Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / ipv6 / ip6_fib.c
1 /*
2  *      Linux INET6 implementation
3  *      Forwarding Information Database
4  *
5  *      Authors:
6  *      Pedro Roque             <roque@di.fc.ul.pt>
7  *
8  *      This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  */
13
14 /*
15  *      Changes:
16  *      Yuji SEKIYA @USAGI:     Support default route on router node;
17  *                              remove ip6_null_entry from the top of
18  *                              routing table.
19  *      Ville Nuorvala:         Fixed routing subtrees.
20  */
21
22 #define pr_fmt(fmt) "IPv6: " fmt
23
24 #include <linux/errno.h>
25 #include <linux/types.h>
26 #include <linux/net.h>
27 #include <linux/route.h>
28 #include <linux/netdevice.h>
29 #include <linux/in6.h>
30 #include <linux/init.h>
31 #include <linux/list.h>
32 #include <linux/slab.h>
33
34 #include <net/ipv6.h>
35 #include <net/ndisc.h>
36 #include <net/addrconf.h>
37
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
40
41 #define RT6_DEBUG 2
42
43 #if RT6_DEBUG >= 3
44 #define RT6_TRACE(x...) pr_debug(x)
45 #else
46 #define RT6_TRACE(x...) do { ; } while (0)
47 #endif
48
49 static struct kmem_cache * fib6_node_kmem __read_mostly;
50
51 enum fib_walk_state_t
52 {
53 #ifdef CONFIG_IPV6_SUBTREES
54         FWS_S,
55 #endif
56         FWS_L,
57         FWS_R,
58         FWS_C,
59         FWS_U
60 };
61
62 struct fib6_cleaner_t
63 {
64         struct fib6_walker_t w;
65         struct net *net;
66         int (*func)(struct rt6_info *, void *arg);
67         void *arg;
68 };
69
70 static DEFINE_RWLOCK(fib6_walker_lock);
71
72 #ifdef CONFIG_IPV6_SUBTREES
73 #define FWS_INIT FWS_S
74 #else
75 #define FWS_INIT FWS_L
76 #endif
77
78 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
79                               struct rt6_info *rt);
80 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
81 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
82 static int fib6_walk(struct fib6_walker_t *w);
83 static int fib6_walk_continue(struct fib6_walker_t *w);
84
85 /*
86  *      A routing update causes an increase of the serial number on the
87  *      affected subtree. This allows for cached routes to be asynchronously
88  *      tested when modifications are made to the destination cache as a
89  *      result of redirects, path MTU changes, etc.
90  */
91
92 static __u32 rt_sernum;
93
94 static void fib6_gc_timer_cb(unsigned long arg);
95
96 static LIST_HEAD(fib6_walkers);
97 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
98
99 static inline void fib6_walker_link(struct fib6_walker_t *w)
100 {
101         write_lock_bh(&fib6_walker_lock);
102         list_add(&w->lh, &fib6_walkers);
103         write_unlock_bh(&fib6_walker_lock);
104 }
105
106 static inline void fib6_walker_unlink(struct fib6_walker_t *w)
107 {
108         write_lock_bh(&fib6_walker_lock);
109         list_del(&w->lh);
110         write_unlock_bh(&fib6_walker_lock);
111 }
112 static __inline__ u32 fib6_new_sernum(void)
113 {
114         u32 n = ++rt_sernum;
115         if ((__s32)n <= 0)
116                 rt_sernum = n = 1;
117         return n;
118 }
119
120 /*
121  *      Auxiliary address test functions for the radix tree.
122  *
123  *      These assume a 32bit processor (although it will work on
124  *      64bit processors)
125  */
126
127 /*
128  *      test bit
129  */
130 #if defined(__LITTLE_ENDIAN)
131 # define BITOP_BE32_SWIZZLE     (0x1F & ~7)
132 #else
133 # define BITOP_BE32_SWIZZLE     0
134 #endif
135
136 static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
137 {
138         const __be32 *addr = token;
139         /*
140          * Here,
141          *      1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
142          * is optimized version of
143          *      htonl(1 << ((~fn_bit)&0x1F))
144          * See include/asm-generic/bitops/le.h.
145          */
146         return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
147                addr[fn_bit >> 5];
148 }
149
150 static __inline__ struct fib6_node * node_alloc(void)
151 {
152         struct fib6_node *fn;
153
154         fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
155
156         return fn;
157 }
158
159 static __inline__ void node_free(struct fib6_node * fn)
160 {
161         kmem_cache_free(fib6_node_kmem, fn);
162 }
163
164 static __inline__ void rt6_release(struct rt6_info *rt)
165 {
166         if (atomic_dec_and_test(&rt->rt6i_ref))
167                 dst_free(&rt->dst);
168 }
169
170 static void fib6_link_table(struct net *net, struct fib6_table *tb)
171 {
172         unsigned int h;
173
174         /*
175          * Initialize table lock at a single place to give lockdep a key,
176          * tables aren't visible prior to being linked to the list.
177          */
178         rwlock_init(&tb->tb6_lock);
179
180         h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
181
182         /*
183          * No protection necessary, this is the only list mutatation
184          * operation, tables never disappear once they exist.
185          */
186         hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
187 }
188
189 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
190
191 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
192 {
193         struct fib6_table *table;
194
195         table = kzalloc(sizeof(*table), GFP_ATOMIC);
196         if (table) {
197                 table->tb6_id = id;
198                 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
199                 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
200                 inet_peer_base_init(&table->tb6_peers);
201         }
202
203         return table;
204 }
205
206 struct fib6_table *fib6_new_table(struct net *net, u32 id)
207 {
208         struct fib6_table *tb;
209
210         if (id == 0)
211                 id = RT6_TABLE_MAIN;
212         tb = fib6_get_table(net, id);
213         if (tb)
214                 return tb;
215
216         tb = fib6_alloc_table(net, id);
217         if (tb)
218                 fib6_link_table(net, tb);
219
220         return tb;
221 }
222
223 struct fib6_table *fib6_get_table(struct net *net, u32 id)
224 {
225         struct fib6_table *tb;
226         struct hlist_head *head;
227         unsigned int h;
228
229         if (id == 0)
230                 id = RT6_TABLE_MAIN;
231         h = id & (FIB6_TABLE_HASHSZ - 1);
232         rcu_read_lock();
233         head = &net->ipv6.fib_table_hash[h];
234         hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
235                 if (tb->tb6_id == id) {
236                         rcu_read_unlock();
237                         return tb;
238                 }
239         }
240         rcu_read_unlock();
241
242         return NULL;
243 }
244
245 static void __net_init fib6_tables_init(struct net *net)
246 {
247         fib6_link_table(net, net->ipv6.fib6_main_tbl);
248         fib6_link_table(net, net->ipv6.fib6_local_tbl);
249 }
250 #else
251
252 struct fib6_table *fib6_new_table(struct net *net, u32 id)
253 {
254         return fib6_get_table(net, id);
255 }
256
257 struct fib6_table *fib6_get_table(struct net *net, u32 id)
258 {
259           return net->ipv6.fib6_main_tbl;
260 }
261
262 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
263                                    int flags, pol_lookup_t lookup)
264 {
265         return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270         fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 }
272
273 #endif
274
275 static int fib6_dump_node(struct fib6_walker_t *w)
276 {
277         int res;
278         struct rt6_info *rt;
279
280         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
281                 res = rt6_dump_route(rt, w->args);
282                 if (res < 0) {
283                         /* Frame is full, suspend walking */
284                         w->leaf = rt;
285                         return 1;
286                 }
287                 WARN_ON(res == 0);
288         }
289         w->leaf = NULL;
290         return 0;
291 }
292
293 static void fib6_dump_end(struct netlink_callback *cb)
294 {
295         struct fib6_walker_t *w = (void*)cb->args[2];
296
297         if (w) {
298                 if (cb->args[4]) {
299                         cb->args[4] = 0;
300                         fib6_walker_unlink(w);
301                 }
302                 cb->args[2] = 0;
303                 kfree(w);
304         }
305         cb->done = (void*)cb->args[3];
306         cb->args[1] = 3;
307 }
308
309 static int fib6_dump_done(struct netlink_callback *cb)
310 {
311         fib6_dump_end(cb);
312         return cb->done ? cb->done(cb) : 0;
313 }
314
315 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
316                            struct netlink_callback *cb)
317 {
318         struct fib6_walker_t *w;
319         int res;
320
321         w = (void *)cb->args[2];
322         w->root = &table->tb6_root;
323
324         if (cb->args[4] == 0) {
325                 w->count = 0;
326                 w->skip = 0;
327
328                 read_lock_bh(&table->tb6_lock);
329                 res = fib6_walk(w);
330                 read_unlock_bh(&table->tb6_lock);
331                 if (res > 0) {
332                         cb->args[4] = 1;
333                         cb->args[5] = w->root->fn_sernum;
334                 }
335         } else {
336                 if (cb->args[5] != w->root->fn_sernum) {
337                         /* Begin at the root if the tree changed */
338                         cb->args[5] = w->root->fn_sernum;
339                         w->state = FWS_INIT;
340                         w->node = w->root;
341                         w->skip = w->count;
342                 } else
343                         w->skip = 0;
344
345                 read_lock_bh(&table->tb6_lock);
346                 res = fib6_walk_continue(w);
347                 read_unlock_bh(&table->tb6_lock);
348                 if (res <= 0) {
349                         fib6_walker_unlink(w);
350                         cb->args[4] = 0;
351                 }
352         }
353
354         return res;
355 }
356
357 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
358 {
359         struct net *net = sock_net(skb->sk);
360         unsigned int h, s_h;
361         unsigned int e = 0, s_e;
362         struct rt6_rtnl_dump_arg arg;
363         struct fib6_walker_t *w;
364         struct fib6_table *tb;
365         struct hlist_head *head;
366         int res = 0;
367
368         s_h = cb->args[0];
369         s_e = cb->args[1];
370
371         w = (void *)cb->args[2];
372         if (!w) {
373                 /* New dump:
374                  *
375                  * 1. hook callback destructor.
376                  */
377                 cb->args[3] = (long)cb->done;
378                 cb->done = fib6_dump_done;
379
380                 /*
381                  * 2. allocate and initialize walker.
382                  */
383                 w = kzalloc(sizeof(*w), GFP_ATOMIC);
384                 if (!w)
385                         return -ENOMEM;
386                 w->func = fib6_dump_node;
387                 cb->args[2] = (long)w;
388         }
389
390         arg.skb = skb;
391         arg.cb = cb;
392         arg.net = net;
393         w->args = &arg;
394
395         rcu_read_lock();
396         for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
397                 e = 0;
398                 head = &net->ipv6.fib_table_hash[h];
399                 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
400                         if (e < s_e)
401                                 goto next;
402                         res = fib6_dump_table(tb, skb, cb);
403                         if (res != 0)
404                                 goto out;
405 next:
406                         e++;
407                 }
408         }
409 out:
410         rcu_read_unlock();
411         cb->args[1] = e;
412         cb->args[0] = h;
413
414         res = res < 0 ? res : skb->len;
415         if (res <= 0)
416                 fib6_dump_end(cb);
417         return res;
418 }
419
420 /*
421  *      Routing Table
422  *
423  *      return the appropriate node for a routing tree "add" operation
424  *      by either creating and inserting or by returning an existing
425  *      node.
426  */
427
428 static struct fib6_node *fib6_add_1(struct fib6_node *root,
429                                      struct in6_addr *addr, int plen,
430                                      int offset, int allow_create,
431                                      int replace_required)
432 {
433         struct fib6_node *fn, *in, *ln;
434         struct fib6_node *pn = NULL;
435         struct rt6key *key;
436         int     bit;
437         __be32  dir = 0;
438         __u32   sernum = fib6_new_sernum();
439
440         RT6_TRACE("fib6_add_1\n");
441
442         /* insert node in tree */
443
444         fn = root;
445
446         do {
447                 key = (struct rt6key *)((u8 *)fn->leaf + offset);
448
449                 /*
450                  *      Prefix match
451                  */
452                 if (plen < fn->fn_bit ||
453                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
454                         if (!allow_create) {
455                                 if (replace_required) {
456                                         pr_warn("Can't replace route, no match found\n");
457                                         return ERR_PTR(-ENOENT);
458                                 }
459                                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
460                         }
461                         goto insert_above;
462                 }
463
464                 /*
465                  *      Exact match ?
466                  */
467
468                 if (plen == fn->fn_bit) {
469                         /* clean up an intermediate node */
470                         if (!(fn->fn_flags & RTN_RTINFO)) {
471                                 rt6_release(fn->leaf);
472                                 fn->leaf = NULL;
473                         }
474
475                         fn->fn_sernum = sernum;
476
477                         return fn;
478                 }
479
480                 /*
481                  *      We have more bits to go
482                  */
483
484                 /* Try to walk down on tree. */
485                 fn->fn_sernum = sernum;
486                 dir = addr_bit_set(addr, fn->fn_bit);
487                 pn = fn;
488                 fn = dir ? fn->right: fn->left;
489         } while (fn);
490
491         if (!allow_create) {
492                 /* We should not create new node because
493                  * NLM_F_REPLACE was specified without NLM_F_CREATE
494                  * I assume it is safe to require NLM_F_CREATE when
495                  * REPLACE flag is used! Later we may want to remove the
496                  * check for replace_required, because according
497                  * to netlink specification, NLM_F_CREATE
498                  * MUST be specified if new route is created.
499                  * That would keep IPv6 consistent with IPv4
500                  */
501                 if (replace_required) {
502                         pr_warn("Can't replace route, no match found\n");
503                         return ERR_PTR(-ENOENT);
504                 }
505                 pr_warn("NLM_F_CREATE should be set when creating new route\n");
506         }
507         /*
508          *      We walked to the bottom of tree.
509          *      Create new leaf node without children.
510          */
511
512         ln = node_alloc();
513
514         if (!ln)
515                 return ERR_PTR(-ENOMEM);
516         ln->fn_bit = plen;
517
518         ln->parent = pn;
519         ln->fn_sernum = sernum;
520
521         if (dir)
522                 pn->right = ln;
523         else
524                 pn->left  = ln;
525
526         return ln;
527
528
529 insert_above:
530         /*
531          * split since we don't have a common prefix anymore or
532          * we have a less significant route.
533          * we've to insert an intermediate node on the list
534          * this new node will point to the one we need to create
535          * and the current
536          */
537
538         pn = fn->parent;
539
540         /* find 1st bit in difference between the 2 addrs.
541
542            See comment in __ipv6_addr_diff: bit may be an invalid value,
543            but if it is >= plen, the value is ignored in any case.
544          */
545
546         bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
547
548         /*
549          *              (intermediate)[in]
550          *                /        \
551          *      (new leaf node)[ln] (old node)[fn]
552          */
553         if (plen > bit) {
554                 in = node_alloc();
555                 ln = node_alloc();
556
557                 if (!in || !ln) {
558                         if (in)
559                                 node_free(in);
560                         if (ln)
561                                 node_free(ln);
562                         return ERR_PTR(-ENOMEM);
563                 }
564
565                 /*
566                  * new intermediate node.
567                  * RTN_RTINFO will
568                  * be off since that an address that chooses one of
569                  * the branches would not match less specific routes
570                  * in the other branch
571                  */
572
573                 in->fn_bit = bit;
574
575                 in->parent = pn;
576                 in->leaf = fn->leaf;
577                 atomic_inc(&in->leaf->rt6i_ref);
578
579                 in->fn_sernum = sernum;
580
581                 /* update parent pointer */
582                 if (dir)
583                         pn->right = in;
584                 else
585                         pn->left  = in;
586
587                 ln->fn_bit = plen;
588
589                 ln->parent = in;
590                 fn->parent = in;
591
592                 ln->fn_sernum = sernum;
593
594                 if (addr_bit_set(addr, bit)) {
595                         in->right = ln;
596                         in->left  = fn;
597                 } else {
598                         in->left  = ln;
599                         in->right = fn;
600                 }
601         } else { /* plen <= bit */
602
603                 /*
604                  *              (new leaf node)[ln]
605                  *                /        \
606                  *           (old node)[fn] NULL
607                  */
608
609                 ln = node_alloc();
610
611                 if (!ln)
612                         return ERR_PTR(-ENOMEM);
613
614                 ln->fn_bit = plen;
615
616                 ln->parent = pn;
617
618                 ln->fn_sernum = sernum;
619
620                 if (dir)
621                         pn->right = ln;
622                 else
623                         pn->left  = ln;
624
625                 if (addr_bit_set(&key->addr, plen))
626                         ln->right = fn;
627                 else
628                         ln->left  = fn;
629
630                 fn->parent = ln;
631         }
632         return ln;
633 }
634
635 static inline bool rt6_qualify_for_ecmp(struct rt6_info *rt)
636 {
637         return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
638                RTF_GATEWAY;
639 }
640
641 /*
642  *      Insert routing information in a node.
643  */
644
645 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
646                             struct nl_info *info)
647 {
648         struct rt6_info *iter = NULL;
649         struct rt6_info **ins;
650         int replace = (info->nlh &&
651                        (info->nlh->nlmsg_flags & NLM_F_REPLACE));
652         int add = (!info->nlh ||
653                    (info->nlh->nlmsg_flags & NLM_F_CREATE));
654         int found = 0;
655         bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
656
657         ins = &fn->leaf;
658
659         for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
660                 /*
661                  *      Search for duplicates
662                  */
663
664                 if (iter->rt6i_metric == rt->rt6i_metric) {
665                         /*
666                          *      Same priority level
667                          */
668                         if (info->nlh &&
669                             (info->nlh->nlmsg_flags & NLM_F_EXCL))
670                                 return -EEXIST;
671                         if (replace) {
672                                 found++;
673                                 break;
674                         }
675
676                         if (iter->dst.dev == rt->dst.dev &&
677                             iter->rt6i_idev == rt->rt6i_idev &&
678                             ipv6_addr_equal(&iter->rt6i_gateway,
679                                             &rt->rt6i_gateway)) {
680                                 if (rt->rt6i_nsiblings)
681                                         rt->rt6i_nsiblings = 0;
682                                 if (!(iter->rt6i_flags & RTF_EXPIRES))
683                                         return -EEXIST;
684                                 if (!(rt->rt6i_flags & RTF_EXPIRES))
685                                         rt6_clean_expires(iter);
686                                 else
687                                         rt6_set_expires(iter, rt->dst.expires);
688                                 return -EEXIST;
689                         }
690                         /* If we have the same destination and the same metric,
691                          * but not the same gateway, then the route we try to
692                          * add is sibling to this route, increment our counter
693                          * of siblings, and later we will add our route to the
694                          * list.
695                          * Only static routes (which don't have flag
696                          * RTF_EXPIRES) are used for ECMPv6.
697                          *
698                          * To avoid long list, we only had siblings if the
699                          * route have a gateway.
700                          */
701                         if (rt_can_ecmp &&
702                             rt6_qualify_for_ecmp(iter))
703                                 rt->rt6i_nsiblings++;
704                 }
705
706                 if (iter->rt6i_metric > rt->rt6i_metric)
707                         break;
708
709                 ins = &iter->dst.rt6_next;
710         }
711
712         /* Reset round-robin state, if necessary */
713         if (ins == &fn->leaf)
714                 fn->rr_ptr = NULL;
715
716         /* Link this route to others same route. */
717         if (rt->rt6i_nsiblings) {
718                 unsigned int rt6i_nsiblings;
719                 struct rt6_info *sibling, *temp_sibling;
720
721                 /* Find the first route that have the same metric */
722                 sibling = fn->leaf;
723                 while (sibling) {
724                         if (sibling->rt6i_metric == rt->rt6i_metric &&
725                             rt6_qualify_for_ecmp(sibling)) {
726                                 list_add_tail(&rt->rt6i_siblings,
727                                               &sibling->rt6i_siblings);
728                                 break;
729                         }
730                         sibling = sibling->dst.rt6_next;
731                 }
732                 /* For each sibling in the list, increment the counter of
733                  * siblings. BUG() if counters does not match, list of siblings
734                  * is broken!
735                  */
736                 rt6i_nsiblings = 0;
737                 list_for_each_entry_safe(sibling, temp_sibling,
738                                          &rt->rt6i_siblings, rt6i_siblings) {
739                         sibling->rt6i_nsiblings++;
740                         BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
741                         rt6i_nsiblings++;
742                 }
743                 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
744         }
745
746         /*
747          *      insert node
748          */
749         if (!replace) {
750                 if (!add)
751                         pr_warn("NLM_F_CREATE should be set when creating new route\n");
752
753 add:
754                 rt->dst.rt6_next = iter;
755                 *ins = rt;
756                 rt->rt6i_node = fn;
757                 atomic_inc(&rt->rt6i_ref);
758                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
759                 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
760
761                 if (!(fn->fn_flags & RTN_RTINFO)) {
762                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
763                         fn->fn_flags |= RTN_RTINFO;
764                 }
765
766         } else {
767                 if (!found) {
768                         if (add)
769                                 goto add;
770                         pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
771                         return -ENOENT;
772                 }
773                 *ins = rt;
774                 rt->rt6i_node = fn;
775                 rt->dst.rt6_next = iter->dst.rt6_next;
776                 atomic_inc(&rt->rt6i_ref);
777                 inet6_rt_notify(RTM_NEWROUTE, rt, info);
778                 rt6_release(iter);
779                 if (!(fn->fn_flags & RTN_RTINFO)) {
780                         info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
781                         fn->fn_flags |= RTN_RTINFO;
782                 }
783         }
784
785         return 0;
786 }
787
788 static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
789 {
790         if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
791             (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
792                 mod_timer(&net->ipv6.ip6_fib_timer,
793                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
794 }
795
796 void fib6_force_start_gc(struct net *net)
797 {
798         if (!timer_pending(&net->ipv6.ip6_fib_timer))
799                 mod_timer(&net->ipv6.ip6_fib_timer,
800                           jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
801 }
802
803 /*
804  *      Add routing information to the routing tree.
805  *      <destination addr>/<source addr>
806  *      with source addr info in sub-trees
807  */
808
809 int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
810 {
811         struct fib6_node *fn, *pn = NULL;
812         int err = -ENOMEM;
813         int allow_create = 1;
814         int replace_required = 0;
815
816         if (info->nlh) {
817                 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
818                         allow_create = 0;
819                 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
820                         replace_required = 1;
821         }
822         if (!allow_create && !replace_required)
823                 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
824
825         fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
826                         offsetof(struct rt6_info, rt6i_dst), allow_create,
827                         replace_required);
828         if (IS_ERR(fn)) {
829                 err = PTR_ERR(fn);
830                 fn = NULL;
831                 goto out;
832         }
833
834         pn = fn;
835
836 #ifdef CONFIG_IPV6_SUBTREES
837         if (rt->rt6i_src.plen) {
838                 struct fib6_node *sn;
839
840                 if (!fn->subtree) {
841                         struct fib6_node *sfn;
842
843                         /*
844                          * Create subtree.
845                          *
846                          *              fn[main tree]
847                          *              |
848                          *              sfn[subtree root]
849                          *                 \
850                          *                  sn[new leaf node]
851                          */
852
853                         /* Create subtree root node */
854                         sfn = node_alloc();
855                         if (!sfn)
856                                 goto st_failure;
857
858                         sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
859                         atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
860                         sfn->fn_flags = RTN_ROOT;
861                         sfn->fn_sernum = fib6_new_sernum();
862
863                         /* Now add the first leaf node to new subtree */
864
865                         sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
866                                         rt->rt6i_src.plen,
867                                         offsetof(struct rt6_info, rt6i_src),
868                                         allow_create, replace_required);
869
870                         if (IS_ERR(sn)) {
871                                 /* If it is failed, discard just allocated
872                                    root, and then (in st_failure) stale node
873                                    in main tree.
874                                  */
875                                 node_free(sfn);
876                                 err = PTR_ERR(sn);
877                                 goto st_failure;
878                         }
879
880                         /* Now link new subtree to main tree */
881                         sfn->parent = fn;
882                         fn->subtree = sfn;
883                 } else {
884                         sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
885                                         rt->rt6i_src.plen,
886                                         offsetof(struct rt6_info, rt6i_src),
887                                         allow_create, replace_required);
888
889                         if (IS_ERR(sn)) {
890                                 err = PTR_ERR(sn);
891                                 goto st_failure;
892                         }
893                 }
894
895                 if (!fn->leaf) {
896                         fn->leaf = rt;
897                         atomic_inc(&rt->rt6i_ref);
898                 }
899                 fn = sn;
900         }
901 #endif
902
903         err = fib6_add_rt2node(fn, rt, info);
904         if (!err) {
905                 fib6_start_gc(info->nl_net, rt);
906                 if (!(rt->rt6i_flags & RTF_CACHE))
907                         fib6_prune_clones(info->nl_net, pn, rt);
908         }
909
910 out:
911         if (err) {
912 #ifdef CONFIG_IPV6_SUBTREES
913                 /*
914                  * If fib6_add_1 has cleared the old leaf pointer in the
915                  * super-tree leaf node we have to find a new one for it.
916                  */
917                 if (pn != fn && pn->leaf == rt) {
918                         pn->leaf = NULL;
919                         atomic_dec(&rt->rt6i_ref);
920                 }
921                 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
922                         pn->leaf = fib6_find_prefix(info->nl_net, pn);
923 #if RT6_DEBUG >= 2
924                         if (!pn->leaf) {
925                                 WARN_ON(pn->leaf == NULL);
926                                 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
927                         }
928 #endif
929                         atomic_inc(&pn->leaf->rt6i_ref);
930                 }
931 #endif
932                 dst_free(&rt->dst);
933         }
934         return err;
935
936 #ifdef CONFIG_IPV6_SUBTREES
937         /* Subtree creation failed, probably main tree node
938            is orphan. If it is, shoot it.
939          */
940 st_failure:
941         if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
942                 fib6_repair_tree(info->nl_net, fn);
943         dst_free(&rt->dst);
944         return err;
945 #endif
946 }
947
948 /*
949  *      Routing tree lookup
950  *
951  */
952
953 struct lookup_args {
954         int                     offset;         /* key offset on rt6_info       */
955         const struct in6_addr   *addr;          /* search key                   */
956 };
957
958 static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
959                                         struct lookup_args *args)
960 {
961         struct fib6_node *fn;
962         __be32 dir;
963
964         if (unlikely(args->offset == 0))
965                 return NULL;
966
967         /*
968          *      Descend on a tree
969          */
970
971         fn = root;
972
973         for (;;) {
974                 struct fib6_node *next;
975
976                 dir = addr_bit_set(args->addr, fn->fn_bit);
977
978                 next = dir ? fn->right : fn->left;
979
980                 if (next) {
981                         fn = next;
982                         continue;
983                 }
984                 break;
985         }
986
987         while (fn) {
988                 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
989                         struct rt6key *key;
990
991                         key = (struct rt6key *) ((u8 *) fn->leaf +
992                                                  args->offset);
993
994                         if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
995 #ifdef CONFIG_IPV6_SUBTREES
996                                 if (fn->subtree) {
997                                         struct fib6_node *sfn;
998                                         sfn = fib6_lookup_1(fn->subtree,
999                                                             args + 1);
1000                                         if (!sfn)
1001                                                 goto backtrack;
1002                                         fn = sfn;
1003                                 }
1004 #endif
1005                                 if (fn->fn_flags & RTN_RTINFO)
1006                                         return fn;
1007                         }
1008                 }
1009 #ifdef CONFIG_IPV6_SUBTREES
1010 backtrack:
1011 #endif
1012                 if (fn->fn_flags & RTN_ROOT)
1013                         break;
1014
1015                 fn = fn->parent;
1016         }
1017
1018         return NULL;
1019 }
1020
1021 struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1022                                const struct in6_addr *saddr)
1023 {
1024         struct fib6_node *fn;
1025         struct lookup_args args[] = {
1026                 {
1027                         .offset = offsetof(struct rt6_info, rt6i_dst),
1028                         .addr = daddr,
1029                 },
1030 #ifdef CONFIG_IPV6_SUBTREES
1031                 {
1032                         .offset = offsetof(struct rt6_info, rt6i_src),
1033                         .addr = saddr,
1034                 },
1035 #endif
1036                 {
1037                         .offset = 0,    /* sentinel */
1038                 }
1039         };
1040
1041         fn = fib6_lookup_1(root, daddr ? args : args + 1);
1042         if (!fn || fn->fn_flags & RTN_TL_ROOT)
1043                 fn = root;
1044
1045         return fn;
1046 }
1047
1048 /*
1049  *      Get node with specified destination prefix (and source prefix,
1050  *      if subtrees are used)
1051  */
1052
1053
1054 static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1055                                         const struct in6_addr *addr,
1056                                         int plen, int offset)
1057 {
1058         struct fib6_node *fn;
1059
1060         for (fn = root; fn ; ) {
1061                 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1062
1063                 /*
1064                  *      Prefix match
1065                  */
1066                 if (plen < fn->fn_bit ||
1067                     !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1068                         return NULL;
1069
1070                 if (plen == fn->fn_bit)
1071                         return fn;
1072
1073                 /*
1074                  *      We have more bits to go
1075                  */
1076                 if (addr_bit_set(addr, fn->fn_bit))
1077                         fn = fn->right;
1078                 else
1079                         fn = fn->left;
1080         }
1081         return NULL;
1082 }
1083
1084 struct fib6_node * fib6_locate(struct fib6_node *root,
1085                                const struct in6_addr *daddr, int dst_len,
1086                                const struct in6_addr *saddr, int src_len)
1087 {
1088         struct fib6_node *fn;
1089
1090         fn = fib6_locate_1(root, daddr, dst_len,
1091                            offsetof(struct rt6_info, rt6i_dst));
1092
1093 #ifdef CONFIG_IPV6_SUBTREES
1094         if (src_len) {
1095                 WARN_ON(saddr == NULL);
1096                 if (fn && fn->subtree)
1097                         fn = fib6_locate_1(fn->subtree, saddr, src_len,
1098                                            offsetof(struct rt6_info, rt6i_src));
1099         }
1100 #endif
1101
1102         if (fn && fn->fn_flags & RTN_RTINFO)
1103                 return fn;
1104
1105         return NULL;
1106 }
1107
1108
1109 /*
1110  *      Deletion
1111  *
1112  */
1113
1114 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1115 {
1116         if (fn->fn_flags & RTN_ROOT)
1117                 return net->ipv6.ip6_null_entry;
1118
1119         while (fn) {
1120                 if (fn->left)
1121                         return fn->left->leaf;
1122                 if (fn->right)
1123                         return fn->right->leaf;
1124
1125                 fn = FIB6_SUBTREE(fn);
1126         }
1127         return NULL;
1128 }
1129
1130 /*
1131  *      Called to trim the tree of intermediate nodes when possible. "fn"
1132  *      is the node we want to try and remove.
1133  */
1134
1135 static struct fib6_node *fib6_repair_tree(struct net *net,
1136                                            struct fib6_node *fn)
1137 {
1138         int children;
1139         int nstate;
1140         struct fib6_node *child, *pn;
1141         struct fib6_walker_t *w;
1142         int iter = 0;
1143
1144         for (;;) {
1145                 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1146                 iter++;
1147
1148                 WARN_ON(fn->fn_flags & RTN_RTINFO);
1149                 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1150                 WARN_ON(fn->leaf != NULL);
1151
1152                 children = 0;
1153                 child = NULL;
1154                 if (fn->right) child = fn->right, children |= 1;
1155                 if (fn->left) child = fn->left, children |= 2;
1156
1157                 if (children == 3 || FIB6_SUBTREE(fn)
1158 #ifdef CONFIG_IPV6_SUBTREES
1159                     /* Subtree root (i.e. fn) may have one child */
1160                     || (children && fn->fn_flags & RTN_ROOT)
1161 #endif
1162                     ) {
1163                         fn->leaf = fib6_find_prefix(net, fn);
1164 #if RT6_DEBUG >= 2
1165                         if (!fn->leaf) {
1166                                 WARN_ON(!fn->leaf);
1167                                 fn->leaf = net->ipv6.ip6_null_entry;
1168                         }
1169 #endif
1170                         atomic_inc(&fn->leaf->rt6i_ref);
1171                         return fn->parent;
1172                 }
1173
1174                 pn = fn->parent;
1175 #ifdef CONFIG_IPV6_SUBTREES
1176                 if (FIB6_SUBTREE(pn) == fn) {
1177                         WARN_ON(!(fn->fn_flags & RTN_ROOT));
1178                         FIB6_SUBTREE(pn) = NULL;
1179                         nstate = FWS_L;
1180                 } else {
1181                         WARN_ON(fn->fn_flags & RTN_ROOT);
1182 #endif
1183                         if (pn->right == fn) pn->right = child;
1184                         else if (pn->left == fn) pn->left = child;
1185 #if RT6_DEBUG >= 2
1186                         else
1187                                 WARN_ON(1);
1188 #endif
1189                         if (child)
1190                                 child->parent = pn;
1191                         nstate = FWS_R;
1192 #ifdef CONFIG_IPV6_SUBTREES
1193                 }
1194 #endif
1195
1196                 read_lock(&fib6_walker_lock);
1197                 FOR_WALKERS(w) {
1198                         if (!child) {
1199                                 if (w->root == fn) {
1200                                         w->root = w->node = NULL;
1201                                         RT6_TRACE("W %p adjusted by delroot 1\n", w);
1202                                 } else if (w->node == fn) {
1203                                         RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1204                                         w->node = pn;
1205                                         w->state = nstate;
1206                                 }
1207                         } else {
1208                                 if (w->root == fn) {
1209                                         w->root = child;
1210                                         RT6_TRACE("W %p adjusted by delroot 2\n", w);
1211                                 }
1212                                 if (w->node == fn) {
1213                                         w->node = child;
1214                                         if (children&2) {
1215                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1216                                                 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1217                                         } else {
1218                                                 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1219                                                 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1220                                         }
1221                                 }
1222                         }
1223                 }
1224                 read_unlock(&fib6_walker_lock);
1225
1226                 node_free(fn);
1227                 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1228                         return pn;
1229
1230                 rt6_release(pn->leaf);
1231                 pn->leaf = NULL;
1232                 fn = pn;
1233         }
1234 }
1235
1236 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1237                            struct nl_info *info)
1238 {
1239         struct fib6_walker_t *w;
1240         struct rt6_info *rt = *rtp;
1241         struct net *net = info->nl_net;
1242
1243         RT6_TRACE("fib6_del_route\n");
1244
1245         /* Unlink it */
1246         *rtp = rt->dst.rt6_next;
1247         rt->rt6i_node = NULL;
1248         net->ipv6.rt6_stats->fib_rt_entries--;
1249         net->ipv6.rt6_stats->fib_discarded_routes++;
1250
1251         /* Reset round-robin state, if necessary */
1252         if (fn->rr_ptr == rt)
1253                 fn->rr_ptr = NULL;
1254
1255         /* Remove this entry from other siblings */
1256         if (rt->rt6i_nsiblings) {
1257                 struct rt6_info *sibling, *next_sibling;
1258
1259                 list_for_each_entry_safe(sibling, next_sibling,
1260                                          &rt->rt6i_siblings, rt6i_siblings)
1261                         sibling->rt6i_nsiblings--;
1262                 rt->rt6i_nsiblings = 0;
1263                 list_del_init(&rt->rt6i_siblings);
1264         }
1265
1266         /* Adjust walkers */
1267         read_lock(&fib6_walker_lock);
1268         FOR_WALKERS(w) {
1269                 if (w->state == FWS_C && w->leaf == rt) {
1270                         RT6_TRACE("walker %p adjusted by delroute\n", w);
1271                         w->leaf = rt->dst.rt6_next;
1272                         if (!w->leaf)
1273                                 w->state = FWS_U;
1274                 }
1275         }
1276         read_unlock(&fib6_walker_lock);
1277
1278         rt->dst.rt6_next = NULL;
1279
1280         /* If it was last route, expunge its radix tree node */
1281         if (!fn->leaf) {
1282                 fn->fn_flags &= ~RTN_RTINFO;
1283                 net->ipv6.rt6_stats->fib_route_nodes--;
1284                 fn = fib6_repair_tree(net, fn);
1285         }
1286
1287         if (atomic_read(&rt->rt6i_ref) != 1) {
1288                 /* This route is used as dummy address holder in some split
1289                  * nodes. It is not leaked, but it still holds other resources,
1290                  * which must be released in time. So, scan ascendant nodes
1291                  * and replace dummy references to this route with references
1292                  * to still alive ones.
1293                  */
1294                 while (fn) {
1295                         if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
1296                                 fn->leaf = fib6_find_prefix(net, fn);
1297                                 atomic_inc(&fn->leaf->rt6i_ref);
1298                                 rt6_release(rt);
1299                         }
1300                         fn = fn->parent;
1301                 }
1302                 /* No more references are possible at this point. */
1303                 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
1304         }
1305
1306         inet6_rt_notify(RTM_DELROUTE, rt, info);
1307         rt6_release(rt);
1308 }
1309
1310 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1311 {
1312         struct net *net = info->nl_net;
1313         struct fib6_node *fn = rt->rt6i_node;
1314         struct rt6_info **rtp;
1315
1316 #if RT6_DEBUG >= 2
1317         if (rt->dst.obsolete>0) {
1318                 WARN_ON(fn != NULL);
1319                 return -ENOENT;
1320         }
1321 #endif
1322         if (!fn || rt == net->ipv6.ip6_null_entry)
1323                 return -ENOENT;
1324
1325         WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1326
1327         if (!(rt->rt6i_flags & RTF_CACHE)) {
1328                 struct fib6_node *pn = fn;
1329 #ifdef CONFIG_IPV6_SUBTREES
1330                 /* clones of this route might be in another subtree */
1331                 if (rt->rt6i_src.plen) {
1332                         while (!(pn->fn_flags & RTN_ROOT))
1333                                 pn = pn->parent;
1334                         pn = pn->parent;
1335                 }
1336 #endif
1337                 fib6_prune_clones(info->nl_net, pn, rt);
1338         }
1339
1340         /*
1341          *      Walk the leaf entries looking for ourself
1342          */
1343
1344         for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1345                 if (*rtp == rt) {
1346                         fib6_del_route(fn, rtp, info);
1347                         return 0;
1348                 }
1349         }
1350         return -ENOENT;
1351 }
1352
1353 /*
1354  *      Tree traversal function.
1355  *
1356  *      Certainly, it is not interrupt safe.
1357  *      However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1358  *      It means, that we can modify tree during walking
1359  *      and use this function for garbage collection, clone pruning,
1360  *      cleaning tree when a device goes down etc. etc.
1361  *
1362  *      It guarantees that every node will be traversed,
1363  *      and that it will be traversed only once.
1364  *
1365  *      Callback function w->func may return:
1366  *      0 -> continue walking.
1367  *      positive value -> walking is suspended (used by tree dumps,
1368  *      and probably by gc, if it will be split to several slices)
1369  *      negative value -> terminate walking.
1370  *
1371  *      The function itself returns:
1372  *      0   -> walk is complete.
1373  *      >0  -> walk is incomplete (i.e. suspended)
1374  *      <0  -> walk is terminated by an error.
1375  */
1376
1377 static int fib6_walk_continue(struct fib6_walker_t *w)
1378 {
1379         struct fib6_node *fn, *pn;
1380
1381         for (;;) {
1382                 fn = w->node;
1383                 if (!fn)
1384                         return 0;
1385
1386                 if (w->prune && fn != w->root &&
1387                     fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1388                         w->state = FWS_C;
1389                         w->leaf = fn->leaf;
1390                 }
1391                 switch (w->state) {
1392 #ifdef CONFIG_IPV6_SUBTREES
1393                 case FWS_S:
1394                         if (FIB6_SUBTREE(fn)) {
1395                                 w->node = FIB6_SUBTREE(fn);
1396                                 continue;
1397                         }
1398                         w->state = FWS_L;
1399 #endif
1400                 case FWS_L:
1401                         if (fn->left) {
1402                                 w->node = fn->left;
1403                                 w->state = FWS_INIT;
1404                                 continue;
1405                         }
1406                         w->state = FWS_R;
1407                 case FWS_R:
1408                         if (fn->right) {
1409                                 w->node = fn->right;
1410                                 w->state = FWS_INIT;
1411                                 continue;
1412                         }
1413                         w->state = FWS_C;
1414                         w->leaf = fn->leaf;
1415                 case FWS_C:
1416                         if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1417                                 int err;
1418
1419                                 if (w->skip) {
1420                                         w->skip--;
1421                                         goto skip;
1422                                 }
1423
1424                                 err = w->func(w);
1425                                 if (err)
1426                                         return err;
1427
1428                                 w->count++;
1429                                 continue;
1430                         }
1431 skip:
1432                         w->state = FWS_U;
1433                 case FWS_U:
1434                         if (fn == w->root)
1435                                 return 0;
1436                         pn = fn->parent;
1437                         w->node = pn;
1438 #ifdef CONFIG_IPV6_SUBTREES
1439                         if (FIB6_SUBTREE(pn) == fn) {
1440                                 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1441                                 w->state = FWS_L;
1442                                 continue;
1443                         }
1444 #endif
1445                         if (pn->left == fn) {
1446                                 w->state = FWS_R;
1447                                 continue;
1448                         }
1449                         if (pn->right == fn) {
1450                                 w->state = FWS_C;
1451                                 w->leaf = w->node->leaf;
1452                                 continue;
1453                         }
1454 #if RT6_DEBUG >= 2
1455                         WARN_ON(1);
1456 #endif
1457                 }
1458         }
1459 }
1460
1461 static int fib6_walk(struct fib6_walker_t *w)
1462 {
1463         int res;
1464
1465         w->state = FWS_INIT;
1466         w->node = w->root;
1467
1468         fib6_walker_link(w);
1469         res = fib6_walk_continue(w);
1470         if (res <= 0)
1471                 fib6_walker_unlink(w);
1472         return res;
1473 }
1474
1475 static int fib6_clean_node(struct fib6_walker_t *w)
1476 {
1477         int res;
1478         struct rt6_info *rt;
1479         struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1480         struct nl_info info = {
1481                 .nl_net = c->net,
1482         };
1483
1484         for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1485                 res = c->func(rt, c->arg);
1486                 if (res < 0) {
1487                         w->leaf = rt;
1488                         res = fib6_del(rt, &info);
1489                         if (res) {
1490 #if RT6_DEBUG >= 2
1491                                 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1492                                          __func__, rt, rt->rt6i_node, res);
1493 #endif
1494                                 continue;
1495                         }
1496                         return 0;
1497                 }
1498                 WARN_ON(res != 0);
1499         }
1500         w->leaf = rt;
1501         return 0;
1502 }
1503
1504 /*
1505  *      Convenient frontend to tree walker.
1506  *
1507  *      func is called on each route.
1508  *              It may return -1 -> delete this route.
1509  *                            0  -> continue walking
1510  *
1511  *      prune==1 -> only immediate children of node (certainly,
1512  *      ignoring pure split nodes) will be scanned.
1513  */
1514
1515 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1516                             int (*func)(struct rt6_info *, void *arg),
1517                             int prune, void *arg)
1518 {
1519         struct fib6_cleaner_t c;
1520
1521         c.w.root = root;
1522         c.w.func = fib6_clean_node;
1523         c.w.prune = prune;
1524         c.w.count = 0;
1525         c.w.skip = 0;
1526         c.func = func;
1527         c.arg = arg;
1528         c.net = net;
1529
1530         fib6_walk(&c.w);
1531 }
1532
1533 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1534                     void *arg)
1535 {
1536         struct fib6_table *table;
1537         struct hlist_head *head;
1538         unsigned int h;
1539
1540         rcu_read_lock();
1541         for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1542                 head = &net->ipv6.fib_table_hash[h];
1543                 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1544                         write_lock_bh(&table->tb6_lock);
1545                         fib6_clean_tree(net, &table->tb6_root,
1546                                         func, 0, arg);
1547                         write_unlock_bh(&table->tb6_lock);
1548                 }
1549         }
1550         rcu_read_unlock();
1551 }
1552
1553 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1554 {
1555         if (rt->rt6i_flags & RTF_CACHE) {
1556                 RT6_TRACE("pruning clone %p\n", rt);
1557                 return -1;
1558         }
1559
1560         return 0;
1561 }
1562
1563 static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1564                               struct rt6_info *rt)
1565 {
1566         fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1567 }
1568
1569 /*
1570  *      Garbage collection
1571  */
1572
1573 static struct fib6_gc_args
1574 {
1575         int                     timeout;
1576         int                     more;
1577 } gc_args;
1578
1579 static int fib6_age(struct rt6_info *rt, void *arg)
1580 {
1581         unsigned long now = jiffies;
1582
1583         /*
1584          *      check addrconf expiration here.
1585          *      Routes are expired even if they are in use.
1586          *
1587          *      Also age clones. Note, that clones are aged out
1588          *      only if they are not in use now.
1589          */
1590
1591         if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1592                 if (time_after(now, rt->dst.expires)) {
1593                         RT6_TRACE("expiring %p\n", rt);
1594                         return -1;
1595                 }
1596                 gc_args.more++;
1597         } else if (rt->rt6i_flags & RTF_CACHE) {
1598                 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1599                     time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1600                         RT6_TRACE("aging clone %p\n", rt);
1601                         return -1;
1602                 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1603                         struct neighbour *neigh;
1604                         __u8 neigh_flags = 0;
1605
1606                         neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1607                         if (neigh) {
1608                                 neigh_flags = neigh->flags;
1609                                 neigh_release(neigh);
1610                         }
1611                         if (!(neigh_flags & NTF_ROUTER)) {
1612                                 RT6_TRACE("purging route %p via non-router but gateway\n",
1613                                           rt);
1614                                 return -1;
1615                         }
1616                 }
1617                 gc_args.more++;
1618         }
1619
1620         return 0;
1621 }
1622
1623 static DEFINE_SPINLOCK(fib6_gc_lock);
1624
1625 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1626 {
1627         unsigned long now;
1628
1629         if (force) {
1630                 spin_lock_bh(&fib6_gc_lock);
1631         } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1632                 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1633                 return;
1634         }
1635         gc_args.timeout = expires ? (int)expires :
1636                           net->ipv6.sysctl.ip6_rt_gc_interval;
1637
1638         gc_args.more = icmp6_dst_gc();
1639
1640         fib6_clean_all(net, fib6_age, NULL);
1641         now = jiffies;
1642         net->ipv6.ip6_rt_last_gc = now;
1643
1644         if (gc_args.more)
1645                 mod_timer(&net->ipv6.ip6_fib_timer,
1646                           round_jiffies(now
1647                                         + net->ipv6.sysctl.ip6_rt_gc_interval));
1648         else
1649                 del_timer(&net->ipv6.ip6_fib_timer);
1650         spin_unlock_bh(&fib6_gc_lock);
1651 }
1652
1653 static void fib6_gc_timer_cb(unsigned long arg)
1654 {
1655         fib6_run_gc(0, (struct net *)arg, true);
1656 }
1657
1658 static int __net_init fib6_net_init(struct net *net)
1659 {
1660         size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1661
1662         setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1663
1664         net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1665         if (!net->ipv6.rt6_stats)
1666                 goto out_timer;
1667
1668         /* Avoid false sharing : Use at least a full cache line */
1669         size = max_t(size_t, size, L1_CACHE_BYTES);
1670
1671         net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1672         if (!net->ipv6.fib_table_hash)
1673                 goto out_rt6_stats;
1674
1675         net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1676                                           GFP_KERNEL);
1677         if (!net->ipv6.fib6_main_tbl)
1678                 goto out_fib_table_hash;
1679
1680         net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1681         net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1682         net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1683                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1684         inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1685
1686 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1687         net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1688                                            GFP_KERNEL);
1689         if (!net->ipv6.fib6_local_tbl)
1690                 goto out_fib6_main_tbl;
1691         net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1692         net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1693         net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1694                 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1695         inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1696 #endif
1697         fib6_tables_init(net);
1698
1699         return 0;
1700
1701 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1702 out_fib6_main_tbl:
1703         kfree(net->ipv6.fib6_main_tbl);
1704 #endif
1705 out_fib_table_hash:
1706         kfree(net->ipv6.fib_table_hash);
1707 out_rt6_stats:
1708         kfree(net->ipv6.rt6_stats);
1709 out_timer:
1710         return -ENOMEM;
1711  }
1712
1713 static void fib6_net_exit(struct net *net)
1714 {
1715         rt6_ifdown(net, NULL);
1716         del_timer_sync(&net->ipv6.ip6_fib_timer);
1717
1718 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1719         inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1720         kfree(net->ipv6.fib6_local_tbl);
1721 #endif
1722         inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1723         kfree(net->ipv6.fib6_main_tbl);
1724         kfree(net->ipv6.fib_table_hash);
1725         kfree(net->ipv6.rt6_stats);
1726 }
1727
1728 static struct pernet_operations fib6_net_ops = {
1729         .init = fib6_net_init,
1730         .exit = fib6_net_exit,
1731 };
1732
1733 int __init fib6_init(void)
1734 {
1735         int ret = -ENOMEM;
1736
1737         fib6_node_kmem = kmem_cache_create("fib6_nodes",
1738                                            sizeof(struct fib6_node),
1739                                            0, SLAB_HWCACHE_ALIGN,
1740                                            NULL);
1741         if (!fib6_node_kmem)
1742                 goto out;
1743
1744         ret = register_pernet_subsys(&fib6_net_ops);
1745         if (ret)
1746                 goto out_kmem_cache_create;
1747
1748         ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1749                               NULL);
1750         if (ret)
1751                 goto out_unregister_subsys;
1752 out:
1753         return ret;
1754
1755 out_unregister_subsys:
1756         unregister_pernet_subsys(&fib6_net_ops);
1757 out_kmem_cache_create:
1758         kmem_cache_destroy(fib6_node_kmem);
1759         goto out;
1760 }
1761
1762 void fib6_gc_cleanup(void)
1763 {
1764         unregister_pernet_subsys(&fib6_net_ops);
1765         kmem_cache_destroy(fib6_node_kmem);
1766 }
1767
1768 #ifdef CONFIG_PROC_FS
1769
1770 struct ipv6_route_iter {
1771         struct seq_net_private p;
1772         struct fib6_walker_t w;
1773         loff_t skip;
1774         struct fib6_table *tbl;
1775         __u32 sernum;
1776 };
1777
1778 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1779 {
1780         struct rt6_info *rt = v;
1781         struct ipv6_route_iter *iter = seq->private;
1782
1783         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1784
1785 #ifdef CONFIG_IPV6_SUBTREES
1786         seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1787 #else
1788         seq_puts(seq, "00000000000000000000000000000000 00 ");
1789 #endif
1790         if (rt->rt6i_flags & RTF_GATEWAY)
1791                 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1792         else
1793                 seq_puts(seq, "00000000000000000000000000000000");
1794
1795         seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1796                    rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1797                    rt->dst.__use, rt->rt6i_flags,
1798                    rt->dst.dev ? rt->dst.dev->name : "");
1799         iter->w.leaf = NULL;
1800         return 0;
1801 }
1802
1803 static int ipv6_route_yield(struct fib6_walker_t *w)
1804 {
1805         struct ipv6_route_iter *iter = w->args;
1806
1807         if (!iter->skip)
1808                 return 1;
1809
1810         do {
1811                 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1812                 iter->skip--;
1813                 if (!iter->skip && iter->w.leaf)
1814                         return 1;
1815         } while (iter->w.leaf);
1816
1817         return 0;
1818 }
1819
1820 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1821 {
1822         memset(&iter->w, 0, sizeof(iter->w));
1823         iter->w.func = ipv6_route_yield;
1824         iter->w.root = &iter->tbl->tb6_root;
1825         iter->w.state = FWS_INIT;
1826         iter->w.node = iter->w.root;
1827         iter->w.args = iter;
1828         iter->sernum = iter->w.root->fn_sernum;
1829         INIT_LIST_HEAD(&iter->w.lh);
1830         fib6_walker_link(&iter->w);
1831 }
1832
1833 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1834                                                     struct net *net)
1835 {
1836         unsigned int h;
1837         struct hlist_node *node;
1838
1839         if (tbl) {
1840                 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1841                 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1842         } else {
1843                 h = 0;
1844                 node = NULL;
1845         }
1846
1847         while (!node && h < FIB6_TABLE_HASHSZ) {
1848                 node = rcu_dereference_bh(
1849                         hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
1850         }
1851         return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
1852 }
1853
1854 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
1855 {
1856         if (iter->sernum != iter->w.root->fn_sernum) {
1857                 iter->sernum = iter->w.root->fn_sernum;
1858                 iter->w.state = FWS_INIT;
1859                 iter->w.node = iter->w.root;
1860                 WARN_ON(iter->w.skip);
1861                 iter->w.skip = iter->w.count;
1862         }
1863 }
1864
1865 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1866 {
1867         int r;
1868         struct rt6_info *n;
1869         struct net *net = seq_file_net(seq);
1870         struct ipv6_route_iter *iter = seq->private;
1871
1872         if (!v)
1873                 goto iter_table;
1874
1875         n = ((struct rt6_info *)v)->dst.rt6_next;
1876         if (n) {
1877                 ++*pos;
1878                 return n;
1879         }
1880
1881 iter_table:
1882         ipv6_route_check_sernum(iter);
1883         read_lock(&iter->tbl->tb6_lock);
1884         r = fib6_walk_continue(&iter->w);
1885         read_unlock(&iter->tbl->tb6_lock);
1886         if (r > 0) {
1887                 if (v)
1888                         ++*pos;
1889                 return iter->w.leaf;
1890         } else if (r < 0) {
1891                 fib6_walker_unlink(&iter->w);
1892                 return NULL;
1893         }
1894         fib6_walker_unlink(&iter->w);
1895
1896         iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
1897         if (!iter->tbl)
1898                 return NULL;
1899
1900         ipv6_route_seq_setup_walk(iter);
1901         goto iter_table;
1902 }
1903
1904 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
1905         __acquires(RCU_BH)
1906 {
1907         struct net *net = seq_file_net(seq);
1908         struct ipv6_route_iter *iter = seq->private;
1909
1910         rcu_read_lock_bh();
1911         iter->tbl = ipv6_route_seq_next_table(NULL, net);
1912         iter->skip = *pos;
1913
1914         if (iter->tbl) {
1915                 ipv6_route_seq_setup_walk(iter);
1916                 return ipv6_route_seq_next(seq, NULL, pos);
1917         } else {
1918                 return NULL;
1919         }
1920 }
1921
1922 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
1923 {
1924         struct fib6_walker_t *w = &iter->w;
1925         return w->node && !(w->state == FWS_U && w->node == w->root);
1926 }
1927
1928 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
1929         __releases(RCU_BH)
1930 {
1931         struct ipv6_route_iter *iter = seq->private;
1932
1933         if (ipv6_route_iter_active(iter))
1934                 fib6_walker_unlink(&iter->w);
1935
1936         rcu_read_unlock_bh();
1937 }
1938
1939 static const struct seq_operations ipv6_route_seq_ops = {
1940         .start  = ipv6_route_seq_start,
1941         .next   = ipv6_route_seq_next,
1942         .stop   = ipv6_route_seq_stop,
1943         .show   = ipv6_route_seq_show
1944 };
1945
1946 int ipv6_route_open(struct inode *inode, struct file *file)
1947 {
1948         return seq_open_net(inode, file, &ipv6_route_seq_ops,
1949                             sizeof(struct ipv6_route_iter));
1950 }
1951
1952 #endif /* CONFIG_PROC_FS */