Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Author:
5  *     Jay Schulist <jschlst@samba.org>
6  *
7  * Based on the design of:
8  *     - The Berkeley Packet Filter
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version
13  * 2 of the License, or (at your option) any later version.
14  *
15  * Andi Kleen - Fix a few bad bugs and races.
16  * Kris Katterjohn - Added many additional checks in sk_chk_filter()
17  */
18
19 #include <linux/module.h>
20 #include <linux/types.h>
21 #include <linux/mm.h>
22 #include <linux/fcntl.h>
23 #include <linux/socket.h>
24 #include <linux/in.h>
25 #include <linux/inet.h>
26 #include <linux/netdevice.h>
27 #include <linux/if_packet.h>
28 #include <linux/gfp.h>
29 #include <net/ip.h>
30 #include <net/protocol.h>
31 #include <net/netlink.h>
32 #include <linux/skbuff.h>
33 #include <net/sock.h>
34 #include <linux/errno.h>
35 #include <linux/timer.h>
36 #include <asm/uaccess.h>
37 #include <asm/unaligned.h>
38 #include <linux/filter.h>
39 #include <linux/ratelimit.h>
40 #include <linux/seccomp.h>
41 #include <linux/if_vlan.h>
42
43 /* No hurry in this branch
44  *
45  * Exported for the bpf jit load helper.
46  */
47 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
48 {
49         u8 *ptr = NULL;
50
51         if (k >= SKF_NET_OFF)
52                 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
53         else if (k >= SKF_LL_OFF)
54                 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
55
56         if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
57                 return ptr;
58         return NULL;
59 }
60
61 static inline void *load_pointer(const struct sk_buff *skb, int k,
62                                  unsigned int size, void *buffer)
63 {
64         if (k >= 0)
65                 return skb_header_pointer(skb, k, size, buffer);
66         return bpf_internal_load_pointer_neg_helper(skb, k, size);
67 }
68
69 /**
70  *      sk_filter - run a packet through a socket filter
71  *      @sk: sock associated with &sk_buff
72  *      @skb: buffer to filter
73  *
74  * Run the filter code and then cut skb->data to correct size returned by
75  * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
76  * than pkt_len we keep whole skb->data. This is the socket level
77  * wrapper to sk_run_filter. It returns 0 if the packet should
78  * be accepted or -EPERM if the packet should be tossed.
79  *
80  */
81 int sk_filter(struct sock *sk, struct sk_buff *skb)
82 {
83         int err;
84         struct sk_filter *filter;
85
86         /*
87          * If the skb was allocated from pfmemalloc reserves, only
88          * allow SOCK_MEMALLOC sockets to use it as this socket is
89          * helping free memory
90          */
91         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
92                 return -ENOMEM;
93
94         err = security_sock_rcv_skb(sk, skb);
95         if (err)
96                 return err;
97
98         rcu_read_lock();
99         filter = rcu_dereference(sk->sk_filter);
100         if (filter) {
101                 unsigned int pkt_len = SK_RUN_FILTER(filter, skb);
102
103                 err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
104         }
105         rcu_read_unlock();
106
107         return err;
108 }
109 EXPORT_SYMBOL(sk_filter);
110
111 /**
112  *      sk_run_filter - run a filter on a socket
113  *      @skb: buffer to run the filter on
114  *      @fentry: filter to apply
115  *
116  * Decode and apply filter instructions to the skb->data.
117  * Return length to keep, 0 for none. @skb is the data we are
118  * filtering, @filter is the array of filter instructions.
119  * Because all jumps are guaranteed to be before last instruction,
120  * and last instruction guaranteed to be a RET, we dont need to check
121  * flen. (We used to pass to this function the length of filter)
122  */
123 unsigned int sk_run_filter(const struct sk_buff *skb,
124                            const struct sock_filter *fentry)
125 {
126         void *ptr;
127         u32 A = 0;                      /* Accumulator */
128         u32 X = 0;                      /* Index Register */
129         u32 mem[BPF_MEMWORDS];          /* Scratch Memory Store */
130         u32 tmp;
131         int k;
132
133         /*
134          * Process array of filter instructions.
135          */
136         for (;; fentry++) {
137 #if defined(CONFIG_X86_32)
138 #define K (fentry->k)
139 #else
140                 const u32 K = fentry->k;
141 #endif
142
143                 switch (fentry->code) {
144                 case BPF_S_ALU_ADD_X:
145                         A += X;
146                         continue;
147                 case BPF_S_ALU_ADD_K:
148                         A += K;
149                         continue;
150                 case BPF_S_ALU_SUB_X:
151                         A -= X;
152                         continue;
153                 case BPF_S_ALU_SUB_K:
154                         A -= K;
155                         continue;
156                 case BPF_S_ALU_MUL_X:
157                         A *= X;
158                         continue;
159                 case BPF_S_ALU_MUL_K:
160                         A *= K;
161                         continue;
162                 case BPF_S_ALU_DIV_X:
163                         if (X == 0)
164                                 return 0;
165                         A /= X;
166                         continue;
167                 case BPF_S_ALU_DIV_K:
168                         A /= K;
169                         continue;
170                 case BPF_S_ALU_MOD_X:
171                         if (X == 0)
172                                 return 0;
173                         A %= X;
174                         continue;
175                 case BPF_S_ALU_MOD_K:
176                         A %= K;
177                         continue;
178                 case BPF_S_ALU_AND_X:
179                         A &= X;
180                         continue;
181                 case BPF_S_ALU_AND_K:
182                         A &= K;
183                         continue;
184                 case BPF_S_ALU_OR_X:
185                         A |= X;
186                         continue;
187                 case BPF_S_ALU_OR_K:
188                         A |= K;
189                         continue;
190                 case BPF_S_ANC_ALU_XOR_X:
191                 case BPF_S_ALU_XOR_X:
192                         A ^= X;
193                         continue;
194                 case BPF_S_ALU_XOR_K:
195                         A ^= K;
196                         continue;
197                 case BPF_S_ALU_LSH_X:
198                         A <<= X;
199                         continue;
200                 case BPF_S_ALU_LSH_K:
201                         A <<= K;
202                         continue;
203                 case BPF_S_ALU_RSH_X:
204                         A >>= X;
205                         continue;
206                 case BPF_S_ALU_RSH_K:
207                         A >>= K;
208                         continue;
209                 case BPF_S_ALU_NEG:
210                         A = -A;
211                         continue;
212                 case BPF_S_JMP_JA:
213                         fentry += K;
214                         continue;
215                 case BPF_S_JMP_JGT_K:
216                         fentry += (A > K) ? fentry->jt : fentry->jf;
217                         continue;
218                 case BPF_S_JMP_JGE_K:
219                         fentry += (A >= K) ? fentry->jt : fentry->jf;
220                         continue;
221                 case BPF_S_JMP_JEQ_K:
222                         fentry += (A == K) ? fentry->jt : fentry->jf;
223                         continue;
224                 case BPF_S_JMP_JSET_K:
225                         fentry += (A & K) ? fentry->jt : fentry->jf;
226                         continue;
227                 case BPF_S_JMP_JGT_X:
228                         fentry += (A > X) ? fentry->jt : fentry->jf;
229                         continue;
230                 case BPF_S_JMP_JGE_X:
231                         fentry += (A >= X) ? fentry->jt : fentry->jf;
232                         continue;
233                 case BPF_S_JMP_JEQ_X:
234                         fentry += (A == X) ? fentry->jt : fentry->jf;
235                         continue;
236                 case BPF_S_JMP_JSET_X:
237                         fentry += (A & X) ? fentry->jt : fentry->jf;
238                         continue;
239                 case BPF_S_LD_W_ABS:
240                         k = K;
241 load_w:
242                         ptr = load_pointer(skb, k, 4, &tmp);
243                         if (ptr != NULL) {
244                                 A = get_unaligned_be32(ptr);
245                                 continue;
246                         }
247                         return 0;
248                 case BPF_S_LD_H_ABS:
249                         k = K;
250 load_h:
251                         ptr = load_pointer(skb, k, 2, &tmp);
252                         if (ptr != NULL) {
253                                 A = get_unaligned_be16(ptr);
254                                 continue;
255                         }
256                         return 0;
257                 case BPF_S_LD_B_ABS:
258                         k = K;
259 load_b:
260                         ptr = load_pointer(skb, k, 1, &tmp);
261                         if (ptr != NULL) {
262                                 A = *(u8 *)ptr;
263                                 continue;
264                         }
265                         return 0;
266                 case BPF_S_LD_W_LEN:
267                         A = skb->len;
268                         continue;
269                 case BPF_S_LDX_W_LEN:
270                         X = skb->len;
271                         continue;
272                 case BPF_S_LD_W_IND:
273                         k = X + K;
274                         goto load_w;
275                 case BPF_S_LD_H_IND:
276                         k = X + K;
277                         goto load_h;
278                 case BPF_S_LD_B_IND:
279                         k = X + K;
280                         goto load_b;
281                 case BPF_S_LDX_B_MSH:
282                         ptr = load_pointer(skb, K, 1, &tmp);
283                         if (ptr != NULL) {
284                                 X = (*(u8 *)ptr & 0xf) << 2;
285                                 continue;
286                         }
287                         return 0;
288                 case BPF_S_LD_IMM:
289                         A = K;
290                         continue;
291                 case BPF_S_LDX_IMM:
292                         X = K;
293                         continue;
294                 case BPF_S_LD_MEM:
295                         A = mem[K];
296                         continue;
297                 case BPF_S_LDX_MEM:
298                         X = mem[K];
299                         continue;
300                 case BPF_S_MISC_TAX:
301                         X = A;
302                         continue;
303                 case BPF_S_MISC_TXA:
304                         A = X;
305                         continue;
306                 case BPF_S_RET_K:
307                         return K;
308                 case BPF_S_RET_A:
309                         return A;
310                 case BPF_S_ST:
311                         mem[K] = A;
312                         continue;
313                 case BPF_S_STX:
314                         mem[K] = X;
315                         continue;
316                 case BPF_S_ANC_PROTOCOL:
317                         A = ntohs(skb->protocol);
318                         continue;
319                 case BPF_S_ANC_PKTTYPE:
320                         A = skb->pkt_type;
321                         continue;
322                 case BPF_S_ANC_IFINDEX:
323                         if (!skb->dev)
324                                 return 0;
325                         A = skb->dev->ifindex;
326                         continue;
327                 case BPF_S_ANC_MARK:
328                         A = skb->mark;
329                         continue;
330                 case BPF_S_ANC_QUEUE:
331                         A = skb->queue_mapping;
332                         continue;
333                 case BPF_S_ANC_HATYPE:
334                         if (!skb->dev)
335                                 return 0;
336                         A = skb->dev->type;
337                         continue;
338                 case BPF_S_ANC_RXHASH:
339                         A = skb->rxhash;
340                         continue;
341                 case BPF_S_ANC_CPU:
342                         A = raw_smp_processor_id();
343                         continue;
344                 case BPF_S_ANC_VLAN_TAG:
345                         A = vlan_tx_tag_get(skb);
346                         continue;
347                 case BPF_S_ANC_VLAN_TAG_PRESENT:
348                         A = !!vlan_tx_tag_present(skb);
349                         continue;
350                 case BPF_S_ANC_PAY_OFFSET:
351                         A = __skb_get_poff(skb);
352                         continue;
353                 case BPF_S_ANC_NLATTR: {
354                         struct nlattr *nla;
355
356                         if (skb_is_nonlinear(skb))
357                                 return 0;
358                         if (skb->len < sizeof(struct nlattr))
359                                 return 0;
360                         if (A > skb->len - sizeof(struct nlattr))
361                                 return 0;
362
363                         nla = nla_find((struct nlattr *)&skb->data[A],
364                                        skb->len - A, X);
365                         if (nla)
366                                 A = (void *)nla - (void *)skb->data;
367                         else
368                                 A = 0;
369                         continue;
370                 }
371                 case BPF_S_ANC_NLATTR_NEST: {
372                         struct nlattr *nla;
373
374                         if (skb_is_nonlinear(skb))
375                                 return 0;
376                         if (skb->len < sizeof(struct nlattr))
377                                 return 0;
378                         if (A > skb->len - sizeof(struct nlattr))
379                                 return 0;
380
381                         nla = (struct nlattr *)&skb->data[A];
382                         if (nla->nla_len > skb->len - A)
383                                 return 0;
384
385                         nla = nla_find_nested(nla, X);
386                         if (nla)
387                                 A = (void *)nla - (void *)skb->data;
388                         else
389                                 A = 0;
390                         continue;
391                 }
392 #ifdef CONFIG_SECCOMP_FILTER
393                 case BPF_S_ANC_SECCOMP_LD_W:
394                         A = seccomp_bpf_load(fentry->k);
395                         continue;
396 #endif
397                 default:
398                         WARN_RATELIMIT(1, "Unknown code:%u jt:%u tf:%u k:%u\n",
399                                        fentry->code, fentry->jt,
400                                        fentry->jf, fentry->k);
401                         return 0;
402                 }
403         }
404
405         return 0;
406 }
407 EXPORT_SYMBOL(sk_run_filter);
408
409 /*
410  * Security :
411  * A BPF program is able to use 16 cells of memory to store intermediate
412  * values (check u32 mem[BPF_MEMWORDS] in sk_run_filter())
413  * As we dont want to clear mem[] array for each packet going through
414  * sk_run_filter(), we check that filter loaded by user never try to read
415  * a cell if not previously written, and we check all branches to be sure
416  * a malicious user doesn't try to abuse us.
417  */
418 static int check_load_and_stores(struct sock_filter *filter, int flen)
419 {
420         u16 *masks, memvalid = 0; /* one bit per cell, 16 cells */
421         int pc, ret = 0;
422
423         BUILD_BUG_ON(BPF_MEMWORDS > 16);
424         masks = kmalloc(flen * sizeof(*masks), GFP_KERNEL);
425         if (!masks)
426                 return -ENOMEM;
427         memset(masks, 0xff, flen * sizeof(*masks));
428
429         for (pc = 0; pc < flen; pc++) {
430                 memvalid &= masks[pc];
431
432                 switch (filter[pc].code) {
433                 case BPF_S_ST:
434                 case BPF_S_STX:
435                         memvalid |= (1 << filter[pc].k);
436                         break;
437                 case BPF_S_LD_MEM:
438                 case BPF_S_LDX_MEM:
439                         if (!(memvalid & (1 << filter[pc].k))) {
440                                 ret = -EINVAL;
441                                 goto error;
442                         }
443                         break;
444                 case BPF_S_JMP_JA:
445                         /* a jump must set masks on target */
446                         masks[pc + 1 + filter[pc].k] &= memvalid;
447                         memvalid = ~0;
448                         break;
449                 case BPF_S_JMP_JEQ_K:
450                 case BPF_S_JMP_JEQ_X:
451                 case BPF_S_JMP_JGE_K:
452                 case BPF_S_JMP_JGE_X:
453                 case BPF_S_JMP_JGT_K:
454                 case BPF_S_JMP_JGT_X:
455                 case BPF_S_JMP_JSET_X:
456                 case BPF_S_JMP_JSET_K:
457                         /* a jump must set masks on targets */
458                         masks[pc + 1 + filter[pc].jt] &= memvalid;
459                         masks[pc + 1 + filter[pc].jf] &= memvalid;
460                         memvalid = ~0;
461                         break;
462                 }
463         }
464 error:
465         kfree(masks);
466         return ret;
467 }
468
469 /**
470  *      sk_chk_filter - verify socket filter code
471  *      @filter: filter to verify
472  *      @flen: length of filter
473  *
474  * Check the user's filter code. If we let some ugly
475  * filter code slip through kaboom! The filter must contain
476  * no references or jumps that are out of range, no illegal
477  * instructions, and must end with a RET instruction.
478  *
479  * All jumps are forward as they are not signed.
480  *
481  * Returns 0 if the rule set is legal or -EINVAL if not.
482  */
483 int sk_chk_filter(struct sock_filter *filter, unsigned int flen)
484 {
485         /*
486          * Valid instructions are initialized to non-0.
487          * Invalid instructions are initialized to 0.
488          */
489         static const u8 codes[] = {
490                 [BPF_ALU|BPF_ADD|BPF_K]  = BPF_S_ALU_ADD_K,
491                 [BPF_ALU|BPF_ADD|BPF_X]  = BPF_S_ALU_ADD_X,
492                 [BPF_ALU|BPF_SUB|BPF_K]  = BPF_S_ALU_SUB_K,
493                 [BPF_ALU|BPF_SUB|BPF_X]  = BPF_S_ALU_SUB_X,
494                 [BPF_ALU|BPF_MUL|BPF_K]  = BPF_S_ALU_MUL_K,
495                 [BPF_ALU|BPF_MUL|BPF_X]  = BPF_S_ALU_MUL_X,
496                 [BPF_ALU|BPF_DIV|BPF_X]  = BPF_S_ALU_DIV_X,
497                 [BPF_ALU|BPF_MOD|BPF_K]  = BPF_S_ALU_MOD_K,
498                 [BPF_ALU|BPF_MOD|BPF_X]  = BPF_S_ALU_MOD_X,
499                 [BPF_ALU|BPF_AND|BPF_K]  = BPF_S_ALU_AND_K,
500                 [BPF_ALU|BPF_AND|BPF_X]  = BPF_S_ALU_AND_X,
501                 [BPF_ALU|BPF_OR|BPF_K]   = BPF_S_ALU_OR_K,
502                 [BPF_ALU|BPF_OR|BPF_X]   = BPF_S_ALU_OR_X,
503                 [BPF_ALU|BPF_XOR|BPF_K]  = BPF_S_ALU_XOR_K,
504                 [BPF_ALU|BPF_XOR|BPF_X]  = BPF_S_ALU_XOR_X,
505                 [BPF_ALU|BPF_LSH|BPF_K]  = BPF_S_ALU_LSH_K,
506                 [BPF_ALU|BPF_LSH|BPF_X]  = BPF_S_ALU_LSH_X,
507                 [BPF_ALU|BPF_RSH|BPF_K]  = BPF_S_ALU_RSH_K,
508                 [BPF_ALU|BPF_RSH|BPF_X]  = BPF_S_ALU_RSH_X,
509                 [BPF_ALU|BPF_NEG]        = BPF_S_ALU_NEG,
510                 [BPF_LD|BPF_W|BPF_ABS]   = BPF_S_LD_W_ABS,
511                 [BPF_LD|BPF_H|BPF_ABS]   = BPF_S_LD_H_ABS,
512                 [BPF_LD|BPF_B|BPF_ABS]   = BPF_S_LD_B_ABS,
513                 [BPF_LD|BPF_W|BPF_LEN]   = BPF_S_LD_W_LEN,
514                 [BPF_LD|BPF_W|BPF_IND]   = BPF_S_LD_W_IND,
515                 [BPF_LD|BPF_H|BPF_IND]   = BPF_S_LD_H_IND,
516                 [BPF_LD|BPF_B|BPF_IND]   = BPF_S_LD_B_IND,
517                 [BPF_LD|BPF_IMM]         = BPF_S_LD_IMM,
518                 [BPF_LDX|BPF_W|BPF_LEN]  = BPF_S_LDX_W_LEN,
519                 [BPF_LDX|BPF_B|BPF_MSH]  = BPF_S_LDX_B_MSH,
520                 [BPF_LDX|BPF_IMM]        = BPF_S_LDX_IMM,
521                 [BPF_MISC|BPF_TAX]       = BPF_S_MISC_TAX,
522                 [BPF_MISC|BPF_TXA]       = BPF_S_MISC_TXA,
523                 [BPF_RET|BPF_K]          = BPF_S_RET_K,
524                 [BPF_RET|BPF_A]          = BPF_S_RET_A,
525                 [BPF_ALU|BPF_DIV|BPF_K]  = BPF_S_ALU_DIV_K,
526                 [BPF_LD|BPF_MEM]         = BPF_S_LD_MEM,
527                 [BPF_LDX|BPF_MEM]        = BPF_S_LDX_MEM,
528                 [BPF_ST]                 = BPF_S_ST,
529                 [BPF_STX]                = BPF_S_STX,
530                 [BPF_JMP|BPF_JA]         = BPF_S_JMP_JA,
531                 [BPF_JMP|BPF_JEQ|BPF_K]  = BPF_S_JMP_JEQ_K,
532                 [BPF_JMP|BPF_JEQ|BPF_X]  = BPF_S_JMP_JEQ_X,
533                 [BPF_JMP|BPF_JGE|BPF_K]  = BPF_S_JMP_JGE_K,
534                 [BPF_JMP|BPF_JGE|BPF_X]  = BPF_S_JMP_JGE_X,
535                 [BPF_JMP|BPF_JGT|BPF_K]  = BPF_S_JMP_JGT_K,
536                 [BPF_JMP|BPF_JGT|BPF_X]  = BPF_S_JMP_JGT_X,
537                 [BPF_JMP|BPF_JSET|BPF_K] = BPF_S_JMP_JSET_K,
538                 [BPF_JMP|BPF_JSET|BPF_X] = BPF_S_JMP_JSET_X,
539         };
540         int pc;
541         bool anc_found;
542
543         if (flen == 0 || flen > BPF_MAXINSNS)
544                 return -EINVAL;
545
546         /* check the filter code now */
547         for (pc = 0; pc < flen; pc++) {
548                 struct sock_filter *ftest = &filter[pc];
549                 u16 code = ftest->code;
550
551                 if (code >= ARRAY_SIZE(codes))
552                         return -EINVAL;
553                 code = codes[code];
554                 if (!code)
555                         return -EINVAL;
556                 /* Some instructions need special checks */
557                 switch (code) {
558                 case BPF_S_ALU_DIV_K:
559                 case BPF_S_ALU_MOD_K:
560                         /* check for division by zero */
561                         if (ftest->k == 0)
562                                 return -EINVAL;
563                         break;
564                 case BPF_S_LD_MEM:
565                 case BPF_S_LDX_MEM:
566                 case BPF_S_ST:
567                 case BPF_S_STX:
568                         /* check for invalid memory addresses */
569                         if (ftest->k >= BPF_MEMWORDS)
570                                 return -EINVAL;
571                         break;
572                 case BPF_S_JMP_JA:
573                         /*
574                          * Note, the large ftest->k might cause loops.
575                          * Compare this with conditional jumps below,
576                          * where offsets are limited. --ANK (981016)
577                          */
578                         if (ftest->k >= (unsigned int)(flen-pc-1))
579                                 return -EINVAL;
580                         break;
581                 case BPF_S_JMP_JEQ_K:
582                 case BPF_S_JMP_JEQ_X:
583                 case BPF_S_JMP_JGE_K:
584                 case BPF_S_JMP_JGE_X:
585                 case BPF_S_JMP_JGT_K:
586                 case BPF_S_JMP_JGT_X:
587                 case BPF_S_JMP_JSET_X:
588                 case BPF_S_JMP_JSET_K:
589                         /* for conditionals both must be safe */
590                         if (pc + ftest->jt + 1 >= flen ||
591                             pc + ftest->jf + 1 >= flen)
592                                 return -EINVAL;
593                         break;
594                 case BPF_S_LD_W_ABS:
595                 case BPF_S_LD_H_ABS:
596                 case BPF_S_LD_B_ABS:
597                         anc_found = false;
598 #define ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:        \
599                                 code = BPF_S_ANC_##CODE;        \
600                                 anc_found = true;               \
601                                 break
602                         switch (ftest->k) {
603                         ANCILLARY(PROTOCOL);
604                         ANCILLARY(PKTTYPE);
605                         ANCILLARY(IFINDEX);
606                         ANCILLARY(NLATTR);
607                         ANCILLARY(NLATTR_NEST);
608                         ANCILLARY(MARK);
609                         ANCILLARY(QUEUE);
610                         ANCILLARY(HATYPE);
611                         ANCILLARY(RXHASH);
612                         ANCILLARY(CPU);
613                         ANCILLARY(ALU_XOR_X);
614                         ANCILLARY(VLAN_TAG);
615                         ANCILLARY(VLAN_TAG_PRESENT);
616                         ANCILLARY(PAY_OFFSET);
617                         }
618
619                         /* ancillary operation unknown or unsupported */
620                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
621                                 return -EINVAL;
622                 }
623                 ftest->code = code;
624         }
625
626         /* last instruction must be a RET code */
627         switch (filter[flen - 1].code) {
628         case BPF_S_RET_K:
629         case BPF_S_RET_A:
630                 return check_load_and_stores(filter, flen);
631         }
632         return -EINVAL;
633 }
634 EXPORT_SYMBOL(sk_chk_filter);
635
636 /**
637  *      sk_filter_release_rcu - Release a socket filter by rcu_head
638  *      @rcu: rcu_head that contains the sk_filter to free
639  */
640 void sk_filter_release_rcu(struct rcu_head *rcu)
641 {
642         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
643
644         bpf_jit_free(fp);
645 }
646 EXPORT_SYMBOL(sk_filter_release_rcu);
647
648 static int __sk_prepare_filter(struct sk_filter *fp)
649 {
650         int err;
651
652         fp->bpf_func = sk_run_filter;
653
654         err = sk_chk_filter(fp->insns, fp->len);
655         if (err)
656                 return err;
657
658         bpf_jit_compile(fp);
659         return 0;
660 }
661
662 /**
663  *      sk_unattached_filter_create - create an unattached filter
664  *      @fprog: the filter program
665  *      @pfp: the unattached filter that is created
666  *
667  * Create a filter independent of any socket. We first run some
668  * sanity checks on it to make sure it does not explode on us later.
669  * If an error occurs or there is insufficient memory for the filter
670  * a negative errno code is returned. On success the return is zero.
671  */
672 int sk_unattached_filter_create(struct sk_filter **pfp,
673                                 struct sock_fprog *fprog)
674 {
675         struct sk_filter *fp;
676         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
677         int err;
678
679         /* Make sure new filter is there and in the right amounts. */
680         if (fprog->filter == NULL)
681                 return -EINVAL;
682
683         fp = kmalloc(sk_filter_size(fprog->len), GFP_KERNEL);
684         if (!fp)
685                 return -ENOMEM;
686         memcpy(fp->insns, fprog->filter, fsize);
687
688         atomic_set(&fp->refcnt, 1);
689         fp->len = fprog->len;
690
691         err = __sk_prepare_filter(fp);
692         if (err)
693                 goto free_mem;
694
695         *pfp = fp;
696         return 0;
697 free_mem:
698         kfree(fp);
699         return err;
700 }
701 EXPORT_SYMBOL_GPL(sk_unattached_filter_create);
702
703 void sk_unattached_filter_destroy(struct sk_filter *fp)
704 {
705         sk_filter_release(fp);
706 }
707 EXPORT_SYMBOL_GPL(sk_unattached_filter_destroy);
708
709 /**
710  *      sk_attach_filter - attach a socket filter
711  *      @fprog: the filter program
712  *      @sk: the socket to use
713  *
714  * Attach the user's filter code. We first run some sanity checks on
715  * it to make sure it does not explode on us later. If an error
716  * occurs or there is insufficient memory for the filter a negative
717  * errno code is returned. On success the return is zero.
718  */
719 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
720 {
721         struct sk_filter *fp, *old_fp;
722         unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
723         unsigned int sk_fsize = sk_filter_size(fprog->len);
724         int err;
725
726         if (sock_flag(sk, SOCK_FILTER_LOCKED))
727                 return -EPERM;
728
729         /* Make sure new filter is there and in the right amounts. */
730         if (fprog->filter == NULL)
731                 return -EINVAL;
732
733         fp = sock_kmalloc(sk, sk_fsize, GFP_KERNEL);
734         if (!fp)
735                 return -ENOMEM;
736         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
737                 sock_kfree_s(sk, fp, sk_fsize);
738                 return -EFAULT;
739         }
740
741         atomic_set(&fp->refcnt, 1);
742         fp->len = fprog->len;
743
744         err = __sk_prepare_filter(fp);
745         if (err) {
746                 sk_filter_uncharge(sk, fp);
747                 return err;
748         }
749
750         old_fp = rcu_dereference_protected(sk->sk_filter,
751                                            sock_owned_by_user(sk));
752         rcu_assign_pointer(sk->sk_filter, fp);
753
754         if (old_fp)
755                 sk_filter_uncharge(sk, old_fp);
756         return 0;
757 }
758 EXPORT_SYMBOL_GPL(sk_attach_filter);
759
760 int sk_detach_filter(struct sock *sk)
761 {
762         int ret = -ENOENT;
763         struct sk_filter *filter;
764
765         if (sock_flag(sk, SOCK_FILTER_LOCKED))
766                 return -EPERM;
767
768         filter = rcu_dereference_protected(sk->sk_filter,
769                                            sock_owned_by_user(sk));
770         if (filter) {
771                 RCU_INIT_POINTER(sk->sk_filter, NULL);
772                 sk_filter_uncharge(sk, filter);
773                 ret = 0;
774         }
775         return ret;
776 }
777 EXPORT_SYMBOL_GPL(sk_detach_filter);
778
779 void sk_decode_filter(struct sock_filter *filt, struct sock_filter *to)
780 {
781         static const u16 decodes[] = {
782                 [BPF_S_ALU_ADD_K]       = BPF_ALU|BPF_ADD|BPF_K,
783                 [BPF_S_ALU_ADD_X]       = BPF_ALU|BPF_ADD|BPF_X,
784                 [BPF_S_ALU_SUB_K]       = BPF_ALU|BPF_SUB|BPF_K,
785                 [BPF_S_ALU_SUB_X]       = BPF_ALU|BPF_SUB|BPF_X,
786                 [BPF_S_ALU_MUL_K]       = BPF_ALU|BPF_MUL|BPF_K,
787                 [BPF_S_ALU_MUL_X]       = BPF_ALU|BPF_MUL|BPF_X,
788                 [BPF_S_ALU_DIV_X]       = BPF_ALU|BPF_DIV|BPF_X,
789                 [BPF_S_ALU_MOD_K]       = BPF_ALU|BPF_MOD|BPF_K,
790                 [BPF_S_ALU_MOD_X]       = BPF_ALU|BPF_MOD|BPF_X,
791                 [BPF_S_ALU_AND_K]       = BPF_ALU|BPF_AND|BPF_K,
792                 [BPF_S_ALU_AND_X]       = BPF_ALU|BPF_AND|BPF_X,
793                 [BPF_S_ALU_OR_K]        = BPF_ALU|BPF_OR|BPF_K,
794                 [BPF_S_ALU_OR_X]        = BPF_ALU|BPF_OR|BPF_X,
795                 [BPF_S_ALU_XOR_K]       = BPF_ALU|BPF_XOR|BPF_K,
796                 [BPF_S_ALU_XOR_X]       = BPF_ALU|BPF_XOR|BPF_X,
797                 [BPF_S_ALU_LSH_K]       = BPF_ALU|BPF_LSH|BPF_K,
798                 [BPF_S_ALU_LSH_X]       = BPF_ALU|BPF_LSH|BPF_X,
799                 [BPF_S_ALU_RSH_K]       = BPF_ALU|BPF_RSH|BPF_K,
800                 [BPF_S_ALU_RSH_X]       = BPF_ALU|BPF_RSH|BPF_X,
801                 [BPF_S_ALU_NEG]         = BPF_ALU|BPF_NEG,
802                 [BPF_S_LD_W_ABS]        = BPF_LD|BPF_W|BPF_ABS,
803                 [BPF_S_LD_H_ABS]        = BPF_LD|BPF_H|BPF_ABS,
804                 [BPF_S_LD_B_ABS]        = BPF_LD|BPF_B|BPF_ABS,
805                 [BPF_S_ANC_PROTOCOL]    = BPF_LD|BPF_B|BPF_ABS,
806                 [BPF_S_ANC_PKTTYPE]     = BPF_LD|BPF_B|BPF_ABS,
807                 [BPF_S_ANC_IFINDEX]     = BPF_LD|BPF_B|BPF_ABS,
808                 [BPF_S_ANC_NLATTR]      = BPF_LD|BPF_B|BPF_ABS,
809                 [BPF_S_ANC_NLATTR_NEST] = BPF_LD|BPF_B|BPF_ABS,
810                 [BPF_S_ANC_MARK]        = BPF_LD|BPF_B|BPF_ABS,
811                 [BPF_S_ANC_QUEUE]       = BPF_LD|BPF_B|BPF_ABS,
812                 [BPF_S_ANC_HATYPE]      = BPF_LD|BPF_B|BPF_ABS,
813                 [BPF_S_ANC_RXHASH]      = BPF_LD|BPF_B|BPF_ABS,
814                 [BPF_S_ANC_CPU]         = BPF_LD|BPF_B|BPF_ABS,
815                 [BPF_S_ANC_ALU_XOR_X]   = BPF_LD|BPF_B|BPF_ABS,
816                 [BPF_S_ANC_SECCOMP_LD_W] = BPF_LD|BPF_B|BPF_ABS,
817                 [BPF_S_ANC_VLAN_TAG]    = BPF_LD|BPF_B|BPF_ABS,
818                 [BPF_S_ANC_VLAN_TAG_PRESENT] = BPF_LD|BPF_B|BPF_ABS,
819                 [BPF_S_ANC_PAY_OFFSET]  = BPF_LD|BPF_B|BPF_ABS,
820                 [BPF_S_LD_W_LEN]        = BPF_LD|BPF_W|BPF_LEN,
821                 [BPF_S_LD_W_IND]        = BPF_LD|BPF_W|BPF_IND,
822                 [BPF_S_LD_H_IND]        = BPF_LD|BPF_H|BPF_IND,
823                 [BPF_S_LD_B_IND]        = BPF_LD|BPF_B|BPF_IND,
824                 [BPF_S_LD_IMM]          = BPF_LD|BPF_IMM,
825                 [BPF_S_LDX_W_LEN]       = BPF_LDX|BPF_W|BPF_LEN,
826                 [BPF_S_LDX_B_MSH]       = BPF_LDX|BPF_B|BPF_MSH,
827                 [BPF_S_LDX_IMM]         = BPF_LDX|BPF_IMM,
828                 [BPF_S_MISC_TAX]        = BPF_MISC|BPF_TAX,
829                 [BPF_S_MISC_TXA]        = BPF_MISC|BPF_TXA,
830                 [BPF_S_RET_K]           = BPF_RET|BPF_K,
831                 [BPF_S_RET_A]           = BPF_RET|BPF_A,
832                 [BPF_S_ALU_DIV_K]       = BPF_ALU|BPF_DIV|BPF_K,
833                 [BPF_S_LD_MEM]          = BPF_LD|BPF_MEM,
834                 [BPF_S_LDX_MEM]         = BPF_LDX|BPF_MEM,
835                 [BPF_S_ST]              = BPF_ST,
836                 [BPF_S_STX]             = BPF_STX,
837                 [BPF_S_JMP_JA]          = BPF_JMP|BPF_JA,
838                 [BPF_S_JMP_JEQ_K]       = BPF_JMP|BPF_JEQ|BPF_K,
839                 [BPF_S_JMP_JEQ_X]       = BPF_JMP|BPF_JEQ|BPF_X,
840                 [BPF_S_JMP_JGE_K]       = BPF_JMP|BPF_JGE|BPF_K,
841                 [BPF_S_JMP_JGE_X]       = BPF_JMP|BPF_JGE|BPF_X,
842                 [BPF_S_JMP_JGT_K]       = BPF_JMP|BPF_JGT|BPF_K,
843                 [BPF_S_JMP_JGT_X]       = BPF_JMP|BPF_JGT|BPF_X,
844                 [BPF_S_JMP_JSET_K]      = BPF_JMP|BPF_JSET|BPF_K,
845                 [BPF_S_JMP_JSET_X]      = BPF_JMP|BPF_JSET|BPF_X,
846         };
847         u16 code;
848
849         code = filt->code;
850
851         to->code = decodes[code];
852         to->jt = filt->jt;
853         to->jf = filt->jf;
854         to->k = filt->k;
855 }
856
857 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len)
858 {
859         struct sk_filter *filter;
860         int i, ret;
861
862         lock_sock(sk);
863         filter = rcu_dereference_protected(sk->sk_filter,
864                         sock_owned_by_user(sk));
865         ret = 0;
866         if (!filter)
867                 goto out;
868         ret = filter->len;
869         if (!len)
870                 goto out;
871         ret = -EINVAL;
872         if (len < filter->len)
873                 goto out;
874
875         ret = -EFAULT;
876         for (i = 0; i < filter->len; i++) {
877                 struct sock_filter fb;
878
879                 sk_decode_filter(&filter->insns[i], &fb);
880                 if (copy_to_user(&ubuf[i], &fb, sizeof(fb)))
881                         goto out;
882         }
883
884         ret = filter->len;
885 out:
886         release_sock(sk);
887         return ret;
888 }