Upstream version 10.39.225.0
[platform/framework/web/crosswalk.git] / src / media / base / yuv_convert.cc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11 //
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
14 //
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18 #include "media/base/yuv_convert.h"
19
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28 #include "media/base/simd/yuv_to_rgb_table.h"
29
30 #if defined(ARCH_CPU_X86_FAMILY)
31 #if defined(COMPILER_MSVC)
32 #include <intrin.h>
33 #else
34 #include <mmintrin.h>
35 #endif
36 #endif
37
38 // Assembly functions are declared without namespace.
39 extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
40
41 namespace media {
42
43 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
44
45 typedef void (*ConvertRGBToYUVProc)(const uint8*,
46                                     uint8*,
47                                     uint8*,
48                                     uint8*,
49                                     int,
50                                     int,
51                                     int,
52                                     int,
53                                     int);
54
55 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
56                                       const uint8*,
57                                       const uint8*,
58                                       uint8*,
59                                       int,
60                                       int,
61                                       int,
62                                       int,
63                                       int,
64                                       YUVType);
65
66 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
67                                       const uint8*,
68                                       const uint8*,
69                                       const uint8*,
70                                       uint8*,
71                                       int,
72                                       int,
73                                       int,
74                                       int,
75                                       int,
76                                       int,
77                                       YUVType);
78
79 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
80                                          const uint8*,
81                                          const uint8*,
82                                          uint8*,
83                                          ptrdiff_t,
84                                          const int16[1024][4]);
85
86 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
87                                          const uint8*,
88                                          const uint8*,
89                                          const uint8*,
90                                          uint8*,
91                                          ptrdiff_t,
92                                          const int16[1024][4]);
93
94 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
95                                        const uint8*,
96                                        const uint8*,
97                                        uint8*,
98                                        ptrdiff_t,
99                                        ptrdiff_t,
100                                        const int16[1024][4]);
101
102 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
110
111 // Empty SIMD registers state after using them.
112 void EmptyRegisterStateStub() {}
113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
114 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
115 #endif
116 typedef void (*EmptyRegisterStateProc)();
117 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
118
119 // Get the appropriate value to bitshift by for vertical indices.
120 int GetVerticalShift(YUVType type) {
121   switch (type) {
122     case YV16:
123       return 0;
124     case YV12:
125     case YV12J:
126       return 1;
127   }
128   NOTREACHED();
129   return 0;
130 }
131
132 const int16 (&GetLookupTable(YUVType type))[1024][4] {
133   switch (type) {
134     case YV12:
135     case YV16:
136       return kCoefficientsRgbY;
137     case YV12J:
138       return kCoefficientsRgbY_JPEG;
139   }
140   NOTREACHED();
141   return kCoefficientsRgbY;
142 }
143
144 void InitializeCPUSpecificYUVConversions() {
145   CHECK(!g_filter_yuv_rows_proc_);
146   CHECK(!g_convert_yuv_to_rgb32_row_proc_);
147   CHECK(!g_scale_yuv_to_rgb32_row_proc_);
148   CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
149   CHECK(!g_convert_rgb32_to_yuv_proc_);
150   CHECK(!g_convert_rgb24_to_yuv_proc_);
151   CHECK(!g_convert_yuv_to_rgb32_proc_);
152   CHECK(!g_convert_yuva_to_argb_proc_);
153   CHECK(!g_empty_register_state_proc_);
154
155   g_filter_yuv_rows_proc_ = FilterYUVRows_C;
156   g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
157   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
158   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
159   g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
160   g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
161   g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
162   g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
163   g_empty_register_state_proc_ = EmptyRegisterStateStub;
164
165   // Assembly code confuses MemorySanitizer.
166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167   g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
168
169 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
170   g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
171 #else
172   g_empty_register_state_proc_ = EmptyRegisterState_MMX;
173 #endif
174
175   g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
176   g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
177
178   g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
179   g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
180
181 #if defined(ARCH_CPU_X86_64)
182   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
183
184   // Technically this should be in the MMX section, but MSVC will optimize out
185   // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
186   // tests, if that decision can be made at compile time.  Since all X64 CPUs
187   // have SSE2, we can hack around this by making the selection here.
188   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
189 #else
190   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
191   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
192 #endif
193
194   base::CPU cpu;
195   if (cpu.has_ssse3()) {
196     g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
197
198     // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
199     // See: crbug.com/100462
200   }
201 #endif
202 }
203
204 // Empty SIMD registers state after using them.
205 void EmptyRegisterState() { g_empty_register_state_proc_(); }
206
207 // 16.16 fixed point arithmetic
208 const int kFractionBits = 16;
209 const int kFractionMax = 1 << kFractionBits;
210 const int kFractionMask = ((1 << kFractionBits) - 1);
211
212 // Scale a frame of YUV to 32 bit ARGB.
213 void ScaleYUVToRGB32(const uint8* y_buf,
214                      const uint8* u_buf,
215                      const uint8* v_buf,
216                      uint8* rgb_buf,
217                      int source_width,
218                      int source_height,
219                      int width,
220                      int height,
221                      int y_pitch,
222                      int uv_pitch,
223                      int rgb_pitch,
224                      YUVType yuv_type,
225                      Rotate view_rotate,
226                      ScaleFilter filter) {
227   // Handle zero sized sources and destinations.
228   if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
229       (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
230       width == 0 || height == 0)
231     return;
232
233   // 4096 allows 3 buffers to fit in 12k.
234   // Helps performance on CPU with 16K L1 cache.
235   // Large enough for 3830x2160 and 30" displays which are 2560x1600.
236   const int kFilterBufferSize = 4096;
237   // Disable filtering if the screen is too big (to avoid buffer overflows).
238   // This should never happen to regular users: they don't have monitors
239   // wider than 4096 pixels.
240   // TODO(fbarchard): Allow rotated videos to filter.
241   if (source_width > kFilterBufferSize || view_rotate)
242     filter = FILTER_NONE;
243
244   unsigned int y_shift = GetVerticalShift(yuv_type);
245   // Diagram showing origin and direction of source sampling.
246   // ->0   4<-
247   // 7       3
248   //
249   // 6       5
250   // ->1   2<-
251   // Rotations that start at right side of image.
252   if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
253       (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
254     y_buf += source_width - 1;
255     u_buf += source_width / 2 - 1;
256     v_buf += source_width / 2 - 1;
257     source_width = -source_width;
258   }
259   // Rotations that start at bottom of image.
260   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
261       (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
262     y_buf += (source_height - 1) * y_pitch;
263     u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
264     v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
265     source_height = -source_height;
266   }
267
268   int source_dx = source_width * kFractionMax / width;
269
270   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
271     int tmp = height;
272     height = width;
273     width = tmp;
274     tmp = source_height;
275     source_height = source_width;
276     source_width = tmp;
277     int source_dy = source_height * kFractionMax / height;
278     source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
279     if (view_rotate == ROTATE_90) {
280       y_pitch = -1;
281       uv_pitch = -1;
282       source_height = -source_height;
283     } else {
284       y_pitch = 1;
285       uv_pitch = 1;
286     }
287   }
288
289   // Need padding because FilterRows() will write 1 to 16 extra pixels
290   // after the end for SSE2 version.
291   uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
292   uint8* ybuf =
293       reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
294   uint8* ubuf = ybuf + kFilterBufferSize;
295   uint8* vbuf = ubuf + kFilterBufferSize;
296
297   // TODO(fbarchard): Fixed point math is off by 1 on negatives.
298
299   // We take a y-coordinate in [0,1] space in the source image space, and
300   // transform to a y-coordinate in [0,1] space in the destination image space.
301   // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
302   // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
303   // 0.75.  The formula is as follows (in fixed-point arithmetic):
304   //   y_dst = dst_height * ((y_src + 0.5) / src_height)
305   //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
306   // Implement this here as an accumulator + delta, to avoid expensive math
307   // in the loop.
308   int source_y_subpixel_accum =
309       ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
310   int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
311
312   // TODO(fbarchard): Split this into separate function for better efficiency.
313   for (int y = 0; y < height; ++y) {
314     uint8* dest_pixel = rgb_buf + y * rgb_pitch;
315     int source_y_subpixel = source_y_subpixel_accum;
316     source_y_subpixel_accum += source_y_subpixel_delta;
317     if (source_y_subpixel < 0)
318       source_y_subpixel = 0;
319     else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
320       source_y_subpixel = (source_height - 1) << kFractionBits;
321
322     const uint8* y_ptr = NULL;
323     const uint8* u_ptr = NULL;
324     const uint8* v_ptr = NULL;
325     // Apply vertical filtering if necessary.
326     // TODO(fbarchard): Remove memcpy when not necessary.
327     if (filter & media::FILTER_BILINEAR_V) {
328       int source_y = source_y_subpixel >> kFractionBits;
329       y_ptr = y_buf + source_y * y_pitch;
330       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
331       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
332
333       // Vertical scaler uses 16.8 fixed point.
334       int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
335       if (source_y_fraction != 0) {
336         g_filter_yuv_rows_proc_(
337             ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
338       } else {
339         memcpy(ybuf, y_ptr, source_width);
340       }
341       y_ptr = ybuf;
342       ybuf[source_width] = ybuf[source_width - 1];
343
344       int uv_source_width = (source_width + 1) / 2;
345       int source_uv_fraction;
346
347       // For formats with half-height UV planes, each even-numbered pixel row
348       // should not interpolate, since the next row to interpolate from should
349       // be a duplicate of the current row.
350       if (y_shift && (source_y & 0x1) == 0)
351         source_uv_fraction = 0;
352       else
353         source_uv_fraction = source_y_fraction;
354
355       if (source_uv_fraction != 0) {
356         g_filter_yuv_rows_proc_(
357             ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
358         g_filter_yuv_rows_proc_(
359             vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
360       } else {
361         memcpy(ubuf, u_ptr, uv_source_width);
362         memcpy(vbuf, v_ptr, uv_source_width);
363       }
364       u_ptr = ubuf;
365       v_ptr = vbuf;
366       ubuf[uv_source_width] = ubuf[uv_source_width - 1];
367       vbuf[uv_source_width] = vbuf[uv_source_width - 1];
368     } else {
369       // Offset by 1/2 pixel for center sampling.
370       int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
371       y_ptr = y_buf + source_y * y_pitch;
372       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
373       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
374     }
375     if (source_dx == kFractionMax) {  // Not scaled
376       g_convert_yuv_to_rgb32_row_proc_(
377           y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
378     } else {
379       if (filter & FILTER_BILINEAR_H) {
380         g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
381                                               u_ptr,
382                                               v_ptr,
383                                               dest_pixel,
384                                               width,
385                                               source_dx,
386                                               kCoefficientsRgbY);
387       } else {
388         g_scale_yuv_to_rgb32_row_proc_(y_ptr,
389                                        u_ptr,
390                                        v_ptr,
391                                        dest_pixel,
392                                        width,
393                                        source_dx,
394                                        kCoefficientsRgbY);
395       }
396     }
397   }
398
399   g_empty_register_state_proc_();
400 }
401
402 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
403 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
404                              const uint8* u_buf,
405                              const uint8* v_buf,
406                              uint8* rgb_buf,
407                              int source_width,
408                              int source_height,
409                              int dest_width,
410                              int dest_height,
411                              int dest_rect_left,
412                              int dest_rect_top,
413                              int dest_rect_right,
414                              int dest_rect_bottom,
415                              int y_pitch,
416                              int uv_pitch,
417                              int rgb_pitch) {
418   // This routine doesn't currently support up-scaling.
419   CHECK_LE(dest_width, source_width);
420   CHECK_LE(dest_height, source_height);
421
422   // Sanity-check the destination rectangle.
423   DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
424   DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
425   DCHECK(dest_rect_right > dest_rect_left);
426   DCHECK(dest_rect_bottom > dest_rect_top);
427
428   // Fixed-point value of vertical and horizontal scale down factor.
429   // Values are in the format 16.16.
430   int y_step = kFractionMax * source_height / dest_height;
431   int x_step = kFractionMax * source_width / dest_width;
432
433   // Determine the coordinates of the rectangle in 16.16 coords.
434   // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
435   // If we're down-scaling by more than a factor of two, we start with a 50%
436   // fraction to avoid degenerating to point-sampling - we should really just
437   // fix the fraction at 50% for all pixels in that case.
438   int source_left = dest_rect_left * x_step;
439   int source_right = (dest_rect_right - 1) * x_step;
440   if (x_step < kFractionMax * 2) {
441     source_left += ((x_step - kFractionMax) / 2);
442     source_right += ((x_step - kFractionMax) / 2);
443   } else {
444     source_left += kFractionMax / 2;
445     source_right += kFractionMax / 2;
446   }
447   int source_top = dest_rect_top * y_step;
448   if (y_step < kFractionMax * 2) {
449     source_top += ((y_step - kFractionMax) / 2);
450   } else {
451     source_top += kFractionMax / 2;
452   }
453
454   // Determine the parts of the Y, U and V buffers to interpolate.
455   int source_y_left = source_left >> kFractionBits;
456   int source_y_right =
457       std::min((source_right >> kFractionBits) + 2, source_width + 1);
458
459   int source_uv_left = source_y_left / 2;
460   int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
461                                  (source_width + 1) / 2);
462
463   int source_y_width = source_y_right - source_y_left;
464   int source_uv_width = source_uv_right - source_uv_left;
465
466   // Determine number of pixels in each output row.
467   int dest_rect_width = dest_rect_right - dest_rect_left;
468
469   // Intermediate buffer for vertical interpolation.
470   // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
471   // and is bigger than most users will generally need.
472   // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
473   // FilterYUVRowProcs have alignment requirements, and the SSE version can
474   // write up to 16 bytes past the end of the buffer.
475   const int kFilterBufferSize = 4096;
476   const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
477   uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
478   // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
479   if (RunningOnValgrind())
480     memset(yuv_temp, 0, sizeof(yuv_temp));
481   uint8* y_temp = reinterpret_cast<uint8*>(
482       reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
483   uint8* u_temp = y_temp + kFilterBufferSize;
484   uint8* v_temp = u_temp + kFilterBufferSize;
485
486   // Move to the top-left pixel of output.
487   rgb_buf += dest_rect_top * rgb_pitch;
488   rgb_buf += dest_rect_left * 4;
489
490   // For each destination row perform interpolation and color space
491   // conversion to produce the output.
492   for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
493     // Round the fixed-point y position to get the current row.
494     int source_row = source_top >> kFractionBits;
495     int source_uv_row = source_row / 2;
496     DCHECK(source_row < source_height);
497
498     // Locate the first row for each plane for interpolation.
499     const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
500     const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
501     const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
502     const uint8* y1_ptr = NULL;
503     const uint8* u1_ptr = NULL;
504     const uint8* v1_ptr = NULL;
505
506     // Locate the second row for interpolation, being careful not to overrun.
507     if (source_row + 1 >= source_height) {
508       y1_ptr = y0_ptr;
509     } else {
510       y1_ptr = y0_ptr + y_pitch;
511     }
512     if (source_uv_row + 1 >= (source_height + 1) / 2) {
513       u1_ptr = u0_ptr;
514       v1_ptr = v0_ptr;
515     } else {
516       u1_ptr = u0_ptr + uv_pitch;
517       v1_ptr = v0_ptr + uv_pitch;
518     }
519
520     if (!kAvoidUsingOptimizedFilter) {
521       // Vertical scaler uses 16.8 fixed point.
522       int fraction = (source_top & kFractionMask) >> 8;
523       g_filter_yuv_rows_proc_(
524           y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
525       g_filter_yuv_rows_proc_(
526           u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
527       g_filter_yuv_rows_proc_(
528           v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
529
530       // Perform horizontal interpolation and color space conversion.
531       // TODO(hclam): Use the MMX version after more testing.
532       LinearScaleYUVToRGB32RowWithRange_C(y_temp,
533                                           u_temp,
534                                           v_temp,
535                                           rgb_buf,
536                                           dest_rect_width,
537                                           source_left,
538                                           x_step,
539                                           kCoefficientsRgbY);
540     } else {
541       // If the frame is too large then we linear scale a single row.
542       LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
543                                           u0_ptr,
544                                           v0_ptr,
545                                           rgb_buf,
546                                           dest_rect_width,
547                                           source_left,
548                                           x_step,
549                                           kCoefficientsRgbY);
550     }
551
552     // Advance vertically in the source and destination image.
553     source_top += y_step;
554     rgb_buf += rgb_pitch;
555   }
556
557   g_empty_register_state_proc_();
558 }
559
560 void ConvertRGB32ToYUV(const uint8* rgbframe,
561                        uint8* yplane,
562                        uint8* uplane,
563                        uint8* vplane,
564                        int width,
565                        int height,
566                        int rgbstride,
567                        int ystride,
568                        int uvstride) {
569   g_convert_rgb32_to_yuv_proc_(rgbframe,
570                                yplane,
571                                uplane,
572                                vplane,
573                                width,
574                                height,
575                                rgbstride,
576                                ystride,
577                                uvstride);
578 }
579
580 void ConvertRGB24ToYUV(const uint8* rgbframe,
581                        uint8* yplane,
582                        uint8* uplane,
583                        uint8* vplane,
584                        int width,
585                        int height,
586                        int rgbstride,
587                        int ystride,
588                        int uvstride) {
589   g_convert_rgb24_to_yuv_proc_(rgbframe,
590                                yplane,
591                                uplane,
592                                vplane,
593                                width,
594                                height,
595                                rgbstride,
596                                ystride,
597                                uvstride);
598 }
599
600 void ConvertYUY2ToYUV(const uint8* src,
601                       uint8* yplane,
602                       uint8* uplane,
603                       uint8* vplane,
604                       int width,
605                       int height) {
606   for (int i = 0; i < height / 2; ++i) {
607     for (int j = 0; j < (width / 2); ++j) {
608       yplane[0] = src[0];
609       *uplane = src[1];
610       yplane[1] = src[2];
611       *vplane = src[3];
612       src += 4;
613       yplane += 2;
614       uplane++;
615       vplane++;
616     }
617     for (int j = 0; j < (width / 2); ++j) {
618       yplane[0] = src[0];
619       yplane[1] = src[2];
620       src += 4;
621       yplane += 2;
622     }
623   }
624 }
625
626 void ConvertNV21ToYUV(const uint8* src,
627                       uint8* yplane,
628                       uint8* uplane,
629                       uint8* vplane,
630                       int width,
631                       int height) {
632   int y_plane_size = width * height;
633   memcpy(yplane, src, y_plane_size);
634
635   src += y_plane_size;
636   int u_plane_size = y_plane_size >> 2;
637   for (int i = 0; i < u_plane_size; ++i) {
638     *vplane++ = *src++;
639     *uplane++ = *src++;
640   }
641 }
642
643 void ConvertYUVToRGB32(const uint8* yplane,
644                        const uint8* uplane,
645                        const uint8* vplane,
646                        uint8* rgbframe,
647                        int width,
648                        int height,
649                        int ystride,
650                        int uvstride,
651                        int rgbstride,
652                        YUVType yuv_type) {
653   g_convert_yuv_to_rgb32_proc_(yplane,
654                                uplane,
655                                vplane,
656                                rgbframe,
657                                width,
658                                height,
659                                ystride,
660                                uvstride,
661                                rgbstride,
662                                yuv_type);
663 }
664
665 void ConvertYUVAToARGB(const uint8* yplane,
666                        const uint8* uplane,
667                        const uint8* vplane,
668                        const uint8* aplane,
669                        uint8* rgbframe,
670                        int width,
671                        int height,
672                        int ystride,
673                        int uvstride,
674                        int astride,
675                        int rgbstride,
676                        YUVType yuv_type) {
677   g_convert_yuva_to_argb_proc_(yplane,
678                                uplane,
679                                vplane,
680                                aplane,
681                                rgbframe,
682                                width,
683                                height,
684                                ystride,
685                                uvstride,
686                                astride,
687                                rgbstride,
688                                yuv_type);
689 }
690
691 }  // namespace media