Update To 11.40.268.0
[platform/framework/web/crosswalk.git] / src / cc / base / math_util.cc
1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "cc/base/math_util.h"
6
7 #include <algorithm>
8 #include <cmath>
9 #include <limits>
10
11 #include "base/debug/trace_event_argument.h"
12 #include "base/values.h"
13 #include "ui/gfx/geometry/quad_f.h"
14 #include "ui/gfx/geometry/rect.h"
15 #include "ui/gfx/geometry/rect_conversions.h"
16 #include "ui/gfx/geometry/rect_f.h"
17 #include "ui/gfx/geometry/vector2d_f.h"
18 #include "ui/gfx/transform.h"
19
20 namespace cc {
21
22 const double MathUtil::kPiDouble = 3.14159265358979323846;
23 const float MathUtil::kPiFloat = 3.14159265358979323846f;
24
25 static HomogeneousCoordinate ProjectHomogeneousPoint(
26     const gfx::Transform& transform,
27     const gfx::PointF& p) {
28   // In this case, the layer we are trying to project onto is perpendicular to
29   // ray (point p and z-axis direction) that we are trying to project. This
30   // happens when the layer is rotated so that it is infinitesimally thin, or
31   // when it is co-planar with the camera origin -- i.e. when the layer is
32   // invisible anyway.
33   if (!transform.matrix().get(2, 2))
34     return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
35
36   SkMScalar z = -(transform.matrix().get(2, 0) * p.x() +
37              transform.matrix().get(2, 1) * p.y() +
38              transform.matrix().get(2, 3)) /
39              transform.matrix().get(2, 2);
40   HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
41   transform.matrix().mapMScalars(result.vec, result.vec);
42   return result;
43 }
44
45 static HomogeneousCoordinate ProjectHomogeneousPoint(
46     const gfx::Transform& transform,
47     const gfx::PointF& p,
48     bool* clipped) {
49   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
50   *clipped = h.w() <= 0;
51   return h;
52 }
53
54 static HomogeneousCoordinate MapHomogeneousPoint(
55     const gfx::Transform& transform,
56     const gfx::Point3F& p) {
57   HomogeneousCoordinate result(p.x(), p.y(), p.z(), 1.0);
58   transform.matrix().mapMScalars(result.vec, result.vec);
59   return result;
60 }
61
62 static HomogeneousCoordinate ComputeClippedPointForEdge(
63     const HomogeneousCoordinate& h1,
64     const HomogeneousCoordinate& h2) {
65   // Points h1 and h2 form a line in 4d, and any point on that line can be
66   // represented as an interpolation between h1 and h2:
67   //    p = (1-t) h1 + (t) h2
68   //
69   // We want to compute point p such that p.w == epsilon, where epsilon is a
70   // small non-zero number. (but the smaller the number is, the higher the risk
71   // of overflow)
72   // To do this, we solve for t in the following equation:
73   //    p.w = epsilon = (1-t) * h1.w + (t) * h2.w
74   //
75   // Once paramter t is known, the rest of p can be computed via
76   //    p = (1-t) h1 + (t) h2.
77
78   // Technically this is a special case of the following assertion, but its a
79   // good idea to keep it an explicit sanity check here.
80   DCHECK_NE(h2.w(), h1.w());
81   // Exactly one of h1 or h2 (but not both) must be on the negative side of the
82   // w plane when this is called.
83   DCHECK(h1.ShouldBeClipped() ^ h2.ShouldBeClipped());
84
85   // ...or any positive non-zero small epsilon
86   SkMScalar w = 0.00001f;
87   SkMScalar t = (w - h1.w()) / (h2.w() - h1.w());
88
89   SkMScalar x = (SK_MScalar1 - t) * h1.x() + t * h2.x();
90   SkMScalar y = (SK_MScalar1 - t) * h1.y() + t * h2.y();
91   SkMScalar z = (SK_MScalar1 - t) * h1.z() + t * h2.z();
92
93   return HomogeneousCoordinate(x, y, z, w);
94 }
95
96 static inline void ExpandBoundsToIncludePoint(float* xmin,
97                                               float* xmax,
98                                               float* ymin,
99                                               float* ymax,
100                                               const gfx::PointF& p) {
101   *xmin = std::min(p.x(), *xmin);
102   *xmax = std::max(p.x(), *xmax);
103   *ymin = std::min(p.y(), *ymin);
104   *ymax = std::max(p.y(), *ymax);
105 }
106
107 static inline void AddVertexToClippedQuad(const gfx::PointF& new_vertex,
108                                           gfx::PointF clipped_quad[8],
109                                           int* num_vertices_in_clipped_quad) {
110   clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
111   (*num_vertices_in_clipped_quad)++;
112 }
113
114 static inline void AddVertexToClippedQuad3d(const gfx::Point3F& new_vertex,
115                                             gfx::Point3F clipped_quad[8],
116                                             int* num_vertices_in_clipped_quad) {
117   clipped_quad[*num_vertices_in_clipped_quad] = new_vertex;
118   (*num_vertices_in_clipped_quad)++;
119 }
120
121 gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
122                                             const gfx::Rect& src_rect) {
123   if (transform.IsIdentityOrIntegerTranslation()) {
124     gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
125                          static_cast<int>(transform.matrix().getFloat(1, 3)));
126     return src_rect + offset;
127   }
128   return gfx::ToEnclosingRect(MapClippedRect(transform, gfx::RectF(src_rect)));
129 }
130
131 gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
132                                     const gfx::RectF& src_rect) {
133   if (transform.IsIdentityOrTranslation()) {
134     gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
135                           transform.matrix().getFloat(1, 3));
136     return src_rect + offset;
137   }
138
139   // Apply the transform, but retain the result in homogeneous coordinates.
140
141   SkMScalar quad[4 * 2];  // input: 4 x 2D points
142   quad[0] = src_rect.x();
143   quad[1] = src_rect.y();
144   quad[2] = src_rect.right();
145   quad[3] = src_rect.y();
146   quad[4] = src_rect.right();
147   quad[5] = src_rect.bottom();
148   quad[6] = src_rect.x();
149   quad[7] = src_rect.bottom();
150
151   SkMScalar result[4 * 4];  // output: 4 x 4D homogeneous points
152   transform.matrix().map2(quad, 4, result);
153
154   HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
155   HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
156   HomogeneousCoordinate hc2(result[8], result[9], result[10], result[11]);
157   HomogeneousCoordinate hc3(result[12], result[13], result[14], result[15]);
158   return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
159 }
160
161 gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
162                                                 const gfx::Rect& src_rect) {
163   if (transform.IsIdentityOrIntegerTranslation()) {
164     gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
165                          static_cast<int>(transform.matrix().getFloat(1, 3)));
166     return src_rect + offset;
167   }
168   return gfx::ToEnclosingRect(
169       ProjectClippedRect(transform, gfx::RectF(src_rect)));
170 }
171
172 gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
173                                         const gfx::RectF& src_rect) {
174   if (transform.IsIdentityOrTranslation()) {
175     gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
176                           transform.matrix().getFloat(1, 3));
177     return src_rect + offset;
178   }
179
180   // Perform the projection, but retain the result in homogeneous coordinates.
181   gfx::QuadF q = gfx::QuadF(src_rect);
182   HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
183   HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
184   HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
185   HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
186
187   return ComputeEnclosingClippedRect(h1, h2, h3, h4);
188 }
189
190 gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
191     const gfx::Transform& transform,
192     const gfx::Rect& rect) {
193   DCHECK(transform.Preserves2dAxisAlignment());
194
195   if (transform.IsIdentityOrIntegerTranslation()) {
196     gfx::Vector2d offset(static_cast<int>(transform.matrix().getFloat(0, 3)),
197                          static_cast<int>(transform.matrix().getFloat(1, 3)));
198     return rect + offset;
199   }
200   if (transform.IsIdentityOrTranslation()) {
201     gfx::Vector2dF offset(transform.matrix().getFloat(0, 3),
202                           transform.matrix().getFloat(1, 3));
203     return gfx::ToEnclosedRect(rect + offset);
204   }
205
206   SkMScalar quad[2 * 2];  // input: 2 x 2D points
207   quad[0] = rect.x();
208   quad[1] = rect.y();
209   quad[2] = rect.right();
210   quad[3] = rect.bottom();
211
212   SkMScalar result[4 * 2];  // output: 2 x 4D homogeneous points
213   transform.matrix().map2(quad, 2, result);
214
215   HomogeneousCoordinate hc0(result[0], result[1], result[2], result[3]);
216   HomogeneousCoordinate hc1(result[4], result[5], result[6], result[7]);
217   DCHECK(!hc0.ShouldBeClipped());
218   DCHECK(!hc1.ShouldBeClipped());
219
220   gfx::PointF top_left(hc0.CartesianPoint2d());
221   gfx::PointF bottom_right(hc1.CartesianPoint2d());
222   return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
223 }
224
225 void MathUtil::MapClippedQuad(const gfx::Transform& transform,
226                               const gfx::QuadF& src_quad,
227                               gfx::PointF clipped_quad[8],
228                               int* num_vertices_in_clipped_quad) {
229   HomogeneousCoordinate h1 =
230       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
231   HomogeneousCoordinate h2 =
232       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
233   HomogeneousCoordinate h3 =
234       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
235   HomogeneousCoordinate h4 =
236       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
237
238   // The order of adding the vertices to the array is chosen so that
239   // clockwise / counter-clockwise orientation is retained.
240
241   *num_vertices_in_clipped_quad = 0;
242
243   if (!h1.ShouldBeClipped()) {
244     AddVertexToClippedQuad(
245         h1.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
246   }
247
248   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
249     AddVertexToClippedQuad(
250         ComputeClippedPointForEdge(h1, h2).CartesianPoint2d(),
251         clipped_quad,
252         num_vertices_in_clipped_quad);
253   }
254
255   if (!h2.ShouldBeClipped()) {
256     AddVertexToClippedQuad(
257         h2.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
258   }
259
260   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
261     AddVertexToClippedQuad(
262         ComputeClippedPointForEdge(h2, h3).CartesianPoint2d(),
263         clipped_quad,
264         num_vertices_in_clipped_quad);
265   }
266
267   if (!h3.ShouldBeClipped()) {
268     AddVertexToClippedQuad(
269         h3.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
270   }
271
272   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
273     AddVertexToClippedQuad(
274         ComputeClippedPointForEdge(h3, h4).CartesianPoint2d(),
275         clipped_quad,
276         num_vertices_in_clipped_quad);
277   }
278
279   if (!h4.ShouldBeClipped()) {
280     AddVertexToClippedQuad(
281         h4.CartesianPoint2d(), clipped_quad, num_vertices_in_clipped_quad);
282   }
283
284   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
285     AddVertexToClippedQuad(
286         ComputeClippedPointForEdge(h4, h1).CartesianPoint2d(),
287         clipped_quad,
288         num_vertices_in_clipped_quad);
289   }
290
291   DCHECK_LE(*num_vertices_in_clipped_quad, 8);
292 }
293
294 bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
295                                 const gfx::QuadF& src_quad,
296                                 gfx::Point3F clipped_quad[8],
297                                 int* num_vertices_in_clipped_quad) {
298   HomogeneousCoordinate h1 =
299       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p1()));
300   HomogeneousCoordinate h2 =
301       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p2()));
302   HomogeneousCoordinate h3 =
303       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p3()));
304   HomogeneousCoordinate h4 =
305       MapHomogeneousPoint(transform, gfx::Point3F(src_quad.p4()));
306
307   // The order of adding the vertices to the array is chosen so that
308   // clockwise / counter-clockwise orientation is retained.
309
310   *num_vertices_in_clipped_quad = 0;
311
312   if (!h1.ShouldBeClipped()) {
313     AddVertexToClippedQuad3d(
314         h1.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
315   }
316
317   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
318     AddVertexToClippedQuad3d(
319         ComputeClippedPointForEdge(h1, h2).CartesianPoint3d(),
320         clipped_quad,
321         num_vertices_in_clipped_quad);
322   }
323
324   if (!h2.ShouldBeClipped()) {
325     AddVertexToClippedQuad3d(
326         h2.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
327   }
328
329   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
330     AddVertexToClippedQuad3d(
331         ComputeClippedPointForEdge(h2, h3).CartesianPoint3d(),
332         clipped_quad,
333         num_vertices_in_clipped_quad);
334   }
335
336   if (!h3.ShouldBeClipped()) {
337     AddVertexToClippedQuad3d(
338         h3.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
339   }
340
341   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
342     AddVertexToClippedQuad3d(
343         ComputeClippedPointForEdge(h3, h4).CartesianPoint3d(),
344         clipped_quad,
345         num_vertices_in_clipped_quad);
346   }
347
348   if (!h4.ShouldBeClipped()) {
349     AddVertexToClippedQuad3d(
350         h4.CartesianPoint3d(), clipped_quad, num_vertices_in_clipped_quad);
351   }
352
353   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
354     AddVertexToClippedQuad3d(
355         ComputeClippedPointForEdge(h4, h1).CartesianPoint3d(),
356         clipped_quad,
357         num_vertices_in_clipped_quad);
358   }
359
360   DCHECK_LE(*num_vertices_in_clipped_quad, 8);
361   return (*num_vertices_in_clipped_quad >= 4);
362 }
363
364 gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
365     const gfx::PointF vertices[],
366     int num_vertices) {
367   if (num_vertices < 2)
368     return gfx::RectF();
369
370   float xmin = std::numeric_limits<float>::max();
371   float xmax = -std::numeric_limits<float>::max();
372   float ymin = std::numeric_limits<float>::max();
373   float ymax = -std::numeric_limits<float>::max();
374
375   for (int i = 0; i < num_vertices; ++i)
376     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertices[i]);
377
378   return gfx::RectF(gfx::PointF(xmin, ymin),
379                     gfx::SizeF(xmax - xmin, ymax - ymin));
380 }
381
382 gfx::RectF MathUtil::ComputeEnclosingClippedRect(
383     const HomogeneousCoordinate& h1,
384     const HomogeneousCoordinate& h2,
385     const HomogeneousCoordinate& h3,
386     const HomogeneousCoordinate& h4) {
387   // This function performs clipping as necessary and computes the enclosing 2d
388   // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
389   // to avoid the overhead of storing an unknown number of clipped vertices.
390
391   // If no vertices on the quad are clipped, then we can simply return the
392   // enclosing rect directly.
393   bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
394                            h3.ShouldBeClipped() || h4.ShouldBeClipped();
395   if (!something_clipped) {
396     gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
397                                         h2.CartesianPoint2d(),
398                                         h3.CartesianPoint2d(),
399                                         h4.CartesianPoint2d());
400     return mapped_quad.BoundingBox();
401   }
402
403   bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
404                             h3.ShouldBeClipped() && h4.ShouldBeClipped();
405   if (everything_clipped)
406     return gfx::RectF();
407
408   float xmin = std::numeric_limits<float>::max();
409   float xmax = -std::numeric_limits<float>::max();
410   float ymin = std::numeric_limits<float>::max();
411   float ymax = -std::numeric_limits<float>::max();
412
413   if (!h1.ShouldBeClipped())
414     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
415                                h1.CartesianPoint2d());
416
417   if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
418     ExpandBoundsToIncludePoint(&xmin,
419                                &xmax,
420                                &ymin,
421                                &ymax,
422                                ComputeClippedPointForEdge(h1, h2)
423                                    .CartesianPoint2d());
424
425   if (!h2.ShouldBeClipped())
426     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
427                                h2.CartesianPoint2d());
428
429   if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
430     ExpandBoundsToIncludePoint(&xmin,
431                                &xmax,
432                                &ymin,
433                                &ymax,
434                                ComputeClippedPointForEdge(h2, h3)
435                                    .CartesianPoint2d());
436
437   if (!h3.ShouldBeClipped())
438     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
439                                h3.CartesianPoint2d());
440
441   if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
442     ExpandBoundsToIncludePoint(&xmin,
443                                &xmax,
444                                &ymin,
445                                &ymax,
446                                ComputeClippedPointForEdge(h3, h4)
447                                    .CartesianPoint2d());
448
449   if (!h4.ShouldBeClipped())
450     ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
451                                h4.CartesianPoint2d());
452
453   if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
454     ExpandBoundsToIncludePoint(&xmin,
455                                &xmax,
456                                &ymin,
457                                &ymax,
458                                ComputeClippedPointForEdge(h4, h1)
459                                    .CartesianPoint2d());
460
461   return gfx::RectF(gfx::PointF(xmin, ymin),
462                     gfx::SizeF(xmax - xmin, ymax - ymin));
463 }
464
465 gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
466                              const gfx::QuadF& q,
467                              bool* clipped) {
468   if (transform.IsIdentityOrTranslation()) {
469     gfx::QuadF mapped_quad(q);
470     mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
471                                   transform.matrix().getFloat(1, 3));
472     *clipped = false;
473     return mapped_quad;
474   }
475
476   HomogeneousCoordinate h1 =
477       MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
478   HomogeneousCoordinate h2 =
479       MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
480   HomogeneousCoordinate h3 =
481       MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
482   HomogeneousCoordinate h4 =
483       MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
484
485   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
486             h3.ShouldBeClipped() || h4.ShouldBeClipped();
487
488   // Result will be invalid if clipped == true. But, compute it anyway just in
489   // case, to emulate existing behavior.
490   return gfx::QuadF(h1.CartesianPoint2d(),
491                     h2.CartesianPoint2d(),
492                     h3.CartesianPoint2d(),
493                     h4.CartesianPoint2d());
494 }
495
496 gfx::QuadF MathUtil::MapQuad3d(const gfx::Transform& transform,
497                                const gfx::QuadF& q,
498                                gfx::Point3F* p,
499                                bool* clipped) {
500   if (transform.IsIdentityOrTranslation()) {
501     gfx::QuadF mapped_quad(q);
502     mapped_quad += gfx::Vector2dF(transform.matrix().getFloat(0, 3),
503                                   transform.matrix().getFloat(1, 3));
504     *clipped = false;
505     p[0] = gfx::Point3F(mapped_quad.p1().x(), mapped_quad.p1().y(), 0.0f);
506     p[1] = gfx::Point3F(mapped_quad.p2().x(), mapped_quad.p2().y(), 0.0f);
507     p[2] = gfx::Point3F(mapped_quad.p3().x(), mapped_quad.p3().y(), 0.0f);
508     p[3] = gfx::Point3F(mapped_quad.p4().x(), mapped_quad.p4().y(), 0.0f);
509     return mapped_quad;
510   }
511
512   HomogeneousCoordinate h1 =
513       MapHomogeneousPoint(transform, gfx::Point3F(q.p1()));
514   HomogeneousCoordinate h2 =
515       MapHomogeneousPoint(transform, gfx::Point3F(q.p2()));
516   HomogeneousCoordinate h3 =
517       MapHomogeneousPoint(transform, gfx::Point3F(q.p3()));
518   HomogeneousCoordinate h4 =
519       MapHomogeneousPoint(transform, gfx::Point3F(q.p4()));
520
521   *clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
522              h3.ShouldBeClipped() || h4.ShouldBeClipped();
523
524   // Result will be invalid if clipped == true. But, compute it anyway just in
525   // case, to emulate existing behavior.
526   p[0] = h1.CartesianPoint3d();
527   p[1] = h2.CartesianPoint3d();
528   p[2] = h3.CartesianPoint3d();
529   p[3] = h4.CartesianPoint3d();
530
531   return gfx::QuadF(h1.CartesianPoint2d(),
532                     h2.CartesianPoint2d(),
533                     h3.CartesianPoint2d(),
534                     h4.CartesianPoint2d());
535 }
536
537 gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
538                                const gfx::PointF& p,
539                                bool* clipped) {
540   HomogeneousCoordinate h = MapHomogeneousPoint(transform, gfx::Point3F(p));
541
542   if (h.w() > 0) {
543     *clipped = false;
544     return h.CartesianPoint2d();
545   }
546
547   // The cartesian coordinates will be invalid after dividing by w.
548   *clipped = true;
549
550   // Avoid dividing by w if w == 0.
551   if (!h.w())
552     return gfx::PointF();
553
554   // This return value will be invalid because clipped == true, but (1) users of
555   // this code should be ignoring the return value when clipped == true anyway,
556   // and (2) this behavior is more consistent with existing behavior of WebKit
557   // transforms if the user really does not ignore the return value.
558   return h.CartesianPoint2d();
559 }
560
561 gfx::Point3F MathUtil::MapPoint(const gfx::Transform& transform,
562                                 const gfx::Point3F& p,
563                                 bool* clipped) {
564   HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
565
566   if (h.w() > 0) {
567     *clipped = false;
568     return h.CartesianPoint3d();
569   }
570
571   // The cartesian coordinates will be invalid after dividing by w.
572   *clipped = true;
573
574   // Avoid dividing by w if w == 0.
575   if (!h.w())
576     return gfx::Point3F();
577
578   // This return value will be invalid because clipped == true, but (1) users of
579   // this code should be ignoring the return value when clipped == true anyway,
580   // and (2) this behavior is more consistent with existing behavior of WebKit
581   // transforms if the user really does not ignore the return value.
582   return h.CartesianPoint3d();
583 }
584
585 gfx::QuadF MathUtil::ProjectQuad(const gfx::Transform& transform,
586                                  const gfx::QuadF& q,
587                                  bool* clipped) {
588   gfx::QuadF projected_quad;
589   bool clipped_point;
590   projected_quad.set_p1(ProjectPoint(transform, q.p1(), &clipped_point));
591   *clipped = clipped_point;
592   projected_quad.set_p2(ProjectPoint(transform, q.p2(), &clipped_point));
593   *clipped |= clipped_point;
594   projected_quad.set_p3(ProjectPoint(transform, q.p3(), &clipped_point));
595   *clipped |= clipped_point;
596   projected_quad.set_p4(ProjectPoint(transform, q.p4(), &clipped_point));
597   *clipped |= clipped_point;
598
599   return projected_quad;
600 }
601
602 gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
603                                    const gfx::PointF& p,
604                                    bool* clipped) {
605   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
606   // Avoid dividing by w if w == 0.
607   if (!h.w())
608     return gfx::PointF();
609
610   // This return value will be invalid if clipped == true, but (1) users of
611   // this code should be ignoring the return value when clipped == true anyway,
612   // and (2) this behavior is more consistent with existing behavior of WebKit
613   // transforms if the user really does not ignore the return value.
614   return h.CartesianPoint2d();
615 }
616
617 gfx::Point3F MathUtil::ProjectPoint3D(const gfx::Transform& transform,
618                                       const gfx::PointF& p,
619                                       bool* clipped) {
620   HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
621   if (!h.w())
622     return gfx::Point3F();
623   return h.CartesianPoint3d();
624 }
625
626 gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
627                                            const gfx::RectF& scale_outer_rect,
628                                            const gfx::RectF& scale_inner_rect) {
629   gfx::RectF output_inner_rect = input_outer_rect;
630   float scale_rect_to_input_scale_x =
631       scale_outer_rect.width() / input_outer_rect.width();
632   float scale_rect_to_input_scale_y =
633       scale_outer_rect.height() / input_outer_rect.height();
634
635   gfx::Vector2dF top_left_diff =
636       scale_inner_rect.origin() - scale_outer_rect.origin();
637   gfx::Vector2dF bottom_right_diff =
638       scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
639   output_inner_rect.Inset(top_left_diff.x() / scale_rect_to_input_scale_x,
640                           top_left_diff.y() / scale_rect_to_input_scale_y,
641                           -bottom_right_diff.x() / scale_rect_to_input_scale_x,
642                           -bottom_right_diff.y() / scale_rect_to_input_scale_y);
643   return output_inner_rect;
644 }
645
646 static inline bool NearlyZero(double value) {
647   return std::abs(value) < std::numeric_limits<double>::epsilon();
648 }
649
650 static inline float ScaleOnAxis(double a, double b, double c) {
651   if (NearlyZero(b) && NearlyZero(c))
652     return std::abs(a);
653   if (NearlyZero(a) && NearlyZero(c))
654     return std::abs(b);
655   if (NearlyZero(a) && NearlyZero(b))
656     return std::abs(c);
657
658   // Do the sqrt as a double to not lose precision.
659   return static_cast<float>(std::sqrt(a * a + b * b + c * c));
660 }
661
662 gfx::Vector2dF MathUtil::ComputeTransform2dScaleComponents(
663     const gfx::Transform& transform,
664     float fallback_value) {
665   if (transform.HasPerspective())
666     return gfx::Vector2dF(fallback_value, fallback_value);
667   float x_scale = ScaleOnAxis(transform.matrix().getDouble(0, 0),
668                               transform.matrix().getDouble(1, 0),
669                               transform.matrix().getDouble(2, 0));
670   float y_scale = ScaleOnAxis(transform.matrix().getDouble(0, 1),
671                               transform.matrix().getDouble(1, 1),
672                               transform.matrix().getDouble(2, 1));
673   return gfx::Vector2dF(x_scale, y_scale);
674 }
675
676 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
677                                             const gfx::Vector2dF& v2) {
678   double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
679   // Clamp to compensate for rounding errors.
680   dot_product = std::max(-1.0, std::min(1.0, dot_product));
681   return static_cast<float>(Rad2Deg(std::acos(dot_product)));
682 }
683
684 gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
685                                        const gfx::Vector2dF& destination) {
686   float projected_length =
687       gfx::DotProduct(source, destination) / destination.LengthSquared();
688   return gfx::Vector2dF(projected_length * destination.x(),
689                         projected_length * destination.y());
690 }
691
692 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Size& s) {
693   scoped_ptr<base::DictionaryValue> res(new base::DictionaryValue());
694   res->SetDouble("width", s.width());
695   res->SetDouble("height", s.height());
696   return res.Pass();
697 }
698
699 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::Rect& r) {
700   scoped_ptr<base::ListValue> res(new base::ListValue());
701   res->AppendInteger(r.x());
702   res->AppendInteger(r.y());
703   res->AppendInteger(r.width());
704   res->AppendInteger(r.height());
705   return res.Pass();
706 }
707
708 bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
709   const base::ListValue* value = nullptr;
710   if (!raw_value->GetAsList(&value))
711     return false;
712
713   if (value->GetSize() != 4)
714     return false;
715
716   int x, y, w, h;
717   bool ok = true;
718   ok &= value->GetInteger(0, &x);
719   ok &= value->GetInteger(1, &y);
720   ok &= value->GetInteger(2, &w);
721   ok &= value->GetInteger(3, &h);
722   if (!ok)
723     return false;
724
725   *out_rect = gfx::Rect(x, y, w, h);
726   return true;
727 }
728
729 scoped_ptr<base::Value> MathUtil::AsValue(const gfx::PointF& pt) {
730   scoped_ptr<base::ListValue> res(new base::ListValue());
731   res->AppendDouble(pt.x());
732   res->AppendDouble(pt.y());
733   return res.Pass();
734 }
735
736 void MathUtil::AddToTracedValue(const gfx::Size& s,
737                                 base::debug::TracedValue* res) {
738   res->SetDouble("width", s.width());
739   res->SetDouble("height", s.height());
740 }
741
742 void MathUtil::AddToTracedValue(const gfx::SizeF& s,
743                                 base::debug::TracedValue* res) {
744   res->SetDouble("width", s.width());
745   res->SetDouble("height", s.height());
746 }
747
748 void MathUtil::AddToTracedValue(const gfx::Rect& r,
749                                 base::debug::TracedValue* res) {
750   res->AppendInteger(r.x());
751   res->AppendInteger(r.y());
752   res->AppendInteger(r.width());
753   res->AppendInteger(r.height());
754 }
755
756 void MathUtil::AddToTracedValue(const gfx::PointF& pt,
757                                 base::debug::TracedValue* res) {
758   res->AppendDouble(pt.x());
759   res->AppendDouble(pt.y());
760 }
761
762 void MathUtil::AddToTracedValue(const gfx::Point3F& pt,
763                                 base::debug::TracedValue* res) {
764   res->AppendDouble(pt.x());
765   res->AppendDouble(pt.y());
766   res->AppendDouble(pt.z());
767 }
768
769 void MathUtil::AddToTracedValue(const gfx::Vector2d& v,
770                                 base::debug::TracedValue* res) {
771   res->AppendInteger(v.x());
772   res->AppendInteger(v.y());
773 }
774
775 void MathUtil::AddToTracedValue(const gfx::Vector2dF& v,
776                                 base::debug::TracedValue* res) {
777   res->AppendDouble(v.x());
778   res->AppendDouble(v.y());
779 }
780
781 void MathUtil::AddToTracedValue(const gfx::ScrollOffset& v,
782                                 base::debug::TracedValue* res) {
783   res->AppendDouble(v.x());
784   res->AppendDouble(v.y());
785 }
786
787 void MathUtil::AddToTracedValue(const gfx::QuadF& q,
788                                 base::debug::TracedValue* res) {
789   res->AppendDouble(q.p1().x());
790   res->AppendDouble(q.p1().y());
791   res->AppendDouble(q.p2().x());
792   res->AppendDouble(q.p2().y());
793   res->AppendDouble(q.p3().x());
794   res->AppendDouble(q.p3().y());
795   res->AppendDouble(q.p4().x());
796   res->AppendDouble(q.p4().y());
797 }
798
799 void MathUtil::AddToTracedValue(const gfx::RectF& rect,
800                                 base::debug::TracedValue* res) {
801   res->AppendDouble(rect.x());
802   res->AppendDouble(rect.y());
803   res->AppendDouble(rect.width());
804   res->AppendDouble(rect.height());
805 }
806
807 void MathUtil::AddToTracedValue(const gfx::Transform& transform,
808                                 base::debug::TracedValue* res) {
809   const SkMatrix44& m = transform.matrix();
810   for (int row = 0; row < 4; ++row) {
811     for (int col = 0; col < 4; ++col)
812       res->AppendDouble(m.getDouble(row, col));
813   }
814 }
815
816 void MathUtil::AddToTracedValue(const gfx::BoxF& box,
817                                 base::debug::TracedValue* res) {
818   res->AppendInteger(box.x());
819   res->AppendInteger(box.y());
820   res->AppendInteger(box.z());
821   res->AppendInteger(box.width());
822   res->AppendInteger(box.height());
823   res->AppendInteger(box.depth());
824 }
825
826 double MathUtil::AsDoubleSafely(double value) {
827   return std::min(value, std::numeric_limits<double>::max());
828 }
829
830 float MathUtil::AsFloatSafely(float value) {
831   return std::min(value, std::numeric_limits<float>::max());
832 }
833
834 }  // namespace cc