime;
409   ts[1].tv_nsec = 0;
410   return s_state.kp->utimens(filename, ts);
411 }
412
413 int ki_futimens(int fd, const struct timespec times[2]) {
414   ON_NOSYS_RETURN(-1);
415   return s_state.kp->futimens(fd, times);
416 }
417
418 int ki_poll(struct pollfd* fds, nfds_t nfds, int timeout) {
419   return s_state.kp->poll(fds, nfds, timeout);
420 }
421
422 int ki_select(int nfds,
423               fd_set* readfds,
424               fd_set* writefds,
425               fd_set* exceptfds,
426               struct timeval* timeout) {
427   return s_state.kp->select(nfds, readfds, writefds, exceptfds, timeout);
428 }
429
430 int ki_tcflush(int fd, int queue_selector) {
431   ON_NOSYS_RETURN(-1);
432   return s_state.kp->tcflush(fd, queue_selector);
433 }
434
435 int ki_tcgetattr(int fd, struct termios* termios_p) {
436   ON_NOSYS_RETURN(-1);
437   return s_state.kp->tcgetattr(fd, termios_p);
438 }
439
440 int ki_tcsetattr(int fd,
441                  int optional_actions,
442                  const struct termios* termios_p) {
443   ON_NOSYS_RETURN(-1);
444   return s_state.kp->tcsetattr(fd, optional_actions, termios_p);
445 }
446
447 int ki_kill(pid_t pid, int sig) {
448   ON_NOSYS_RETURN(-1);
449   return s_state.kp->kill(pid, sig);
450 }
451
452 int ki_killpg(pid_t pid, int sig) {
453   errno = ENOSYS;
454   return -1;
455 }
456
457 int ki_sigaction(int signum,
458                  const struct sigaction* action,
459                  struct sigaction* oaction) {
460   ON_NOSYS_RETURN(-1);
461   return s_state.kp->sigaction(signum, action, oaction);
462 }
463
464 int ki_sigpause(int sigmask) {
465   errno = ENOSYS;
466   return -1;
467 }
468
469 int ki_sigpending(sigset_t* set) {
470   errno = ENOSYS;
471   return -1;
472 }
473
474 int ki_sigsuspend(const sigset_t* set) {
475   errno = ENOSYS;
476   return -1;
477 }
478
479 sighandler_t ki_signal(int signum, sighandler_t handler) {
480   return ki_sigset(signum, handler);
481 }
482
483 sighandler_t ki_sigset(int signum, sighandler_t handler) {
484   ON_NOSYS_RETURN(SIG_ERR);
485   // Implement sigset(2) in terms of sigaction(2).
486   struct sigaction action;
487   struct sigaction oaction;
488   memset(&action, 0, sizeof(action));
489   memset(&oaction, 0, sizeof(oaction));
490   action.sa_handler = handler;
491   int rtn = s_state.kp->sigaction(signum, &action, &oaction);
492   if (rtn)
493     return SIG_ERR;
494   return oaction.sa_handler;
495 }
496
497 #ifdef PROVIDES_SOCKET_API
498 // Socket Functions
499 int ki_accept(int fd, struct sockaddr* addr, socklen_t* len) {
500   ON_NOSYS_RETURN(-1);
501   return s_state.kp->accept(fd, addr, len);
502 }
503
504 int ki_bind(int fd, const struct sockaddr* addr, socklen_t len) {
505   ON_NOSYS_RETURN(-1);
506   return s_state.kp->bind(fd, addr, len);
507 }
508
509 int ki_connect(int fd, const struct sockaddr* addr, socklen_t len) {
510   ON_NOSYS_RETURN(-1);
511   return s_state.kp->connect(fd, addr, len);
512 }
513
514 struct hostent* ki_gethostbyname(const char* name) {
515   ON_NOSYS_RETURN(NULL);
516   return s_state.kp->gethostbyname(name);
517 }
518
519 int ki_getnameinfo(const struct sockaddr *sa,
520                    socklen_t salen,
521                    char *host,
522                    size_t hostlen,
523                    char *serv,
524                    size_t servlen,
525                    unsigned int flags) {
526   ON_NOSYS_RETURN(EAI_SYSTEM);
527   return s_state.kp->getnameinfo(sa, salen, host, hostlen, serv, servlen,
528                                  flags);
529 }
530
531 int ki_getaddrinfo(const char* node,
532                    const char* service,
533                    const struct addrinfo* hints,
534                    struct addrinfo** res) {
535   ON_NOSYS_RETURN(EAI_SYSTEM);
536   return s_state.kp->getaddrinfo(node, service, hints, res);
537 }
538
539 void ki_freeaddrinfo(struct addrinfo* res) {
540   s_state.kp->freeaddrinfo(res);
541 }
542
543 int ki_getpeername(int fd, struct sockaddr* addr, socklen_t* len) {
544   ON_NOSYS_RETURN(-1);
545   return s_state.kp->getpeername(fd, addr, len);
546 }
547
548 int ki_getsockname(int fd, struct sockaddr* addr, socklen_t* len) {
549   ON_NOSYS_RETURN(-1);
550   return s_state.kp->getsockname(fd, addr, len);
551 }
552
553 int ki_getsockopt(int fd, int lvl, int optname, void* optval, socklen_t* len) {
554   ON_NOSYS_RETURN(-1);
555   return s_state.kp->getsockopt(fd, lvl, optname, optval, len);
556 }
557
558 int ki_listen(int fd, int backlog) {
559   ON_NOSYS_RETURN(-1);
560   return s_state.kp->listen(fd, backlog);
561 }
562
563 ssize_t ki_recv(int fd, void* buf, size_t len, int flags) {
564   ON_NOSYS_RETURN(-1);
565   return s_state.kp->recv(fd, buf, len, flags);
566 }
567
568 ssize_t ki_recvfrom(int fd,
569                     void* buf,
570                     size_t len,
571                     int flags,
572                     struct sockaddr* addr,
573                     socklen_t* addrlen) {
574   ON_NOSYS_RETURN(-1);
575   return s_state.kp->recvfrom(fd, buf, len, flags, addr, addrlen);
576 }
577
578 ssize_t ki_recvmsg(int fd, struct msghdr* msg, int flags) {
579   ON_NOSYS_RETURN(-1);
580   return s_state.kp->recvmsg(fd, msg, flags);
581 }
582
583 ssize_t ki_send(int fd, const void* buf, size_t len, int flags) {
584   ON_NOSYS_RETURN(-1);
585   return s_state.kp->send(fd, buf, len, flags);
586 }
587
588 ssize_t ki_sendto(int fd,
589                   const void* buf,
590                   size_t len,
591                   int flags,
592                   const struct sockaddr* addr,
593                   socklen_t addrlen) {
594   ON_NOSYS_RETURN(-1);
595   return s_state.kp->sendto(fd, buf, len, flags, addr, addrlen);
596 }
597
598 ssize_t ki_sendmsg(int fd, const struct msghdr* msg, int flags) {
599   ON_NOSYS_RETURN(-1);
600   return s_state.kp->sendmsg(fd, msg, flags);
601 }
602
603 int ki_setsockopt(int fd,
604                   int lvl,
605                   int optname,
606                   const void* optval,
607                   socklen_t len) {
608   ON_NOSYS_RETURN(-1);
609   return s_state.kp->setsockopt(fd, lvl, optname, optval, len);
610 }
611
612 int ki_shutdown(int fd, int how) {
613   ON_NOSYS_RETURN(-1);
614   return s_state.kp->shutdown(fd, how);
615 }
616
617 int ki_socket(int domain, int type, int protocol) {
618   ON_NOSYS_RETURN(-1);
619   return s_state.kp->socket(domain, type, protocol);
620 }
621
622 int ki_socketpair(int domain, int type, int protocol, int* sv) {
623   ON_NOSYS_RETURN(-1);
624   return s_state.kp->socketpair(domain, type, protocol, sv);
625 }
626 #endif  // PROVIDES_SOCKET_API