- add sources.
[platform/framework/web/crosswalk.git] / src / media / base / yuv_convert.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11 //
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
14 //
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18 #include "media/base/yuv_convert.h"
19
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "build/build_config.h"
24 #include "media/base/simd/convert_rgb_to_yuv.h"
25 #include "media/base/simd/convert_yuv_to_rgb.h"
26 #include "media/base/simd/filter_yuv.h"
27
28 #if defined(ARCH_CPU_X86_FAMILY)
29 #if defined(COMPILER_MSVC)
30 #include <intrin.h>
31 #else
32 #include <mmintrin.h>
33 #endif
34 #endif
35
36 // Assembly functions are declared without namespace.
37 extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
38
39 namespace media {
40
41 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
42
43 typedef void (*ConvertRGBToYUVProc)(const uint8*,
44                                     uint8*,
45                                     uint8*,
46                                     uint8*,
47                                     int,
48                                     int,
49                                     int,
50                                     int,
51                                     int);
52
53 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
54                                       const uint8*,
55                                       const uint8*,
56                                       uint8*,
57                                       int,
58                                       int,
59                                       int,
60                                       int,
61                                       int,
62                                       YUVType);
63
64 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
65                                       const uint8*,
66                                       const uint8*,
67                                       const uint8*,
68                                       uint8*,
69                                       int,
70                                       int,
71                                       int,
72                                       int,
73                                       int,
74                                       int,
75                                       YUVType);
76
77 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
78                                          const uint8*,
79                                          const uint8*,
80                                          uint8*,
81                                          ptrdiff_t);
82
83 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
84                                          const uint8*,
85                                          const uint8*,
86                                          const uint8*,
87                                          uint8*,
88                                          ptrdiff_t);
89
90 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
91                                        const uint8*,
92                                        const uint8*,
93                                        uint8*,
94                                        ptrdiff_t,
95                                        ptrdiff_t);
96
97 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
98 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
99 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
100 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
101 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
102 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
103 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
104 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
105
106 // Empty SIMD registers state after using them.
107 void EmptyRegisterStateStub() {}
108 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
109 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
110 #endif
111 typedef void (*EmptyRegisterStateProc)();
112 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
113
114 void InitializeCPUSpecificYUVConversions() {
115   CHECK(!g_filter_yuv_rows_proc_);
116   CHECK(!g_convert_yuv_to_rgb32_row_proc_);
117   CHECK(!g_scale_yuv_to_rgb32_row_proc_);
118   CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
119   CHECK(!g_convert_rgb32_to_yuv_proc_);
120   CHECK(!g_convert_rgb24_to_yuv_proc_);
121   CHECK(!g_convert_yuv_to_rgb32_proc_);
122   CHECK(!g_convert_yuva_to_argb_proc_);
123   CHECK(!g_empty_register_state_proc_);
124
125   g_filter_yuv_rows_proc_ = FilterYUVRows_C;
126   g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
127   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
128   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
129   g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
130   g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
131   g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
132   g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
133   g_empty_register_state_proc_ = EmptyRegisterStateStub;
134
135 #if defined(ARCH_CPU_X86_FAMILY)
136   base::CPU cpu;
137   if (cpu.has_mmx()) {
138     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
139     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
140     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
141     g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
142     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
143
144 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
145     g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
146     g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
147 #else
148     g_empty_register_state_proc_ = EmptyRegisterState_MMX;
149 #endif
150   }
151
152   if (cpu.has_sse()) {
153     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
154     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
155     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
156     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
157   }
158
159   if (cpu.has_sse2()) {
160     g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
161     g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
162
163 #if defined(ARCH_CPU_X86_64)
164     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
165
166     // Technically this should be in the MMX section, but MSVC will optimize out
167     // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
168     // tests, if that decision can be made at compile time.  Since all X64 CPUs
169     // have SSE2, we can hack around this by making the selection here.
170     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
171 #endif
172   }
173
174   if (cpu.has_ssse3()) {
175     g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
176
177     // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
178     // See: crbug.com/100462
179   }
180 #endif
181 }
182
183 // Empty SIMD registers state after using them.
184 void EmptyRegisterState() { g_empty_register_state_proc_(); }
185
186 // 16.16 fixed point arithmetic
187 const int kFractionBits = 16;
188 const int kFractionMax = 1 << kFractionBits;
189 const int kFractionMask = ((1 << kFractionBits) - 1);
190
191 // Scale a frame of YUV to 32 bit ARGB.
192 void ScaleYUVToRGB32(const uint8* y_buf,
193                      const uint8* u_buf,
194                      const uint8* v_buf,
195                      uint8* rgb_buf,
196                      int source_width,
197                      int source_height,
198                      int width,
199                      int height,
200                      int y_pitch,
201                      int uv_pitch,
202                      int rgb_pitch,
203                      YUVType yuv_type,
204                      Rotate view_rotate,
205                      ScaleFilter filter) {
206   // Handle zero sized sources and destinations.
207   if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
208       (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
209       width == 0 || height == 0)
210     return;
211
212   // 4096 allows 3 buffers to fit in 12k.
213   // Helps performance on CPU with 16K L1 cache.
214   // Large enough for 3830x2160 and 30" displays which are 2560x1600.
215   const int kFilterBufferSize = 4096;
216   // Disable filtering if the screen is too big (to avoid buffer overflows).
217   // This should never happen to regular users: they don't have monitors
218   // wider than 4096 pixels.
219   // TODO(fbarchard): Allow rotated videos to filter.
220   if (source_width > kFilterBufferSize || view_rotate)
221     filter = FILTER_NONE;
222
223   unsigned int y_shift = yuv_type;
224   // Diagram showing origin and direction of source sampling.
225   // ->0   4<-
226   // 7       3
227   //
228   // 6       5
229   // ->1   2<-
230   // Rotations that start at right side of image.
231   if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
232       (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
233     y_buf += source_width - 1;
234     u_buf += source_width / 2 - 1;
235     v_buf += source_width / 2 - 1;
236     source_width = -source_width;
237   }
238   // Rotations that start at bottom of image.
239   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
240       (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
241     y_buf += (source_height - 1) * y_pitch;
242     u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
243     v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
244     source_height = -source_height;
245   }
246
247   int source_dx = source_width * kFractionMax / width;
248
249   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
250     int tmp = height;
251     height = width;
252     width = tmp;
253     tmp = source_height;
254     source_height = source_width;
255     source_width = tmp;
256     int source_dy = source_height * kFractionMax / height;
257     source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
258     if (view_rotate == ROTATE_90) {
259       y_pitch = -1;
260       uv_pitch = -1;
261       source_height = -source_height;
262     } else {
263       y_pitch = 1;
264       uv_pitch = 1;
265     }
266   }
267
268   // Need padding because FilterRows() will write 1 to 16 extra pixels
269   // after the end for SSE2 version.
270   uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
271   uint8* ybuf =
272       reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
273   uint8* ubuf = ybuf + kFilterBufferSize;
274   uint8* vbuf = ubuf + kFilterBufferSize;
275
276   // TODO(fbarchard): Fixed point math is off by 1 on negatives.
277
278   // We take a y-coordinate in [0,1] space in the source image space, and
279   // transform to a y-coordinate in [0,1] space in the destination image space.
280   // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
281   // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
282   // 0.75.  The formula is as follows (in fixed-point arithmetic):
283   //   y_dst = dst_height * ((y_src + 0.5) / src_height)
284   //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
285   // Implement this here as an accumulator + delta, to avoid expensive math
286   // in the loop.
287   int source_y_subpixel_accum =
288       ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
289   int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
290
291   // TODO(fbarchard): Split this into separate function for better efficiency.
292   for (int y = 0; y < height; ++y) {
293     uint8* dest_pixel = rgb_buf + y * rgb_pitch;
294     int source_y_subpixel = source_y_subpixel_accum;
295     source_y_subpixel_accum += source_y_subpixel_delta;
296     if (source_y_subpixel < 0)
297       source_y_subpixel = 0;
298     else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
299       source_y_subpixel = (source_height - 1) << kFractionBits;
300
301     const uint8* y_ptr = NULL;
302     const uint8* u_ptr = NULL;
303     const uint8* v_ptr = NULL;
304     // Apply vertical filtering if necessary.
305     // TODO(fbarchard): Remove memcpy when not necessary.
306     if (filter & media::FILTER_BILINEAR_V) {
307       int source_y = source_y_subpixel >> kFractionBits;
308       y_ptr = y_buf + source_y * y_pitch;
309       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
310       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
311
312       // Vertical scaler uses 16.8 fixed point.
313       int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
314       if (source_y_fraction != 0) {
315         g_filter_yuv_rows_proc_(
316             ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
317       } else {
318         memcpy(ybuf, y_ptr, source_width);
319       }
320       y_ptr = ybuf;
321       ybuf[source_width] = ybuf[source_width - 1];
322
323       int uv_source_width = (source_width + 1) / 2;
324       int source_uv_fraction;
325
326       // For formats with half-height UV planes, each even-numbered pixel row
327       // should not interpolate, since the next row to interpolate from should
328       // be a duplicate of the current row.
329       if (y_shift && (source_y & 0x1) == 0)
330         source_uv_fraction = 0;
331       else
332         source_uv_fraction = source_y_fraction;
333
334       if (source_uv_fraction != 0) {
335         g_filter_yuv_rows_proc_(
336             ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
337         g_filter_yuv_rows_proc_(
338             vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
339       } else {
340         memcpy(ubuf, u_ptr, uv_source_width);
341         memcpy(vbuf, v_ptr, uv_source_width);
342       }
343       u_ptr = ubuf;
344       v_ptr = vbuf;
345       ubuf[uv_source_width] = ubuf[uv_source_width - 1];
346       vbuf[uv_source_width] = vbuf[uv_source_width - 1];
347     } else {
348       // Offset by 1/2 pixel for center sampling.
349       int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
350       y_ptr = y_buf + source_y * y_pitch;
351       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
352       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
353     }
354     if (source_dx == kFractionMax) {  // Not scaled
355       g_convert_yuv_to_rgb32_row_proc_(y_ptr, u_ptr, v_ptr, dest_pixel, width);
356     } else {
357       if (filter & FILTER_BILINEAR_H) {
358         g_linear_scale_yuv_to_rgb32_row_proc_(
359             y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
360       } else {
361         g_scale_yuv_to_rgb32_row_proc_(
362             y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx);
363       }
364     }
365   }
366
367   g_empty_register_state_proc_();
368 }
369
370 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
371 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
372                              const uint8* u_buf,
373                              const uint8* v_buf,
374                              uint8* rgb_buf,
375                              int source_width,
376                              int source_height,
377                              int dest_width,
378                              int dest_height,
379                              int dest_rect_left,
380                              int dest_rect_top,
381                              int dest_rect_right,
382                              int dest_rect_bottom,
383                              int y_pitch,
384                              int uv_pitch,
385                              int rgb_pitch) {
386   // This routine doesn't currently support up-scaling.
387   CHECK_LE(dest_width, source_width);
388   CHECK_LE(dest_height, source_height);
389
390   // Sanity-check the destination rectangle.
391   DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
392   DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
393   DCHECK(dest_rect_right > dest_rect_left);
394   DCHECK(dest_rect_bottom > dest_rect_top);
395
396   // Fixed-point value of vertical and horizontal scale down factor.
397   // Values are in the format 16.16.
398   int y_step = kFractionMax * source_height / dest_height;
399   int x_step = kFractionMax * source_width / dest_width;
400
401   // Determine the coordinates of the rectangle in 16.16 coords.
402   // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
403   // If we're down-scaling by more than a factor of two, we start with a 50%
404   // fraction to avoid degenerating to point-sampling - we should really just
405   // fix the fraction at 50% for all pixels in that case.
406   int source_left = dest_rect_left * x_step;
407   int source_right = (dest_rect_right - 1) * x_step;
408   if (x_step < kFractionMax * 2) {
409     source_left += ((x_step - kFractionMax) / 2);
410     source_right += ((x_step - kFractionMax) / 2);
411   } else {
412     source_left += kFractionMax / 2;
413     source_right += kFractionMax / 2;
414   }
415   int source_top = dest_rect_top * y_step;
416   if (y_step < kFractionMax * 2) {
417     source_top += ((y_step - kFractionMax) / 2);
418   } else {
419     source_top += kFractionMax / 2;
420   }
421
422   // Determine the parts of the Y, U and V buffers to interpolate.
423   int source_y_left = source_left >> kFractionBits;
424   int source_y_right =
425       std::min((source_right >> kFractionBits) + 2, source_width + 1);
426
427   int source_uv_left = source_y_left / 2;
428   int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
429                                  (source_width + 1) / 2);
430
431   int source_y_width = source_y_right - source_y_left;
432   int source_uv_width = source_uv_right - source_uv_left;
433
434   // Determine number of pixels in each output row.
435   int dest_rect_width = dest_rect_right - dest_rect_left;
436
437   // Intermediate buffer for vertical interpolation.
438   // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
439   // and is bigger than most users will generally need.
440   // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
441   // FilterYUVRowProcs have alignment requirements, and the SSE version can
442   // write up to 16 bytes past the end of the buffer.
443   const int kFilterBufferSize = 4096;
444   const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
445   uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
446   uint8* y_temp = reinterpret_cast<uint8*>(
447       reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
448   uint8* u_temp = y_temp + kFilterBufferSize;
449   uint8* v_temp = u_temp + kFilterBufferSize;
450
451   // Move to the top-left pixel of output.
452   rgb_buf += dest_rect_top * rgb_pitch;
453   rgb_buf += dest_rect_left * 4;
454
455   // For each destination row perform interpolation and color space
456   // conversion to produce the output.
457   for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
458     // Round the fixed-point y position to get the current row.
459     int source_row = source_top >> kFractionBits;
460     int source_uv_row = source_row / 2;
461     DCHECK(source_row < source_height);
462
463     // Locate the first row for each plane for interpolation.
464     const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
465     const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
466     const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
467     const uint8* y1_ptr = NULL;
468     const uint8* u1_ptr = NULL;
469     const uint8* v1_ptr = NULL;
470
471     // Locate the second row for interpolation, being careful not to overrun.
472     if (source_row + 1 >= source_height) {
473       y1_ptr = y0_ptr;
474     } else {
475       y1_ptr = y0_ptr + y_pitch;
476     }
477     if (source_uv_row + 1 >= (source_height + 1) / 2) {
478       u1_ptr = u0_ptr;
479       v1_ptr = v0_ptr;
480     } else {
481       u1_ptr = u0_ptr + uv_pitch;
482       v1_ptr = v0_ptr + uv_pitch;
483     }
484
485     if (!kAvoidUsingOptimizedFilter) {
486       // Vertical scaler uses 16.8 fixed point.
487       int fraction = (source_top & kFractionMask) >> 8;
488       g_filter_yuv_rows_proc_(
489           y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
490       g_filter_yuv_rows_proc_(
491           u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
492       g_filter_yuv_rows_proc_(
493           v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
494
495       // Perform horizontal interpolation and color space conversion.
496       // TODO(hclam): Use the MMX version after more testing.
497       LinearScaleYUVToRGB32RowWithRange_C(y_temp,
498                                           u_temp,
499                                           v_temp,
500                                           rgb_buf,
501                                           dest_rect_width,
502                                           source_left,
503                                           x_step);
504     } else {
505       // If the frame is too large then we linear scale a single row.
506       LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
507                                           u0_ptr,
508                                           v0_ptr,
509                                           rgb_buf,
510                                           dest_rect_width,
511                                           source_left,
512                                           x_step);
513     }
514
515     // Advance vertically in the source and destination image.
516     source_top += y_step;
517     rgb_buf += rgb_pitch;
518   }
519
520   g_empty_register_state_proc_();
521 }
522
523 void ConvertRGB32ToYUV(const uint8* rgbframe,
524                        uint8* yplane,
525                        uint8* uplane,
526                        uint8* vplane,
527                        int width,
528                        int height,
529                        int rgbstride,
530                        int ystride,
531                        int uvstride) {
532   g_convert_rgb32_to_yuv_proc_(rgbframe,
533                                yplane,
534                                uplane,
535                                vplane,
536                                width,
537                                height,
538                                rgbstride,
539                                ystride,
540                                uvstride);
541 }
542
543 void ConvertRGB24ToYUV(const uint8* rgbframe,
544                        uint8* yplane,
545                        uint8* uplane,
546                        uint8* vplane,
547                        int width,
548                        int height,
549                        int rgbstride,
550                        int ystride,
551                        int uvstride) {
552   g_convert_rgb24_to_yuv_proc_(rgbframe,
553                                yplane,
554                                uplane,
555                                vplane,
556                                width,
557                                height,
558                                rgbstride,
559                                ystride,
560                                uvstride);
561 }
562
563 void ConvertYUY2ToYUV(const uint8* src,
564                       uint8* yplane,
565                       uint8* uplane,
566                       uint8* vplane,
567                       int width,
568                       int height) {
569   for (int i = 0; i < height / 2; ++i) {
570     for (int j = 0; j < (width / 2); ++j) {
571       yplane[0] = src[0];
572       *uplane = src[1];
573       yplane[1] = src[2];
574       *vplane = src[3];
575       src += 4;
576       yplane += 2;
577       uplane++;
578       vplane++;
579     }
580     for (int j = 0; j < (width / 2); ++j) {
581       yplane[0] = src[0];
582       yplane[1] = src[2];
583       src += 4;
584       yplane += 2;
585     }
586   }
587 }
588
589 void ConvertNV21ToYUV(const uint8* src,
590                       uint8* yplane,
591                       uint8* uplane,
592                       uint8* vplane,
593                       int width,
594                       int height) {
595   int y_plane_size = width * height;
596   memcpy(yplane, src, y_plane_size);
597
598   src += y_plane_size;
599   int u_plane_size = y_plane_size >> 2;
600   for (int i = 0; i < u_plane_size; ++i) {
601     *vplane++ = *src++;
602     *uplane++ = *src++;
603   }
604 }
605
606 void ConvertYUVToRGB32(const uint8* yplane,
607                        const uint8* uplane,
608                        const uint8* vplane,
609                        uint8* rgbframe,
610                        int width,
611                        int height,
612                        int ystride,
613                        int uvstride,
614                        int rgbstride,
615                        YUVType yuv_type) {
616   g_convert_yuv_to_rgb32_proc_(yplane,
617                                uplane,
618                                vplane,
619                                rgbframe,
620                                width,
621                                height,
622                                ystride,
623                                uvstride,
624                                rgbstride,
625                                yuv_type);
626 }
627
628 void ConvertYUVAToARGB(const uint8* yplane,
629                        const uint8* uplane,
630                        const uint8* vplane,
631                        const uint8* aplane,
632                        uint8* rgbframe,
633                        int width,
634                        int height,
635                        int ystride,
636                        int uvstride,
637                        int astride,
638                        int rgbstride,
639                        YUVType yuv_type) {
640   g_convert_yuva_to_argb_proc_(yplane,
641                                uplane,
642                                vplane,
643                                aplane,
644                                rgbframe,
645                                width,
646                                height,
647                                ystride,
648                                uvstride,
649                                astride,
650                                rgbstride,
651                                yuv_type);
652 }
653
654 }  // namespace media