Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / media / cast / net / rtcp / rtcp.cc
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "media/cast/net/rtcp/rtcp.h"
6
7 #include "media/cast/cast_config.h"
8 #include "media/cast/cast_defines.h"
9 #include "media/cast/cast_environment.h"
10 #include "media/cast/net/cast_transport_defines.h"
11 #include "media/cast/net/pacing/paced_sender.h"
12 #include "media/cast/net/rtcp/rtcp_builder.h"
13 #include "media/cast/net/rtcp/rtcp_defines.h"
14 #include "media/cast/net/rtcp/rtcp_utility.h"
15
16 using base::TimeDelta;
17
18 namespace media {
19 namespace cast {
20
21 static const int32 kStatsHistoryWindowMs = 10000;  // 10 seconds.
22 // Reject packets that are older than 0.5 seconds older than
23 // the newest packet we've seen so far. This protect internal
24 // states from crazy routers. (Based on RRTR)
25 static const int32 kOutOfOrderMaxAgeMs = 500;
26
27 namespace {
28
29 // A receiver frame event is identified by frame RTP timestamp, event timestamp
30 // and event type.
31 // A receiver packet event is identified by all of the above plus packet id.
32 // The key format is as follows:
33 // First uint64:
34 //   bits 0-11: zeroes (unused).
35 //   bits 12-15: event type ID.
36 //   bits 16-31: packet ID if packet event, 0 otherwise.
37 //   bits 32-63: RTP timestamp.
38 // Second uint64:
39 //   bits 0-63: event TimeTicks internal value.
40 std::pair<uint64, uint64> GetReceiverEventKey(
41     uint32 frame_rtp_timestamp,
42     const base::TimeTicks& event_timestamp,
43     uint8 event_type,
44     uint16 packet_id_or_zero) {
45   uint64 value1 = event_type;
46   value1 <<= 16;
47   value1 |= packet_id_or_zero;
48   value1 <<= 32;
49   value1 |= frame_rtp_timestamp;
50   return std::make_pair(
51       value1, static_cast<uint64>(event_timestamp.ToInternalValue()));
52 }
53
54 }  // namespace
55
56
57 Rtcp::Rtcp(const RtcpCastMessageCallback& cast_callback,
58            const RtcpRttCallback& rtt_callback,
59            const RtcpLogMessageCallback& log_callback,
60            base::TickClock* clock,
61            PacedPacketSender* packet_sender,
62            uint32 local_ssrc,
63            uint32 remote_ssrc)
64     : cast_callback_(cast_callback),
65       rtt_callback_(rtt_callback),
66       log_callback_(log_callback),
67       clock_(clock),
68       rtcp_builder_(local_ssrc),
69       packet_sender_(packet_sender),
70       local_ssrc_(local_ssrc),
71       remote_ssrc_(remote_ssrc),
72       last_report_truncated_ntp_(0),
73       local_clock_ahead_by_(ClockDriftSmoother::GetDefaultTimeConstant()),
74       lip_sync_rtp_timestamp_(0),
75       lip_sync_ntp_timestamp_(0) {
76 }
77
78 Rtcp::~Rtcp() {}
79
80 bool Rtcp::IsRtcpPacket(const uint8* packet, size_t length) {
81   if (length < kMinLengthOfRtcp) {
82     LOG(ERROR) << "Invalid RTCP packet received.";
83     return false;
84   }
85
86   uint8 packet_type = packet[1];
87   return packet_type >= kPacketTypeLow && packet_type <= kPacketTypeHigh;
88 }
89
90 uint32 Rtcp::GetSsrcOfSender(const uint8* rtcp_buffer, size_t length) {
91   if (length < kMinLengthOfRtcp)
92     return 0;
93   uint32 ssrc_of_sender;
94   base::BigEndianReader big_endian_reader(
95       reinterpret_cast<const char*>(rtcp_buffer), length);
96   big_endian_reader.Skip(4);  // Skip header.
97   big_endian_reader.ReadU32(&ssrc_of_sender);
98   return ssrc_of_sender;
99 }
100
101 bool Rtcp::IncomingRtcpPacket(const uint8* data, size_t length) {
102   // Check if this is a valid RTCP packet.
103   if (!IsRtcpPacket(data, length)) {
104     VLOG(1) << "Rtcp@" << this << "::IncomingRtcpPacket() -- "
105             << "Received an invalid (non-RTCP?) packet.";
106     return false;
107   }
108
109   // Check if this packet is to us.
110   uint32 ssrc_of_sender = GetSsrcOfSender(data, length);
111   if (ssrc_of_sender != remote_ssrc_) {
112     return false;
113   }
114
115   // Parse this packet.
116   RtcpParser parser(local_ssrc_, remote_ssrc_);
117   base::BigEndianReader reader(reinterpret_cast<const char*>(data), length);
118   if (parser.Parse(&reader)) {
119     if (parser.has_receiver_reference_time_report()) {
120       base::TimeTicks t = ConvertNtpToTimeTicks(
121           parser.receiver_reference_time_report().ntp_seconds,
122           parser.receiver_reference_time_report().ntp_fraction);
123       if (t > largest_seen_timestamp_) {
124         largest_seen_timestamp_ = t;
125       } else if ((largest_seen_timestamp_ - t).InMilliseconds() >
126                  kOutOfOrderMaxAgeMs) {
127         // Reject packet, it is too old.
128         VLOG(1) << "Rejecting RTCP packet as it is too old ("
129                 << (largest_seen_timestamp_ - t).InMilliseconds()
130                 << " ms)";
131         return true;
132       }
133
134       OnReceivedNtp(parser.receiver_reference_time_report().ntp_seconds,
135                     parser.receiver_reference_time_report().ntp_fraction);
136     }
137     if (parser.has_sender_report()) {
138       OnReceivedNtp(parser.sender_report().ntp_seconds,
139                     parser.sender_report().ntp_fraction);
140       OnReceivedLipSyncInfo(parser.sender_report().rtp_timestamp,
141                             parser.sender_report().ntp_seconds,
142                             parser.sender_report().ntp_fraction);
143     }
144     if (parser.has_receiver_log()) {
145       if (DedupeReceiverLog(parser.mutable_receiver_log())) {
146         OnReceivedReceiverLog(parser.receiver_log());
147       }
148     }
149     if (parser.has_last_report()) {
150       OnReceivedDelaySinceLastReport(parser.last_report(),
151                                      parser.delay_since_last_report());
152     }
153     if (parser.has_cast_message()) {
154       parser.mutable_cast_message()->ack_frame_id =
155           ack_frame_id_wrap_helper_.MapTo32bitsFrameId(
156               parser.mutable_cast_message()->ack_frame_id);
157       OnReceivedCastFeedback(parser.cast_message());
158     }
159   }
160   return true;
161 }
162
163 bool Rtcp::DedupeReceiverLog(RtcpReceiverLogMessage* receiver_log) {
164   RtcpReceiverLogMessage::iterator i = receiver_log->begin();
165   while (i != receiver_log->end()) {
166     RtcpReceiverEventLogMessages* messages = &i->event_log_messages_;
167     RtcpReceiverEventLogMessages::iterator j = messages->begin();
168     while (j != messages->end()) {
169       ReceiverEventKey key = GetReceiverEventKey(i->rtp_timestamp_,
170                                                  j->event_timestamp,
171                                                  j->type,
172                                                  j->packet_id);
173       RtcpReceiverEventLogMessages::iterator tmp = j;
174       ++j;
175       if (receiver_event_key_set_.insert(key).second) {
176         receiver_event_key_queue_.push(key);
177         if (receiver_event_key_queue_.size() > kReceiverRtcpEventHistorySize) {
178           receiver_event_key_set_.erase(receiver_event_key_queue_.front());
179           receiver_event_key_queue_.pop();
180         }
181       } else {
182         messages->erase(tmp);
183       }
184     }
185
186     RtcpReceiverLogMessage::iterator tmp = i;
187     ++i;
188     if (messages->empty()) {
189       receiver_log->erase(tmp);
190     }
191   }
192   return !receiver_log->empty();
193 }
194
195 void Rtcp::SendRtcpFromRtpReceiver(
196     const RtcpCastMessage* cast_message,
197     base::TimeDelta target_delay,
198     const ReceiverRtcpEventSubscriber::RtcpEventMultiMap* rtcp_events,
199     RtpReceiverStatistics* rtp_receiver_statistics) {
200   base::TimeTicks now = clock_->NowTicks();
201   RtcpReportBlock report_block;
202   RtcpReceiverReferenceTimeReport rrtr;
203
204   // Attach our NTP to all RTCP packets; with this information a "smart" sender
205   // can make decisions based on how old the RTCP message is.
206   ConvertTimeTicksToNtp(now, &rrtr.ntp_seconds, &rrtr.ntp_fraction);
207   SaveLastSentNtpTime(now, rrtr.ntp_seconds, rrtr.ntp_fraction);
208
209   if (rtp_receiver_statistics) {
210     report_block.remote_ssrc = 0;            // Not needed to set send side.
211     report_block.media_ssrc = remote_ssrc_;  // SSRC of the RTP packet sender.
212     rtp_receiver_statistics->GetStatistics(
213         &report_block.fraction_lost, &report_block.cumulative_lost,
214         &report_block.extended_high_sequence_number, &report_block.jitter);
215
216     report_block.last_sr = last_report_truncated_ntp_;
217     if (!time_last_report_received_.is_null()) {
218       uint32 delay_seconds = 0;
219       uint32 delay_fraction = 0;
220       base::TimeDelta delta = now - time_last_report_received_;
221       ConvertTimeToFractions(delta.InMicroseconds(), &delay_seconds,
222                              &delay_fraction);
223       report_block.delay_since_last_sr =
224           ConvertToNtpDiff(delay_seconds, delay_fraction);
225     } else {
226       report_block.delay_since_last_sr = 0;
227     }
228   }
229   packet_sender_->SendRtcpPacket(
230       local_ssrc_,
231       rtcp_builder_.BuildRtcpFromReceiver(
232           rtp_receiver_statistics ? &report_block : NULL,
233           &rrtr,
234           cast_message,
235           rtcp_events,
236           target_delay));
237 }
238
239 void Rtcp::SendRtcpFromRtpSender(base::TimeTicks current_time,
240                                  uint32 current_time_as_rtp_timestamp,
241                                  uint32 send_packet_count,
242                                  size_t send_octet_count) {
243   uint32 current_ntp_seconds = 0;
244   uint32 current_ntp_fractions = 0;
245   ConvertTimeTicksToNtp(current_time, &current_ntp_seconds,
246                         &current_ntp_fractions);
247   SaveLastSentNtpTime(current_time, current_ntp_seconds,
248                       current_ntp_fractions);
249
250   RtcpSenderInfo sender_info;
251   sender_info.ntp_seconds = current_ntp_seconds;
252   sender_info.ntp_fraction = current_ntp_fractions;
253   sender_info.rtp_timestamp = current_time_as_rtp_timestamp;
254   sender_info.send_packet_count = send_packet_count;
255   sender_info.send_octet_count = send_octet_count;
256
257   packet_sender_->SendRtcpPacket(
258       local_ssrc_,
259       rtcp_builder_.BuildRtcpFromSender(sender_info));
260 }
261
262 void Rtcp::OnReceivedNtp(uint32 ntp_seconds, uint32 ntp_fraction) {
263   last_report_truncated_ntp_ = ConvertToNtpDiff(ntp_seconds, ntp_fraction);
264
265   const base::TimeTicks now = clock_->NowTicks();
266   time_last_report_received_ = now;
267
268   // TODO(miu): This clock offset calculation does not account for packet
269   // transit time over the network.  End2EndTest.EvilNetwork confirms that this
270   // contributes a very significant source of error here.  Determine whether
271   // RTT should be factored-in, and how that changes the rest of the
272   // calculation.
273   const base::TimeDelta measured_offset =
274       now - ConvertNtpToTimeTicks(ntp_seconds, ntp_fraction);
275   local_clock_ahead_by_.Update(now, measured_offset);
276   if (measured_offset < local_clock_ahead_by_.Current()) {
277     // Logically, the minimum offset between the clocks has to be the correct
278     // one.  For example, the time it took to transmit the current report may
279     // have been lower than usual, and so some of the error introduced by the
280     // transmission time can be eliminated.
281     local_clock_ahead_by_.Reset(now, measured_offset);
282   }
283   VLOG(1) << "Local clock is ahead of the remote clock by: "
284           << "measured=" << measured_offset.InMicroseconds() << " usec, "
285           << "filtered=" << local_clock_ahead_by_.Current().InMicroseconds()
286           << " usec.";
287 }
288
289 void Rtcp::OnReceivedLipSyncInfo(uint32 rtp_timestamp, uint32 ntp_seconds,
290                                  uint32 ntp_fraction) {
291   if (ntp_seconds == 0) {
292     NOTREACHED();
293     return;
294   }
295   lip_sync_rtp_timestamp_ = rtp_timestamp;
296   lip_sync_ntp_timestamp_ =
297       (static_cast<uint64>(ntp_seconds) << 32) | ntp_fraction;
298 }
299
300 bool Rtcp::GetLatestLipSyncTimes(uint32* rtp_timestamp,
301                                  base::TimeTicks* reference_time) const {
302   if (!lip_sync_ntp_timestamp_)
303     return false;
304
305   const base::TimeTicks local_reference_time =
306       ConvertNtpToTimeTicks(static_cast<uint32>(lip_sync_ntp_timestamp_ >> 32),
307                             static_cast<uint32>(lip_sync_ntp_timestamp_)) +
308       local_clock_ahead_by_.Current();
309
310   // Sanity-check: Getting regular lip sync updates?
311   DCHECK((clock_->NowTicks() - local_reference_time) <
312          base::TimeDelta::FromMinutes(1));
313
314   *rtp_timestamp = lip_sync_rtp_timestamp_;
315   *reference_time = local_reference_time;
316   return true;
317 }
318
319 void Rtcp::OnReceivedDelaySinceLastReport(uint32 last_report,
320                                           uint32 delay_since_last_report) {
321   RtcpSendTimeMap::iterator it = last_reports_sent_map_.find(last_report);
322   if (it == last_reports_sent_map_.end()) {
323     return;  // Feedback on another report.
324   }
325
326   const base::TimeDelta sender_delay = clock_->NowTicks() - it->second;
327   const base::TimeDelta receiver_delay =
328       ConvertFromNtpDiff(delay_since_last_report);
329   current_round_trip_time_ = sender_delay - receiver_delay;
330   // If the round trip time was computed as less than 1 ms, assume clock
331   // imprecision by one or both peers caused a bad value to be calculated.
332   // While plenty of networks do easily achieve less than 1 ms round trip time,
333   // such a level of precision cannot be measured with our approach; and 1 ms is
334   // good enough to represent "under 1 ms" for our use cases.
335   current_round_trip_time_ =
336       std::max(current_round_trip_time_, base::TimeDelta::FromMilliseconds(1));
337
338   if (!rtt_callback_.is_null())
339     rtt_callback_.Run(current_round_trip_time_);
340 }
341
342 void Rtcp::OnReceivedCastFeedback(const RtcpCastMessage& cast_message) {
343   if (cast_callback_.is_null())
344     return;
345   cast_callback_.Run(cast_message);
346 }
347
348 void Rtcp::SaveLastSentNtpTime(const base::TimeTicks& now,
349                                uint32 last_ntp_seconds,
350                                uint32 last_ntp_fraction) {
351   // Make sure |now| is always greater than the last element in
352   // |last_reports_sent_queue_|.
353   if (!last_reports_sent_queue_.empty())
354     DCHECK(now >= last_reports_sent_queue_.back().second);
355
356   uint32 last_report = ConvertToNtpDiff(last_ntp_seconds, last_ntp_fraction);
357   last_reports_sent_map_[last_report] = now;
358   last_reports_sent_queue_.push(std::make_pair(last_report, now));
359
360   const base::TimeTicks timeout =
361       now - TimeDelta::FromMilliseconds(kStatsHistoryWindowMs);
362
363   // Cleanup old statistics older than |timeout|.
364   while (!last_reports_sent_queue_.empty()) {
365     RtcpSendTimePair oldest_report = last_reports_sent_queue_.front();
366     if (oldest_report.second < timeout) {
367       last_reports_sent_map_.erase(oldest_report.first);
368       last_reports_sent_queue_.pop();
369     } else {
370       break;
371     }
372   }
373 }
374
375 void Rtcp::OnReceivedReceiverLog(const RtcpReceiverLogMessage& receiver_log) {
376   if (log_callback_.is_null())
377     return;
378   log_callback_.Run(receiver_log);
379 }
380
381 }  // namespace cast
382 }  // namespace media