Upstream version 7.36.149.0
[platform/framework/web/crosswalk.git] / src / cc / base / math_util.cc
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/base/math_util.h"
6
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
18
19 namespace cc {
20
21 const double MathUtil::kPiDouble = 3.14159265358979323846;
22 const float MathUtil::kPiFloat = 3.14159265358979323846f;
23
24 static HomogeneousCoordinate ProjectHomogeneousPoint(
25     const gfx::Transform& transform,
26     const gfx::PointF& p) {
27   // In this case, the layer we are trying to project onto is perpendicular to
28   // ray (point p and z-axis direction) that we are trying to project. This
29   // happens when the layer is rotated so that it is infinitesimally thin, or
30   // when it is co-planar with the camera origin -- i.e. when the layer is
31   // invisible anyway.
32   if (!transform.matrix().get(2, 2))
33     return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
34
35   SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
36              transform.matrix().get(2, 1) * p.y() +
37              transform.matrix().get(2, 3)) /
38              transform.matrix().get(2, 2);
39   HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
40   transform.matrix().mapMScalars(result.vec, result.vec);
41   return result;
42 }
43
44 static HomogeneousCoordinate MapHomogeneousPoint(
45     const gfx::Transform& transform,
46     const gfx::Point3F& p) {
47   HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
48   transform.matrix().mapMScalars(result.vec, result.vec);
49   return result;
50 }
51
52 static HomogeneousCoordinate ComputeClippedPointForEdge(
53     const HomogeneousCoordinate& h1,
54     const HomogeneousCoordinate& h2) {
55   // Points h1 and h2 form a line in 4d, and any point on that line can be
56   // represented as an interpolation between h1 and h2:
57   //    p = (1-t) h1 + (t) h2
58   //
59   // We want to compute point p such that p.w == epsilon, where epsilon is a
60   // small non-zero number. (but the smaller the number is, the higher the risk
61   // of overflow)
62   // To do this, we solve for t in the following equation:
63   //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
64   //
65   // Once paramter t is known, the rest of p can be computed via
66   //    p = (1-t) h1 + (t) h2.
67
68   // Technically this is a special case of the following assertion, but its a
69   // good idea to keep it an explicit sanity check here.
70   DCHECK_NE(h2.w(), h1.w());
71   // Exactly one of h1 or h2 (but not both) must be on the negative side of the
72   // w plane when this is called.
73   DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
74
75   // ...or any positive non-zero small epsilon
76   SkMScalar w = 0.00001f;
77   SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
78
79   SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
80   SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
81   SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
82
83   return HomogeneousCoordinate(x, y, z, w);
84 }
85
86 static inline void ExpandBoundsToIncludePoint(float* xmin,
87                                               float* xmax,
88                                               float* ymin,
89                                               float* ymax,
90                                               const gfx::PointF& p) {
91   *xmin = std::min(p.x(), *xmin);
92   *xmax = std::max(p.x(), *xmax);
93   *ymin = std::min(p.y(), *ymin);
94   *ymax = std::max(p.y(), *ymax);
95 }
96
97 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
98                                           gfx::PointF clipped_quad[8],
99                                           int* num_vertices_in_clipped_quad) {
100   clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
101   (*num_vertices_in_clipped_quad)++;
102 }
103
104 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
105                                             const gfx::Rect& src_rect) {
106   if (transform.IsIdentityOrIntegerTranslation()) {
107     return src_rect +
108            gfx::Vector2d(
109                static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
110                static_cast<int>(
111                    SkMScalarToFloat(transform.matrix().get(1, 3))));
112   }
113   return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
114 }
115
116 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
117                                     const gfx::RectF& src_rect) {
118   if (transform.IsIdentityOrTranslation()) {
119     return src_rect +
120            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
121                           SkMScalarToFloat(transform.matrix().get(1, 3)));
122   }
123
124   // Apply the transform, but retain the result in homogeneous coordinates.
125
126   SkMScalar quad[4 * 2];  // input: 4 x 2D points
127   quad[0] = src_rect.x();
128   quad[1] = src_rect.y();
129   quad[2] = src_rect.right();
130   quad[3] = src_rect.y();
131   quad[4] = src_rect.right();
132   quad[5] = src_rect.bottom();
133   quad[6] = src_rect.x();
134   quad[7] = src_rect.bottom();
135
136   SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
137   transform.matrix().map2(quad, 4, result);
138
139   HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
140   HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
141   HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
142   HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
143   return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
144 }
145
146 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
147                                                 const gfx::Rect& src_rect) {
148   if (transform.IsIdentityOrIntegerTranslation()) {
149     return src_rect +
150            gfx::Vector2d(
151                static_cast<int>(SkMScalarToFloat(transform.matrix().get(0, 3))),
152                static_cast<int>(
153                    SkMScalarToFloat(transform.matrix().get(1, 3))));
154   }
155   return gfx::ToEnclosingRect(
156       ProjectClippedRect(transform, gfx::RectF(src_rect)));
157 }
158
159 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
160                                         const gfx::RectF& src_rect) {
161   if (transform.IsIdentityOrTranslation()) {
162     return src_rect +
163            gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
164                           SkMScalarToFloat(transform.matrix().get(1, 3)));
165   }
166
167   // Perform the projection, but retain the result in homogeneous coordinates.
168   gfx::QuadF q = gfx::QuadF(src_rect);
169   HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
170   HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
171   HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
172   HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
173
174   return ComputeEnclosingClippedRect(h1, h2, h3, h4);
175 }
176
177 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
178                               const gfx::QuadF& src_quad,
179                               gfx::PointF clipped_quad[8],
180                               int* num_vertices_in_clipped_quad) {
181   HomogeneousCoordinate h1 =
182       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
183   HomogeneousCoordinate h2 =
184       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
185   HomogeneousCoordinate h3 =
186       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
187   HomogeneousCoordinate h4 =
188       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
189
190   // The order of adding the vertices to the array is chosen so that
191   // clockwise / counter-clockwise orientation is retained.
192
193   *num_vertices_in_clipped_quad = 0;
194
195   if (!h1.ShouldBeClipped()) {
196     AddVertexToClippedQuad(
197         h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
198   }
199
200   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
201     AddVertexToClippedQuad(
202         ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
203         clipped_quad,
204         num_vertices_in_clipped_quad);
205   }
206
207   if (!h2.ShouldBeClipped()) {
208     AddVertexToClippedQuad(
209         h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
210   }
211
212   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
213     AddVertexToClippedQuad(
214         ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
215         clipped_quad,
216         num_vertices_in_clipped_quad);
217   }
218
219   if (!h3.ShouldBeClipped()) {
220     AddVertexToClippedQuad(
221         h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
222   }
223
224   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
225     AddVertexToClippedQuad(
226         ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
227         clipped_quad,
228         num_vertices_in_clipped_quad);
229   }
230
231   if (!h4.ShouldBeClipped()) {
232     AddVertexToClippedQuad(
233         h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
234   }
235
236   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
237     AddVertexToClippedQuad(
238         ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
239         clipped_quad,
240         num_vertices_in_clipped_quad);
241   }
242
243   DCHECK_LE(*num_vertices_in_clipped_quad, 8);
244 }
245
246 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
247     const gfx::PointF vertices[],
248     int num_vertices) {
249   if (num_vertices < 2)
250     return gfx::RectF();
251
252   float xmin = std::numeric_limits<float>::max();
253   float xmax = -std::numeric_limits<float>::max();
254   float ymin = std::numeric_limits<float>::max();
255   float ymax = -std::numeric_limits<float>::max();
256
257   for (int i = 0; i < num_vertices; ++i)
258     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
259
260   return gfx::RectF(gfx::PointF(xmin, ymin),
261                     gfx::SizeF(xmax - xmin, ymax - ymin));
262 }
263
264 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
265     const HomogeneousCoordinate& h1,
266     const HomogeneousCoordinate& h2,
267     const HomogeneousCoordinate& h3,
268     const HomogeneousCoordinate& h4) {
269   // This function performs clipping as necessary and computes the enclosing 2d
270   // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
271   // to avoid the overhead of storing an unknown number of clipped vertices.
272
273   // If no vertices on the quad are clipped, then we can simply return the
274   // enclosing rect directly.
275   bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
276                            h3.ShouldBeClipped() || h4.ShouldBeClipped();
277   if (!something_clipped) {
278     gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
279                                         h2.CartesianPoint2d(),
280                                         h3.CartesianPoint2d(),
281                                         h4.CartesianPoint2d());
282     return mapped_quad.BoundingBox();
283   }
284
285   bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
286                             h3.ShouldBeClipped() && h4.ShouldBeClipped();
287   if (everything_clipped)
288     return gfx::RectF();
289
290   float xmin = std::numeric_limits<float>::max();
291   float xmax = -std::numeric_limits<float>::max();
292   float ymin = std::numeric_limits<float>::max();
293   float ymax = -std::numeric_limits<float>::max();
294
295   if (!h1.ShouldBeClipped())
296     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
297                                h1.CartesianPoint2d());
298
299   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
300     ExpandBoundsToIncludePoint(&xmin,
301                                &xmax,
302                                &ymin,
303                                &ymax,
304                                ComputeClippedPointForEdge(h1, h2)
305                                    .CartesianPoint2d());
306
307   if (!h2.ShouldBeClipped())
308     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
309                                h2.CartesianPoint2d());
310
311   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
312     ExpandBoundsToIncludePoint(&xmin,
313                                &xmax,
314                                &ymin,
315                                &ymax,
316                                ComputeClippedPointForEdge(h2, h3)
317                                    .CartesianPoint2d());
318
319   if (!h3.ShouldBeClipped())
320     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
321                                h3.CartesianPoint2d());
322
323   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
324     ExpandBoundsToIncludePoint(&xmin,
325                                &xmax,
326                                &ymin,
327                                &ymax,
328                                ComputeClippedPointForEdge(h3, h4)
329                                    .CartesianPoint2d());
330
331   if (!h4.ShouldBeClipped())
332     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
333                                h4.CartesianPoint2d());
334
335   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
336     ExpandBoundsToIncludePoint(&xmin,
337                                &xmax,
338                                &ymin,
339                                &ymax,
340                                ComputeClippedPointForEdge(h4, h1)
341                                    .CartesianPoint2d());
342
343   return gfx::RectF(gfx::PointF(xmin, ymin),
344                     gfx::SizeF(xmax - xmin, ymax - ymin));
345 }
346
347 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
348                              const gfx::QuadF& q,
349                              bool* clipped) {
350   if (transform.IsIdentityOrTranslation()) {
351     gfx::QuadF mapped_quad(q);
352     mapped_quad +=
353         gfx::Vector2dF(SkMScalarToFloat(transform.matrix().get(0, 3)),
354                        SkMScalarToFloat(transform.matrix().get(1, 3)));
355     *clipped = false;
356     return mapped_quad;
357   }
358
359   HomogeneousCoordinate h1 =
360       MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
361   HomogeneousCoordinate h2 =
362       MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
363   HomogeneousCoordinate h3 =
364       MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
365   HomogeneousCoordinate h4 =
366       MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
367
368   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
369             h3.ShouldBeClipped() || h4.ShouldBeClipped();
370
371   // Result will be invalid if clipped == true. But, compute it anyway just in
372   // case, to emulate existing behavior.
373   return gfx::QuadF(h1.CartesianPoint2d(),
374                     h2.CartesianPoint2d(),
375                     h3.CartesianPoint2d(),
376                     h4.CartesianPoint2d());
377 }
378
379 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
380                                const gfx::PointF& p,
381                                bool* clipped) {
382   HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
383
384   if (h.w() > 0) {
385     *clipped = false;
386     return h.CartesianPoint2d();
387   }
388
389   // The cartesian coordinates will be invalid after dividing by w.
390   *clipped = true;
391
392   // Avoid dividing by w if w == 0.
393   if (!h.w())
394     return gfx::PointF();
395
396   // This return value will be invalid because clipped == true, but (1) users of
397   // this code should be ignoring the return value when clipped == true anyway,
398   // and (2) this behavior is more consistent with existing behavior of WebKit
399   // transforms if the user really does not ignore the return value.
400   return h.CartesianPoint2d();
401 }
402
403 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
404                                 const gfx::Point3F& p,
405                                 bool* clipped) {
406   HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
407
408   if (h.w() > 0) {
409     *clipped = false;
410     return h.CartesianPoint3d();
411   }
412
413   // The cartesian coordinates will be invalid after dividing by w.
414   *clipped = true;
415
416   // Avoid dividing by w if w == 0.
417   if (!h.w())
418     return gfx::Point3F();
419
420   // This return value will be invalid because clipped == true, but (1) users of
421   // this code should be ignoring the return value when clipped == true anyway,
422   // and (2) this behavior is more consistent with existing behavior of WebKit
423   // transforms if the user really does not ignore the return value.
424   return h.CartesianPoint3d();
425 }
426
427 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
428                                  const gfx::QuadF& q,
429                                  bool* clipped) {
430   gfx::QuadF projected_quad;
431   bool clipped_point;
432   projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
433   *clipped = clipped_point;
434   projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
435   *clipped |= clipped_point;
436   projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
437   *clipped |= clipped_point;
438   projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
439   *clipped |= clipped_point;
440
441   return projected_quad;
442 }
443
444 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
445                                    const gfx::PointF& p,
446                                    bool* clipped) {
447   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
448
449   if (h.w() > 0) {
450     // The cartesian coordinates will be valid in this case.
451     *clipped = false;
452     return h.CartesianPoint2d();
453   }
454
455   // The cartesian coordinates will be invalid after dividing by w.
456   *clipped = true;
457
458   // Avoid dividing by w if w == 0.
459   if (!h.w())
460     return gfx::PointF();
461
462   // This return value will be invalid because clipped == true, but (1) users of
463   // this code should be ignoring the return value when clipped == true anyway,
464   // and (2) this behavior is more consistent with existing behavior of WebKit
465   // transforms if the user really does not ignore the return value.
466   return h.CartesianPoint2d();
467 }
468
469 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
470                                            const gfx::RectF& scale_outer_rect,
471                                            const gfx::RectF& scale_inner_rect) {
472   gfx::RectF output_inner_rect = input_outer_rect;
473   float scale_rect_to_input_scale_x =
474       scale_outer_rect.width() / input_outer_rect.width();
475   float scale_rect_to_input_scale_y =
476       scale_outer_rect.height() / input_outer_rect.height();
477
478   gfx::Vector2dF top_left_diff =
479       scale_inner_rect.origin() - scale_outer_rect.origin();
480   gfx::Vector2dF bottom_right_diff =
481       scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
482   output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
483                           top_left_diff.y() / scale_rect_to_input_scale_y,
484                           -bottom_right_diff.x() / scale_rect_to_input_scale_x,
485                           -bottom_right_diff.y() / scale_rect_to_input_scale_y);
486   return output_inner_rect;
487 }
488
489 static inline bool NearlyZero(double value) {
490   return std::abs(value) < std::numeric_limits<double>::epsilon();
491 }
492
493 static inline float ScaleOnAxis(double a, double b, double c) {
494   if (NearlyZero(b) && NearlyZero(c))
495     return std::abs(a);
496   if (NearlyZero(a) && NearlyZero(c))
497     return std::abs(b);
498   if (NearlyZero(a) && NearlyZero(b))
499     return std::abs(c);
500
501   // Do the sqrt as a double to not lose precision.
502   return static_cast<float>(std::sqrt(a * a + b * b + c * c));
503 }
504
505 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
506     const gfx::Transform& transform,
507     float fallback_value) {
508   if (transform.HasPerspective())
509     return gfx::Vector2dF(fallback_value, fallback_value);
510   float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
511                               transform.matrix().getDouble(1, 0),
512                               transform.matrix().getDouble(2, 0));
513   float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
514                               transform.matrix().getDouble(1, 1),
515                               transform.matrix().getDouble(2, 1));
516   return gfx::Vector2dF(x_scale, y_scale);
517 }
518
519 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
520                                             const gfx::Vector2dF& v2) {
521   double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
522   // Clamp to compensate for rounding errors.
523   dot_product = std::max(-1.0, std::min(1.0, dot_product));
524   return static_cast<float>(Rad2Deg(std::acos(dot_product)));
525 }
526
527 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
528                                        const gfx::Vector2dF& destination) {
529   float projected_length =
530       gfx::DotProduct(source, destination) / destination.LengthSquared();
531   return gfx::Vector2dF(projected_length * destination.x(),
532                         projected_length * destination.y());
533 }
534
535 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
536   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
537   res->SetDouble("width", s.width());
538   res->SetDouble("height", s.height());
539   return res.PassAs<base::Value>();
540 }
541
542 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::SizeF& s) {
543   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
544   res->SetDouble("width", s.width());
545   res->SetDouble("height", s.height());
546   return res.PassAs<base::Value>();
547 }
548
549 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
550   scoped_ptr<base::ListValue> res(new base::ListValue());
551   res->AppendInteger(r.x());
552   res->AppendInteger(r.y());
553   res->AppendInteger(r.width());
554   res->AppendInteger(r.height());
555   return res.PassAs<base::Value>();
556 }
557
558 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
559   const base::ListValue* value = NULL;
560   if (!raw_value->GetAsList(&value))
561     return false;
562
563   if (value->GetSize() != 4)
564     return false;
565
566   int x, y, w, h;
567   bool ok = true;
568   ok &= value->GetInteger(0, &x);
569   ok &= value->GetInteger(1, &y);
570   ok &= value->GetInteger(2, &w);
571   ok &= value->GetInteger(3, &h);
572   if (!ok)
573     return false;
574
575   *out_rect = gfx::Rect(x, y, w, h);
576   return true;
577 }
578
579 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
580   scoped_ptr<base::ListValue> res(new base::ListValue());
581   res->AppendDouble(pt.x());
582   res->AppendDouble(pt.y());
583   return res.PassAs<base::Value>();
584 }
585
586 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Vector2d& v) {
587   scoped_ptr<base::ListValue> res(new base::ListValue());
588   res->AppendInteger(v.x());
589   res->AppendInteger(v.y());
590   return res.PassAs<base::Value>();
591 }
592
593 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::QuadF& q) {
594   scoped_ptr<base::ListValue> res(new base::ListValue());
595   res->AppendDouble(q.p1().x());
596   res->AppendDouble(q.p1().y());
597   res->AppendDouble(q.p2().x());
598   res->AppendDouble(q.p2().y());
599   res->AppendDouble(q.p3().x());
600   res->AppendDouble(q.p3().y());
601   res->AppendDouble(q.p4().x());
602   res->AppendDouble(q.p4().y());
603   return res.PassAs<base::Value>();
604 }
605
606 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::RectF& rect) {
607   scoped_ptr<base::ListValue> res(new base::ListValue());
608   res->AppendDouble(rect.x());
609   res->AppendDouble(rect.y());
610   res->AppendDouble(rect.width());
611   res->AppendDouble(rect.height());
612   return res.PassAs<base::Value>();
613 }
614
615 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Transform& transform) {
616   scoped_ptr<base::ListValue> res(new base::ListValue());
617   const SkMatrix44& m = transform.matrix();
618   for (int row = 0; row < 4; ++row) {
619     for (int col = 0; col < 4; ++col)
620       res->AppendDouble(m.getDouble(row, col));
621   }
622   return res.PassAs<base::Value>();
623 }
624
625 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::BoxF& box) {
626   scoped_ptr<base::ListValue> res(new base::ListValue());
627   res->AppendInteger(box.x());
628   res->AppendInteger(box.y());
629   res->AppendInteger(box.z());
630   res->AppendInteger(box.width());
631   res->AppendInteger(box.height());
632   res->AppendInteger(box.depth());
633   return res.PassAs<base::Value>();
634 }
635
636 scoped_ptr<base::Value> MathUtil::AsValueSafely(double value) {
637   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
638       std::min(value, std::numeric_limits<double>::max())));
639 }
640
641 scoped_ptr<base::Value> MathUtil::AsValueSafely(float value) {
642   return scoped_ptr<base::Value>(base::Value::CreateDoubleValue(
643       std::min(value, std::numeric_limits<float>::max())));
644 }
645
646 }  // namespace cc