Upstream version 9.38.198.0
[platform/framework/web/crosswalk.git] / src / base / bind_helpers.h
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
8 //
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
11 //
12 //
13 // ARGUMENT BINDING WRAPPERS
14 //
15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
17 //
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
20 //
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
23 //
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function.  Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
30 //
31 // ConstRef() allows binding a constant reference to an argument rather
32 // than a copy.
33 //
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
38 //
39 // EXAMPLE OF Unretained():
40 //
41 //   class Foo {
42 //    public:
43 //     void func() { cout << "Foo:f" << endl; }
44 //   };
45 //
46 //   // In some function somewhere.
47 //   Foo foo;
48 //   Closure foo_callback =
49 //       Bind(&Foo::func, Unretained(&foo));
50 //   foo_callback.Run();  // Prints "Foo:f".
51 //
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
54 //
55 //
56 // EXAMPLE OF Owned():
57 //
58 //   void foo(int* arg) { cout << *arg << endl }
59 //
60 //   int* pn = new int(1);
61 //   Closure foo_callback = Bind(&foo, Owned(pn));
62 //
63 //   foo_callback.Run();  // Prints "1"
64 //   foo_callback.Run();  // Prints "1"
65 //   *n = 2;
66 //   foo_callback.Run();  // Prints "2"
67 //
68 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
69 //                          // |foo_callback| goes out of scope.
70 //
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
73 //
74 //
75 // EXAMPLE OF ConstRef():
76 //
77 //   void foo(int arg) { cout << arg << endl }
78 //
79 //   int n = 1;
80 //   Closure no_ref = Bind(&foo, n);
81 //   Closure has_ref = Bind(&foo, ConstRef(n));
82 //
83 //   no_ref.Run();  // Prints "1"
84 //   has_ref.Run();  // Prints "1"
85 //
86 //   n = 2;
87 //   no_ref.Run();  // Prints "1"
88 //   has_ref.Run();  // Prints "2"
89 //
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
92 //
93 //
94 // EXAMPLE OF IgnoreResult():
95 //
96 //   int DoSomething(int arg) { cout << arg << endl; }
97 //
98 //   // Assign to a Callback with a void return type.
99 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 //   cb->Run(1);  // Prints "1".
101 //
102 //   // Prints "1" on |ml|.
103 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
104 //
105 //
106 // EXAMPLE OF Passed():
107 //
108 //   void TakesOwnership(scoped_ptr<Foo> arg) { }
109 //   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
110 //
111 //   scoped_ptr<Foo> f(new Foo());
112 //
113 //   // |cb| is given ownership of Foo(). |f| is now NULL.
114 //   // You can use f.Pass() in place of &f, but it's more verbose.
115 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
116 //
117 //   // Run was never called so |cb| still owns Foo() and deletes
118 //   // it on Reset().
119 //   cb.Reset();
120 //
121 //   // |cb| is given a new Foo created by CreateFoo().
122 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
123 //
124 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 //   // no longer owns Foo() and, if reset, would not delete Foo().
126 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
127 //   cb.Run();  // This CHECK()s since Foo() already been used once.
128 //
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a MessageLoopProxy.
133 //
134 //
135 // SIMPLE FUNCTIONS AND UTILITIES.
136 //
137 //   DoNothing() - Useful for creating a Closure that does nothing when called.
138 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
139 //                        pointer when invoked. Only use this when necessary.
140 //                        In most cases MessageLoop::DeleteSoon() is a better
141 //                        fit.
142
143 #ifndef BASE_BIND_HELPERS_H_
144 #define BASE_BIND_HELPERS_H_
145
146 #include "base/basictypes.h"
147 #include "base/callback.h"
148 #include "base/memory/weak_ptr.h"
149 #include "base/template_util.h"
150
151 namespace base {
152 namespace internal {
153
154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
155 // for the existence of AddRef() and Release() functions of the correct
156 // signature.
157 //
158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
162 //
163 // The last link in particular show the method used below.
164 //
165 // For SFINAE to work with inherited methods, we need to pull some extra tricks
166 // with multiple inheritance.  In the more standard formulation, the overloads
167 // of Check would be:
168 //
169 //   template <typename C>
170 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
171 //
172 //   template <typename C>
173 //   No NotTheCheckWeWant(...);
174 //
175 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
176 //
177 // The problem here is that template resolution will not match
178 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
180 // |value| will be false.  This formulation only checks for whether or
181 // not TargetFunc exist directly in the class being introspected.
182 //
183 // To get around this, we play a dirty trick with multiple inheritance.
184 // First, We create a class BaseMixin that declares each function that we
185 // want to probe for.  Then we create a class Base that inherits from both T
186 // (the class we wish to probe) and BaseMixin.  Note that the function
187 // signature in BaseMixin does not need to match the signature of the function
188 // we are probing for; thus it's easiest to just use void(void).
189 //
190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
191 // ambiguous resolution between BaseMixin and T.  This lets us write the
192 // following:
193 //
194 //   template <typename C>
195 //   No GoodCheck(Helper<&C::TargetFunc>*);
196 //
197 //   template <typename C>
198 //   Yes GoodCheck(...);
199 //
200 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
201 //
202 // Notice here that the variadic version of GoodCheck() returns Yes here
203 // instead of No like the previous one. Also notice that we calculate |value|
204 // by specializing GoodCheck() on Base instead of T.
205 //
206 // We've reversed the roles of the variadic, and Helper overloads.
207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
209 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
211 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
212 //
213 // This method of SFINAE will correctly probe for inherited names, but it cannot
214 // typecheck those names.  It's still a good enough sanity check though.
215 //
216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
217 //
218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
219 // this works well.
220 //
221 // TODO(ajwong): Make this check for Release() as well.
222 // See http://crbug.com/82038.
223 template <typename T>
224 class SupportsAddRefAndRelease {
225   typedef char Yes[1];
226   typedef char No[2];
227
228   struct BaseMixin {
229     void AddRef();
230   };
231
232 // MSVC warns when you try to use Base if T has a private destructor, the
233 // common pattern for refcounted types. It does this even though no attempt to
234 // instantiate Base is made.  We disable the warning for this definition.
235 #if defined(OS_WIN)
236 #pragma warning(push)
237 #pragma warning(disable:4624)
238 #endif
239   struct Base : public T, public BaseMixin {
240   };
241 #if defined(OS_WIN)
242 #pragma warning(pop)
243 #endif
244
245   template <void(BaseMixin::*)(void)> struct Helper {};
246
247   template <typename C>
248   static No& Check(Helper<&C::AddRef>*);
249
250   template <typename >
251   static Yes& Check(...);
252
253  public:
254   enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
255 };
256
257 // Helpers to assert that arguments of a recounted type are bound with a
258 // scoped_refptr.
259 template <bool IsClasstype, typename T>
260 struct UnsafeBindtoRefCountedArgHelper : false_type {
261 };
262
263 template <typename T>
264 struct UnsafeBindtoRefCountedArgHelper<true, T>
265     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
266 };
267
268 template <typename T>
269 struct UnsafeBindtoRefCountedArg : false_type {
270 };
271
272 template <typename T>
273 struct UnsafeBindtoRefCountedArg<T*>
274     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
275 };
276
277 template <typename T>
278 class HasIsMethodTag {
279   typedef char Yes[1];
280   typedef char No[2];
281
282   template <typename U>
283   static Yes& Check(typename U::IsMethod*);
284
285   template <typename U>
286   static No& Check(...);
287
288  public:
289   enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
290 };
291
292 template <typename T>
293 class UnretainedWrapper {
294  public:
295   explicit UnretainedWrapper(T* o) : ptr_(o) {}
296   T* get() const { return ptr_; }
297  private:
298   T* ptr_;
299 };
300
301 template <typename T>
302 class ConstRefWrapper {
303  public:
304   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
305   const T& get() const { return *ptr_; }
306  private:
307   const T* ptr_;
308 };
309
310 template <typename T>
311 struct IgnoreResultHelper {
312   explicit IgnoreResultHelper(T functor) : functor_(functor) {}
313
314   T functor_;
315 };
316
317 template <typename T>
318 struct IgnoreResultHelper<Callback<T> > {
319   explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
320
321   const Callback<T>& functor_;
322 };
323
324 // An alternate implementation is to avoid the destructive copy, and instead
325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
326 // a class that is essentially a scoped_ptr<>.
327 //
328 // The current implementation has the benefit though of leaving ParamTraits<>
329 // fully in callback_internal.h as well as avoiding type conversions during
330 // storage.
331 template <typename T>
332 class OwnedWrapper {
333  public:
334   explicit OwnedWrapper(T* o) : ptr_(o) {}
335   ~OwnedWrapper() { delete ptr_; }
336   T* get() const { return ptr_; }
337   OwnedWrapper(const OwnedWrapper& other) {
338     ptr_ = other.ptr_;
339     other.ptr_ = NULL;
340   }
341
342  private:
343   mutable T* ptr_;
344 };
345
346 // PassedWrapper is a copyable adapter for a scoper that ignores const.
347 //
348 // It is needed to get around the fact that Bind() takes a const reference to
349 // all its arguments.  Because Bind() takes a const reference to avoid
350 // unnecessary copies, it is incompatible with movable-but-not-copyable
351 // types; doing a destructive "move" of the type into Bind() would violate
352 // the const correctness.
353 //
354 // This conundrum cannot be solved without either C++11 rvalue references or
355 // a O(2^n) blowup of Bind() templates to handle each combination of regular
356 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
357 // that is copyable to transmit the correct type information down into
358 // BindState<>. Ignoring const in this type makes sense because it is only
359 // created when we are explicitly trying to do a destructive move.
360 //
361 // Two notes:
362 //  1) PassedWrapper supports any type that has a "Pass()" function.
363 //     This is intentional. The whitelisting of which specific types we
364 //     support is maintained by CallbackParamTraits<>.
365 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
366 //     scoper to a Callback and allow the Callback to execute once.
367 template <typename T>
368 class PassedWrapper {
369  public:
370   explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
371   PassedWrapper(const PassedWrapper& other)
372       : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
373   }
374   T Pass() const {
375     CHECK(is_valid_);
376     is_valid_ = false;
377     return scoper_.Pass();
378   }
379
380  private:
381   mutable bool is_valid_;
382   mutable T scoper_;
383 };
384
385 // Unwrap the stored parameters for the wrappers above.
386 template <typename T>
387 struct UnwrapTraits {
388   typedef const T& ForwardType;
389   static ForwardType Unwrap(const T& o) { return o; }
390 };
391
392 template <typename T>
393 struct UnwrapTraits<UnretainedWrapper<T> > {
394   typedef T* ForwardType;
395   static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
396     return unretained.get();
397   }
398 };
399
400 template <typename T>
401 struct UnwrapTraits<ConstRefWrapper<T> > {
402   typedef const T& ForwardType;
403   static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
404     return const_ref.get();
405   }
406 };
407
408 template <typename T>
409 struct UnwrapTraits<scoped_refptr<T> > {
410   typedef T* ForwardType;
411   static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
412 };
413
414 template <typename T>
415 struct UnwrapTraits<WeakPtr<T> > {
416   typedef const WeakPtr<T>& ForwardType;
417   static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
418 };
419
420 template <typename T>
421 struct UnwrapTraits<OwnedWrapper<T> > {
422   typedef T* ForwardType;
423   static ForwardType Unwrap(const OwnedWrapper<T>& o) {
424     return o.get();
425   }
426 };
427
428 template <typename T>
429 struct UnwrapTraits<PassedWrapper<T> > {
430   typedef T ForwardType;
431   static T Unwrap(PassedWrapper<T>& o) {
432     return o.Pass();
433   }
434 };
435
436 // Utility for handling different refcounting semantics in the Bind()
437 // function.
438 template <bool is_method, typename T>
439 struct MaybeRefcount;
440
441 template <typename T>
442 struct MaybeRefcount<false, T> {
443   static void AddRef(const T&) {}
444   static void Release(const T&) {}
445 };
446
447 template <typename T, size_t n>
448 struct MaybeRefcount<false, T[n]> {
449   static void AddRef(const T*) {}
450   static void Release(const T*) {}
451 };
452
453 template <typename T>
454 struct MaybeRefcount<true, T> {
455   static void AddRef(const T&) {}
456   static void Release(const T&) {}
457 };
458
459 template <typename T>
460 struct MaybeRefcount<true, T*> {
461   static void AddRef(T* o) { o->AddRef(); }
462   static void Release(T* o) { o->Release(); }
463 };
464
465 // No need to additionally AddRef() and Release() since we are storing a
466 // scoped_refptr<> inside the storage object already.
467 template <typename T>
468 struct MaybeRefcount<true, scoped_refptr<T> > {
469   static void AddRef(const scoped_refptr<T>& o) {}
470   static void Release(const scoped_refptr<T>& o) {}
471 };
472
473 template <typename T>
474 struct MaybeRefcount<true, const T*> {
475   static void AddRef(const T* o) { o->AddRef(); }
476   static void Release(const T* o) { o->Release(); }
477 };
478
479 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
480 // method.  It is used internally by Bind() to select the correct
481 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
482 // the target object is invalidated.
483 //
484 // P1 should be the type of the object that will be received of the method.
485 template <bool IsMethod, typename P1>
486 struct IsWeakMethod : public false_type {};
487
488 template <typename T>
489 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
490
491 template <typename T>
492 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {};
493
494 }  // namespace internal
495
496 template <typename T>
497 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
498   return internal::UnretainedWrapper<T>(o);
499 }
500
501 template <typename T>
502 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
503   return internal::ConstRefWrapper<T>(o);
504 }
505
506 template <typename T>
507 static inline internal::OwnedWrapper<T> Owned(T* o) {
508   return internal::OwnedWrapper<T>(o);
509 }
510
511 // We offer 2 syntaxes for calling Passed().  The first takes a temporary and
512 // is best suited for use with the return value of a function. The second
513 // takes a pointer to the scoper and is just syntactic sugar to avoid having
514 // to write Passed(scoper.Pass()).
515 template <typename T>
516 static inline internal::PassedWrapper<T> Passed(T scoper) {
517   return internal::PassedWrapper<T>(scoper.Pass());
518 }
519 template <typename T>
520 static inline internal::PassedWrapper<T> Passed(T* scoper) {
521   return internal::PassedWrapper<T>(scoper->Pass());
522 }
523
524 template <typename T>
525 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
526   return internal::IgnoreResultHelper<T>(data);
527 }
528
529 template <typename T>
530 static inline internal::IgnoreResultHelper<Callback<T> >
531 IgnoreResult(const Callback<T>& data) {
532   return internal::IgnoreResultHelper<Callback<T> >(data);
533 }
534
535 BASE_EXPORT void DoNothing();
536
537 template<typename T>
538 void DeletePointer(T* obj) {
539   delete obj;
540 }
541
542 }  // namespace base
543
544 #endif  // BASE_BIND_HELPERS_H_