Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / cc / trees / layer_tree_host_common.cc
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/trees/layer_tree_host_common.h"
6
7 #include <algorithm>
8
9 #include "base/debug/trace_event.h"
10 #include "cc/base/math_util.h"
11 #include "cc/layers/heads_up_display_layer_impl.h"
12 #include "cc/layers/layer.h"
13 #include "cc/layers/layer_impl.h"
14 #include "cc/layers/layer_iterator.h"
15 #include "cc/layers/render_surface.h"
16 #include "cc/layers/render_surface_impl.h"
17 #include "cc/trees/layer_sorter.h"
18 #include "cc/trees/layer_tree_impl.h"
19 #include "ui/gfx/point_conversions.h"
20 #include "ui/gfx/rect_conversions.h"
21 #include "ui/gfx/transform.h"
22
23 namespace cc {
24
25 ScrollAndScaleSet::ScrollAndScaleSet() {}
26
27 ScrollAndScaleSet::~ScrollAndScaleSet() {}
28
29 static void SortLayers(LayerList::iterator forst,
30                        LayerList::iterator end,
31                        void* layer_sorter) {
32   NOTREACHED();
33 }
34
35 static void SortLayers(LayerImplList::iterator first,
36                        LayerImplList::iterator end,
37                        LayerSorter* layer_sorter) {
38   DCHECK(layer_sorter);
39   TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers");
40   layer_sorter->Sort(first, end);
41 }
42
43 template <typename LayerType>
44 static gfx::Vector2dF GetEffectiveScrollDelta(LayerType* layer) {
45   gfx::Vector2dF scroll_delta = layer->ScrollDelta();
46   // The scroll parent's scroll delta is the amount we've scrolled on the
47   // compositor thread since the commit for this layer tree's source frame.
48   // we last reported to the main thread. I.e., it's the discrepancy between
49   // a scroll parent's scroll delta and offset, so we must add it here.
50   if (layer->scroll_parent())
51     scroll_delta += layer->scroll_parent()->ScrollDelta();
52   return scroll_delta;
53 }
54
55 template <typename LayerType>
56 static gfx::Vector2dF GetEffectiveTotalScrollOffset(LayerType* layer) {
57   gfx::Vector2dF offset = layer->TotalScrollOffset();
58   // The scroll parent's total scroll offset (scroll offset + scroll delta)
59   // can't be used because its scroll offset has already been applied to the
60   // scroll children's positions by the main thread layer positioning code.
61   if (layer->scroll_parent())
62     offset += layer->scroll_parent()->ScrollDelta();
63   return offset;
64 }
65
66 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect(
67     const gfx::Rect& target_surface_rect,
68     const gfx::Rect& layer_bound_rect,
69     const gfx::Rect& layer_rect_in_target_space,
70     const gfx::Transform& transform) {
71   if (layer_rect_in_target_space.IsEmpty())
72     return gfx::Rect();
73
74   // Is this layer fully contained within the target surface?
75   if (target_surface_rect.Contains(layer_rect_in_target_space))
76     return layer_bound_rect;
77
78   // If the layer doesn't fill up the entire surface, then find the part of
79   // the surface rect where the layer could be visible. This avoids trying to
80   // project surface rect points that are behind the projection point.
81   gfx::Rect minimal_surface_rect = target_surface_rect;
82   minimal_surface_rect.Intersect(layer_rect_in_target_space);
83
84   if (minimal_surface_rect.IsEmpty())
85       return gfx::Rect();
86
87   // Project the corners of the target surface rect into the layer space.
88   // This bounding rectangle may be larger than it needs to be (being
89   // axis-aligned), but is a reasonable filter on the space to consider.
90   // Non-invertible transforms will create an empty rect here.
91
92   gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization);
93   if (!transform.GetInverse(&surface_to_layer)) {
94     // Because we cannot use the surface bounds to determine what portion of
95     // the layer is visible, we must conservatively assume the full layer is
96     // visible.
97     return layer_bound_rect;
98   }
99
100   gfx::Rect layer_rect = MathUtil::ProjectEnclosingClippedRect(
101       surface_to_layer, minimal_surface_rect);
102   layer_rect.Intersect(layer_bound_rect);
103   return layer_rect;
104 }
105
106 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect(
107     const gfx::Rect& target_surface_rect,
108     const gfx::Rect& layer_bound_rect,
109     const gfx::Transform& transform) {
110   gfx::Rect layer_in_surface_space =
111       MathUtil::MapEnclosingClippedRect(transform, layer_bound_rect);
112   return CalculateVisibleRectWithCachedLayerRect(
113       target_surface_rect, layer_bound_rect, layer_in_surface_space, transform);
114 }
115
116 template <typename LayerType>
117 static LayerType* NextTargetSurface(LayerType* layer) {
118   return layer->parent() ? layer->parent()->render_target() : 0;
119 }
120
121 // Given two layers, this function finds their respective render targets and,
122 // computes a change of basis translation. It does this by accumulating the
123 // translation components of the draw transforms of each target between the
124 // ancestor and descendant. These transforms must be 2D translations, and this
125 // requirement is enforced at every step.
126 template <typename LayerType>
127 static gfx::Vector2dF ComputeChangeOfBasisTranslation(
128     const LayerType& ancestor_layer,
129     const LayerType& descendant_layer) {
130   DCHECK(descendant_layer.HasAncestor(&ancestor_layer));
131   const LayerType* descendant_target = descendant_layer.render_target();
132   DCHECK(descendant_target);
133   const LayerType* ancestor_target = ancestor_layer.render_target();
134   DCHECK(ancestor_target);
135
136   gfx::Vector2dF translation;
137   for (const LayerType* target = descendant_target; target != ancestor_target;
138        target = NextTargetSurface(target)) {
139     const gfx::Transform& trans = target->render_surface()->draw_transform();
140     // Ensure that this translation is truly 2d.
141     DCHECK(trans.IsIdentityOrTranslation());
142     DCHECK_EQ(0.f, trans.matrix().get(2, 3));
143     translation += trans.To2dTranslation();
144   }
145
146   return translation;
147 }
148
149 enum TranslateRectDirection {
150   TranslateRectDirectionToAncestor,
151   TranslateRectDirectionToDescendant
152 };
153
154 template <typename LayerType>
155 static gfx::Rect TranslateRectToTargetSpace(const LayerType& ancestor_layer,
156                                             const LayerType& descendant_layer,
157                                             const gfx::Rect& rect,
158                                             TranslateRectDirection direction) {
159   gfx::Vector2dF translation = ComputeChangeOfBasisTranslation<LayerType>(
160       ancestor_layer, descendant_layer);
161   if (direction == TranslateRectDirectionToDescendant)
162     translation.Scale(-1.f);
163   return gfx::ToEnclosingRect(
164       gfx::RectF(rect.origin() + translation, rect.size()));
165 }
166
167 // Attempts to update the clip rects for the given layer. If the layer has a
168 // clip_parent, it may not inherit its immediate ancestor's clip.
169 template <typename LayerType>
170 static void UpdateClipRectsForClipChild(
171     const LayerType* layer,
172     gfx::Rect* clip_rect_in_parent_target_space,
173     bool* subtree_should_be_clipped) {
174   // If the layer has no clip_parent, or the ancestor is the same as its actual
175   // parent, then we don't need special clip rects. Bail now and leave the out
176   // parameters untouched.
177   const LayerType* clip_parent = layer->scroll_parent();
178
179   if (!clip_parent)
180     clip_parent = layer->clip_parent();
181
182   if (!clip_parent || clip_parent == layer->parent())
183     return;
184
185   // The root layer is never a clip child.
186   DCHECK(layer->parent());
187
188   // Grab the cached values.
189   *clip_rect_in_parent_target_space = clip_parent->clip_rect();
190   *subtree_should_be_clipped = clip_parent->is_clipped();
191
192   // We may have to project the clip rect into our parent's target space. Note,
193   // it must be our parent's target space, not ours. For one, we haven't
194   // computed our transforms, so we couldn't put it in our space yet even if we
195   // wanted to. But more importantly, this matches the expectations of
196   // CalculateDrawPropertiesInternal. If we, say, create a render surface, these
197   // clip rects will want to be in its target space, not ours.
198   if (clip_parent == layer->clip_parent()) {
199     *clip_rect_in_parent_target_space = TranslateRectToTargetSpace<LayerType>(
200         *clip_parent,
201         *layer->parent(),
202         *clip_rect_in_parent_target_space,
203         TranslateRectDirectionToDescendant);
204   } else {
205     // If we're being clipped by our scroll parent, we must translate through
206     // our common ancestor. This happens to be our parent, so it is sufficent to
207     // translate from our clip parent's space to the space of its ancestor (our
208     // parent).
209     *clip_rect_in_parent_target_space =
210         TranslateRectToTargetSpace<LayerType>(*layer->parent(),
211                                               *clip_parent,
212                                               *clip_rect_in_parent_target_space,
213                                               TranslateRectDirectionToAncestor);
214   }
215 }
216
217 // We collect an accumulated drawable content rect per render surface.
218 // Typically, a layer will contribute to only one surface, the surface
219 // associated with its render target. Clip children, however, may affect
220 // several surfaces since there may be several surfaces between the clip child
221 // and its parent.
222 //
223 // NB: we accumulate the layer's *clipped* drawable content rect.
224 template <typename LayerType>
225 struct AccumulatedSurfaceState {
226   explicit AccumulatedSurfaceState(LayerType* render_target)
227       : render_target(render_target) {}
228
229   // The accumulated drawable content rect for the surface associated with the
230   // given |render_target|.
231   gfx::Rect drawable_content_rect;
232
233   // The target owning the surface. (We hang onto the target rather than the
234   // surface so that we can DCHECK that the surface's draw transform is simply
235   // a translation when |render_target| reports that it has no unclipped
236   // descendants).
237   LayerType* render_target;
238 };
239
240 template <typename LayerType>
241 void UpdateAccumulatedSurfaceState(
242     LayerType* layer,
243     const gfx::Rect& drawable_content_rect,
244     std::vector<AccumulatedSurfaceState<LayerType> >*
245         accumulated_surface_state) {
246   if (IsRootLayer(layer))
247     return;
248
249   // We will apply our drawable content rect to the accumulated rects for all
250   // surfaces between us and |render_target| (inclusive). This is either our
251   // clip parent's target if we are a clip child, or else simply our parent's
252   // target. We use our parent's target because we're either the owner of a
253   // render surface and we'll want to add our rect to our *surface's* target, or
254   // we're not and our target is the same as our parent's. In both cases, the
255   // parent's target gives us what we want.
256   LayerType* render_target = layer->clip_parent()
257                                  ? layer->clip_parent()->render_target()
258                                  : layer->parent()->render_target();
259
260   // If the layer owns a surface, then the content rect is in the wrong space.
261   // Instead, we will use the surface's DrawableContentRect which is in target
262   // space as required.
263   gfx::Rect target_rect = drawable_content_rect;
264   if (layer->render_surface()) {
265     target_rect =
266         gfx::ToEnclosedRect(layer->render_surface()->DrawableContentRect());
267   }
268
269   if (render_target->is_clipped()) {
270     gfx::Rect clip_rect = render_target->clip_rect();
271     // If the layer has a clip parent, the clip rect may be in the wrong space,
272     // so we'll need to transform it before it is applied.
273     if (layer->clip_parent()) {
274       clip_rect = TranslateRectToTargetSpace<LayerType>(
275           *layer->clip_parent(),
276           *layer,
277           clip_rect,
278           TranslateRectDirectionToDescendant);
279     }
280     target_rect.Intersect(clip_rect);
281   }
282
283   // We must have at least one entry in the vector for the root.
284   DCHECK_LT(0ul, accumulated_surface_state->size());
285
286   typedef typename std::vector<AccumulatedSurfaceState<LayerType> >
287       AccumulatedSurfaceStateVector;
288   typedef typename AccumulatedSurfaceStateVector::reverse_iterator
289       AccumulatedSurfaceStateIterator;
290   AccumulatedSurfaceStateIterator current_state =
291       accumulated_surface_state->rbegin();
292
293   // Add this rect to the accumulated content rect for all surfaces until we
294   // reach the target surface.
295   bool found_render_target = false;
296   for (; current_state != accumulated_surface_state->rend(); ++current_state) {
297     current_state->drawable_content_rect.Union(target_rect);
298
299     // If we've reached |render_target| our work is done and we can bail.
300     if (current_state->render_target == render_target) {
301       found_render_target = true;
302       break;
303     }
304
305     // Transform rect from the current target's space to the next.
306     LayerType* current_target = current_state->render_target;
307     DCHECK(current_target->render_surface());
308     const gfx::Transform& current_draw_transform =
309          current_target->render_surface()->draw_transform();
310
311     // If we have unclipped descendants, the draw transform is a translation.
312     DCHECK(current_target->num_unclipped_descendants() == 0 ||
313            current_draw_transform.IsIdentityOrTranslation());
314
315     target_rect = gfx::ToEnclosingRect(
316         MathUtil::MapClippedRect(current_draw_transform, target_rect));
317   }
318
319   // It is an error to not reach |render_target|. If this happens, it means that
320   // either the clip parent is not an ancestor of the clip child or the surface
321   // state vector is empty, both of which should be impossible.
322   DCHECK(found_render_target);
323 }
324
325 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) {
326   return !layer->parent();
327 }
328
329 template <typename LayerType>
330 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) {
331   return layer->is_3d_sorted() && layer->parent() &&
332          layer->parent()->is_3d_sorted();
333 }
334
335 template <typename LayerType>
336 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) {
337   if (layer->parent())
338     return !layer->parent()->is_3d_sorted() && layer->is_3d_sorted();
339
340   return layer->is_3d_sorted();
341 }
342
343 template <typename LayerType>
344 static bool IsLayerBackFaceVisible(LayerType* layer) {
345   // The current W3C spec on CSS transforms says that backface visibility should
346   // be determined differently depending on whether the layer is in a "3d
347   // rendering context" or not. For Chromium code, we can determine whether we
348   // are in a 3d rendering context by checking if the parent preserves 3d.
349
350   if (LayerIsInExisting3DRenderingContext(layer))
351     return layer->draw_transform().IsBackFaceVisible();
352
353   // In this case, either the layer establishes a new 3d rendering context, or
354   // is not in a 3d rendering context at all.
355   return layer->transform().IsBackFaceVisible();
356 }
357
358 template <typename LayerType>
359 static bool IsSurfaceBackFaceVisible(LayerType* layer,
360                                      const gfx::Transform& draw_transform) {
361   if (LayerIsInExisting3DRenderingContext(layer))
362     return draw_transform.IsBackFaceVisible();
363
364   if (IsRootLayerOfNewRenderingContext(layer))
365     return layer->transform().IsBackFaceVisible();
366
367   // If the render_surface is not part of a new or existing rendering context,
368   // then the layers that contribute to this surface will decide back-face
369   // visibility for themselves.
370   return false;
371 }
372
373 template <typename LayerType>
374 static inline bool LayerClipsSubtree(LayerType* layer) {
375   return layer->masks_to_bounds() || layer->mask_layer();
376 }
377
378 template <typename LayerType>
379 static gfx::Rect CalculateVisibleContentRect(
380     LayerType* layer,
381     const gfx::Rect& clip_rect_of_target_surface_in_target_space,
382     const gfx::Rect& layer_rect_in_target_space) {
383   DCHECK(layer->render_target());
384
385   // Nothing is visible if the layer bounds are empty.
386   if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() ||
387       layer->drawable_content_rect().IsEmpty())
388     return gfx::Rect();
389
390   // Compute visible bounds in target surface space.
391   gfx::Rect visible_rect_in_target_surface_space =
392       layer->drawable_content_rect();
393
394   if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) {
395     // The |layer| L has a target T which owns a surface Ts. The surface Ts
396     // has a target TsT.
397     //
398     // In this case the target surface Ts does clip the layer L that contributes
399     // to it. So, we have to convert the clip rect of Ts from the target space
400     // of Ts (that is the space of TsT), to the current render target's space
401     // (that is the space of T). This conversion is done outside this function
402     // so that it can be cached instead of computing it redundantly for every
403     // layer.
404     visible_rect_in_target_surface_space.Intersect(
405         clip_rect_of_target_surface_in_target_space);
406   }
407
408   if (visible_rect_in_target_surface_space.IsEmpty())
409     return gfx::Rect();
410
411   return CalculateVisibleRectWithCachedLayerRect(
412       visible_rect_in_target_surface_space,
413       gfx::Rect(layer->content_bounds()),
414       layer_rect_in_target_space,
415       layer->draw_transform());
416 }
417
418 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; }
419
420 static inline bool TransformToParentIsKnown(Layer* layer) {
421   return !layer->TransformIsAnimating();
422 }
423
424 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; }
425
426 static inline bool TransformToScreenIsKnown(Layer* layer) {
427   return !layer->screen_space_transform_is_animating();
428 }
429
430 template <typename LayerType>
431 static bool LayerShouldBeSkipped(LayerType* layer, bool layer_is_drawn) {
432   // Layers can be skipped if any of these conditions are met.
433   //   - is not drawn due to it or one of its ancestors being hidden (or having
434   //     no copy requests).
435   //   - has empty bounds
436   //   - the layer is not double-sided, but its back face is visible.
437   //   - is transparent
438   //   - does not draw content and does not participate in hit testing.
439   //
440   // Some additional conditions need to be computed at a later point after the
441   // recursion is finished.
442   //   - the intersection of render_surface content and layer clip_rect is empty
443   //   - the visible_content_rect is empty
444   //
445   // Note, if the layer should not have been drawn due to being fully
446   // transparent, we would have skipped the entire subtree and never made it
447   // into this function, so it is safe to omit this check here.
448
449   if (!layer_is_drawn)
450     return true;
451
452   if (layer->bounds().IsEmpty())
453     return true;
454
455   LayerType* backface_test_layer = layer;
456   if (layer->use_parent_backface_visibility()) {
457     DCHECK(layer->parent());
458     DCHECK(!layer->parent()->use_parent_backface_visibility());
459     backface_test_layer = layer->parent();
460   }
461
462   // The layer should not be drawn if (1) it is not double-sided and (2) the
463   // back of the layer is known to be facing the screen.
464   if (!backface_test_layer->double_sided() &&
465       TransformToScreenIsKnown(backface_test_layer) &&
466       IsLayerBackFaceVisible(backface_test_layer))
467     return true;
468
469   // The layer is visible to events.  If it's subject to hit testing, then
470   // we can't skip it.
471   bool can_accept_input = !layer->touch_event_handler_region().IsEmpty() ||
472       layer->have_wheel_event_handlers();
473   if (!layer->DrawsContent() && !can_accept_input)
474     return true;
475
476   return false;
477 }
478
479 template <typename LayerType>
480 static bool HasInvertibleOrAnimatedTransform(LayerType* layer) {
481   return layer->transform_is_invertible() || layer->TransformIsAnimating();
482 }
483
484 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer,
485                                           bool layer_is_drawn) {
486   // If the layer transform is not invertible, it should not be drawn.
487   // TODO(ajuma): Correctly process subtrees with singular transform for the
488   // case where we may animate to a non-singular transform and wish to
489   // pre-raster.
490   if (!HasInvertibleOrAnimatedTransform(layer))
491     return true;
492
493   // When we need to do a readback/copy of a layer's output, we can not skip
494   // it or any of its ancestors.
495   if (layer->draw_properties().layer_or_descendant_has_copy_request)
496     return false;
497
498   // If the layer is not drawn, then skip it and its subtree.
499   if (!layer_is_drawn)
500     return true;
501
502   // If layer is on the pending tree and opacity is being animated then
503   // this subtree can't be skipped as we need to create, prioritize and
504   // include tiles for this layer when deciding if tree can be activated.
505   if (layer->layer_tree_impl()->IsPendingTree() && layer->OpacityIsAnimating())
506     return false;
507
508   // The opacity of a layer always applies to its children (either implicitly
509   // via a render surface or explicitly if the parent preserves 3D), so the
510   // entire subtree can be skipped if this layer is fully transparent.
511   // TODO(sad): Don't skip layers used for hit testing crbug.com/295295.
512   return !layer->opacity();
513 }
514
515 static inline bool SubtreeShouldBeSkipped(Layer* layer, bool layer_is_drawn) {
516   // If the layer transform is not invertible, it should not be drawn.
517   if (!layer->transform_is_invertible() && !layer->TransformIsAnimating())
518     return true;
519
520   // When we need to do a readback/copy of a layer's output, we can not skip
521   // it or any of its ancestors.
522   if (layer->draw_properties().layer_or_descendant_has_copy_request)
523     return false;
524
525   // If the layer is not drawn, then skip it and its subtree.
526   if (!layer_is_drawn)
527     return true;
528
529   // If the opacity is being animated then the opacity on the main thread is
530   // unreliable (since the impl thread may be using a different opacity), so it
531   // should not be trusted.
532   // In particular, it should not cause the subtree to be skipped.
533   // Similarly, for layers that might animate opacity using an impl-only
534   // animation, their subtree should also not be skipped.
535   // TODO(sad): Don't skip layers used for hit testing crbug.com/295295.
536   return !layer->opacity() && !layer->OpacityIsAnimating() &&
537          !layer->OpacityCanAnimateOnImplThread();
538 }
539
540 static inline void SavePaintPropertiesLayer(LayerImpl* layer) {}
541
542 static inline void SavePaintPropertiesLayer(Layer* layer) {
543   layer->SavePaintProperties();
544
545   if (layer->mask_layer())
546     layer->mask_layer()->SavePaintProperties();
547   if (layer->replica_layer() && layer->replica_layer()->mask_layer())
548     layer->replica_layer()->mask_layer()->SavePaintProperties();
549 }
550
551 template <typename LayerType>
552 static bool SubtreeShouldRenderToSeparateSurface(
553     LayerType* layer,
554     bool axis_aligned_with_respect_to_parent) {
555   //
556   // A layer and its descendants should render onto a new RenderSurfaceImpl if
557   // any of these rules hold:
558   //
559
560   // The root layer owns a render surface, but it never acts as a contributing
561   // surface to another render target. Compositor features that are applied via
562   // a contributing surface can not be applied to the root layer. In order to
563   // use these effects, another child of the root would need to be introduced
564   // in order to act as a contributing surface to the root layer's surface.
565   bool is_root = IsRootLayer(layer);
566
567   // If the layer uses a mask.
568   if (layer->mask_layer()) {
569     DCHECK(!is_root);
570     return true;
571   }
572
573   // If the layer has a reflection.
574   if (layer->replica_layer()) {
575     DCHECK(!is_root);
576     return true;
577   }
578
579   // If the layer uses a CSS filter.
580   if (!layer->filters().IsEmpty() || !layer->background_filters().IsEmpty()) {
581     DCHECK(!is_root);
582     return true;
583   }
584
585   int num_descendants_that_draw_content =
586       layer->draw_properties().num_descendants_that_draw_content;
587
588   // If the layer flattens its subtree, but it is treated as a 3D object by its
589   // parent (i.e. parent participates in a 3D rendering context).
590   if (LayerIsInExisting3DRenderingContext(layer) &&
591       layer->should_flatten_transform() &&
592       num_descendants_that_draw_content > 0) {
593     TRACE_EVENT_INSTANT0(
594         "cc",
595         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening",
596         TRACE_EVENT_SCOPE_THREAD);
597     DCHECK(!is_root);
598     return true;
599   }
600
601   // If the layer has blending.
602   // TODO(rosca): this is temporary, until blending is implemented for other
603   // types of quads than RenderPassDrawQuad. Layers having descendants that draw
604   // content will still create a separate rendering surface.
605   if (!layer->uses_default_blend_mode()) {
606     TRACE_EVENT_INSTANT0(
607         "cc",
608         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface blending",
609         TRACE_EVENT_SCOPE_THREAD);
610     DCHECK(!is_root);
611     return true;
612   }
613
614   // If the layer clips its descendants but it is not axis-aligned with respect
615   // to its parent.
616   bool layer_clips_external_content =
617       LayerClipsSubtree(layer) || layer->HasDelegatedContent();
618   if (layer_clips_external_content && !axis_aligned_with_respect_to_parent &&
619       num_descendants_that_draw_content > 0) {
620     TRACE_EVENT_INSTANT0(
621         "cc",
622         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping",
623         TRACE_EVENT_SCOPE_THREAD);
624     DCHECK(!is_root);
625     return true;
626   }
627
628   // If the layer has some translucency and does not have a preserves-3d
629   // transform style.  This condition only needs a render surface if two or more
630   // layers in the subtree overlap. But checking layer overlaps is unnecessarily
631   // costly so instead we conservatively create a surface whenever at least two
632   // layers draw content for this subtree.
633   bool at_least_two_layers_in_subtree_draw_content =
634       num_descendants_that_draw_content > 0 &&
635       (layer->DrawsContent() || num_descendants_that_draw_content > 1);
636
637   if (layer->opacity() != 1.f && layer->should_flatten_transform() &&
638       at_least_two_layers_in_subtree_draw_content) {
639     TRACE_EVENT_INSTANT0(
640         "cc",
641         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity",
642         TRACE_EVENT_SCOPE_THREAD);
643     DCHECK(!is_root);
644     return true;
645   }
646
647   // The root layer should always have a render_surface.
648   if (is_root)
649     return true;
650
651   //
652   // These are allowed on the root surface, as they don't require the surface to
653   // be used as a contributing surface in order to apply correctly.
654   //
655
656   // If the layer has isolation.
657   // TODO(rosca): to be optimized - create separate rendering surface only when
658   // the blending descendants might have access to the content behind this layer
659   // (layer has transparent background or descendants overflow).
660   // https://code.google.com/p/chromium/issues/detail?id=301738
661   if (layer->is_root_for_isolated_group()) {
662     TRACE_EVENT_INSTANT0(
663         "cc",
664         "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface isolation",
665         TRACE_EVENT_SCOPE_THREAD);
666     return true;
667   }
668
669   // If we force it.
670   if (layer->force_render_surface())
671     return true;
672
673   // If we'll make a copy of the layer's contents.
674   if (layer->HasCopyRequest())
675     return true;
676
677   return false;
678 }
679
680 // This function returns a translation matrix that can be applied on a vector
681 // that's in the layer's target surface coordinate, while the position offset is
682 // specified in some ancestor layer's coordinate.
683 gfx::Transform ComputeSizeDeltaCompensation(
684     LayerImpl* layer,
685     LayerImpl* container,
686     const gfx::Vector2dF& position_offset) {
687   gfx::Transform result_transform;
688
689   // To apply a translate in the container's layer space,
690   // the following steps need to be done:
691   //     Step 1a. transform from target surface space to the container's target
692   //              surface space
693   //     Step 1b. transform from container's target surface space to the
694   //              container's layer space
695   //     Step 2. apply the compensation
696   //     Step 3. transform back to target surface space
697
698   gfx::Transform target_surface_space_to_container_layer_space;
699   // Calculate step 1a
700   LayerImpl* container_target_surface = container->render_target();
701   for (LayerImpl* current_target_surface = NextTargetSurface(layer);
702       current_target_surface &&
703           current_target_surface != container_target_surface;
704       current_target_surface = NextTargetSurface(current_target_surface)) {
705     // Note: Concat is used here to convert the result coordinate space from
706     //       current render surface to the next render surface.
707     target_surface_space_to_container_layer_space.ConcatTransform(
708         current_target_surface->render_surface()->draw_transform());
709   }
710   // Calculate step 1b
711   gfx::Transform container_layer_space_to_container_target_surface_space =
712       container->draw_transform();
713   container_layer_space_to_container_target_surface_space.Scale(
714       container->contents_scale_x(), container->contents_scale_y());
715
716   gfx::Transform container_target_surface_space_to_container_layer_space;
717   if (container_layer_space_to_container_target_surface_space.GetInverse(
718       &container_target_surface_space_to_container_layer_space)) {
719     // Note: Again, Concat is used to conver the result coordinate space from
720     //       the container render surface to the container layer.
721     target_surface_space_to_container_layer_space.ConcatTransform(
722         container_target_surface_space_to_container_layer_space);
723   }
724
725   // Apply step 3
726   gfx::Transform container_layer_space_to_target_surface_space;
727   if (target_surface_space_to_container_layer_space.GetInverse(
728           &container_layer_space_to_target_surface_space)) {
729     result_transform.PreconcatTransform(
730         container_layer_space_to_target_surface_space);
731   } else {
732     // TODO(shawnsingh): A non-invertible matrix could still make meaningful
733     // projection.  For example ScaleZ(0) is non-invertible but the layer is
734     // still visible.
735     return gfx::Transform();
736   }
737
738   // Apply step 2
739   result_transform.Translate(position_offset.x(), position_offset.y());
740
741   // Apply step 1
742   result_transform.PreconcatTransform(
743       target_surface_space_to_container_layer_space);
744
745   return result_transform;
746 }
747
748 void ApplyPositionAdjustment(
749     Layer* layer,
750     Layer* container,
751     const gfx::Transform& scroll_compensation,
752     gfx::Transform* combined_transform) {}
753 void ApplyPositionAdjustment(
754     LayerImpl* layer,
755     LayerImpl* container,
756     const gfx::Transform& scroll_compensation,
757     gfx::Transform* combined_transform) {
758   if (!layer->position_constraint().is_fixed_position())
759     return;
760
761   // Special case: this layer is a composited fixed-position layer; we need to
762   // explicitly compensate for all ancestors' nonzero scroll_deltas to keep
763   // this layer fixed correctly.
764   // Note carefully: this is Concat, not Preconcat
765   // (current_scroll_compensation * combined_transform).
766   combined_transform->ConcatTransform(scroll_compensation);
767
768   // For right-edge or bottom-edge anchored fixed position layers,
769   // the layer should relocate itself if the container changes its size.
770   bool fixed_to_right_edge =
771       layer->position_constraint().is_fixed_to_right_edge();
772   bool fixed_to_bottom_edge =
773       layer->position_constraint().is_fixed_to_bottom_edge();
774   gfx::Vector2dF position_offset = container->FixedContainerSizeDelta();
775   position_offset.set_x(fixed_to_right_edge ? position_offset.x() : 0);
776   position_offset.set_y(fixed_to_bottom_edge ? position_offset.y() : 0);
777   if (position_offset.IsZero())
778     return;
779
780   // Note: Again, this is Concat. The compensation matrix will be applied on
781   //       the vector in target surface space.
782   combined_transform->ConcatTransform(
783       ComputeSizeDeltaCompensation(layer, container, position_offset));
784 }
785
786 gfx::Transform ComputeScrollCompensationForThisLayer(
787     LayerImpl* scrolling_layer,
788     const gfx::Transform& parent_matrix,
789     const gfx::Vector2dF& scroll_delta) {
790   // For every layer that has non-zero scroll_delta, we have to compute a
791   // transform that can undo the scroll_delta translation. In particular, we
792   // want this matrix to premultiply a fixed-position layer's parent_matrix, so
793   // we design this transform in three steps as follows. The steps described
794   // here apply from right-to-left, so Step 1 would be the right-most matrix:
795   //
796   //     Step 1. transform from target surface space to the exact space where
797   //           scroll_delta is actually applied.
798   //           -- this is inverse of parent_matrix
799   //     Step 2. undo the scroll_delta
800   //           -- this is just a translation by scroll_delta.
801   //     Step 3. transform back to target surface space.
802   //           -- this transform is the parent_matrix
803   //
804   // These steps create a matrix that both start and end in target surface
805   // space. So this matrix can pre-multiply any fixed-position layer's
806   // draw_transform to undo the scroll_deltas -- as long as that fixed position
807   // layer is fixed onto the same render_target as this scrolling_layer.
808   //
809
810   gfx::Transform scroll_compensation_for_this_layer = parent_matrix;  // Step 3
811   scroll_compensation_for_this_layer.Translate(
812       scroll_delta.x(),
813       scroll_delta.y());  // Step 2
814
815   gfx::Transform inverse_parent_matrix(gfx::Transform::kSkipInitialization);
816   if (!parent_matrix.GetInverse(&inverse_parent_matrix)) {
817     // TODO(shawnsingh): Either we need to handle uninvertible transforms
818     // here, or DCHECK that the transform is invertible.
819   }
820   scroll_compensation_for_this_layer.PreconcatTransform(
821       inverse_parent_matrix);  // Step 1
822   return scroll_compensation_for_this_layer;
823 }
824
825 gfx::Transform ComputeScrollCompensationMatrixForChildren(
826     Layer* current_layer,
827     const gfx::Transform& current_parent_matrix,
828     const gfx::Transform& current_scroll_compensation,
829     const gfx::Vector2dF& scroll_delta) {
830   // The main thread (i.e. Layer) does not need to worry about scroll
831   // compensation.  So we can just return an identity matrix here.
832   return gfx::Transform();
833 }
834
835 gfx::Transform ComputeScrollCompensationMatrixForChildren(
836     LayerImpl* layer,
837     const gfx::Transform& parent_matrix,
838     const gfx::Transform& current_scroll_compensation_matrix,
839     const gfx::Vector2dF& scroll_delta) {
840   // "Total scroll compensation" is the transform needed to cancel out all
841   // scroll_delta translations that occurred since the nearest container layer,
842   // even if there are render_surfaces in-between.
843   //
844   // There are some edge cases to be aware of, that are not explicit in the
845   // code:
846   //  - A layer that is both a fixed-position and container should not be its
847   //  own container, instead, that means it is fixed to an ancestor, and is a
848   //  container for any fixed-position descendants.
849   //  - A layer that is a fixed-position container and has a render_surface
850   //  should behave the same as a container without a render_surface, the
851   //  render_surface is irrelevant in that case.
852   //  - A layer that does not have an explicit container is simply fixed to the
853   //  viewport.  (i.e. the root render_surface.)
854   //  - If the fixed-position layer has its own render_surface, then the
855   //  render_surface is the one who gets fixed.
856   //
857   // This function needs to be called AFTER layers create their own
858   // render_surfaces.
859   //
860
861   // Scroll compensation restarts from identity under two possible conditions:
862   //  - the current layer is a container for fixed-position descendants
863   //  - the current layer is fixed-position itself, so any fixed-position
864   //    descendants are positioned with respect to this layer. Thus, any
865   //    fixed position descendants only need to compensate for scrollDeltas
866   //    that occur below this layer.
867   bool current_layer_resets_scroll_compensation_for_descendants =
868       layer->IsContainerForFixedPositionLayers() ||
869       layer->position_constraint().is_fixed_position();
870
871   // Avoid the overheads (including stack allocation and matrix
872   // initialization/copy) if we know that the scroll compensation doesn't need
873   // to be reset or adjusted.
874   if (!current_layer_resets_scroll_compensation_for_descendants &&
875       scroll_delta.IsZero() && !layer->render_surface())
876     return current_scroll_compensation_matrix;
877
878   // Start as identity matrix.
879   gfx::Transform next_scroll_compensation_matrix;
880
881   // If this layer does not reset scroll compensation, then it inherits the
882   // existing scroll compensations.
883   if (!current_layer_resets_scroll_compensation_for_descendants)
884     next_scroll_compensation_matrix = current_scroll_compensation_matrix;
885
886   // If the current layer has a non-zero scroll_delta, then we should compute
887   // its local scroll compensation and accumulate it to the
888   // next_scroll_compensation_matrix.
889   if (!scroll_delta.IsZero()) {
890     gfx::Transform scroll_compensation_for_this_layer =
891         ComputeScrollCompensationForThisLayer(
892             layer, parent_matrix, scroll_delta);
893     next_scroll_compensation_matrix.PreconcatTransform(
894         scroll_compensation_for_this_layer);
895   }
896
897   // If the layer created its own render_surface, we have to adjust
898   // next_scroll_compensation_matrix.  The adjustment allows us to continue
899   // using the scroll compensation on the next surface.
900   //  Step 1 (right-most in the math): transform from the new surface to the
901   //  original ancestor surface
902   //  Step 2: apply the scroll compensation
903   //  Step 3: transform back to the new surface.
904   if (layer->render_surface() &&
905       !next_scroll_compensation_matrix.IsIdentity()) {
906     gfx::Transform inverse_surface_draw_transform(
907         gfx::Transform::kSkipInitialization);
908     if (!layer->render_surface()->draw_transform().GetInverse(
909             &inverse_surface_draw_transform)) {
910       // TODO(shawnsingh): Either we need to handle uninvertible transforms
911       // here, or DCHECK that the transform is invertible.
912     }
913     next_scroll_compensation_matrix =
914         inverse_surface_draw_transform * next_scroll_compensation_matrix *
915         layer->render_surface()->draw_transform();
916   }
917
918   return next_scroll_compensation_matrix;
919 }
920
921 template <typename LayerType>
922 static inline void CalculateContentsScale(
923     LayerType* layer,
924     float contents_scale,
925     float device_scale_factor,
926     float page_scale_factor,
927     float maximum_animation_contents_scale,
928     bool animating_transform_to_screen) {
929   layer->CalculateContentsScale(contents_scale,
930                                 device_scale_factor,
931                                 page_scale_factor,
932                                 maximum_animation_contents_scale,
933                                 animating_transform_to_screen,
934                                 &layer->draw_properties().contents_scale_x,
935                                 &layer->draw_properties().contents_scale_y,
936                                 &layer->draw_properties().content_bounds);
937
938   LayerType* mask_layer = layer->mask_layer();
939   if (mask_layer) {
940     mask_layer->CalculateContentsScale(
941         contents_scale,
942         device_scale_factor,
943         page_scale_factor,
944         maximum_animation_contents_scale,
945         animating_transform_to_screen,
946         &mask_layer->draw_properties().contents_scale_x,
947         &mask_layer->draw_properties().contents_scale_y,
948         &mask_layer->draw_properties().content_bounds);
949   }
950
951   LayerType* replica_mask_layer =
952       layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL;
953   if (replica_mask_layer) {
954     replica_mask_layer->CalculateContentsScale(
955         contents_scale,
956         device_scale_factor,
957         page_scale_factor,
958         maximum_animation_contents_scale,
959         animating_transform_to_screen,
960         &replica_mask_layer->draw_properties().contents_scale_x,
961         &replica_mask_layer->draw_properties().contents_scale_y,
962         &replica_mask_layer->draw_properties().content_bounds);
963   }
964 }
965
966 static inline void UpdateLayerContentsScale(
967     LayerImpl* layer,
968     bool can_adjust_raster_scale,
969     float ideal_contents_scale,
970     float device_scale_factor,
971     float page_scale_factor,
972     float maximum_animation_contents_scale,
973     bool animating_transform_to_screen) {
974   CalculateContentsScale(layer,
975                          ideal_contents_scale,
976                          device_scale_factor,
977                          page_scale_factor,
978                          maximum_animation_contents_scale,
979                          animating_transform_to_screen);
980 }
981
982 static inline void UpdateLayerContentsScale(
983     Layer* layer,
984     bool can_adjust_raster_scale,
985     float ideal_contents_scale,
986     float device_scale_factor,
987     float page_scale_factor,
988     float maximum_animation_contents_scale,
989     bool animating_transform_to_screen) {
990   if (can_adjust_raster_scale) {
991     float ideal_raster_scale =
992         ideal_contents_scale / (device_scale_factor * page_scale_factor);
993
994     bool need_to_set_raster_scale = layer->raster_scale_is_unknown();
995
996     // If we've previously saved a raster_scale but the ideal changes, things
997     // are unpredictable and we should just use 1.
998     if (!need_to_set_raster_scale && layer->raster_scale() != 1.f &&
999         ideal_raster_scale != layer->raster_scale()) {
1000       ideal_raster_scale = 1.f;
1001       need_to_set_raster_scale = true;
1002     }
1003
1004     if (need_to_set_raster_scale) {
1005       bool use_and_save_ideal_scale =
1006           ideal_raster_scale >= 1.f && !animating_transform_to_screen;
1007       if (use_and_save_ideal_scale)
1008         layer->set_raster_scale(ideal_raster_scale);
1009     }
1010   }
1011
1012   float raster_scale = 1.f;
1013   if (!layer->raster_scale_is_unknown())
1014     raster_scale = layer->raster_scale();
1015
1016   gfx::Size old_content_bounds = layer->content_bounds();
1017   float old_contents_scale_x = layer->contents_scale_x();
1018   float old_contents_scale_y = layer->contents_scale_y();
1019
1020   float contents_scale = raster_scale * device_scale_factor * page_scale_factor;
1021   CalculateContentsScale(layer,
1022                          contents_scale,
1023                          device_scale_factor,
1024                          page_scale_factor,
1025                          maximum_animation_contents_scale,
1026                          animating_transform_to_screen);
1027
1028   if (layer->content_bounds() != old_content_bounds ||
1029       layer->contents_scale_x() != old_contents_scale_x ||
1030       layer->contents_scale_y() != old_contents_scale_y)
1031     layer->SetNeedsPushProperties();
1032 }
1033
1034 static inline void CalculateAnimationContentsScale(
1035     Layer* layer,
1036     bool ancestor_is_animating_scale,
1037     float ancestor_maximum_animation_contents_scale,
1038     const gfx::Transform& parent_transform,
1039     const gfx::Transform& combined_transform,
1040     bool* combined_is_animating_scale,
1041     float* combined_maximum_animation_contents_scale) {
1042   *combined_is_animating_scale = false;
1043   *combined_maximum_animation_contents_scale = 0.f;
1044 }
1045
1046 static inline void CalculateAnimationContentsScale(
1047     LayerImpl* layer,
1048     bool ancestor_is_animating_scale,
1049     float ancestor_maximum_animation_contents_scale,
1050     const gfx::Transform& ancestor_transform,
1051     const gfx::Transform& combined_transform,
1052     bool* combined_is_animating_scale,
1053     float* combined_maximum_animation_contents_scale) {
1054   if (ancestor_is_animating_scale &&
1055       ancestor_maximum_animation_contents_scale == 0.f) {
1056     // We've already failed to compute a maximum animated scale at an
1057     // ancestor, so we'll continue to fail.
1058     *combined_maximum_animation_contents_scale = 0.f;
1059     *combined_is_animating_scale = true;
1060     return;
1061   }
1062
1063   if (!combined_transform.IsScaleOrTranslation()) {
1064     // Computing maximum animated scale in the presence of
1065     // non-scale/translation transforms isn't supported.
1066     *combined_maximum_animation_contents_scale = 0.f;
1067     *combined_is_animating_scale = true;
1068     return;
1069   }
1070
1071   // We currently only support computing maximum scale for combinations of
1072   // scales and translations. We treat all non-translations as potentially
1073   // affecting scale. Animations that include non-translation/scale components
1074   // will cause the computation of MaximumScale below to fail.
1075   bool layer_is_animating_scale =
1076       !layer->layer_animation_controller()->HasOnlyTranslationTransforms();
1077
1078   if (!layer_is_animating_scale && !ancestor_is_animating_scale) {
1079     *combined_maximum_animation_contents_scale = 0.f;
1080     *combined_is_animating_scale = false;
1081     return;
1082   }
1083
1084   // We don't attempt to accumulate animation scale from multiple nodes,
1085   // because of the risk of significant overestimation. For example, one node
1086   // may be increasing scale from 1 to 10 at the same time as a descendant is
1087   // decreasing scale from 10 to 1. Naively combining these scales would produce
1088   // a scale of 100.
1089   if (layer_is_animating_scale && ancestor_is_animating_scale) {
1090     *combined_maximum_animation_contents_scale = 0.f;
1091     *combined_is_animating_scale = true;
1092     return;
1093   }
1094
1095   // At this point, we know either the layer or an ancestor, but not both,
1096   // is animating scale.
1097   *combined_is_animating_scale = true;
1098   if (!layer_is_animating_scale) {
1099     gfx::Vector2dF layer_transform_scales =
1100         MathUtil::ComputeTransform2dScaleComponents(layer->transform(), 0.f);
1101     *combined_maximum_animation_contents_scale =
1102         ancestor_maximum_animation_contents_scale *
1103         std::max(layer_transform_scales.x(), layer_transform_scales.y());
1104     return;
1105   }
1106
1107   float layer_maximum_animated_scale = 0.f;
1108   if (!layer->layer_animation_controller()->MaximumScale(
1109           &layer_maximum_animated_scale)) {
1110     *combined_maximum_animation_contents_scale = 0.f;
1111     return;
1112   }
1113   gfx::Vector2dF ancestor_transform_scales =
1114       MathUtil::ComputeTransform2dScaleComponents(ancestor_transform, 0.f);
1115   *combined_maximum_animation_contents_scale =
1116       layer_maximum_animated_scale *
1117       std::max(ancestor_transform_scales.x(), ancestor_transform_scales.y());
1118 }
1119
1120 template <typename LayerType>
1121 static inline typename LayerType::RenderSurfaceType* CreateOrReuseRenderSurface(
1122     LayerType* layer) {
1123   if (!layer->render_surface()) {
1124     layer->CreateRenderSurface();
1125     return layer->render_surface();
1126   }
1127
1128   layer->render_surface()->ClearLayerLists();
1129   return layer->render_surface();
1130 }
1131
1132 template <typename LayerTypePtr>
1133 static inline void MarkLayerWithRenderSurfaceLayerListId(
1134     LayerTypePtr layer,
1135     int current_render_surface_layer_list_id) {
1136   layer->draw_properties().last_drawn_render_surface_layer_list_id =
1137       current_render_surface_layer_list_id;
1138 }
1139
1140 template <typename LayerTypePtr>
1141 static inline void MarkMasksWithRenderSurfaceLayerListId(
1142     LayerTypePtr layer,
1143     int current_render_surface_layer_list_id) {
1144   if (layer->mask_layer()) {
1145     MarkLayerWithRenderSurfaceLayerListId(layer->mask_layer(),
1146                                           current_render_surface_layer_list_id);
1147   }
1148   if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
1149     MarkLayerWithRenderSurfaceLayerListId(layer->replica_layer()->mask_layer(),
1150                                           current_render_surface_layer_list_id);
1151   }
1152 }
1153
1154 template <typename LayerListType>
1155 static inline void MarkLayerListWithRenderSurfaceLayerListId(
1156     LayerListType* layer_list,
1157     int current_render_surface_layer_list_id) {
1158   for (typename LayerListType::iterator it = layer_list->begin();
1159        it != layer_list->end();
1160        ++it) {
1161     MarkLayerWithRenderSurfaceLayerListId(*it,
1162                                           current_render_surface_layer_list_id);
1163     MarkMasksWithRenderSurfaceLayerListId(*it,
1164                                           current_render_surface_layer_list_id);
1165   }
1166 }
1167
1168 template <typename LayerType>
1169 static inline void RemoveSurfaceForEarlyExit(
1170     LayerType* layer_to_remove,
1171     typename LayerType::RenderSurfaceListType* render_surface_layer_list) {
1172   DCHECK(layer_to_remove->render_surface());
1173   // Technically, we know that the layer we want to remove should be
1174   // at the back of the render_surface_layer_list. However, we have had
1175   // bugs before that added unnecessary layers here
1176   // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes
1177   // things to crash. So here we proactively remove any additional
1178   // layers from the end of the list.
1179   while (render_surface_layer_list->back() != layer_to_remove) {
1180     MarkLayerListWithRenderSurfaceLayerListId(
1181         &render_surface_layer_list->back()->render_surface()->layer_list(), 0);
1182     MarkLayerWithRenderSurfaceLayerListId(render_surface_layer_list->back(), 0);
1183
1184     render_surface_layer_list->back()->ClearRenderSurfaceLayerList();
1185     render_surface_layer_list->pop_back();
1186   }
1187   DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove);
1188   MarkLayerListWithRenderSurfaceLayerListId(
1189       &layer_to_remove->render_surface()->layer_list(), 0);
1190   MarkLayerWithRenderSurfaceLayerListId(layer_to_remove, 0);
1191   render_surface_layer_list->pop_back();
1192   layer_to_remove->ClearRenderSurfaceLayerList();
1193 }
1194
1195 struct PreCalculateMetaInformationRecursiveData {
1196   bool layer_or_descendant_has_copy_request;
1197   int num_unclipped_descendants;
1198
1199   PreCalculateMetaInformationRecursiveData()
1200       : layer_or_descendant_has_copy_request(false),
1201         num_unclipped_descendants(0) {}
1202
1203   void Merge(const PreCalculateMetaInformationRecursiveData& data) {
1204     layer_or_descendant_has_copy_request |=
1205         data.layer_or_descendant_has_copy_request;
1206     num_unclipped_descendants +=
1207         data.num_unclipped_descendants;
1208   }
1209 };
1210
1211 // Recursively walks the layer tree to compute any information that is needed
1212 // before doing the main recursion.
1213 template <typename LayerType>
1214 static void PreCalculateMetaInformation(
1215     LayerType* layer,
1216     PreCalculateMetaInformationRecursiveData* recursive_data) {
1217   bool has_delegated_content = layer->HasDelegatedContent();
1218   int num_descendants_that_draw_content = 0;
1219
1220   layer->draw_properties().sorted_for_recursion = false;
1221   layer->draw_properties().has_child_with_a_scroll_parent = false;
1222
1223   if (!HasInvertibleOrAnimatedTransform(layer)) {
1224     // Layers with singular transforms should not be drawn, the whole subtree
1225     // can be skipped.
1226     return;
1227   }
1228
1229   if (has_delegated_content) {
1230     // Layers with delegated content need to be treated as if they have as
1231     // many children as the number of layers they own delegated quads for.
1232     // Since we don't know this number right now, we choose one that acts like
1233     // infinity for our purposes.
1234     num_descendants_that_draw_content = 1000;
1235   }
1236
1237   if (layer->clip_parent())
1238     recursive_data->num_unclipped_descendants++;
1239
1240   for (size_t i = 0; i < layer->children().size(); ++i) {
1241     LayerType* child_layer =
1242         LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i);
1243
1244     PreCalculateMetaInformationRecursiveData data_for_child;
1245     PreCalculateMetaInformation(child_layer, &data_for_child);
1246
1247     num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0;
1248     num_descendants_that_draw_content +=
1249         child_layer->draw_properties().num_descendants_that_draw_content;
1250
1251     if (child_layer->scroll_parent())
1252       layer->draw_properties().has_child_with_a_scroll_parent = true;
1253     recursive_data->Merge(data_for_child);
1254   }
1255
1256   if (layer->clip_children()) {
1257     int num_clip_children = layer->clip_children()->size();
1258     DCHECK_GE(recursive_data->num_unclipped_descendants, num_clip_children);
1259     recursive_data->num_unclipped_descendants -= num_clip_children;
1260   }
1261
1262   if (layer->HasCopyRequest())
1263     recursive_data->layer_or_descendant_has_copy_request = true;
1264
1265   layer->draw_properties().num_descendants_that_draw_content =
1266       num_descendants_that_draw_content;
1267   layer->draw_properties().num_unclipped_descendants =
1268       recursive_data->num_unclipped_descendants;
1269   layer->draw_properties().layer_or_descendant_has_copy_request =
1270       recursive_data->layer_or_descendant_has_copy_request;
1271 }
1272
1273 static void RoundTranslationComponents(gfx::Transform* transform) {
1274   transform->matrix().set(0, 3, MathUtil::Round(transform->matrix().get(0, 3)));
1275   transform->matrix().set(1, 3, MathUtil::Round(transform->matrix().get(1, 3)));
1276 }
1277
1278 template <typename LayerType>
1279 struct SubtreeGlobals {
1280   LayerSorter* layer_sorter;
1281   int max_texture_size;
1282   float device_scale_factor;
1283   float page_scale_factor;
1284   const LayerType* page_scale_application_layer;
1285   bool can_adjust_raster_scales;
1286   bool can_render_to_separate_surface;
1287 };
1288
1289 template<typename LayerType>
1290 struct DataForRecursion {
1291   // The accumulated sequence of transforms a layer will use to determine its
1292   // own draw transform.
1293   gfx::Transform parent_matrix;
1294
1295   // The accumulated sequence of transforms a layer will use to determine its
1296   // own screen-space transform.
1297   gfx::Transform full_hierarchy_matrix;
1298
1299   // The transform that removes all scrolling that may have occurred between a
1300   // fixed-position layer and its container, so that the layer actually does
1301   // remain fixed.
1302   gfx::Transform scroll_compensation_matrix;
1303
1304   // The ancestor that would be the container for any fixed-position / sticky
1305   // layers.
1306   LayerType* fixed_container;
1307
1308   // This is the normal clip rect that is propagated from parent to child.
1309   gfx::Rect clip_rect_in_target_space;
1310
1311   // When the layer's children want to compute their visible content rect, they
1312   // want to know what their target surface's clip rect will be. BUT - they
1313   // want to know this clip rect represented in their own target space. This
1314   // requires inverse-projecting the surface's clip rect from the surface's
1315   // render target space down to the surface's own space. Instead of computing
1316   // this value redundantly for each child layer, it is computed only once
1317   // while dealing with the parent layer, and then this precomputed value is
1318   // passed down the recursion to the children that actually use it.
1319   gfx::Rect clip_rect_of_target_surface_in_target_space;
1320
1321   // The maximum amount by which this layer will be scaled during the lifetime
1322   // of currently running animations.
1323   float maximum_animation_contents_scale;
1324
1325   bool ancestor_is_animating_scale;
1326   bool ancestor_clips_subtree;
1327   typename LayerType::RenderSurfaceType*
1328       nearest_occlusion_immune_ancestor_surface;
1329   bool in_subtree_of_page_scale_application_layer;
1330   bool subtree_can_use_lcd_text;
1331   bool subtree_is_visible_from_ancestor;
1332 };
1333
1334 template <typename LayerType>
1335 static LayerType* GetChildContainingLayer(const LayerType& parent,
1336                                           LayerType* layer) {
1337   for (LayerType* ancestor = layer; ancestor; ancestor = ancestor->parent()) {
1338     if (ancestor->parent() == &parent)
1339       return ancestor;
1340   }
1341   NOTREACHED();
1342   return 0;
1343 }
1344
1345 template <typename LayerType>
1346 static void AddScrollParentChain(std::vector<LayerType*>* out,
1347                                  const LayerType& parent,
1348                                  LayerType* layer) {
1349   // At a high level, this function walks up the chain of scroll parents
1350   // recursively, and once we reach the end of the chain, we add the child
1351   // of |parent| containing each scroll ancestor as we unwind. The result is
1352   // an ordering of parent's children that ensures that scroll parents are
1353   // visited before their descendants.
1354   // Take for example this layer tree:
1355   //
1356   // + stacking_context
1357   //   + scroll_child (1)
1358   //   + scroll_parent_graphics_layer (*)
1359   //   | + scroll_parent_scrolling_layer
1360   //   |   + scroll_parent_scrolling_content_layer (2)
1361   //   + scroll_grandparent_graphics_layer (**)
1362   //     + scroll_grandparent_scrolling_layer
1363   //       + scroll_grandparent_scrolling_content_layer (3)
1364   //
1365   // The scroll child is (1), its scroll parent is (2) and its scroll
1366   // grandparent is (3). Note, this doesn't mean that (2)'s scroll parent is
1367   // (3), it means that (*)'s scroll parent is (3). We don't want our list to
1368   // look like [ (3), (2), (1) ], even though that does have the ancestor chain
1369   // in the right order. Instead, we want [ (**), (*), (1) ]. That is, only want
1370   // (1)'s siblings in the list, but we want them to appear in such an order
1371   // that the scroll ancestors get visited in the correct order.
1372   //
1373   // So our first task at this step of the recursion is to determine the layer
1374   // that we will potentionally add to the list. That is, the child of parent
1375   // containing |layer|.
1376   LayerType* child = GetChildContainingLayer(parent, layer);
1377   if (child->draw_properties().sorted_for_recursion)
1378     return;
1379
1380   if (LayerType* scroll_parent = child->scroll_parent())
1381     AddScrollParentChain(out, parent, scroll_parent);
1382
1383   out->push_back(child);
1384   child->draw_properties().sorted_for_recursion = true;
1385 }
1386
1387 template <typename LayerType>
1388 static bool SortChildrenForRecursion(std::vector<LayerType*>* out,
1389                                      const LayerType& parent) {
1390   out->reserve(parent.children().size());
1391   bool order_changed = false;
1392   for (size_t i = 0; i < parent.children().size(); ++i) {
1393     LayerType* current =
1394         LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i);
1395
1396     if (current->draw_properties().sorted_for_recursion) {
1397       order_changed = true;
1398       continue;
1399     }
1400
1401     AddScrollParentChain(out, parent, current);
1402   }
1403
1404   DCHECK_EQ(parent.children().size(), out->size());
1405   return order_changed;
1406 }
1407
1408 template <typename LayerType>
1409 static void GetNewDescendantsStartIndexAndCount(LayerType* layer,
1410                                                 size_t* start_index,
1411                                                 size_t* count) {
1412   *start_index = layer->draw_properties().index_of_first_descendants_addition;
1413   *count = layer->draw_properties().num_descendants_added;
1414 }
1415
1416 template <typename LayerType>
1417 static void GetNewRenderSurfacesStartIndexAndCount(LayerType* layer,
1418                                                    size_t* start_index,
1419                                                    size_t* count) {
1420   *start_index = layer->draw_properties()
1421                      .index_of_first_render_surface_layer_list_addition;
1422   *count = layer->draw_properties().num_render_surfaces_added;
1423 }
1424
1425 // We need to extract a list from the the two flavors of RenderSurfaceListType
1426 // for use in the sorting function below.
1427 static LayerList* GetLayerListForSorting(RenderSurfaceLayerList* rsll) {
1428   return &rsll->AsLayerList();
1429 }
1430
1431 static LayerImplList* GetLayerListForSorting(LayerImplList* layer_list) {
1432   return layer_list;
1433 }
1434
1435 template <typename LayerType, typename GetIndexAndCountType>
1436 static void SortLayerListContributions(
1437     const LayerType& parent,
1438     typename LayerType::LayerListType* unsorted,
1439     size_t start_index_for_all_contributions,
1440     GetIndexAndCountType get_index_and_count) {
1441   typename LayerType::LayerListType buffer;
1442   for (size_t i = 0; i < parent.children().size(); ++i) {
1443     LayerType* child =
1444         LayerTreeHostCommon::get_layer_as_raw_ptr(parent.children(), i);
1445
1446     size_t start_index = 0;
1447     size_t count = 0;
1448     get_index_and_count(child, &start_index, &count);
1449     for (size_t j = start_index; j < start_index + count; ++j)
1450       buffer.push_back(unsorted->at(j));
1451   }
1452
1453   DCHECK_EQ(buffer.size(),
1454             unsorted->size() - start_index_for_all_contributions);
1455
1456   for (size_t i = 0; i < buffer.size(); ++i)
1457     (*unsorted)[i + start_index_for_all_contributions] = buffer[i];
1458 }
1459
1460 // Recursively walks the layer tree starting at the given node and computes all
1461 // the necessary transformations, clip rects, render surfaces, etc.
1462 template <typename LayerType>
1463 static void CalculateDrawPropertiesInternal(
1464     LayerType* layer,
1465     const SubtreeGlobals<LayerType>& globals,
1466     const DataForRecursion<LayerType>& data_from_ancestor,
1467     typename LayerType::RenderSurfaceListType* render_surface_layer_list,
1468     typename LayerType::LayerListType* layer_list,
1469     std::vector<AccumulatedSurfaceState<LayerType> >* accumulated_surface_state,
1470     int current_render_surface_layer_list_id) {
1471   // This function computes the new matrix transformations recursively for this
1472   // layer and all its descendants. It also computes the appropriate render
1473   // surfaces.
1474   // Some important points to remember:
1475   //
1476   // 0. Here, transforms are notated in Matrix x Vector order, and in words we
1477   // describe what the transform does from left to right.
1478   //
1479   // 1. In our terminology, the "layer origin" refers to the top-left corner of
1480   // a layer, and the positive Y-axis points downwards. This interpretation is
1481   // valid because the orthographic projection applied at draw time flips the Y
1482   // axis appropriately.
1483   //
1484   // 2. The anchor point, when given as a PointF object, is specified in "unit
1485   // layer space", where the bounds of the layer map to [0, 1]. However, as a
1486   // Transform object, the transform to the anchor point is specified in "layer
1487   // space", where the bounds of the layer map to [bounds.width(),
1488   // bounds.height()].
1489   //
1490   // 3. Definition of various transforms used:
1491   //        M[parent] is the parent matrix, with respect to the nearest render
1492   //        surface, passed down recursively.
1493   //
1494   //        M[root] is the full hierarchy, with respect to the root, passed down
1495   //        recursively.
1496   //
1497   //        Tr[origin] is the translation matrix from the parent's origin to
1498   //        this layer's origin.
1499   //
1500   //        Tr[origin2anchor] is the translation from the layer's origin to its
1501   //        anchor point
1502   //
1503   //        Tr[origin2center] is the translation from the layer's origin to its
1504   //        center
1505   //
1506   //        M[layer] is the layer's matrix (applied at the anchor point)
1507   //
1508   //        S[layer2content] is the ratio of a layer's content_bounds() to its
1509   //        Bounds().
1510   //
1511   //    Some composite transforms can help in understanding the sequence of
1512   //    transforms:
1513   //        composite_layer_transform = Tr[origin2anchor] * M[layer] *
1514   //        Tr[origin2anchor].inverse()
1515   //
1516   // 4. When a layer (or render surface) is drawn, it is drawn into a "target
1517   // render surface". Therefore the draw transform does not necessarily
1518   // transform from screen space to local layer space. Instead, the draw
1519   // transform is the transform between the "target render surface space" and
1520   // local layer space. Note that render surfaces, except for the root, also
1521   // draw themselves into a different target render surface, and so their draw
1522   // transform and origin transforms are also described with respect to the
1523   // target.
1524   //
1525   // Using these definitions, then:
1526   //
1527   // The draw transform for the layer is:
1528   //        M[draw] = M[parent] * Tr[origin] * composite_layer_transform *
1529   //            S[layer2content] = M[parent] * Tr[layer->position() + anchor] *
1530   //            M[layer] * Tr[anchor2origin] * S[layer2content]
1531   //
1532   //        Interpreting the math left-to-right, this transforms from the
1533   //        layer's render surface to the origin of the layer in content space.
1534   //
1535   // The screen space transform is:
1536   //        M[screenspace] = M[root] * Tr[origin] * composite_layer_transform *
1537   //            S[layer2content]
1538   //                       = M[root] * Tr[layer->position() + anchor] * M[layer]
1539   //                           * Tr[anchor2origin] * S[layer2content]
1540   //
1541   //        Interpreting the math left-to-right, this transforms from the root
1542   //        render surface's content space to the origin of the layer in content
1543   //        space.
1544   //
1545   // The transform hierarchy that is passed on to children (i.e. the child's
1546   // parent_matrix) is:
1547   //        M[parent]_for_child = M[parent] * Tr[origin] *
1548   //            composite_layer_transform
1549   //                            = M[parent] * Tr[layer->position() + anchor] *
1550   //                              M[layer] * Tr[anchor2origin]
1551   //
1552   //        and a similar matrix for the full hierarchy with respect to the
1553   //        root.
1554   //
1555   // Finally, note that the final matrix used by the shader for the layer is P *
1556   // M[draw] * S . This final product is computed in drawTexturedQuad(), where:
1557   //        P is the projection matrix
1558   //        S is the scale adjustment (to scale up a canonical quad to the
1559   //            layer's size)
1560   //
1561   // When a render surface has a replica layer, that layer's transform is used
1562   // to draw a second copy of the surface.  gfx::Transforms named here are
1563   // relative to the surface, unless they specify they are relative to the
1564   // replica layer.
1565   //
1566   // We will denote a scale by device scale S[deviceScale]
1567   //
1568   // The render surface draw transform to its target surface origin is:
1569   //        M[surfaceDraw] = M[owningLayer->Draw]
1570   //
1571   // The render surface origin transform to its the root (screen space) origin
1572   // is:
1573   //        M[surface2root] =  M[owningLayer->screenspace] *
1574   //            S[deviceScale].inverse()
1575   //
1576   // The replica draw transform to its target surface origin is:
1577   //        M[replicaDraw] = S[deviceScale] * M[surfaceDraw] *
1578   //            Tr[replica->position() + replica->anchor()] * Tr[replica] *
1579   //            Tr[origin2anchor].inverse() * S[contents_scale].inverse()
1580   //
1581   // The replica draw transform to the root (screen space) origin is:
1582   //        M[replica2root] = M[surface2root] * Tr[replica->position()] *
1583   //            Tr[replica] * Tr[origin2anchor].inverse()
1584   //
1585
1586   // It makes no sense to have a non-unit page_scale_factor without specifying
1587   // which layer roots the subtree the scale is applied to.
1588   DCHECK(globals.page_scale_application_layer ||
1589          (globals.page_scale_factor == 1.f));
1590
1591   DataForRecursion<LayerType> data_for_children;
1592   typename LayerType::RenderSurfaceType*
1593       nearest_occlusion_immune_ancestor_surface =
1594           data_from_ancestor.nearest_occlusion_immune_ancestor_surface;
1595   data_for_children.in_subtree_of_page_scale_application_layer =
1596       data_from_ancestor.in_subtree_of_page_scale_application_layer;
1597   data_for_children.subtree_can_use_lcd_text =
1598       data_from_ancestor.subtree_can_use_lcd_text;
1599
1600   // Layers that are marked as hidden will hide themselves and their subtree.
1601   // Exception: Layers with copy requests, whether hidden or not, must be drawn
1602   // anyway.  In this case, we will inform their subtree they are visible to get
1603   // the right results.
1604   const bool layer_is_visible =
1605       data_from_ancestor.subtree_is_visible_from_ancestor &&
1606       !layer->hide_layer_and_subtree();
1607   const bool layer_is_drawn = layer_is_visible || layer->HasCopyRequest();
1608
1609   // The root layer cannot skip CalcDrawProperties.
1610   if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer, layer_is_drawn)) {
1611     if (layer->render_surface())
1612       layer->ClearRenderSurfaceLayerList();
1613     return;
1614   }
1615
1616   // We need to circumvent the normal recursive flow of information for clip
1617   // children (they don't inherit their direct ancestor's clip information).
1618   // This is unfortunate, and would be unnecessary if we were to formally
1619   // separate the clipping hierarchy from the layer hierarchy.
1620   bool ancestor_clips_subtree = data_from_ancestor.ancestor_clips_subtree;
1621   gfx::Rect ancestor_clip_rect_in_target_space =
1622       data_from_ancestor.clip_rect_in_target_space;
1623
1624   // Update our clipping state. If we have a clip parent we will need to pull
1625   // from the clip state cache rather than using the clip state passed from our
1626   // immediate ancestor.
1627   UpdateClipRectsForClipChild<LayerType>(
1628       layer, &ancestor_clip_rect_in_target_space, &ancestor_clips_subtree);
1629
1630   // As this function proceeds, these are the properties for the current
1631   // layer that actually get computed. To avoid unnecessary copies
1632   // (particularly for matrices), we do computations directly on these values
1633   // when possible.
1634   DrawProperties<LayerType>& layer_draw_properties = layer->draw_properties();
1635
1636   gfx::Rect clip_rect_in_target_space;
1637   bool layer_or_ancestor_clips_descendants = false;
1638
1639   // This value is cached on the stack so that we don't have to inverse-project
1640   // the surface's clip rect redundantly for every layer. This value is the
1641   // same as the target surface's clip rect, except that instead of being
1642   // described in the target surface's target's space, it is described in the
1643   // current render target's space.
1644   gfx::Rect clip_rect_of_target_surface_in_target_space;
1645
1646   float accumulated_draw_opacity = layer->opacity();
1647   bool animating_opacity_to_target = layer->OpacityIsAnimating();
1648   bool animating_opacity_to_screen = animating_opacity_to_target;
1649   if (layer->parent()) {
1650     accumulated_draw_opacity *= layer->parent()->draw_opacity();
1651     animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating();
1652     animating_opacity_to_screen |=
1653         layer->parent()->screen_space_opacity_is_animating();
1654   }
1655
1656   bool animating_transform_to_target = layer->TransformIsAnimating();
1657   bool animating_transform_to_screen = animating_transform_to_target;
1658   if (layer->parent()) {
1659     animating_transform_to_target |=
1660         layer->parent()->draw_transform_is_animating();
1661     animating_transform_to_screen |=
1662         layer->parent()->screen_space_transform_is_animating();
1663   }
1664
1665   gfx::Size bounds = layer->bounds();
1666   gfx::PointF anchor_point = layer->anchor_point();
1667   gfx::Vector2dF scroll_offset = GetEffectiveTotalScrollOffset(layer);
1668   gfx::PointF position = layer->position() - scroll_offset;
1669
1670   gfx::Transform combined_transform = data_from_ancestor.parent_matrix;
1671   if (!layer->transform().IsIdentity()) {
1672     // LT = Tr[origin] * Tr[origin2anchor]
1673     combined_transform.Translate3d(
1674         position.x() + anchor_point.x() * bounds.width(),
1675         position.y() + anchor_point.y() * bounds.height(),
1676         layer->anchor_point_z());
1677     // LT = Tr[origin] * Tr[origin2anchor] * M[layer]
1678     combined_transform.PreconcatTransform(layer->transform());
1679     // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin]
1680     combined_transform.Translate3d(-anchor_point.x() * bounds.width(),
1681                                    -anchor_point.y() * bounds.height(),
1682                                    -layer->anchor_point_z());
1683   } else {
1684     combined_transform.Translate(position.x(), position.y());
1685   }
1686
1687   gfx::Vector2dF effective_scroll_delta = GetEffectiveScrollDelta(layer);
1688   if (!animating_transform_to_target && layer->scrollable() &&
1689       combined_transform.IsScaleOrTranslation()) {
1690     // Align the scrollable layer's position to screen space pixels to avoid
1691     // blurriness.  To avoid side-effects, do this only if the transform is
1692     // simple.
1693     gfx::Vector2dF previous_translation = combined_transform.To2dTranslation();
1694     RoundTranslationComponents(&combined_transform);
1695     gfx::Vector2dF current_translation = combined_transform.To2dTranslation();
1696
1697     // This rounding changes the scroll delta, and so must be included
1698     // in the scroll compensation matrix.  The scaling converts from physical
1699     // coordinates to the scroll delta's CSS coordinates (using the parent
1700     // matrix instead of combined transform since scrolling is applied before
1701     // the layer's transform).  For example, if we have a total scale factor of
1702     // 3.0, then 1 physical pixel is only 1/3 of a CSS pixel.
1703     gfx::Vector2dF parent_scales = MathUtil::ComputeTransform2dScaleComponents(
1704         data_from_ancestor.parent_matrix, 1.f);
1705     effective_scroll_delta -=
1706         gfx::ScaleVector2d(current_translation - previous_translation,
1707                            1.f / parent_scales.x(),
1708                            1.f / parent_scales.y());
1709   }
1710
1711   // Apply adjustment from position constraints.
1712   ApplyPositionAdjustment(layer, data_from_ancestor.fixed_container,
1713       data_from_ancestor.scroll_compensation_matrix, &combined_transform);
1714
1715   bool combined_is_animating_scale = false;
1716   float combined_maximum_animation_contents_scale = 0.f;
1717   if (globals.can_adjust_raster_scales) {
1718     CalculateAnimationContentsScale(
1719         layer,
1720         data_from_ancestor.ancestor_is_animating_scale,
1721         data_from_ancestor.maximum_animation_contents_scale,
1722         data_from_ancestor.parent_matrix,
1723         combined_transform,
1724         &combined_is_animating_scale,
1725         &combined_maximum_animation_contents_scale);
1726   }
1727   data_for_children.ancestor_is_animating_scale = combined_is_animating_scale;
1728   data_for_children.maximum_animation_contents_scale =
1729       combined_maximum_animation_contents_scale;
1730
1731   // Compute the 2d scale components of the transform hierarchy up to the target
1732   // surface. From there, we can decide on a contents scale for the layer.
1733   float layer_scale_factors = globals.device_scale_factor;
1734   if (data_from_ancestor.in_subtree_of_page_scale_application_layer)
1735     layer_scale_factors *= globals.page_scale_factor;
1736   gfx::Vector2dF combined_transform_scales =
1737       MathUtil::ComputeTransform2dScaleComponents(
1738           combined_transform,
1739           layer_scale_factors);
1740
1741   float ideal_contents_scale =
1742       globals.can_adjust_raster_scales
1743       ? std::max(combined_transform_scales.x(),
1744                  combined_transform_scales.y())
1745       : layer_scale_factors;
1746   UpdateLayerContentsScale(
1747       layer,
1748       globals.can_adjust_raster_scales,
1749       ideal_contents_scale,
1750       globals.device_scale_factor,
1751       data_from_ancestor.in_subtree_of_page_scale_application_layer
1752           ? globals.page_scale_factor
1753           : 1.f,
1754       combined_maximum_animation_contents_scale,
1755       animating_transform_to_screen);
1756
1757   // The draw_transform that gets computed below is effectively the layer's
1758   // draw_transform, unless the layer itself creates a render_surface. In that
1759   // case, the render_surface re-parents the transforms.
1760   layer_draw_properties.target_space_transform = combined_transform;
1761   // M[draw] = M[parent] * LT * S[layer2content]
1762   layer_draw_properties.target_space_transform.Scale(
1763       SK_MScalar1 / layer->contents_scale_x(),
1764       SK_MScalar1 / layer->contents_scale_y());
1765
1766   // The layer's screen_space_transform represents the transform between root
1767   // layer's "screen space" and local content space.
1768   layer_draw_properties.screen_space_transform =
1769       data_from_ancestor.full_hierarchy_matrix;
1770   if (layer->should_flatten_transform())
1771     layer_draw_properties.screen_space_transform.FlattenTo2d();
1772   layer_draw_properties.screen_space_transform.PreconcatTransform
1773       (layer_draw_properties.target_space_transform);
1774
1775   // Adjusting text AA method during animation may cause repaints, which in-turn
1776   // causes jank.
1777   bool adjust_text_aa =
1778       !animating_opacity_to_screen && !animating_transform_to_screen;
1779   // To avoid color fringing, LCD text should only be used on opaque layers with
1780   // just integral translation.
1781   bool layer_can_use_lcd_text =
1782       data_from_ancestor.subtree_can_use_lcd_text &&
1783       accumulated_draw_opacity == 1.f &&
1784       layer_draw_properties.target_space_transform.
1785           IsIdentityOrIntegerTranslation();
1786
1787   gfx::RectF content_rect(layer->content_bounds());
1788
1789   // full_hierarchy_matrix is the matrix that transforms objects between screen
1790   // space (except projection matrix) and the most recent RenderSurfaceImpl's
1791   // space.  next_hierarchy_matrix will only change if this layer uses a new
1792   // RenderSurfaceImpl, otherwise remains the same.
1793   data_for_children.full_hierarchy_matrix =
1794       data_from_ancestor.full_hierarchy_matrix;
1795
1796   // If the subtree will scale layer contents by the transform hierarchy, then
1797   // we should scale things into the render surface by the transform hierarchy
1798   // to take advantage of that.
1799   gfx::Vector2dF render_surface_sublayer_scale =
1800       globals.can_adjust_raster_scales
1801       ? combined_transform_scales
1802       : gfx::Vector2dF(layer_scale_factors, layer_scale_factors);
1803
1804   bool render_to_separate_surface;
1805   if (globals.can_render_to_separate_surface) {
1806     render_to_separate_surface = SubtreeShouldRenderToSeparateSurface(
1807           layer, combined_transform.Preserves2dAxisAlignment());
1808   } else {
1809     render_to_separate_surface = IsRootLayer(layer);
1810   }
1811   if (render_to_separate_surface) {
1812     // Check back-face visibility before continuing with this surface and its
1813     // subtree
1814     if (!layer->double_sided() && TransformToParentIsKnown(layer) &&
1815         IsSurfaceBackFaceVisible(layer, combined_transform)) {
1816       layer->ClearRenderSurfaceLayerList();
1817       return;
1818     }
1819
1820     typename LayerType::RenderSurfaceType* render_surface =
1821         CreateOrReuseRenderSurface(layer);
1822
1823     if (IsRootLayer(layer)) {
1824       // The root layer's render surface size is predetermined and so the root
1825       // layer can't directly support non-identity transforms.  It should just
1826       // forward top-level transforms to the rest of the tree.
1827       data_for_children.parent_matrix = combined_transform;
1828
1829       // The root surface does not contribute to any other surface, it has no
1830       // target.
1831       layer->render_surface()->set_contributes_to_drawn_surface(false);
1832     } else {
1833       // The owning layer's draw transform has a scale from content to layer
1834       // space which we do not want; so here we use the combined_transform
1835       // instead of the draw_transform. However, we do need to add a different
1836       // scale factor that accounts for the surface's pixel dimensions.
1837       combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(),
1838                                1.0 / render_surface_sublayer_scale.y());
1839       render_surface->SetDrawTransform(combined_transform);
1840
1841       // The owning layer's transform was re-parented by the surface, so the
1842       // layer's new draw_transform only needs to scale the layer to surface
1843       // space.
1844       layer_draw_properties.target_space_transform.MakeIdentity();
1845       layer_draw_properties.target_space_transform.
1846           Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(),
1847                 render_surface_sublayer_scale.y() / layer->contents_scale_y());
1848
1849       // Inside the surface's subtree, we scale everything to the owning layer's
1850       // scale.  The sublayer matrix transforms layer rects into target surface
1851       // content space.  Conceptually, all layers in the subtree inherit the
1852       // scale at the point of the render surface in the transform hierarchy,
1853       // but we apply it explicitly to the owning layer and the remainder of the
1854       // subtree independently.
1855       DCHECK(data_for_children.parent_matrix.IsIdentity());
1856       data_for_children.parent_matrix.Scale(render_surface_sublayer_scale.x(),
1857                             render_surface_sublayer_scale.y());
1858
1859       // Even if the |layer_is_drawn|, it only contributes to a drawn surface
1860       // when the |layer_is_visible|.
1861       layer->render_surface()->set_contributes_to_drawn_surface(
1862           layer_is_visible);
1863     }
1864
1865     // The opacity value is moved from the layer to its surface, so that the
1866     // entire subtree properly inherits opacity.
1867     render_surface->SetDrawOpacity(accumulated_draw_opacity);
1868     render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target);
1869     animating_opacity_to_target = false;
1870     layer_draw_properties.opacity = 1.f;
1871     layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
1872     layer_draw_properties.screen_space_opacity_is_animating =
1873         animating_opacity_to_screen;
1874
1875     render_surface->SetTargetSurfaceTransformsAreAnimating(
1876         animating_transform_to_target);
1877     render_surface->SetScreenSpaceTransformsAreAnimating(
1878         animating_transform_to_screen);
1879     animating_transform_to_target = false;
1880     layer_draw_properties.target_space_transform_is_animating =
1881         animating_transform_to_target;
1882     layer_draw_properties.screen_space_transform_is_animating =
1883         animating_transform_to_screen;
1884
1885     // Update the aggregate hierarchy matrix to include the transform of the
1886     // newly created RenderSurfaceImpl.
1887     data_for_children.full_hierarchy_matrix.PreconcatTransform(
1888         render_surface->draw_transform());
1889
1890     if (layer->mask_layer()) {
1891       DrawProperties<LayerType>& mask_layer_draw_properties =
1892           layer->mask_layer()->draw_properties();
1893       mask_layer_draw_properties.render_target = layer;
1894       mask_layer_draw_properties.visible_content_rect =
1895           gfx::Rect(layer->content_bounds());
1896     }
1897
1898     if (layer->replica_layer() && layer->replica_layer()->mask_layer()) {
1899       DrawProperties<LayerType>& replica_mask_draw_properties =
1900           layer->replica_layer()->mask_layer()->draw_properties();
1901       replica_mask_draw_properties.render_target = layer;
1902       replica_mask_draw_properties.visible_content_rect =
1903           gfx::Rect(layer->content_bounds());
1904     }
1905
1906     // Ignore occlusion from outside the surface when surface contents need to
1907     // be fully drawn. Layers with copy-request need to be complete.
1908     // We could be smarter about layers with replica and exclude regions
1909     // where both layer and the replica are occluded, but this seems like an
1910     // overkill. The same is true for layers with filters that move pixels.
1911     // TODO(senorblanco): make this smarter for the SkImageFilter case (check
1912     // for pixel-moving filters)
1913     if (layer->HasCopyRequest() ||
1914         layer->has_replica() ||
1915         layer->filters().HasReferenceFilter() ||
1916         layer->filters().HasFilterThatMovesPixels()) {
1917       nearest_occlusion_immune_ancestor_surface = render_surface;
1918     }
1919     render_surface->SetNearestOcclusionImmuneAncestor(
1920         nearest_occlusion_immune_ancestor_surface);
1921
1922     layer_or_ancestor_clips_descendants = false;
1923     bool subtree_is_clipped_by_surface_bounds = false;
1924     if (ancestor_clips_subtree) {
1925       // It may be the layer or the surface doing the clipping of the subtree,
1926       // but in either case, we'll be clipping to the projected clip rect of our
1927       // ancestor.
1928       gfx::Transform inverse_surface_draw_transform(
1929           gfx::Transform::kSkipInitialization);
1930       if (!render_surface->draw_transform().GetInverse(
1931               &inverse_surface_draw_transform)) {
1932         // TODO(shawnsingh): Either we need to handle uninvertible transforms
1933         // here, or DCHECK that the transform is invertible.
1934       }
1935
1936       gfx::Rect projected_surface_rect = MathUtil::ProjectEnclosingClippedRect(
1937           inverse_surface_draw_transform, ancestor_clip_rect_in_target_space);
1938
1939       if (layer_draw_properties.num_unclipped_descendants > 0) {
1940         // If we have unclipped descendants, we cannot count on the render
1941         // surface's bounds clipping our subtree: the unclipped descendants
1942         // could cause us to expand our bounds. In this case, we must rely on
1943         // layer clipping for correctess. NB: since we can only encounter
1944         // translations between a clip child and its clip parent, clipping is
1945         // guaranteed to be exact in this case.
1946         layer_or_ancestor_clips_descendants = true;
1947         clip_rect_in_target_space = projected_surface_rect;
1948       } else {
1949         // The new render_surface here will correctly clip the entire subtree.
1950         // So, we do not need to continue propagating the clipping state further
1951         // down the tree. This way, we can avoid transforming clip rects from
1952         // ancestor target surface space to current target surface space that
1953         // could cause more w < 0 headaches. The render surface clip rect is
1954         // expressed in the space where this surface draws, i.e. the same space
1955         // as clip_rect_from_ancestor_in_ancestor_target_space.
1956         render_surface->SetClipRect(ancestor_clip_rect_in_target_space);
1957         clip_rect_of_target_surface_in_target_space = projected_surface_rect;
1958         subtree_is_clipped_by_surface_bounds = true;
1959       }
1960     }
1961
1962     DCHECK(layer->render_surface());
1963     DCHECK(!layer->parent() || layer->parent()->render_target() ==
1964            accumulated_surface_state->back().render_target);
1965
1966     accumulated_surface_state->push_back(
1967         AccumulatedSurfaceState<LayerType>(layer));
1968
1969     render_surface->SetIsClipped(subtree_is_clipped_by_surface_bounds);
1970     if (!subtree_is_clipped_by_surface_bounds) {
1971       render_surface->SetClipRect(gfx::Rect());
1972       clip_rect_of_target_surface_in_target_space =
1973           data_from_ancestor.clip_rect_of_target_surface_in_target_space;
1974     }
1975
1976     // If the new render surface is drawn translucent or with a non-integral
1977     // translation then the subtree that gets drawn on this render surface
1978     // cannot use LCD text.
1979     data_for_children.subtree_can_use_lcd_text = layer_can_use_lcd_text;
1980
1981     render_surface_layer_list->push_back(layer);
1982   } else {
1983     DCHECK(layer->parent());
1984
1985     // Note: layer_draw_properties.target_space_transform is computed above,
1986     // before this if-else statement.
1987     layer_draw_properties.target_space_transform_is_animating =
1988         animating_transform_to_target;
1989     layer_draw_properties.screen_space_transform_is_animating =
1990         animating_transform_to_screen;
1991     layer_draw_properties.opacity = accumulated_draw_opacity;
1992     layer_draw_properties.opacity_is_animating = animating_opacity_to_target;
1993     layer_draw_properties.screen_space_opacity_is_animating =
1994         animating_opacity_to_screen;
1995     data_for_children.parent_matrix = combined_transform;
1996
1997     layer->ClearRenderSurface();
1998
1999     // Layers without render_surfaces directly inherit the ancestor's clip
2000     // status.
2001     layer_or_ancestor_clips_descendants = ancestor_clips_subtree;
2002     if (ancestor_clips_subtree) {
2003       clip_rect_in_target_space =
2004           ancestor_clip_rect_in_target_space;
2005     }
2006
2007     // The surface's cached clip rect value propagates regardless of what
2008     // clipping goes on between layers here.
2009     clip_rect_of_target_surface_in_target_space =
2010         data_from_ancestor.clip_rect_of_target_surface_in_target_space;
2011
2012     // Layers that are not their own render_target will render into the target
2013     // of their nearest ancestor.
2014     layer_draw_properties.render_target = layer->parent()->render_target();
2015   }
2016
2017   if (adjust_text_aa)
2018     layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text;
2019
2020   gfx::Rect rect_in_target_space = ToEnclosingRect(
2021       MathUtil::MapClippedRect(layer->draw_transform(), content_rect));
2022
2023   if (LayerClipsSubtree(layer)) {
2024     layer_or_ancestor_clips_descendants = true;
2025     if (ancestor_clips_subtree && !layer->render_surface()) {
2026       // A layer without render surface shares the same target as its ancestor.
2027       clip_rect_in_target_space =
2028           ancestor_clip_rect_in_target_space;
2029       clip_rect_in_target_space.Intersect(rect_in_target_space);
2030     } else {
2031       clip_rect_in_target_space = rect_in_target_space;
2032     }
2033   }
2034
2035   // Tell the layer the rect that it's clipped by. In theory we could use a
2036   // tighter clip rect here (drawable_content_rect), but that actually does not
2037   // reduce how much would be drawn, and instead it would create unnecessary
2038   // changes to scissor state affecting GPU performance. Our clip information
2039   // is used in the recursion below, so we must set it beforehand.
2040   layer_draw_properties.is_clipped = layer_or_ancestor_clips_descendants;
2041   if (layer_or_ancestor_clips_descendants) {
2042     layer_draw_properties.clip_rect = clip_rect_in_target_space;
2043   } else {
2044     // Initialize the clip rect to a safe value that will not clip the
2045     // layer, just in case clipping is still accidentally used.
2046     layer_draw_properties.clip_rect = rect_in_target_space;
2047   }
2048
2049   typename LayerType::LayerListType& descendants =
2050       (layer->render_surface() ? layer->render_surface()->layer_list()
2051                                : *layer_list);
2052
2053   // Any layers that are appended after this point are in the layer's subtree
2054   // and should be included in the sorting process.
2055   size_t sorting_start_index = descendants.size();
2056
2057   if (!LayerShouldBeSkipped(layer, layer_is_drawn)) {
2058     MarkLayerWithRenderSurfaceLayerListId(layer,
2059                                           current_render_surface_layer_list_id);
2060     descendants.push_back(layer);
2061   }
2062
2063   // Any layers that are appended after this point may need to be sorted if we
2064   // visit the children out of order.
2065   size_t render_surface_layer_list_child_sorting_start_index =
2066       render_surface_layer_list->size();
2067   size_t layer_list_child_sorting_start_index = descendants.size();
2068
2069   if (!layer->children().empty()) {
2070     if (layer == globals.page_scale_application_layer) {
2071       data_for_children.parent_matrix.Scale(
2072           globals.page_scale_factor,
2073           globals.page_scale_factor);
2074       data_for_children.in_subtree_of_page_scale_application_layer = true;
2075     }
2076
2077     // Flatten to 2D if the layer doesn't preserve 3D.
2078     if (layer->should_flatten_transform())
2079       data_for_children.parent_matrix.FlattenTo2d();
2080
2081     data_for_children.scroll_compensation_matrix =
2082         ComputeScrollCompensationMatrixForChildren(
2083             layer,
2084             data_from_ancestor.parent_matrix,
2085             data_from_ancestor.scroll_compensation_matrix,
2086             effective_scroll_delta);
2087     data_for_children.fixed_container =
2088         layer->IsContainerForFixedPositionLayers() ?
2089             layer : data_from_ancestor.fixed_container;
2090
2091     data_for_children.clip_rect_in_target_space = clip_rect_in_target_space;
2092     data_for_children.clip_rect_of_target_surface_in_target_space =
2093         clip_rect_of_target_surface_in_target_space;
2094     data_for_children.ancestor_clips_subtree =
2095         layer_or_ancestor_clips_descendants;
2096     data_for_children.nearest_occlusion_immune_ancestor_surface =
2097         nearest_occlusion_immune_ancestor_surface;
2098     data_for_children.subtree_is_visible_from_ancestor = layer_is_drawn;
2099   }
2100
2101   std::vector<LayerType*> sorted_children;
2102   bool child_order_changed = false;
2103   if (layer_draw_properties.has_child_with_a_scroll_parent)
2104     child_order_changed = SortChildrenForRecursion(&sorted_children, *layer);
2105
2106   for (size_t i = 0; i < layer->children().size(); ++i) {
2107     // If one of layer's children has a scroll parent, then we may have to
2108     // visit the children out of order. The new order is stored in
2109     // sorted_children. Otherwise, we'll grab the child directly from the
2110     // layer's list of children.
2111     LayerType* child =
2112         layer_draw_properties.has_child_with_a_scroll_parent
2113             ? sorted_children[i]
2114             : LayerTreeHostCommon::get_layer_as_raw_ptr(layer->children(), i);
2115
2116     child->draw_properties().index_of_first_descendants_addition =
2117         descendants.size();
2118     child->draw_properties().index_of_first_render_surface_layer_list_addition =
2119         render_surface_layer_list->size();
2120
2121     CalculateDrawPropertiesInternal<LayerType>(
2122         child,
2123         globals,
2124         data_for_children,
2125         render_surface_layer_list,
2126         &descendants,
2127         accumulated_surface_state,
2128         current_render_surface_layer_list_id);
2129     if (child->render_surface() &&
2130         !child->render_surface()->layer_list().empty() &&
2131         !child->render_surface()->content_rect().IsEmpty()) {
2132       // This child will contribute its render surface, which means
2133       // we need to mark just the mask layer (and replica mask layer)
2134       // with the id.
2135       MarkMasksWithRenderSurfaceLayerListId(
2136           child, current_render_surface_layer_list_id);
2137       descendants.push_back(child);
2138     }
2139
2140     child->draw_properties().num_descendants_added =
2141         descendants.size() -
2142         child->draw_properties().index_of_first_descendants_addition;
2143     child->draw_properties().num_render_surfaces_added =
2144         render_surface_layer_list->size() -
2145         child->draw_properties()
2146             .index_of_first_render_surface_layer_list_addition;
2147   }
2148
2149   // Add the unsorted layer list contributions, if necessary.
2150   if (child_order_changed) {
2151     SortLayerListContributions(
2152         *layer,
2153         GetLayerListForSorting(render_surface_layer_list),
2154         render_surface_layer_list_child_sorting_start_index,
2155         &GetNewRenderSurfacesStartIndexAndCount<LayerType>);
2156
2157     SortLayerListContributions(
2158         *layer,
2159         &descendants,
2160         layer_list_child_sorting_start_index,
2161         &GetNewDescendantsStartIndexAndCount<LayerType>);
2162   }
2163
2164   // Compute the total drawable_content_rect for this subtree (the rect is in
2165   // target surface space).
2166   gfx::Rect local_drawable_content_rect_of_subtree =
2167       accumulated_surface_state->back().drawable_content_rect;
2168   if (layer->render_surface()) {
2169     DCHECK(accumulated_surface_state->back().render_target == layer);
2170     accumulated_surface_state->pop_back();
2171   }
2172
2173   if (layer->render_surface() && !IsRootLayer(layer) &&
2174       layer->render_surface()->layer_list().empty()) {
2175     RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
2176     return;
2177   }
2178
2179   // Compute the layer's drawable content rect (the rect is in target surface
2180   // space).
2181   layer_draw_properties.drawable_content_rect = rect_in_target_space;
2182   if (layer_or_ancestor_clips_descendants) {
2183     layer_draw_properties.drawable_content_rect.Intersect(
2184         clip_rect_in_target_space);
2185   }
2186   if (layer->DrawsContent()) {
2187     local_drawable_content_rect_of_subtree.Union(
2188         layer_draw_properties.drawable_content_rect);
2189   }
2190
2191   // Compute the layer's visible content rect (the rect is in content space).
2192   layer_draw_properties.visible_content_rect = CalculateVisibleContentRect(
2193       layer, clip_rect_of_target_surface_in_target_space, rect_in_target_space);
2194
2195   // Compute the remaining properties for the render surface, if the layer has
2196   // one.
2197   if (IsRootLayer(layer)) {
2198     // The root layer's surface's content_rect is always the entire viewport.
2199     DCHECK(layer->render_surface());
2200     layer->render_surface()->SetContentRect(
2201         ancestor_clip_rect_in_target_space);
2202   } else if (layer->render_surface()) {
2203     typename LayerType::RenderSurfaceType* render_surface =
2204         layer->render_surface();
2205     gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree;
2206
2207     // Don't clip if the layer is reflected as the reflection shouldn't be
2208     // clipped. If the layer is animating, then the surface's transform to
2209     // its target is not known on the main thread, and we should not use it
2210     // to clip.
2211     if (!layer->replica_layer() && TransformToParentIsKnown(layer)) {
2212       // Note, it is correct to use data_from_ancestor.ancestor_clips_subtree
2213       // here, because we are looking at this layer's render_surface, not the
2214       // layer itself.
2215       if (render_surface->is_clipped() && !clipped_content_rect.IsEmpty()) {
2216         gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect(
2217             render_surface->clip_rect(),
2218             clipped_content_rect,
2219             render_surface->draw_transform());
2220         clipped_content_rect.Intersect(surface_clip_rect);
2221       }
2222     }
2223
2224     // The RenderSurfaceImpl backing texture cannot exceed the maximum supported
2225     // texture size.
2226     clipped_content_rect.set_width(
2227         std::min(clipped_content_rect.width(), globals.max_texture_size));
2228     clipped_content_rect.set_height(
2229         std::min(clipped_content_rect.height(), globals.max_texture_size));
2230
2231     if (clipped_content_rect.IsEmpty()) {
2232       RemoveSurfaceForEarlyExit(layer, render_surface_layer_list);
2233       return;
2234     }
2235
2236     // Layers having a non-default blend mode will blend with the content
2237     // inside its parent's render target. This render target should be
2238     // either root_for_isolated_group, or the root of the layer tree.
2239     // Otherwise, this layer will use an incomplete backdrop, limited to its
2240     // render target and the blending result will be incorrect.
2241     DCHECK(layer->uses_default_blend_mode() || IsRootLayer(layer) ||
2242            !layer->parent()->render_target() ||
2243            IsRootLayer(layer->parent()->render_target()) ||
2244            layer->parent()->render_target()->is_root_for_isolated_group());
2245
2246     render_surface->SetContentRect(clipped_content_rect);
2247
2248     // The owning layer's screen_space_transform has a scale from content to
2249     // layer space which we need to undo and replace with a scale from the
2250     // surface's subtree into layer space.
2251     gfx::Transform screen_space_transform = layer->screen_space_transform();
2252     screen_space_transform.Scale(
2253         layer->contents_scale_x() / render_surface_sublayer_scale.x(),
2254         layer->contents_scale_y() / render_surface_sublayer_scale.y());
2255     render_surface->SetScreenSpaceTransform(screen_space_transform);
2256
2257     if (layer->replica_layer()) {
2258       gfx::Transform surface_origin_to_replica_origin_transform;
2259       surface_origin_to_replica_origin_transform.Scale(
2260           render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y());
2261       surface_origin_to_replica_origin_transform.Translate(
2262           layer->replica_layer()->position().x() +
2263           layer->replica_layer()->anchor_point().x() * bounds.width(),
2264           layer->replica_layer()->position().y() +
2265           layer->replica_layer()->anchor_point().y() * bounds.height());
2266       surface_origin_to_replica_origin_transform.PreconcatTransform(
2267           layer->replica_layer()->transform());
2268       surface_origin_to_replica_origin_transform.Translate(
2269           -layer->replica_layer()->anchor_point().x() * bounds.width(),
2270           -layer->replica_layer()->anchor_point().y() * bounds.height());
2271       surface_origin_to_replica_origin_transform.Scale(
2272           1.0 / render_surface_sublayer_scale.x(),
2273           1.0 / render_surface_sublayer_scale.y());
2274
2275       // Compute the replica's "originTransform" that maps from the replica's
2276       // origin space to the target surface origin space.
2277       gfx::Transform replica_origin_transform =
2278           layer->render_surface()->draw_transform() *
2279           surface_origin_to_replica_origin_transform;
2280       render_surface->SetReplicaDrawTransform(replica_origin_transform);
2281
2282       // Compute the replica's "screen_space_transform" that maps from the
2283       // replica's origin space to the screen's origin space.
2284       gfx::Transform replica_screen_space_transform =
2285           layer->render_surface()->screen_space_transform() *
2286           surface_origin_to_replica_origin_transform;
2287       render_surface->SetReplicaScreenSpaceTransform(
2288           replica_screen_space_transform);
2289     }
2290   }
2291
2292   SavePaintPropertiesLayer(layer);
2293
2294   // If neither this layer nor any of its children were added, early out.
2295   if (sorting_start_index == descendants.size()) {
2296     DCHECK(!layer->render_surface() || IsRootLayer(layer));
2297     return;
2298   }
2299
2300   // If preserves-3d then sort all the descendants in 3D so that they can be
2301   // drawn from back to front. If the preserves-3d property is also set on the
2302   // parent then skip the sorting as the parent will sort all the descendants
2303   // anyway.
2304   if (globals.layer_sorter && descendants.size() && layer->is_3d_sorted() &&
2305       !LayerIsInExisting3DRenderingContext(layer)) {
2306     SortLayers(descendants.begin() + sorting_start_index,
2307                descendants.end(),
2308                globals.layer_sorter);
2309   }
2310
2311   UpdateAccumulatedSurfaceState<LayerType>(
2312       layer, local_drawable_content_rect_of_subtree, accumulated_surface_state);
2313
2314   if (layer->HasContributingDelegatedRenderPasses()) {
2315     layer->render_target()->render_surface()->
2316         AddContributingDelegatedRenderPassLayer(layer);
2317   }
2318 }
2319
2320 template <typename LayerType, typename RenderSurfaceLayerListType>
2321 static void ProcessCalcDrawPropsInputs(
2322     const LayerTreeHostCommon::CalcDrawPropsInputs<LayerType,
2323                                                    RenderSurfaceLayerListType>&
2324         inputs,
2325     SubtreeGlobals<LayerType>* globals,
2326     DataForRecursion<LayerType>* data_for_recursion) {
2327   DCHECK(inputs.root_layer);
2328   DCHECK(IsRootLayer(inputs.root_layer));
2329   DCHECK(inputs.render_surface_layer_list);
2330
2331   gfx::Transform identity_matrix;
2332
2333   // The root layer's render_surface should receive the device viewport as the
2334   // initial clip rect.
2335   gfx::Rect device_viewport_rect(inputs.device_viewport_size);
2336
2337   gfx::Vector2dF device_transform_scale_components =
2338       MathUtil::ComputeTransform2dScaleComponents(inputs.device_transform, 1.f);
2339   // Not handling the rare case of different x and y device scale.
2340   float device_transform_scale =
2341       std::max(device_transform_scale_components.x(),
2342                device_transform_scale_components.y());
2343
2344   gfx::Transform scaled_device_transform = inputs.device_transform;
2345   scaled_device_transform.Scale(inputs.device_scale_factor,
2346                                 inputs.device_scale_factor);
2347
2348   globals->layer_sorter = NULL;
2349   globals->max_texture_size = inputs.max_texture_size;
2350   globals->device_scale_factor =
2351       inputs.device_scale_factor * device_transform_scale;
2352   globals->page_scale_factor = inputs.page_scale_factor;
2353   globals->page_scale_application_layer = inputs.page_scale_application_layer;
2354   globals->can_render_to_separate_surface =
2355       inputs.can_render_to_separate_surface;
2356   globals->can_adjust_raster_scales = inputs.can_adjust_raster_scales;
2357
2358   data_for_recursion->parent_matrix = scaled_device_transform;
2359   data_for_recursion->full_hierarchy_matrix = identity_matrix;
2360   data_for_recursion->scroll_compensation_matrix = identity_matrix;
2361   data_for_recursion->fixed_container = inputs.root_layer;
2362   data_for_recursion->clip_rect_in_target_space = device_viewport_rect;
2363   data_for_recursion->clip_rect_of_target_surface_in_target_space =
2364       device_viewport_rect;
2365   data_for_recursion->maximum_animation_contents_scale = 0.f;
2366   data_for_recursion->ancestor_is_animating_scale = false;
2367   data_for_recursion->ancestor_clips_subtree = true;
2368   data_for_recursion->nearest_occlusion_immune_ancestor_surface = NULL;
2369   data_for_recursion->in_subtree_of_page_scale_application_layer = false;
2370   data_for_recursion->subtree_can_use_lcd_text = inputs.can_use_lcd_text;
2371   data_for_recursion->subtree_is_visible_from_ancestor = true;
2372 }
2373
2374 void LayerTreeHostCommon::CalculateDrawProperties(
2375     CalcDrawPropsMainInputs* inputs) {
2376   LayerList dummy_layer_list;
2377   SubtreeGlobals<Layer> globals;
2378   DataForRecursion<Layer> data_for_recursion;
2379   ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion);
2380
2381   PreCalculateMetaInformationRecursiveData recursive_data;
2382   PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
2383   std::vector<AccumulatedSurfaceState<Layer> > accumulated_surface_state;
2384   CalculateDrawPropertiesInternal<Layer>(
2385       inputs->root_layer,
2386       globals,
2387       data_for_recursion,
2388       inputs->render_surface_layer_list,
2389       &dummy_layer_list,
2390       &accumulated_surface_state,
2391       inputs->current_render_surface_layer_list_id);
2392
2393   // The dummy layer list should not have been used.
2394   DCHECK_EQ(0u, dummy_layer_list.size());
2395   // A root layer render_surface should always exist after
2396   // CalculateDrawProperties.
2397   DCHECK(inputs->root_layer->render_surface());
2398 }
2399
2400 void LayerTreeHostCommon::CalculateDrawProperties(
2401     CalcDrawPropsImplInputs* inputs) {
2402   LayerImplList dummy_layer_list;
2403   SubtreeGlobals<LayerImpl> globals;
2404   DataForRecursion<LayerImpl> data_for_recursion;
2405   ProcessCalcDrawPropsInputs(*inputs, &globals, &data_for_recursion);
2406
2407   LayerSorter layer_sorter;
2408   globals.layer_sorter = &layer_sorter;
2409
2410   PreCalculateMetaInformationRecursiveData recursive_data;
2411   PreCalculateMetaInformation(inputs->root_layer, &recursive_data);
2412   std::vector<AccumulatedSurfaceState<LayerImpl> >
2413       accumulated_surface_state;
2414   CalculateDrawPropertiesInternal<LayerImpl>(
2415       inputs->root_layer,
2416       globals,
2417       data_for_recursion,
2418       inputs->render_surface_layer_list,
2419       &dummy_layer_list,
2420       &accumulated_surface_state,
2421       inputs->current_render_surface_layer_list_id);
2422
2423   // The dummy layer list should not have been used.
2424   DCHECK_EQ(0u, dummy_layer_list.size());
2425   // A root layer render_surface should always exist after
2426   // CalculateDrawProperties.
2427   DCHECK(inputs->root_layer->render_surface());
2428 }
2429
2430 static bool PointHitsRect(
2431     const gfx::PointF& screen_space_point,
2432     const gfx::Transform& local_space_to_screen_space_transform,
2433     const gfx::RectF& local_space_rect) {
2434   // If the transform is not invertible, then assume that this point doesn't hit
2435   // this rect.
2436   gfx::Transform inverse_local_space_to_screen_space(
2437       gfx::Transform::kSkipInitialization);
2438   if (!local_space_to_screen_space_transform.GetInverse(
2439           &inverse_local_space_to_screen_space))
2440     return false;
2441
2442   // Transform the hit test point from screen space to the local space of the
2443   // given rect.
2444   bool clipped = false;
2445   gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint(
2446       inverse_local_space_to_screen_space, screen_space_point, &clipped);
2447
2448   // If ProjectPoint could not project to a valid value, then we assume that
2449   // this point doesn't hit this rect.
2450   if (clipped)
2451     return false;
2452
2453   return local_space_rect.Contains(hit_test_point_in_local_space);
2454 }
2455
2456 static bool PointHitsRegion(const gfx::PointF& screen_space_point,
2457                             const gfx::Transform& screen_space_transform,
2458                             const Region& layer_space_region,
2459                             float layer_content_scale_x,
2460                             float layer_content_scale_y) {
2461   // If the transform is not invertible, then assume that this point doesn't hit
2462   // this region.
2463   gfx::Transform inverse_screen_space_transform(
2464       gfx::Transform::kSkipInitialization);
2465   if (!screen_space_transform.GetInverse(&inverse_screen_space_transform))
2466     return false;
2467
2468   // Transform the hit test point from screen space to the local space of the
2469   // given region.
2470   bool clipped = false;
2471   gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint(
2472       inverse_screen_space_transform, screen_space_point, &clipped);
2473   gfx::PointF hit_test_point_in_layer_space =
2474       gfx::ScalePoint(hit_test_point_in_content_space,
2475                       1.f / layer_content_scale_x,
2476                       1.f / layer_content_scale_y);
2477
2478   // If ProjectPoint could not project to a valid value, then we assume that
2479   // this point doesn't hit this region.
2480   if (clipped)
2481     return false;
2482
2483   return layer_space_region.Contains(
2484       gfx::ToRoundedPoint(hit_test_point_in_layer_space));
2485 }
2486
2487 static bool PointIsClippedBySurfaceOrClipRect(
2488     const gfx::PointF& screen_space_point,
2489     LayerImpl* layer) {
2490   LayerImpl* current_layer = layer;
2491
2492   // Walk up the layer tree and hit-test any render_surfaces and any layer
2493   // clip rects that are active.
2494   while (current_layer) {
2495     if (current_layer->render_surface() &&
2496         !PointHitsRect(
2497             screen_space_point,
2498             current_layer->render_surface()->screen_space_transform(),
2499             current_layer->render_surface()->content_rect()))
2500       return true;
2501
2502     // Note that drawable content rects are actually in target surface space, so
2503     // the transform we have to provide is the target surface's
2504     // screen_space_transform.
2505     LayerImpl* render_target = current_layer->render_target();
2506     if (LayerClipsSubtree(current_layer) &&
2507         !PointHitsRect(
2508             screen_space_point,
2509             render_target->render_surface()->screen_space_transform(),
2510             current_layer->drawable_content_rect()))
2511       return true;
2512
2513     current_layer = current_layer->parent();
2514   }
2515
2516   // If we have finished walking all ancestors without having already exited,
2517   // then the point is not clipped by any ancestors.
2518   return false;
2519 }
2520
2521 static bool PointHitsLayer(LayerImpl* layer,
2522                            const gfx::PointF& screen_space_point) {
2523   gfx::RectF content_rect(layer->content_bounds());
2524   if (!PointHitsRect(
2525           screen_space_point, layer->screen_space_transform(), content_rect))
2526     return false;
2527
2528   // At this point, we think the point does hit the layer, but we need to walk
2529   // up the parents to ensure that the layer was not clipped in such a way
2530   // that the hit point actually should not hit the layer.
2531   if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer))
2532     return false;
2533
2534   // Skip the HUD layer.
2535   if (layer == layer->layer_tree_impl()->hud_layer())
2536     return false;
2537
2538   return true;
2539 }
2540
2541 LayerImpl* LayerTreeHostCommon::FindFirstScrollingLayerThatIsHitByPoint(
2542     const gfx::PointF& screen_space_point,
2543     const LayerImplList& render_surface_layer_list) {
2544   typedef LayerIterator<LayerImpl> LayerIteratorType;
2545   LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
2546   for (LayerIteratorType it =
2547            LayerIteratorType::Begin(&render_surface_layer_list);
2548        it != end;
2549        ++it) {
2550     // We don't want to consider render_surfaces for hit testing.
2551     if (!it.represents_itself())
2552       continue;
2553
2554     LayerImpl* current_layer = (*it);
2555     if (!PointHitsLayer(current_layer, screen_space_point))
2556       continue;
2557
2558     if (current_layer->scrollable())
2559       return current_layer;
2560   }
2561
2562   return NULL;
2563 }
2564
2565 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint(
2566     const gfx::PointF& screen_space_point,
2567     const LayerImplList& render_surface_layer_list) {
2568   LayerImpl* found_layer = NULL;
2569
2570   typedef LayerIterator<LayerImpl> LayerIteratorType;
2571   LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
2572   for (LayerIteratorType
2573            it = LayerIteratorType::Begin(&render_surface_layer_list);
2574        it != end;
2575        ++it) {
2576     // We don't want to consider render_surfaces for hit testing.
2577     if (!it.represents_itself())
2578       continue;
2579
2580     LayerImpl* current_layer = (*it);
2581     if (!PointHitsLayer(current_layer, screen_space_point))
2582       continue;
2583
2584     found_layer = current_layer;
2585     break;
2586   }
2587
2588   // This can potentially return NULL, which means the screen_space_point did
2589   // not successfully hit test any layers, not even the root layer.
2590   return found_layer;
2591 }
2592
2593 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion(
2594     const gfx::PointF& screen_space_point,
2595     const LayerImplList& render_surface_layer_list) {
2596   typedef LayerIterator<LayerImpl> LayerIteratorType;
2597   LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list);
2598   for (LayerIteratorType it =
2599            LayerIteratorType::Begin(&render_surface_layer_list);
2600        it != end;
2601        ++it) {
2602     // We don't want to consider render_surfaces for hit testing.
2603     if (!it.represents_itself())
2604       continue;
2605
2606     LayerImpl* current_layer = (*it);
2607     if (!PointHitsLayer(current_layer, screen_space_point))
2608       continue;
2609
2610     if (LayerTreeHostCommon::LayerHasTouchEventHandlersAt(screen_space_point,
2611                                                           current_layer))
2612       return current_layer;
2613
2614     // Note that we could stop searching if we hit a layer we know to be
2615     // opaque to hit-testing, but knowing that reliably is tricky (eg. due to
2616     // CSS pointer-events: none).  Also blink has an optimization for the
2617     // common case of an entire document having handlers where it doesn't
2618     // report any rects for child layers (since it knows they can't exceed
2619     // the document bounds).
2620   }
2621   return NULL;
2622 }
2623
2624 bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt(
2625     const gfx::PointF& screen_space_point,
2626     LayerImpl* layer_impl) {
2627   if (layer_impl->touch_event_handler_region().IsEmpty())
2628     return false;
2629
2630   if (!PointHitsRegion(screen_space_point,
2631                        layer_impl->screen_space_transform(),
2632                        layer_impl->touch_event_handler_region(),
2633                        layer_impl->contents_scale_x(),
2634                        layer_impl->contents_scale_y()))
2635     return false;
2636
2637   // At this point, we think the point does hit the touch event handler region
2638   // on the layer, but we need to walk up the parents to ensure that the layer
2639   // was not clipped in such a way that the hit point actually should not hit
2640   // the layer.
2641   if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl))
2642     return false;
2643
2644   return true;
2645 }
2646 }  // namespace cc