fd4ea4b1b7b815f2837e1cd5ed7bd63c8c101d7a
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item = NULL;
247
248         VM_BUG_ON(!expected);
249         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
250         if (pslot)
251                 item = radix_tree_deref_slot_protected(pslot,
252                                                         &mapping->tree_lock);
253         if (item != expected)
254                 return -ENOENT;
255         if (replacement)
256                 radix_tree_replace_slot(pslot, replacement);
257         else
258                 radix_tree_delete(&mapping->page_tree, index);
259         return 0;
260 }
261
262 /*
263  * Sometimes, before we decide whether to proceed or to fail, we must check
264  * that an entry was not already brought back from swap by a racing thread.
265  *
266  * Checking page is not enough: by the time a SwapCache page is locked, it
267  * might be reused, and again be SwapCache, using the same swap as before.
268  */
269 static bool shmem_confirm_swap(struct address_space *mapping,
270                                pgoff_t index, swp_entry_t swap)
271 {
272         void *item;
273
274         rcu_read_lock();
275         item = radix_tree_lookup(&mapping->page_tree, index);
276         rcu_read_unlock();
277         return item == swp_to_radix_entry(swap);
278 }
279
280 /*
281  * Like add_to_page_cache_locked, but error if expected item has gone.
282  */
283 static int shmem_add_to_page_cache(struct page *page,
284                                    struct address_space *mapping,
285                                    pgoff_t index, gfp_t gfp, void *expected)
286 {
287         int error;
288
289         VM_BUG_ON_PAGE(!PageLocked(page), page);
290         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
291
292         page_cache_get(page);
293         page->mapping = mapping;
294         page->index = index;
295
296         spin_lock_irq(&mapping->tree_lock);
297         if (!expected)
298                 error = radix_tree_insert(&mapping->page_tree, index, page);
299         else
300                 error = shmem_radix_tree_replace(mapping, index, expected,
301                                                                  page);
302         if (!error) {
303                 mapping->nrpages++;
304                 __inc_zone_page_state(page, NR_FILE_PAGES);
305                 __inc_zone_page_state(page, NR_SHMEM);
306                 spin_unlock_irq(&mapping->tree_lock);
307         } else {
308                 page->mapping = NULL;
309                 spin_unlock_irq(&mapping->tree_lock);
310                 page_cache_release(page);
311         }
312         return error;
313 }
314
315 /*
316  * Like delete_from_page_cache, but substitutes swap for page.
317  */
318 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
319 {
320         struct address_space *mapping = page->mapping;
321         int error;
322
323         spin_lock_irq(&mapping->tree_lock);
324         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
325         page->mapping = NULL;
326         mapping->nrpages--;
327         __dec_zone_page_state(page, NR_FILE_PAGES);
328         __dec_zone_page_state(page, NR_SHMEM);
329         spin_unlock_irq(&mapping->tree_lock);
330         page_cache_release(page);
331         BUG_ON(error);
332 }
333
334 /*
335  * Like find_get_pages, but collecting swap entries as well as pages.
336  */
337 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
338                                         pgoff_t start, unsigned int nr_pages,
339                                         struct page **pages, pgoff_t *indices)
340 {
341         void **slot;
342         unsigned int ret = 0;
343         struct radix_tree_iter iter;
344
345         if (!nr_pages)
346                 return 0;
347
348         rcu_read_lock();
349 restart:
350         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
351                 struct page *page;
352 repeat:
353                 page = radix_tree_deref_slot(slot);
354                 if (unlikely(!page))
355                         continue;
356                 if (radix_tree_exception(page)) {
357                         if (radix_tree_deref_retry(page))
358                                 goto restart;
359                         /*
360                          * Otherwise, we must be storing a swap entry
361                          * here as an exceptional entry: so return it
362                          * without attempting to raise page count.
363                          */
364                         goto export;
365                 }
366                 if (!page_cache_get_speculative(page))
367                         goto repeat;
368
369                 /* Has the page moved? */
370                 if (unlikely(page != *slot)) {
371                         page_cache_release(page);
372                         goto repeat;
373                 }
374 export:
375                 indices[ret] = iter.index;
376                 pages[ret] = page;
377                 if (++ret == nr_pages)
378                         break;
379         }
380         rcu_read_unlock();
381         return ret;
382 }
383
384 /*
385  * Remove swap entry from radix tree, free the swap and its page cache.
386  */
387 static int shmem_free_swap(struct address_space *mapping,
388                            pgoff_t index, void *radswap)
389 {
390         int error;
391
392         spin_lock_irq(&mapping->tree_lock);
393         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
394         spin_unlock_irq(&mapping->tree_lock);
395         if (!error)
396                 free_swap_and_cache(radix_to_swp_entry(radswap));
397         return error;
398 }
399
400 /*
401  * Pagevec may contain swap entries, so shuffle up pages before releasing.
402  */
403 static void shmem_deswap_pagevec(struct pagevec *pvec)
404 {
405         int i, j;
406
407         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
408                 struct page *page = pvec->pages[i];
409                 if (!radix_tree_exceptional_entry(page))
410                         pvec->pages[j++] = page;
411         }
412         pvec->nr = j;
413 }
414
415 /*
416  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
417  */
418 void shmem_unlock_mapping(struct address_space *mapping)
419 {
420         struct pagevec pvec;
421         pgoff_t indices[PAGEVEC_SIZE];
422         pgoff_t index = 0;
423
424         pagevec_init(&pvec, 0);
425         /*
426          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
427          */
428         while (!mapping_unevictable(mapping)) {
429                 /*
430                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
431                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
432                  */
433                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
434                                         PAGEVEC_SIZE, pvec.pages, indices);
435                 if (!pvec.nr)
436                         break;
437                 index = indices[pvec.nr - 1] + 1;
438                 shmem_deswap_pagevec(&pvec);
439                 check_move_unevictable_pages(pvec.pages, pvec.nr);
440                 pagevec_release(&pvec);
441                 cond_resched();
442         }
443 }
444
445 /*
446  * Remove range of pages and swap entries from radix tree, and free them.
447  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
448  */
449 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
450                                                                  bool unfalloc)
451 {
452         struct address_space *mapping = inode->i_mapping;
453         struct shmem_inode_info *info = SHMEM_I(inode);
454         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
455         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
456         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
457         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
458         struct pagevec pvec;
459         pgoff_t indices[PAGEVEC_SIZE];
460         long nr_swaps_freed = 0;
461         pgoff_t index;
462         int i;
463
464         if (lend == -1)
465                 end = -1;       /* unsigned, so actually very big */
466
467         pagevec_init(&pvec, 0);
468         index = start;
469         while (index < end) {
470                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
471                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
472                                                         pvec.pages, indices);
473                 if (!pvec.nr)
474                         break;
475                 mem_cgroup_uncharge_start();
476                 for (i = 0; i < pagevec_count(&pvec); i++) {
477                         struct page *page = pvec.pages[i];
478
479                         index = indices[i];
480                         if (index >= end)
481                                 break;
482
483                         if (radix_tree_exceptional_entry(page)) {
484                                 if (unfalloc)
485                                         continue;
486                                 nr_swaps_freed += !shmem_free_swap(mapping,
487                                                                 index, page);
488                                 continue;
489                         }
490
491                         if (!trylock_page(page))
492                                 continue;
493                         if (!unfalloc || !PageUptodate(page)) {
494                                 if (page->mapping == mapping) {
495                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
496                                         truncate_inode_page(mapping, page);
497                                 }
498                         }
499                         unlock_page(page);
500                 }
501                 shmem_deswap_pagevec(&pvec);
502                 pagevec_release(&pvec);
503                 mem_cgroup_uncharge_end();
504                 cond_resched();
505                 index++;
506         }
507
508         if (partial_start) {
509                 struct page *page = NULL;
510                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
511                 if (page) {
512                         unsigned int top = PAGE_CACHE_SIZE;
513                         if (start > end) {
514                                 top = partial_end;
515                                 partial_end = 0;
516                         }
517                         zero_user_segment(page, partial_start, top);
518                         set_page_dirty(page);
519                         unlock_page(page);
520                         page_cache_release(page);
521                 }
522         }
523         if (partial_end) {
524                 struct page *page = NULL;
525                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
526                 if (page) {
527                         zero_user_segment(page, 0, partial_end);
528                         set_page_dirty(page);
529                         unlock_page(page);
530                         page_cache_release(page);
531                 }
532         }
533         if (start >= end)
534                 return;
535
536         index = start;
537         for ( ; ; ) {
538                 cond_resched();
539                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
540                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
541                                                         pvec.pages, indices);
542                 if (!pvec.nr) {
543                         if (index == start || unfalloc)
544                                 break;
545                         index = start;
546                         continue;
547                 }
548                 if ((index == start || unfalloc) && indices[0] >= end) {
549                         shmem_deswap_pagevec(&pvec);
550                         pagevec_release(&pvec);
551                         break;
552                 }
553                 mem_cgroup_uncharge_start();
554                 for (i = 0; i < pagevec_count(&pvec); i++) {
555                         struct page *page = pvec.pages[i];
556
557                         index = indices[i];
558                         if (index >= end)
559                                 break;
560
561                         if (radix_tree_exceptional_entry(page)) {
562                                 if (unfalloc)
563                                         continue;
564                                 nr_swaps_freed += !shmem_free_swap(mapping,
565                                                                 index, page);
566                                 continue;
567                         }
568
569                         lock_page(page);
570                         if (!unfalloc || !PageUptodate(page)) {
571                                 if (page->mapping == mapping) {
572                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
573                                         truncate_inode_page(mapping, page);
574                                 }
575                         }
576                         unlock_page(page);
577                 }
578                 shmem_deswap_pagevec(&pvec);
579                 pagevec_release(&pvec);
580                 mem_cgroup_uncharge_end();
581                 index++;
582         }
583
584         spin_lock(&info->lock);
585         info->swapped -= nr_swaps_freed;
586         shmem_recalc_inode(inode);
587         spin_unlock(&info->lock);
588 }
589
590 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
591 {
592         shmem_undo_range(inode, lstart, lend, false);
593         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
594 }
595 EXPORT_SYMBOL_GPL(shmem_truncate_range);
596
597 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
598 {
599         struct inode *inode = dentry->d_inode;
600         int error;
601
602         error = inode_change_ok(inode, attr);
603         if (error)
604                 return error;
605
606         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
607                 loff_t oldsize = inode->i_size;
608                 loff_t newsize = attr->ia_size;
609
610                 if (newsize != oldsize) {
611                         i_size_write(inode, newsize);
612                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
613                 }
614                 if (newsize < oldsize) {
615                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
616                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
617                         shmem_truncate_range(inode, newsize, (loff_t)-1);
618                         /* unmap again to remove racily COWed private pages */
619                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
620                 }
621         }
622
623         setattr_copy(inode, attr);
624         if (attr->ia_valid & ATTR_MODE)
625                 error = posix_acl_chmod(inode, inode->i_mode);
626         return error;
627 }
628
629 static void shmem_evict_inode(struct inode *inode)
630 {
631         struct shmem_inode_info *info = SHMEM_I(inode);
632
633         if (inode->i_mapping->a_ops == &shmem_aops) {
634                 shmem_unacct_size(info->flags, inode->i_size);
635                 inode->i_size = 0;
636                 shmem_truncate_range(inode, 0, (loff_t)-1);
637                 if (!list_empty(&info->swaplist)) {
638                         mutex_lock(&shmem_swaplist_mutex);
639                         list_del_init(&info->swaplist);
640                         mutex_unlock(&shmem_swaplist_mutex);
641                 }
642         } else
643                 kfree(info->symlink);
644
645         simple_xattrs_free(&info->xattrs);
646         WARN_ON(inode->i_blocks);
647         shmem_free_inode(inode->i_sb);
648         clear_inode(inode);
649 }
650
651 /*
652  * If swap found in inode, free it and move page from swapcache to filecache.
653  */
654 static int shmem_unuse_inode(struct shmem_inode_info *info,
655                              swp_entry_t swap, struct page **pagep)
656 {
657         struct address_space *mapping = info->vfs_inode.i_mapping;
658         void *radswap;
659         pgoff_t index;
660         gfp_t gfp;
661         int error = 0;
662
663         radswap = swp_to_radix_entry(swap);
664         index = radix_tree_locate_item(&mapping->page_tree, radswap);
665         if (index == -1)
666                 return 0;
667
668         /*
669          * Move _head_ to start search for next from here.
670          * But be careful: shmem_evict_inode checks list_empty without taking
671          * mutex, and there's an instant in list_move_tail when info->swaplist
672          * would appear empty, if it were the only one on shmem_swaplist.
673          */
674         if (shmem_swaplist.next != &info->swaplist)
675                 list_move_tail(&shmem_swaplist, &info->swaplist);
676
677         gfp = mapping_gfp_mask(mapping);
678         if (shmem_should_replace_page(*pagep, gfp)) {
679                 mutex_unlock(&shmem_swaplist_mutex);
680                 error = shmem_replace_page(pagep, gfp, info, index);
681                 mutex_lock(&shmem_swaplist_mutex);
682                 /*
683                  * We needed to drop mutex to make that restrictive page
684                  * allocation, but the inode might have been freed while we
685                  * dropped it: although a racing shmem_evict_inode() cannot
686                  * complete without emptying the radix_tree, our page lock
687                  * on this swapcache page is not enough to prevent that -
688                  * free_swap_and_cache() of our swap entry will only
689                  * trylock_page(), removing swap from radix_tree whatever.
690                  *
691                  * We must not proceed to shmem_add_to_page_cache() if the
692                  * inode has been freed, but of course we cannot rely on
693                  * inode or mapping or info to check that.  However, we can
694                  * safely check if our swap entry is still in use (and here
695                  * it can't have got reused for another page): if it's still
696                  * in use, then the inode cannot have been freed yet, and we
697                  * can safely proceed (if it's no longer in use, that tells
698                  * nothing about the inode, but we don't need to unuse swap).
699                  */
700                 if (!page_swapcount(*pagep))
701                         error = -ENOENT;
702         }
703
704         /*
705          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706          * but also to hold up shmem_evict_inode(): so inode cannot be freed
707          * beneath us (pagelock doesn't help until the page is in pagecache).
708          */
709         if (!error)
710                 error = shmem_add_to_page_cache(*pagep, mapping, index,
711                                                 GFP_NOWAIT, radswap);
712         if (error != -ENOMEM) {
713                 /*
714                  * Truncation and eviction use free_swap_and_cache(), which
715                  * only does trylock page: if we raced, best clean up here.
716                  */
717                 delete_from_swap_cache(*pagep);
718                 set_page_dirty(*pagep);
719                 if (!error) {
720                         spin_lock(&info->lock);
721                         info->swapped--;
722                         spin_unlock(&info->lock);
723                         swap_free(swap);
724                 }
725                 error = 1;      /* not an error, but entry was found */
726         }
727         return error;
728 }
729
730 /*
731  * Search through swapped inodes to find and replace swap by page.
732  */
733 int shmem_unuse(swp_entry_t swap, struct page *page)
734 {
735         struct list_head *this, *next;
736         struct shmem_inode_info *info;
737         int found = 0;
738         int error = 0;
739
740         /*
741          * There's a faint possibility that swap page was replaced before
742          * caller locked it: caller will come back later with the right page.
743          */
744         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
745                 goto out;
746
747         /*
748          * Charge page using GFP_KERNEL while we can wait, before taking
749          * the shmem_swaplist_mutex which might hold up shmem_writepage().
750          * Charged back to the user (not to caller) when swap account is used.
751          */
752         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753         if (error)
754                 goto out;
755         /* No radix_tree_preload: swap entry keeps a place for page in tree */
756
757         mutex_lock(&shmem_swaplist_mutex);
758         list_for_each_safe(this, next, &shmem_swaplist) {
759                 info = list_entry(this, struct shmem_inode_info, swaplist);
760                 if (info->swapped)
761                         found = shmem_unuse_inode(info, swap, &page);
762                 else
763                         list_del_init(&info->swaplist);
764                 cond_resched();
765                 if (found)
766                         break;
767         }
768         mutex_unlock(&shmem_swaplist_mutex);
769
770         if (found < 0)
771                 error = found;
772 out:
773         unlock_page(page);
774         page_cache_release(page);
775         return error;
776 }
777
778 /*
779  * Move the page from the page cache to the swap cache.
780  */
781 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782 {
783         struct shmem_inode_info *info;
784         struct address_space *mapping;
785         struct inode *inode;
786         swp_entry_t swap;
787         pgoff_t index;
788
789         BUG_ON(!PageLocked(page));
790         mapping = page->mapping;
791         index = page->index;
792         inode = mapping->host;
793         info = SHMEM_I(inode);
794         if (info->flags & VM_LOCKED)
795                 goto redirty;
796         if (!total_swap_pages)
797                 goto redirty;
798
799         /*
800          * shmem_backing_dev_info's capabilities prevent regular writeback or
801          * sync from ever calling shmem_writepage; but a stacking filesystem
802          * might use ->writepage of its underlying filesystem, in which case
803          * tmpfs should write out to swap only in response to memory pressure,
804          * and not for the writeback threads or sync.
805          */
806         if (!wbc->for_reclaim) {
807                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
808                 goto redirty;
809         }
810
811         /*
812          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813          * value into swapfile.c, the only way we can correctly account for a
814          * fallocated page arriving here is now to initialize it and write it.
815          *
816          * That's okay for a page already fallocated earlier, but if we have
817          * not yet completed the fallocation, then (a) we want to keep track
818          * of this page in case we have to undo it, and (b) it may not be a
819          * good idea to continue anyway, once we're pushing into swap.  So
820          * reactivate the page, and let shmem_fallocate() quit when too many.
821          */
822         if (!PageUptodate(page)) {
823                 if (inode->i_private) {
824                         struct shmem_falloc *shmem_falloc;
825                         spin_lock(&inode->i_lock);
826                         shmem_falloc = inode->i_private;
827                         if (shmem_falloc &&
828                             !shmem_falloc->waitq &&
829                             index >= shmem_falloc->start &&
830                             index < shmem_falloc->next)
831                                 shmem_falloc->nr_unswapped++;
832                         else
833                                 shmem_falloc = NULL;
834                         spin_unlock(&inode->i_lock);
835                         if (shmem_falloc)
836                                 goto redirty;
837                 }
838                 clear_highpage(page);
839                 flush_dcache_page(page);
840                 SetPageUptodate(page);
841         }
842
843         swap = get_swap_page();
844         if (!swap.val)
845                 goto redirty;
846
847         /*
848          * Add inode to shmem_unuse()'s list of swapped-out inodes,
849          * if it's not already there.  Do it now before the page is
850          * moved to swap cache, when its pagelock no longer protects
851          * the inode from eviction.  But don't unlock the mutex until
852          * we've incremented swapped, because shmem_unuse_inode() will
853          * prune a !swapped inode from the swaplist under this mutex.
854          */
855         mutex_lock(&shmem_swaplist_mutex);
856         if (list_empty(&info->swaplist))
857                 list_add_tail(&info->swaplist, &shmem_swaplist);
858
859         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
860                 swap_shmem_alloc(swap);
861                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
862
863                 spin_lock(&info->lock);
864                 info->swapped++;
865                 shmem_recalc_inode(inode);
866                 spin_unlock(&info->lock);
867
868                 mutex_unlock(&shmem_swaplist_mutex);
869                 BUG_ON(page_mapped(page));
870                 swap_writepage(page, wbc);
871                 return 0;
872         }
873
874         mutex_unlock(&shmem_swaplist_mutex);
875         swapcache_free(swap, NULL);
876 redirty:
877         set_page_dirty(page);
878         if (wbc->for_reclaim)
879                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
880         unlock_page(page);
881         return 0;
882 }
883
884 #ifdef CONFIG_NUMA
885 #ifdef CONFIG_TMPFS
886 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
887 {
888         char buffer[64];
889
890         if (!mpol || mpol->mode == MPOL_DEFAULT)
891                 return;         /* show nothing */
892
893         mpol_to_str(buffer, sizeof(buffer), mpol);
894
895         seq_printf(seq, ",mpol=%s", buffer);
896 }
897
898 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
899 {
900         struct mempolicy *mpol = NULL;
901         if (sbinfo->mpol) {
902                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
903                 mpol = sbinfo->mpol;
904                 mpol_get(mpol);
905                 spin_unlock(&sbinfo->stat_lock);
906         }
907         return mpol;
908 }
909 #endif /* CONFIG_TMPFS */
910
911 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
912                         struct shmem_inode_info *info, pgoff_t index)
913 {
914         struct vm_area_struct pvma;
915         struct page *page;
916
917         /* Create a pseudo vma that just contains the policy */
918         pvma.vm_start = 0;
919         /* Bias interleave by inode number to distribute better across nodes */
920         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
921         pvma.vm_ops = NULL;
922         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
923
924         page = swapin_readahead(swap, gfp, &pvma, 0);
925
926         /* Drop reference taken by mpol_shared_policy_lookup() */
927         mpol_cond_put(pvma.vm_policy);
928
929         return page;
930 }
931
932 static struct page *shmem_alloc_page(gfp_t gfp,
933                         struct shmem_inode_info *info, pgoff_t index)
934 {
935         struct vm_area_struct pvma;
936         struct page *page;
937
938         /* Create a pseudo vma that just contains the policy */
939         pvma.vm_start = 0;
940         /* Bias interleave by inode number to distribute better across nodes */
941         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
942         pvma.vm_ops = NULL;
943         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
944
945         page = alloc_page_vma(gfp, &pvma, 0);
946
947         /* Drop reference taken by mpol_shared_policy_lookup() */
948         mpol_cond_put(pvma.vm_policy);
949
950         return page;
951 }
952 #else /* !CONFIG_NUMA */
953 #ifdef CONFIG_TMPFS
954 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
955 {
956 }
957 #endif /* CONFIG_TMPFS */
958
959 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
960                         struct shmem_inode_info *info, pgoff_t index)
961 {
962         return swapin_readahead(swap, gfp, NULL, 0);
963 }
964
965 static inline struct page *shmem_alloc_page(gfp_t gfp,
966                         struct shmem_inode_info *info, pgoff_t index)
967 {
968         return alloc_page(gfp);
969 }
970 #endif /* CONFIG_NUMA */
971
972 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
973 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
974 {
975         return NULL;
976 }
977 #endif
978
979 /*
980  * When a page is moved from swapcache to shmem filecache (either by the
981  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
982  * shmem_unuse_inode()), it may have been read in earlier from swap, in
983  * ignorance of the mapping it belongs to.  If that mapping has special
984  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
985  * we may need to copy to a suitable page before moving to filecache.
986  *
987  * In a future release, this may well be extended to respect cpuset and
988  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
989  * but for now it is a simple matter of zone.
990  */
991 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
992 {
993         return page_zonenum(page) > gfp_zone(gfp);
994 }
995
996 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
997                                 struct shmem_inode_info *info, pgoff_t index)
998 {
999         struct page *oldpage, *newpage;
1000         struct address_space *swap_mapping;
1001         pgoff_t swap_index;
1002         int error;
1003
1004         oldpage = *pagep;
1005         swap_index = page_private(oldpage);
1006         swap_mapping = page_mapping(oldpage);
1007
1008         /*
1009          * We have arrived here because our zones are constrained, so don't
1010          * limit chance of success by further cpuset and node constraints.
1011          */
1012         gfp &= ~GFP_CONSTRAINT_MASK;
1013         newpage = shmem_alloc_page(gfp, info, index);
1014         if (!newpage)
1015                 return -ENOMEM;
1016
1017         page_cache_get(newpage);
1018         copy_highpage(newpage, oldpage);
1019         flush_dcache_page(newpage);
1020
1021         __set_page_locked(newpage);
1022         SetPageUptodate(newpage);
1023         SetPageSwapBacked(newpage);
1024         set_page_private(newpage, swap_index);
1025         SetPageSwapCache(newpage);
1026
1027         /*
1028          * Our caller will very soon move newpage out of swapcache, but it's
1029          * a nice clean interface for us to replace oldpage by newpage there.
1030          */
1031         spin_lock_irq(&swap_mapping->tree_lock);
1032         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1033                                                                    newpage);
1034         if (!error) {
1035                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1036                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1037         }
1038         spin_unlock_irq(&swap_mapping->tree_lock);
1039
1040         if (unlikely(error)) {
1041                 /*
1042                  * Is this possible?  I think not, now that our callers check
1043                  * both PageSwapCache and page_private after getting page lock;
1044                  * but be defensive.  Reverse old to newpage for clear and free.
1045                  */
1046                 oldpage = newpage;
1047         } else {
1048                 mem_cgroup_replace_page_cache(oldpage, newpage);
1049                 lru_cache_add_anon(newpage);
1050                 *pagep = newpage;
1051         }
1052
1053         ClearPageSwapCache(oldpage);
1054         set_page_private(oldpage, 0);
1055
1056         unlock_page(oldpage);
1057         page_cache_release(oldpage);
1058         page_cache_release(oldpage);
1059         return error;
1060 }
1061
1062 /*
1063  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1064  *
1065  * If we allocate a new one we do not mark it dirty. That's up to the
1066  * vm. If we swap it in we mark it dirty since we also free the swap
1067  * entry since a page cannot live in both the swap and page cache
1068  */
1069 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1070         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1071 {
1072         struct address_space *mapping = inode->i_mapping;
1073         struct shmem_inode_info *info;
1074         struct shmem_sb_info *sbinfo;
1075         struct page *page;
1076         swp_entry_t swap;
1077         int error;
1078         int once = 0;
1079         int alloced = 0;
1080
1081         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1082                 return -EFBIG;
1083 repeat:
1084         swap.val = 0;
1085         page = find_lock_page(mapping, index);
1086         if (radix_tree_exceptional_entry(page)) {
1087                 swap = radix_to_swp_entry(page);
1088                 page = NULL;
1089         }
1090
1091         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1092             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1093                 error = -EINVAL;
1094                 goto failed;
1095         }
1096
1097         /* fallocated page? */
1098         if (page && !PageUptodate(page)) {
1099                 if (sgp != SGP_READ)
1100                         goto clear;
1101                 unlock_page(page);
1102                 page_cache_release(page);
1103                 page = NULL;
1104         }
1105         if (page || (sgp == SGP_READ && !swap.val)) {
1106                 *pagep = page;
1107                 return 0;
1108         }
1109
1110         /*
1111          * Fast cache lookup did not find it:
1112          * bring it back from swap or allocate.
1113          */
1114         info = SHMEM_I(inode);
1115         sbinfo = SHMEM_SB(inode->i_sb);
1116
1117         if (swap.val) {
1118                 /* Look it up and read it in.. */
1119                 page = lookup_swap_cache(swap);
1120                 if (!page) {
1121                         /* here we actually do the io */
1122                         if (fault_type)
1123                                 *fault_type |= VM_FAULT_MAJOR;
1124                         page = shmem_swapin(swap, gfp, info, index);
1125                         if (!page) {
1126                                 error = -ENOMEM;
1127                                 goto failed;
1128                         }
1129                 }
1130
1131                 /* We have to do this with page locked to prevent races */
1132                 lock_page(page);
1133                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1134                     !shmem_confirm_swap(mapping, index, swap)) {
1135                         error = -EEXIST;        /* try again */
1136                         goto unlock;
1137                 }
1138                 if (!PageUptodate(page)) {
1139                         error = -EIO;
1140                         goto failed;
1141                 }
1142                 wait_on_page_writeback(page);
1143
1144                 if (shmem_should_replace_page(page, gfp)) {
1145                         error = shmem_replace_page(&page, gfp, info, index);
1146                         if (error)
1147                                 goto failed;
1148                 }
1149
1150                 error = mem_cgroup_cache_charge(page, current->mm,
1151                                                 gfp & GFP_RECLAIM_MASK);
1152                 if (!error) {
1153                         error = shmem_add_to_page_cache(page, mapping, index,
1154                                                 gfp, swp_to_radix_entry(swap));
1155                         /*
1156                          * We already confirmed swap under page lock, and make
1157                          * no memory allocation here, so usually no possibility
1158                          * of error; but free_swap_and_cache() only trylocks a
1159                          * page, so it is just possible that the entry has been
1160                          * truncated or holepunched since swap was confirmed.
1161                          * shmem_undo_range() will have done some of the
1162                          * unaccounting, now delete_from_swap_cache() will do
1163                          * the rest (including mem_cgroup_uncharge_swapcache).
1164                          * Reset swap.val? No, leave it so "failed" goes back to
1165                          * "repeat": reading a hole and writing should succeed.
1166                          */
1167                         if (error)
1168                                 delete_from_swap_cache(page);
1169                 }
1170                 if (error)
1171                         goto failed;
1172
1173                 spin_lock(&info->lock);
1174                 info->swapped--;
1175                 shmem_recalc_inode(inode);
1176                 spin_unlock(&info->lock);
1177
1178                 delete_from_swap_cache(page);
1179                 set_page_dirty(page);
1180                 swap_free(swap);
1181
1182         } else {
1183                 if (shmem_acct_block(info->flags)) {
1184                         error = -ENOSPC;
1185                         goto failed;
1186                 }
1187                 if (sbinfo->max_blocks) {
1188                         if (percpu_counter_compare(&sbinfo->used_blocks,
1189                                                 sbinfo->max_blocks) >= 0) {
1190                                 error = -ENOSPC;
1191                                 goto unacct;
1192                         }
1193                         percpu_counter_inc(&sbinfo->used_blocks);
1194                 }
1195
1196                 page = shmem_alloc_page(gfp, info, index);
1197                 if (!page) {
1198                         error = -ENOMEM;
1199                         goto decused;
1200                 }
1201
1202                 SetPageSwapBacked(page);
1203                 __set_page_locked(page);
1204                 error = mem_cgroup_cache_charge(page, current->mm,
1205                                                 gfp & GFP_RECLAIM_MASK);
1206                 if (error)
1207                         goto decused;
1208                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1209                 if (!error) {
1210                         error = shmem_add_to_page_cache(page, mapping, index,
1211                                                         gfp, NULL);
1212                         radix_tree_preload_end();
1213                 }
1214                 if (error) {
1215                         mem_cgroup_uncharge_cache_page(page);
1216                         goto decused;
1217                 }
1218                 lru_cache_add_anon(page);
1219
1220                 spin_lock(&info->lock);
1221                 info->alloced++;
1222                 inode->i_blocks += BLOCKS_PER_PAGE;
1223                 shmem_recalc_inode(inode);
1224                 spin_unlock(&info->lock);
1225                 alloced = true;
1226
1227                 /*
1228                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1229                  */
1230                 if (sgp == SGP_FALLOC)
1231                         sgp = SGP_WRITE;
1232 clear:
1233                 /*
1234                  * Let SGP_WRITE caller clear ends if write does not fill page;
1235                  * but SGP_FALLOC on a page fallocated earlier must initialize
1236                  * it now, lest undo on failure cancel our earlier guarantee.
1237                  */
1238                 if (sgp != SGP_WRITE) {
1239                         clear_highpage(page);
1240                         flush_dcache_page(page);
1241                         SetPageUptodate(page);
1242                 }
1243                 if (sgp == SGP_DIRTY)
1244                         set_page_dirty(page);
1245         }
1246
1247         /* Perhaps the file has been truncated since we checked */
1248         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1249             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1250                 error = -EINVAL;
1251                 if (alloced)
1252                         goto trunc;
1253                 else
1254                         goto failed;
1255         }
1256         *pagep = page;
1257         return 0;
1258
1259         /*
1260          * Error recovery.
1261          */
1262 trunc:
1263         info = SHMEM_I(inode);
1264         ClearPageDirty(page);
1265         delete_from_page_cache(page);
1266         spin_lock(&info->lock);
1267         info->alloced--;
1268         inode->i_blocks -= BLOCKS_PER_PAGE;
1269         spin_unlock(&info->lock);
1270 decused:
1271         sbinfo = SHMEM_SB(inode->i_sb);
1272         if (sbinfo->max_blocks)
1273                 percpu_counter_add(&sbinfo->used_blocks, -1);
1274 unacct:
1275         shmem_unacct_blocks(info->flags, 1);
1276 failed:
1277         if (swap.val && error != -EINVAL &&
1278             !shmem_confirm_swap(mapping, index, swap))
1279                 error = -EEXIST;
1280 unlock:
1281         if (page) {
1282                 unlock_page(page);
1283                 page_cache_release(page);
1284         }
1285         if (error == -ENOSPC && !once++) {
1286                 info = SHMEM_I(inode);
1287                 spin_lock(&info->lock);
1288                 shmem_recalc_inode(inode);
1289                 spin_unlock(&info->lock);
1290                 goto repeat;
1291         }
1292         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1293                 goto repeat;
1294         return error;
1295 }
1296
1297 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1298 {
1299         struct inode *inode = file_inode(vma->vm_file);
1300         int error;
1301         int ret = VM_FAULT_LOCKED;
1302
1303         /*
1304          * Trinity finds that probing a hole which tmpfs is punching can
1305          * prevent the hole-punch from ever completing: which in turn
1306          * locks writers out with its hold on i_mutex.  So refrain from
1307          * faulting pages into the hole while it's being punched.  Although
1308          * shmem_undo_range() does remove the additions, it may be unable to
1309          * keep up, as each new page needs its own unmap_mapping_range() call,
1310          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1311          *
1312          * It does not matter if we sometimes reach this check just before the
1313          * hole-punch begins, so that one fault then races with the punch:
1314          * we just need to make racing faults a rare case.
1315          *
1316          * The implementation below would be much simpler if we just used a
1317          * standard mutex or completion: but we cannot take i_mutex in fault,
1318          * and bloating every shmem inode for this unlikely case would be sad.
1319          */
1320         if (unlikely(inode->i_private)) {
1321                 struct shmem_falloc *shmem_falloc;
1322
1323                 spin_lock(&inode->i_lock);
1324                 shmem_falloc = inode->i_private;
1325                 if (shmem_falloc &&
1326                     shmem_falloc->waitq &&
1327                     vmf->pgoff >= shmem_falloc->start &&
1328                     vmf->pgoff < shmem_falloc->next) {
1329                         wait_queue_head_t *shmem_falloc_waitq;
1330                         DEFINE_WAIT(shmem_fault_wait);
1331
1332                         ret = VM_FAULT_NOPAGE;
1333                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1334                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1335                                 /* It's polite to up mmap_sem if we can */
1336                                 up_read(&vma->vm_mm->mmap_sem);
1337                                 ret = VM_FAULT_RETRY;
1338                         }
1339
1340                         shmem_falloc_waitq = shmem_falloc->waitq;
1341                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1342                                         TASK_UNINTERRUPTIBLE);
1343                         spin_unlock(&inode->i_lock);
1344                         schedule();
1345
1346                         /*
1347                          * shmem_falloc_waitq points into the shmem_fallocate()
1348                          * stack of the hole-punching task: shmem_falloc_waitq
1349                          * is usually invalid by the time we reach here, but
1350                          * finish_wait() does not dereference it in that case;
1351                          * though i_lock needed lest racing with wake_up_all().
1352                          */
1353                         spin_lock(&inode->i_lock);
1354                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1355                         spin_unlock(&inode->i_lock);
1356                         return ret;
1357                 }
1358                 spin_unlock(&inode->i_lock);
1359         }
1360
1361         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1362         if (error)
1363                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1364
1365         if (ret & VM_FAULT_MAJOR) {
1366                 count_vm_event(PGMAJFAULT);
1367                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1368         }
1369         return ret;
1370 }
1371
1372 #ifdef CONFIG_NUMA
1373 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1374 {
1375         struct inode *inode = file_inode(vma->vm_file);
1376         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1377 }
1378
1379 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1380                                           unsigned long addr)
1381 {
1382         struct inode *inode = file_inode(vma->vm_file);
1383         pgoff_t index;
1384
1385         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1386         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1387 }
1388 #endif
1389
1390 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1391 {
1392         struct inode *inode = file_inode(file);
1393         struct shmem_inode_info *info = SHMEM_I(inode);
1394         int retval = -ENOMEM;
1395
1396         spin_lock(&info->lock);
1397         if (lock && !(info->flags & VM_LOCKED)) {
1398                 if (!user_shm_lock(inode->i_size, user))
1399                         goto out_nomem;
1400                 info->flags |= VM_LOCKED;
1401                 mapping_set_unevictable(file->f_mapping);
1402         }
1403         if (!lock && (info->flags & VM_LOCKED) && user) {
1404                 user_shm_unlock(inode->i_size, user);
1405                 info->flags &= ~VM_LOCKED;
1406                 mapping_clear_unevictable(file->f_mapping);
1407         }
1408         retval = 0;
1409
1410 out_nomem:
1411         spin_unlock(&info->lock);
1412         return retval;
1413 }
1414
1415 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1416 {
1417         file_accessed(file);
1418         vma->vm_ops = &shmem_vm_ops;
1419         return 0;
1420 }
1421
1422 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1423                                      umode_t mode, dev_t dev, unsigned long flags)
1424 {
1425         struct inode *inode;
1426         struct shmem_inode_info *info;
1427         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1428
1429         if (shmem_reserve_inode(sb))
1430                 return NULL;
1431
1432         inode = new_inode(sb);
1433         if (inode) {
1434                 inode->i_ino = get_next_ino();
1435                 inode_init_owner(inode, dir, mode);
1436                 inode->i_blocks = 0;
1437                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1438                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1439                 inode->i_generation = get_seconds();
1440                 info = SHMEM_I(inode);
1441                 memset(info, 0, (char *)inode - (char *)info);
1442                 spin_lock_init(&info->lock);
1443                 info->flags = flags & VM_NORESERVE;
1444                 INIT_LIST_HEAD(&info->swaplist);
1445                 simple_xattrs_init(&info->xattrs);
1446                 cache_no_acl(inode);
1447
1448                 switch (mode & S_IFMT) {
1449                 default:
1450                         inode->i_op = &shmem_special_inode_operations;
1451                         init_special_inode(inode, mode, dev);
1452                         break;
1453                 case S_IFREG:
1454                         inode->i_mapping->a_ops = &shmem_aops;
1455                         inode->i_op = &shmem_inode_operations;
1456                         inode->i_fop = &shmem_file_operations;
1457                         mpol_shared_policy_init(&info->policy,
1458                                                  shmem_get_sbmpol(sbinfo));
1459                         break;
1460                 case S_IFDIR:
1461                         inc_nlink(inode);
1462                         /* Some things misbehave if size == 0 on a directory */
1463                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1464                         inode->i_op = &shmem_dir_inode_operations;
1465                         inode->i_fop = &simple_dir_operations;
1466                         break;
1467                 case S_IFLNK:
1468                         /*
1469                          * Must not load anything in the rbtree,
1470                          * mpol_free_shared_policy will not be called.
1471                          */
1472                         mpol_shared_policy_init(&info->policy, NULL);
1473                         break;
1474                 }
1475         } else
1476                 shmem_free_inode(sb);
1477         return inode;
1478 }
1479
1480 #ifdef CONFIG_TMPFS
1481 static const struct inode_operations shmem_symlink_inode_operations;
1482 static const struct inode_operations shmem_short_symlink_operations;
1483
1484 #ifdef CONFIG_TMPFS_XATTR
1485 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1486 #else
1487 #define shmem_initxattrs NULL
1488 #endif
1489
1490 static int
1491 shmem_write_begin(struct file *file, struct address_space *mapping,
1492                         loff_t pos, unsigned len, unsigned flags,
1493                         struct page **pagep, void **fsdata)
1494 {
1495         struct inode *inode = mapping->host;
1496         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1497         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1498 }
1499
1500 static int
1501 shmem_write_end(struct file *file, struct address_space *mapping,
1502                         loff_t pos, unsigned len, unsigned copied,
1503                         struct page *page, void *fsdata)
1504 {
1505         struct inode *inode = mapping->host;
1506
1507         if (pos + copied > inode->i_size)
1508                 i_size_write(inode, pos + copied);
1509
1510         if (!PageUptodate(page)) {
1511                 if (copied < PAGE_CACHE_SIZE) {
1512                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1513                         zero_user_segments(page, 0, from,
1514                                         from + copied, PAGE_CACHE_SIZE);
1515                 }
1516                 SetPageUptodate(page);
1517         }
1518         set_page_dirty(page);
1519         unlock_page(page);
1520         page_cache_release(page);
1521
1522         return copied;
1523 }
1524
1525 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1526 {
1527         struct inode *inode = file_inode(filp);
1528         struct address_space *mapping = inode->i_mapping;
1529         pgoff_t index;
1530         unsigned long offset;
1531         enum sgp_type sgp = SGP_READ;
1532
1533         /*
1534          * Might this read be for a stacking filesystem?  Then when reading
1535          * holes of a sparse file, we actually need to allocate those pages,
1536          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1537          */
1538         if (segment_eq(get_fs(), KERNEL_DS))
1539                 sgp = SGP_DIRTY;
1540
1541         index = *ppos >> PAGE_CACHE_SHIFT;
1542         offset = *ppos & ~PAGE_CACHE_MASK;
1543
1544         for (;;) {
1545                 struct page *page = NULL;
1546                 pgoff_t end_index;
1547                 unsigned long nr, ret;
1548                 loff_t i_size = i_size_read(inode);
1549
1550                 end_index = i_size >> PAGE_CACHE_SHIFT;
1551                 if (index > end_index)
1552                         break;
1553                 if (index == end_index) {
1554                         nr = i_size & ~PAGE_CACHE_MASK;
1555                         if (nr <= offset)
1556                                 break;
1557                 }
1558
1559                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1560                 if (desc->error) {
1561                         if (desc->error == -EINVAL)
1562                                 desc->error = 0;
1563                         break;
1564                 }
1565                 if (page)
1566                         unlock_page(page);
1567
1568                 /*
1569                  * We must evaluate after, since reads (unlike writes)
1570                  * are called without i_mutex protection against truncate
1571                  */
1572                 nr = PAGE_CACHE_SIZE;
1573                 i_size = i_size_read(inode);
1574                 end_index = i_size >> PAGE_CACHE_SHIFT;
1575                 if (index == end_index) {
1576                         nr = i_size & ~PAGE_CACHE_MASK;
1577                         if (nr <= offset) {
1578                                 if (page)
1579                                         page_cache_release(page);
1580                                 break;
1581                         }
1582                 }
1583                 nr -= offset;
1584
1585                 if (page) {
1586                         /*
1587                          * If users can be writing to this page using arbitrary
1588                          * virtual addresses, take care about potential aliasing
1589                          * before reading the page on the kernel side.
1590                          */
1591                         if (mapping_writably_mapped(mapping))
1592                                 flush_dcache_page(page);
1593                         /*
1594                          * Mark the page accessed if we read the beginning.
1595                          */
1596                         if (!offset)
1597                                 mark_page_accessed(page);
1598                 } else {
1599                         page = ZERO_PAGE(0);
1600                         page_cache_get(page);
1601                 }
1602
1603                 /*
1604                  * Ok, we have the page, and it's up-to-date, so
1605                  * now we can copy it to user space...
1606                  *
1607                  * The actor routine returns how many bytes were actually used..
1608                  * NOTE! This may not be the same as how much of a user buffer
1609                  * we filled up (we may be padding etc), so we can only update
1610                  * "pos" here (the actor routine has to update the user buffer
1611                  * pointers and the remaining count).
1612                  */
1613                 ret = actor(desc, page, offset, nr);
1614                 offset += ret;
1615                 index += offset >> PAGE_CACHE_SHIFT;
1616                 offset &= ~PAGE_CACHE_MASK;
1617
1618                 page_cache_release(page);
1619                 if (ret != nr || !desc->count)
1620                         break;
1621
1622                 cond_resched();
1623         }
1624
1625         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1626         file_accessed(filp);
1627 }
1628
1629 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1630                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1631 {
1632         struct file *filp = iocb->ki_filp;
1633         ssize_t retval;
1634         unsigned long seg;
1635         size_t count;
1636         loff_t *ppos = &iocb->ki_pos;
1637
1638         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1639         if (retval)
1640                 return retval;
1641
1642         for (seg = 0; seg < nr_segs; seg++) {
1643                 read_descriptor_t desc;
1644
1645                 desc.written = 0;
1646                 desc.arg.buf = iov[seg].iov_base;
1647                 desc.count = iov[seg].iov_len;
1648                 if (desc.count == 0)
1649                         continue;
1650                 desc.error = 0;
1651                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1652                 retval += desc.written;
1653                 if (desc.error) {
1654                         retval = retval ?: desc.error;
1655                         break;
1656                 }
1657                 if (desc.count > 0)
1658                         break;
1659         }
1660         return retval;
1661 }
1662
1663 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1664                                 struct pipe_inode_info *pipe, size_t len,
1665                                 unsigned int flags)
1666 {
1667         struct address_space *mapping = in->f_mapping;
1668         struct inode *inode = mapping->host;
1669         unsigned int loff, nr_pages, req_pages;
1670         struct page *pages[PIPE_DEF_BUFFERS];
1671         struct partial_page partial[PIPE_DEF_BUFFERS];
1672         struct page *page;
1673         pgoff_t index, end_index;
1674         loff_t isize, left;
1675         int error, page_nr;
1676         struct splice_pipe_desc spd = {
1677                 .pages = pages,
1678                 .partial = partial,
1679                 .nr_pages_max = PIPE_DEF_BUFFERS,
1680                 .flags = flags,
1681                 .ops = &page_cache_pipe_buf_ops,
1682                 .spd_release = spd_release_page,
1683         };
1684
1685         isize = i_size_read(inode);
1686         if (unlikely(*ppos >= isize))
1687                 return 0;
1688
1689         left = isize - *ppos;
1690         if (unlikely(left < len))
1691                 len = left;
1692
1693         if (splice_grow_spd(pipe, &spd))
1694                 return -ENOMEM;
1695
1696         index = *ppos >> PAGE_CACHE_SHIFT;
1697         loff = *ppos & ~PAGE_CACHE_MASK;
1698         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1699         nr_pages = min(req_pages, pipe->buffers);
1700
1701         spd.nr_pages = find_get_pages_contig(mapping, index,
1702                                                 nr_pages, spd.pages);
1703         index += spd.nr_pages;
1704         error = 0;
1705
1706         while (spd.nr_pages < nr_pages) {
1707                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1708                 if (error)
1709                         break;
1710                 unlock_page(page);
1711                 spd.pages[spd.nr_pages++] = page;
1712                 index++;
1713         }
1714
1715         index = *ppos >> PAGE_CACHE_SHIFT;
1716         nr_pages = spd.nr_pages;
1717         spd.nr_pages = 0;
1718
1719         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1720                 unsigned int this_len;
1721
1722                 if (!len)
1723                         break;
1724
1725                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1726                 page = spd.pages[page_nr];
1727
1728                 if (!PageUptodate(page) || page->mapping != mapping) {
1729                         error = shmem_getpage(inode, index, &page,
1730                                                         SGP_CACHE, NULL);
1731                         if (error)
1732                                 break;
1733                         unlock_page(page);
1734                         page_cache_release(spd.pages[page_nr]);
1735                         spd.pages[page_nr] = page;
1736                 }
1737
1738                 isize = i_size_read(inode);
1739                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1740                 if (unlikely(!isize || index > end_index))
1741                         break;
1742
1743                 if (end_index == index) {
1744                         unsigned int plen;
1745
1746                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1747                         if (plen <= loff)
1748                                 break;
1749
1750                         this_len = min(this_len, plen - loff);
1751                         len = this_len;
1752                 }
1753
1754                 spd.partial[page_nr].offset = loff;
1755                 spd.partial[page_nr].len = this_len;
1756                 len -= this_len;
1757                 loff = 0;
1758                 spd.nr_pages++;
1759                 index++;
1760         }
1761
1762         while (page_nr < nr_pages)
1763                 page_cache_release(spd.pages[page_nr++]);
1764
1765         if (spd.nr_pages)
1766                 error = splice_to_pipe(pipe, &spd);
1767
1768         splice_shrink_spd(&spd);
1769
1770         if (error > 0) {
1771                 *ppos += error;
1772                 file_accessed(in);
1773         }
1774         return error;
1775 }
1776
1777 /*
1778  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1779  */
1780 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1781                                     pgoff_t index, pgoff_t end, int whence)
1782 {
1783         struct page *page;
1784         struct pagevec pvec;
1785         pgoff_t indices[PAGEVEC_SIZE];
1786         bool done = false;
1787         int i;
1788
1789         pagevec_init(&pvec, 0);
1790         pvec.nr = 1;            /* start small: we may be there already */
1791         while (!done) {
1792                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1793                                         pvec.nr, pvec.pages, indices);
1794                 if (!pvec.nr) {
1795                         if (whence == SEEK_DATA)
1796                                 index = end;
1797                         break;
1798                 }
1799                 for (i = 0; i < pvec.nr; i++, index++) {
1800                         if (index < indices[i]) {
1801                                 if (whence == SEEK_HOLE) {
1802                                         done = true;
1803                                         break;
1804                                 }
1805                                 index = indices[i];
1806                         }
1807                         page = pvec.pages[i];
1808                         if (page && !radix_tree_exceptional_entry(page)) {
1809                                 if (!PageUptodate(page))
1810                                         page = NULL;
1811                         }
1812                         if (index >= end ||
1813                             (page && whence == SEEK_DATA) ||
1814                             (!page && whence == SEEK_HOLE)) {
1815                                 done = true;
1816                                 break;
1817                         }
1818                 }
1819                 shmem_deswap_pagevec(&pvec);
1820                 pagevec_release(&pvec);
1821                 pvec.nr = PAGEVEC_SIZE;
1822                 cond_resched();
1823         }
1824         return index;
1825 }
1826
1827 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1828 {
1829         struct address_space *mapping = file->f_mapping;
1830         struct inode *inode = mapping->host;
1831         pgoff_t start, end;
1832         loff_t new_offset;
1833
1834         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1835                 return generic_file_llseek_size(file, offset, whence,
1836                                         MAX_LFS_FILESIZE, i_size_read(inode));
1837         mutex_lock(&inode->i_mutex);
1838         /* We're holding i_mutex so we can access i_size directly */
1839
1840         if (offset < 0)
1841                 offset = -EINVAL;
1842         else if (offset >= inode->i_size)
1843                 offset = -ENXIO;
1844         else {
1845                 start = offset >> PAGE_CACHE_SHIFT;
1846                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1847                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1848                 new_offset <<= PAGE_CACHE_SHIFT;
1849                 if (new_offset > offset) {
1850                         if (new_offset < inode->i_size)
1851                                 offset = new_offset;
1852                         else if (whence == SEEK_DATA)
1853                                 offset = -ENXIO;
1854                         else
1855                                 offset = inode->i_size;
1856                 }
1857         }
1858
1859         if (offset >= 0)
1860                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1861         mutex_unlock(&inode->i_mutex);
1862         return offset;
1863 }
1864
1865 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1866                                                          loff_t len)
1867 {
1868         struct inode *inode = file_inode(file);
1869         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1870         struct shmem_falloc shmem_falloc;
1871         pgoff_t start, index, end;
1872         int error;
1873
1874         mutex_lock(&inode->i_mutex);
1875
1876         if (mode & FALLOC_FL_PUNCH_HOLE) {
1877                 struct address_space *mapping = file->f_mapping;
1878                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1879                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1880                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1881
1882                 shmem_falloc.waitq = &shmem_falloc_waitq;
1883                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1884                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1885                 spin_lock(&inode->i_lock);
1886                 inode->i_private = &shmem_falloc;
1887                 spin_unlock(&inode->i_lock);
1888
1889                 if ((u64)unmap_end > (u64)unmap_start)
1890                         unmap_mapping_range(mapping, unmap_start,
1891                                             1 + unmap_end - unmap_start, 0);
1892                 shmem_truncate_range(inode, offset, offset + len - 1);
1893                 /* No need to unmap again: hole-punching leaves COWed pages */
1894
1895                 spin_lock(&inode->i_lock);
1896                 inode->i_private = NULL;
1897                 wake_up_all(&shmem_falloc_waitq);
1898                 spin_unlock(&inode->i_lock);
1899                 error = 0;
1900                 goto out;
1901         }
1902
1903         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1904         error = inode_newsize_ok(inode, offset + len);
1905         if (error)
1906                 goto out;
1907
1908         start = offset >> PAGE_CACHE_SHIFT;
1909         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1910         /* Try to avoid a swapstorm if len is impossible to satisfy */
1911         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1912                 error = -ENOSPC;
1913                 goto out;
1914         }
1915
1916         shmem_falloc.waitq = NULL;
1917         shmem_falloc.start = start;
1918         shmem_falloc.next  = start;
1919         shmem_falloc.nr_falloced = 0;
1920         shmem_falloc.nr_unswapped = 0;
1921         spin_lock(&inode->i_lock);
1922         inode->i_private = &shmem_falloc;
1923         spin_unlock(&inode->i_lock);
1924
1925         for (index = start; index < end; index++) {
1926                 struct page *page;
1927
1928                 /*
1929                  * Good, the fallocate(2) manpage permits EINTR: we may have
1930                  * been interrupted because we are using up too much memory.
1931                  */
1932                 if (signal_pending(current))
1933                         error = -EINTR;
1934                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1935                         error = -ENOMEM;
1936                 else
1937                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1938                                                                         NULL);
1939                 if (error) {
1940                         /* Remove the !PageUptodate pages we added */
1941                         shmem_undo_range(inode,
1942                                 (loff_t)start << PAGE_CACHE_SHIFT,
1943                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1944                         goto undone;
1945                 }
1946
1947                 /*
1948                  * Inform shmem_writepage() how far we have reached.
1949                  * No need for lock or barrier: we have the page lock.
1950                  */
1951                 shmem_falloc.next++;
1952                 if (!PageUptodate(page))
1953                         shmem_falloc.nr_falloced++;
1954
1955                 /*
1956                  * If !PageUptodate, leave it that way so that freeable pages
1957                  * can be recognized if we need to rollback on error later.
1958                  * But set_page_dirty so that memory pressure will swap rather
1959                  * than free the pages we are allocating (and SGP_CACHE pages
1960                  * might still be clean: we now need to mark those dirty too).
1961                  */
1962                 set_page_dirty(page);
1963                 unlock_page(page);
1964                 page_cache_release(page);
1965                 cond_resched();
1966         }
1967
1968         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1969                 i_size_write(inode, offset + len);
1970         inode->i_ctime = CURRENT_TIME;
1971 undone:
1972         spin_lock(&inode->i_lock);
1973         inode->i_private = NULL;
1974         spin_unlock(&inode->i_lock);
1975 out:
1976         mutex_unlock(&inode->i_mutex);
1977         return error;
1978 }
1979
1980 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1981 {
1982         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1983
1984         buf->f_type = TMPFS_MAGIC;
1985         buf->f_bsize = PAGE_CACHE_SIZE;
1986         buf->f_namelen = NAME_MAX;
1987         if (sbinfo->max_blocks) {
1988                 buf->f_blocks = sbinfo->max_blocks;
1989                 buf->f_bavail =
1990                 buf->f_bfree  = sbinfo->max_blocks -
1991                                 percpu_counter_sum(&sbinfo->used_blocks);
1992         }
1993         if (sbinfo->max_inodes) {
1994                 buf->f_files = sbinfo->max_inodes;
1995                 buf->f_ffree = sbinfo->free_inodes;
1996         }
1997         /* else leave those fields 0 like simple_statfs */
1998         return 0;
1999 }
2000
2001 /*
2002  * File creation. Allocate an inode, and we're done..
2003  */
2004 static int
2005 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2006 {
2007         struct inode *inode;
2008         int error = -ENOSPC;
2009
2010         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2011         if (inode) {
2012                 error = simple_acl_create(dir, inode);
2013                 if (error)
2014                         goto out_iput;
2015                 error = security_inode_init_security(inode, dir,
2016                                                      &dentry->d_name,
2017                                                      shmem_initxattrs, NULL);
2018                 if (error && error != -EOPNOTSUPP)
2019                         goto out_iput;
2020
2021                 error = 0;
2022                 dir->i_size += BOGO_DIRENT_SIZE;
2023                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2024                 d_instantiate(dentry, inode);
2025                 dget(dentry); /* Extra count - pin the dentry in core */
2026         }
2027         return error;
2028 out_iput:
2029         iput(inode);
2030         return error;
2031 }
2032
2033 static int
2034 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2035 {
2036         struct inode *inode;
2037         int error = -ENOSPC;
2038
2039         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2040         if (inode) {
2041                 error = security_inode_init_security(inode, dir,
2042                                                      NULL,
2043                                                      shmem_initxattrs, NULL);
2044                 if (error && error != -EOPNOTSUPP)
2045                         goto out_iput;
2046                 error = simple_acl_create(dir, inode);
2047                 if (error)
2048                         goto out_iput;
2049                 d_tmpfile(dentry, inode);
2050         }
2051         return error;
2052 out_iput:
2053         iput(inode);
2054         return error;
2055 }
2056
2057 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2058 {
2059         int error;
2060
2061         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2062                 return error;
2063         inc_nlink(dir);
2064         return 0;
2065 }
2066
2067 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2068                 bool excl)
2069 {
2070         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2071 }
2072
2073 /*
2074  * Link a file..
2075  */
2076 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2077 {
2078         struct inode *inode = old_dentry->d_inode;
2079         int ret;
2080
2081         /*
2082          * No ordinary (disk based) filesystem counts links as inodes;
2083          * but each new link needs a new dentry, pinning lowmem, and
2084          * tmpfs dentries cannot be pruned until they are unlinked.
2085          */
2086         ret = shmem_reserve_inode(inode->i_sb);
2087         if (ret)
2088                 goto out;
2089
2090         dir->i_size += BOGO_DIRENT_SIZE;
2091         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2092         inc_nlink(inode);
2093         ihold(inode);   /* New dentry reference */
2094         dget(dentry);           /* Extra pinning count for the created dentry */
2095         d_instantiate(dentry, inode);
2096 out:
2097         return ret;
2098 }
2099
2100 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2101 {
2102         struct inode *inode = dentry->d_inode;
2103
2104         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2105                 shmem_free_inode(inode->i_sb);
2106
2107         dir->i_size -= BOGO_DIRENT_SIZE;
2108         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2109         drop_nlink(inode);
2110         dput(dentry);   /* Undo the count from "create" - this does all the work */
2111         return 0;
2112 }
2113
2114 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2115 {
2116         if (!simple_empty(dentry))
2117                 return -ENOTEMPTY;
2118
2119         drop_nlink(dentry->d_inode);
2120         drop_nlink(dir);
2121         return shmem_unlink(dir, dentry);
2122 }
2123
2124 /*
2125  * The VFS layer already does all the dentry stuff for rename,
2126  * we just have to decrement the usage count for the target if
2127  * it exists so that the VFS layer correctly free's it when it
2128  * gets overwritten.
2129  */
2130 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2131 {
2132         struct inode *inode = old_dentry->d_inode;
2133         int they_are_dirs = S_ISDIR(inode->i_mode);
2134
2135         if (!simple_empty(new_dentry))
2136                 return -ENOTEMPTY;
2137
2138         if (new_dentry->d_inode) {
2139                 (void) shmem_unlink(new_dir, new_dentry);
2140                 if (they_are_dirs)
2141                         drop_nlink(old_dir);
2142         } else if (they_are_dirs) {
2143                 drop_nlink(old_dir);
2144                 inc_nlink(new_dir);
2145         }
2146
2147         old_dir->i_size -= BOGO_DIRENT_SIZE;
2148         new_dir->i_size += BOGO_DIRENT_SIZE;
2149         old_dir->i_ctime = old_dir->i_mtime =
2150         new_dir->i_ctime = new_dir->i_mtime =
2151         inode->i_ctime = CURRENT_TIME;
2152         return 0;
2153 }
2154
2155 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2156 {
2157         int error;
2158         int len;
2159         struct inode *inode;
2160         struct page *page;
2161         char *kaddr;
2162         struct shmem_inode_info *info;
2163
2164         len = strlen(symname) + 1;
2165         if (len > PAGE_CACHE_SIZE)
2166                 return -ENAMETOOLONG;
2167
2168         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2169         if (!inode)
2170                 return -ENOSPC;
2171
2172         error = security_inode_init_security(inode, dir, &dentry->d_name,
2173                                              shmem_initxattrs, NULL);
2174         if (error) {
2175                 if (error != -EOPNOTSUPP) {
2176                         iput(inode);
2177                         return error;
2178                 }
2179                 error = 0;
2180         }
2181
2182         info = SHMEM_I(inode);
2183         inode->i_size = len-1;
2184         if (len <= SHORT_SYMLINK_LEN) {
2185                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2186                 if (!info->symlink) {
2187                         iput(inode);
2188                         return -ENOMEM;
2189                 }
2190                 inode->i_op = &shmem_short_symlink_operations;
2191         } else {
2192                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2193                 if (error) {
2194                         iput(inode);
2195                         return error;
2196                 }
2197                 inode->i_mapping->a_ops = &shmem_aops;
2198                 inode->i_op = &shmem_symlink_inode_operations;
2199                 kaddr = kmap_atomic(page);
2200                 memcpy(kaddr, symname, len);
2201                 kunmap_atomic(kaddr);
2202                 SetPageUptodate(page);
2203                 set_page_dirty(page);
2204                 unlock_page(page);
2205                 page_cache_release(page);
2206         }
2207         dir->i_size += BOGO_DIRENT_SIZE;
2208         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2209         d_instantiate(dentry, inode);
2210         dget(dentry);
2211         return 0;
2212 }
2213
2214 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2215 {
2216         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2217         return NULL;
2218 }
2219
2220 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2221 {
2222         struct page *page = NULL;
2223         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2224         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2225         if (page)
2226                 unlock_page(page);
2227         return page;
2228 }
2229
2230 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2231 {
2232         if (!IS_ERR(nd_get_link(nd))) {
2233                 struct page *page = cookie;
2234                 kunmap(page);
2235                 mark_page_accessed(page);
2236                 page_cache_release(page);
2237         }
2238 }
2239
2240 #ifdef CONFIG_TMPFS_XATTR
2241 /*
2242  * Superblocks without xattr inode operations may get some security.* xattr
2243  * support from the LSM "for free". As soon as we have any other xattrs
2244  * like ACLs, we also need to implement the security.* handlers at
2245  * filesystem level, though.
2246  */
2247
2248 /*
2249  * Callback for security_inode_init_security() for acquiring xattrs.
2250  */
2251 static int shmem_initxattrs(struct inode *inode,
2252                             const struct xattr *xattr_array,
2253                             void *fs_info)
2254 {
2255         struct shmem_inode_info *info = SHMEM_I(inode);
2256         const struct xattr *xattr;
2257         struct simple_xattr *new_xattr;
2258         size_t len;
2259
2260         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2261                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2262                 if (!new_xattr)
2263                         return -ENOMEM;
2264
2265                 len = strlen(xattr->name) + 1;
2266                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2267                                           GFP_KERNEL);
2268                 if (!new_xattr->name) {
2269                         kfree(new_xattr);
2270                         return -ENOMEM;
2271                 }
2272
2273                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2274                        XATTR_SECURITY_PREFIX_LEN);
2275                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2276                        xattr->name, len);
2277
2278                 simple_xattr_list_add(&info->xattrs, new_xattr);
2279         }
2280
2281         return 0;
2282 }
2283
2284 static const struct xattr_handler *shmem_xattr_handlers[] = {
2285 #ifdef CONFIG_TMPFS_POSIX_ACL
2286         &posix_acl_access_xattr_handler,
2287         &posix_acl_default_xattr_handler,
2288 #endif
2289         NULL
2290 };
2291
2292 static int shmem_xattr_validate(const char *name)
2293 {
2294         struct { const char *prefix; size_t len; } arr[] = {
2295                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2296                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2297         };
2298         int i;
2299
2300         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2301                 size_t preflen = arr[i].len;
2302                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2303                         if (!name[preflen])
2304                                 return -EINVAL;
2305                         return 0;
2306                 }
2307         }
2308         return -EOPNOTSUPP;
2309 }
2310
2311 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2312                               void *buffer, size_t size)
2313 {
2314         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2315         int err;
2316
2317         /*
2318          * If this is a request for a synthetic attribute in the system.*
2319          * namespace use the generic infrastructure to resolve a handler
2320          * for it via sb->s_xattr.
2321          */
2322         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2323                 return generic_getxattr(dentry, name, buffer, size);
2324
2325         err = shmem_xattr_validate(name);
2326         if (err)
2327                 return err;
2328
2329         return simple_xattr_get(&info->xattrs, name, buffer, size);
2330 }
2331
2332 static int shmem_setxattr(struct dentry *dentry, const char *name,
2333                           const void *value, size_t size, int flags)
2334 {
2335         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2336         int err;
2337
2338         /*
2339          * If this is a request for a synthetic attribute in the system.*
2340          * namespace use the generic infrastructure to resolve a handler
2341          * for it via sb->s_xattr.
2342          */
2343         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2344                 return generic_setxattr(dentry, name, value, size, flags);
2345
2346         err = shmem_xattr_validate(name);
2347         if (err)
2348                 return err;
2349
2350         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2351 }
2352
2353 static int shmem_removexattr(struct dentry *dentry, const char *name)
2354 {
2355         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2356         int err;
2357
2358         /*
2359          * If this is a request for a synthetic attribute in the system.*
2360          * namespace use the generic infrastructure to resolve a handler
2361          * for it via sb->s_xattr.
2362          */
2363         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2364                 return generic_removexattr(dentry, name);
2365
2366         err = shmem_xattr_validate(name);
2367         if (err)
2368                 return err;
2369
2370         return simple_xattr_remove(&info->xattrs, name);
2371 }
2372
2373 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2374 {
2375         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2376         return simple_xattr_list(&info->xattrs, buffer, size);
2377 }
2378 #endif /* CONFIG_TMPFS_XATTR */
2379
2380 static const struct inode_operations shmem_short_symlink_operations = {
2381         .readlink       = generic_readlink,
2382         .follow_link    = shmem_follow_short_symlink,
2383 #ifdef CONFIG_TMPFS_XATTR
2384         .setxattr       = shmem_setxattr,
2385         .getxattr       = shmem_getxattr,
2386         .listxattr      = shmem_listxattr,
2387         .removexattr    = shmem_removexattr,
2388 #endif
2389 };
2390
2391 static const struct inode_operations shmem_symlink_inode_operations = {
2392         .readlink       = generic_readlink,
2393         .follow_link    = shmem_follow_link,
2394         .put_link       = shmem_put_link,
2395 #ifdef CONFIG_TMPFS_XATTR
2396         .setxattr       = shmem_setxattr,
2397         .getxattr       = shmem_getxattr,
2398         .listxattr      = shmem_listxattr,
2399         .removexattr    = shmem_removexattr,
2400 #endif
2401 };
2402
2403 static struct dentry *shmem_get_parent(struct dentry *child)
2404 {
2405         return ERR_PTR(-ESTALE);
2406 }
2407
2408 static int shmem_match(struct inode *ino, void *vfh)
2409 {
2410         __u32 *fh = vfh;
2411         __u64 inum = fh[2];
2412         inum = (inum << 32) | fh[1];
2413         return ino->i_ino == inum && fh[0] == ino->i_generation;
2414 }
2415
2416 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2417                 struct fid *fid, int fh_len, int fh_type)
2418 {
2419         struct inode *inode;
2420         struct dentry *dentry = NULL;
2421         u64 inum;
2422
2423         if (fh_len < 3)
2424                 return NULL;
2425
2426         inum = fid->raw[2];
2427         inum = (inum << 32) | fid->raw[1];
2428
2429         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2430                         shmem_match, fid->raw);
2431         if (inode) {
2432                 dentry = d_find_alias(inode);
2433                 iput(inode);
2434         }
2435
2436         return dentry;
2437 }
2438
2439 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2440                                 struct inode *parent)
2441 {
2442         if (*len < 3) {
2443                 *len = 3;
2444                 return FILEID_INVALID;
2445         }
2446
2447         if (inode_unhashed(inode)) {
2448                 /* Unfortunately insert_inode_hash is not idempotent,
2449                  * so as we hash inodes here rather than at creation
2450                  * time, we need a lock to ensure we only try
2451                  * to do it once
2452                  */
2453                 static DEFINE_SPINLOCK(lock);
2454                 spin_lock(&lock);
2455                 if (inode_unhashed(inode))
2456                         __insert_inode_hash(inode,
2457                                             inode->i_ino + inode->i_generation);
2458                 spin_unlock(&lock);
2459         }
2460
2461         fh[0] = inode->i_generation;
2462         fh[1] = inode->i_ino;
2463         fh[2] = ((__u64)inode->i_ino) >> 32;
2464
2465         *len = 3;
2466         return 1;
2467 }
2468
2469 static const struct export_operations shmem_export_ops = {
2470         .get_parent     = shmem_get_parent,
2471         .encode_fh      = shmem_encode_fh,
2472         .fh_to_dentry   = shmem_fh_to_dentry,
2473 };
2474
2475 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2476                                bool remount)
2477 {
2478         char *this_char, *value, *rest;
2479         struct mempolicy *mpol = NULL;
2480         uid_t uid;
2481         gid_t gid;
2482
2483         while (options != NULL) {
2484                 this_char = options;
2485                 for (;;) {
2486                         /*
2487                          * NUL-terminate this option: unfortunately,
2488                          * mount options form a comma-separated list,
2489                          * but mpol's nodelist may also contain commas.
2490                          */
2491                         options = strchr(options, ',');
2492                         if (options == NULL)
2493                                 break;
2494                         options++;
2495                         if (!isdigit(*options)) {
2496                                 options[-1] = '\0';
2497                                 break;
2498                         }
2499                 }
2500                 if (!*this_char)
2501                         continue;
2502                 if ((value = strchr(this_char,'=')) != NULL) {
2503                         *value++ = 0;
2504                 } else {
2505                         printk(KERN_ERR
2506                             "tmpfs: No value for mount option '%s'\n",
2507                             this_char);
2508                         goto error;
2509                 }
2510
2511                 if (!strcmp(this_char,"size")) {
2512                         unsigned long long size;
2513                         size = memparse(value,&rest);
2514                         if (*rest == '%') {
2515                                 size <<= PAGE_SHIFT;
2516                                 size *= totalram_pages;
2517                                 do_div(size, 100);
2518                                 rest++;
2519                         }
2520                         if (*rest)
2521                                 goto bad_val;
2522                         sbinfo->max_blocks =
2523                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2524                 } else if (!strcmp(this_char,"nr_blocks")) {
2525                         sbinfo->max_blocks = memparse(value, &rest);
2526                         if (*rest)
2527                                 goto bad_val;
2528                 } else if (!strcmp(this_char,"nr_inodes")) {
2529                         sbinfo->max_inodes = memparse(value, &rest);
2530                         if (*rest)
2531                                 goto bad_val;
2532                 } else if (!strcmp(this_char,"mode")) {
2533                         if (remount)
2534                                 continue;
2535                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2536                         if (*rest)
2537                                 goto bad_val;
2538                 } else if (!strcmp(this_char,"uid")) {
2539                         if (remount)
2540                                 continue;
2541                         uid = simple_strtoul(value, &rest, 0);
2542                         if (*rest)
2543                                 goto bad_val;
2544                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2545                         if (!uid_valid(sbinfo->uid))
2546                                 goto bad_val;
2547                 } else if (!strcmp(this_char,"gid")) {
2548                         if (remount)
2549                                 continue;
2550                         gid = simple_strtoul(value, &rest, 0);
2551                         if (*rest)
2552                                 goto bad_val;
2553                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2554                         if (!gid_valid(sbinfo->gid))
2555                                 goto bad_val;
2556                 } else if (!strcmp(this_char,"mpol")) {
2557                         mpol_put(mpol);
2558                         mpol = NULL;
2559                         if (mpol_parse_str(value, &mpol))
2560                                 goto bad_val;
2561                 } else {
2562                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2563                                this_char);
2564                         goto error;
2565                 }
2566         }
2567         sbinfo->mpol = mpol;
2568         return 0;
2569
2570 bad_val:
2571         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2572                value, this_char);
2573 error:
2574         mpol_put(mpol);
2575         return 1;
2576
2577 }
2578
2579 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2580 {
2581         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2582         struct shmem_sb_info config = *sbinfo;
2583         unsigned long inodes;
2584         int error = -EINVAL;
2585
2586         config.mpol = NULL;
2587         if (shmem_parse_options(data, &config, true))
2588                 return error;
2589
2590         spin_lock(&sbinfo->stat_lock);
2591         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2592         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2593                 goto out;
2594         if (config.max_inodes < inodes)
2595                 goto out;
2596         /*
2597          * Those tests disallow limited->unlimited while any are in use;
2598          * but we must separately disallow unlimited->limited, because
2599          * in that case we have no record of how much is already in use.
2600          */
2601         if (config.max_blocks && !sbinfo->max_blocks)
2602                 goto out;
2603         if (config.max_inodes && !sbinfo->max_inodes)
2604                 goto out;
2605
2606         error = 0;
2607         sbinfo->max_blocks  = config.max_blocks;
2608         sbinfo->max_inodes  = config.max_inodes;
2609         sbinfo->free_inodes = config.max_inodes - inodes;
2610
2611         /*
2612          * Preserve previous mempolicy unless mpol remount option was specified.
2613          */
2614         if (config.mpol) {
2615                 mpol_put(sbinfo->mpol);
2616                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2617         }
2618 out:
2619         spin_unlock(&sbinfo->stat_lock);
2620         return error;
2621 }
2622
2623 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2624 {
2625         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2626
2627         if (sbinfo->max_blocks != shmem_default_max_blocks())
2628                 seq_printf(seq, ",size=%luk",
2629                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2630         if (sbinfo->max_inodes != shmem_default_max_inodes())
2631                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2632         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2633                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2634         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2635                 seq_printf(seq, ",uid=%u",
2636                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2637         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2638                 seq_printf(seq, ",gid=%u",
2639                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2640         shmem_show_mpol(seq, sbinfo->mpol);
2641         return 0;
2642 }
2643 #endif /* CONFIG_TMPFS */
2644
2645 static void shmem_put_super(struct super_block *sb)
2646 {
2647         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2648
2649         percpu_counter_destroy(&sbinfo->used_blocks);
2650         mpol_put(sbinfo->mpol);
2651         kfree(sbinfo);
2652         sb->s_fs_info = NULL;
2653 }
2654
2655 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2656 {
2657         struct inode *inode;
2658         struct shmem_sb_info *sbinfo;
2659         int err = -ENOMEM;
2660
2661         /* Round up to L1_CACHE_BYTES to resist false sharing */
2662         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2663                                 L1_CACHE_BYTES), GFP_KERNEL);
2664         if (!sbinfo)
2665                 return -ENOMEM;
2666
2667         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2668         sbinfo->uid = current_fsuid();
2669         sbinfo->gid = current_fsgid();
2670         sb->s_fs_info = sbinfo;
2671
2672 #ifdef CONFIG_TMPFS
2673         /*
2674          * Per default we only allow half of the physical ram per
2675          * tmpfs instance, limiting inodes to one per page of lowmem;
2676          * but the internal instance is left unlimited.
2677          */
2678         if (!(sb->s_flags & MS_KERNMOUNT)) {
2679                 sbinfo->max_blocks = shmem_default_max_blocks();
2680                 sbinfo->max_inodes = shmem_default_max_inodes();
2681                 if (shmem_parse_options(data, sbinfo, false)) {
2682                         err = -EINVAL;
2683                         goto failed;
2684                 }
2685         } else {
2686                 sb->s_flags |= MS_NOUSER;
2687         }
2688         sb->s_export_op = &shmem_export_ops;
2689         sb->s_flags |= MS_NOSEC;
2690 #else
2691         sb->s_flags |= MS_NOUSER;
2692 #endif
2693
2694         spin_lock_init(&sbinfo->stat_lock);
2695         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2696                 goto failed;
2697         sbinfo->free_inodes = sbinfo->max_inodes;
2698
2699         sb->s_maxbytes = MAX_LFS_FILESIZE;
2700         sb->s_blocksize = PAGE_CACHE_SIZE;
2701         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2702         sb->s_magic = TMPFS_MAGIC;
2703         sb->s_op = &shmem_ops;
2704         sb->s_time_gran = 1;
2705 #ifdef CONFIG_TMPFS_XATTR
2706         sb->s_xattr = shmem_xattr_handlers;
2707 #endif
2708 #ifdef CONFIG_TMPFS_POSIX_ACL
2709         sb->s_flags |= MS_POSIXACL;
2710 #endif
2711
2712         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2713         if (!inode)
2714                 goto failed;
2715         inode->i_uid = sbinfo->uid;
2716         inode->i_gid = sbinfo->gid;
2717         sb->s_root = d_make_root(inode);
2718         if (!sb->s_root)
2719                 goto failed;
2720         return 0;
2721
2722 failed:
2723         shmem_put_super(sb);
2724         return err;
2725 }
2726
2727 static struct kmem_cache *shmem_inode_cachep;
2728
2729 static struct inode *shmem_alloc_inode(struct super_block *sb)
2730 {
2731         struct shmem_inode_info *info;
2732         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2733         if (!info)
2734                 return NULL;
2735         return &info->vfs_inode;
2736 }
2737
2738 static void shmem_destroy_callback(struct rcu_head *head)
2739 {
2740         struct inode *inode = container_of(head, struct inode, i_rcu);
2741         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2742 }
2743
2744 static void shmem_destroy_inode(struct inode *inode)
2745 {
2746         if (S_ISREG(inode->i_mode))
2747                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2748         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2749 }
2750
2751 static void shmem_init_inode(void *foo)
2752 {
2753         struct shmem_inode_info *info = foo;
2754         inode_init_once(&info->vfs_inode);
2755 }
2756
2757 static int shmem_init_inodecache(void)
2758 {
2759         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2760                                 sizeof(struct shmem_inode_info),
2761                                 0, SLAB_PANIC, shmem_init_inode);
2762         return 0;
2763 }
2764
2765 static void shmem_destroy_inodecache(void)
2766 {
2767         kmem_cache_destroy(shmem_inode_cachep);
2768 }
2769
2770 static const struct address_space_operations shmem_aops = {
2771         .writepage      = shmem_writepage,
2772         .set_page_dirty = __set_page_dirty_no_writeback,
2773 #ifdef CONFIG_TMPFS
2774         .write_begin    = shmem_write_begin,
2775         .write_end      = shmem_write_end,
2776 #endif
2777         .migratepage    = migrate_page,
2778         .error_remove_page = generic_error_remove_page,
2779 };
2780
2781 static const struct file_operations shmem_file_operations = {
2782         .mmap           = shmem_mmap,
2783 #ifdef CONFIG_TMPFS
2784         .llseek         = shmem_file_llseek,
2785         .read           = do_sync_read,
2786         .write          = do_sync_write,
2787         .aio_read       = shmem_file_aio_read,
2788         .aio_write      = generic_file_aio_write,
2789         .fsync          = noop_fsync,
2790         .splice_read    = shmem_file_splice_read,
2791         .splice_write   = generic_file_splice_write,
2792         .fallocate      = shmem_fallocate,
2793 #endif
2794 };
2795
2796 static const struct inode_operations shmem_inode_operations = {
2797         .setattr        = shmem_setattr,
2798 #ifdef CONFIG_TMPFS_XATTR
2799         .setxattr       = shmem_setxattr,
2800         .getxattr       = shmem_getxattr,
2801         .listxattr      = shmem_listxattr,
2802         .removexattr    = shmem_removexattr,
2803         .set_acl        = simple_set_acl,
2804 #endif
2805 };
2806
2807 static const struct inode_operations shmem_dir_inode_operations = {
2808 #ifdef CONFIG_TMPFS
2809         .create         = shmem_create,
2810         .lookup         = simple_lookup,
2811         .link           = shmem_link,
2812         .unlink         = shmem_unlink,
2813         .symlink        = shmem_symlink,
2814         .mkdir          = shmem_mkdir,
2815         .rmdir          = shmem_rmdir,
2816         .mknod          = shmem_mknod,
2817         .rename         = shmem_rename,
2818         .tmpfile        = shmem_tmpfile,
2819 #endif
2820 #ifdef CONFIG_TMPFS_XATTR
2821         .setxattr       = shmem_setxattr,
2822         .getxattr       = shmem_getxattr,
2823         .listxattr      = shmem_listxattr,
2824         .removexattr    = shmem_removexattr,
2825 #endif
2826 #ifdef CONFIG_TMPFS_POSIX_ACL
2827         .setattr        = shmem_setattr,
2828         .set_acl        = simple_set_acl,
2829 #endif
2830 };
2831
2832 static const struct inode_operations shmem_special_inode_operations = {
2833 #ifdef CONFIG_TMPFS_XATTR
2834         .setxattr       = shmem_setxattr,
2835         .getxattr       = shmem_getxattr,
2836         .listxattr      = shmem_listxattr,
2837         .removexattr    = shmem_removexattr,
2838 #endif
2839 #ifdef CONFIG_TMPFS_POSIX_ACL
2840         .setattr        = shmem_setattr,
2841         .set_acl        = simple_set_acl,
2842 #endif
2843 };
2844
2845 static const struct super_operations shmem_ops = {
2846         .alloc_inode    = shmem_alloc_inode,
2847         .destroy_inode  = shmem_destroy_inode,
2848 #ifdef CONFIG_TMPFS
2849         .statfs         = shmem_statfs,
2850         .remount_fs     = shmem_remount_fs,
2851         .show_options   = shmem_show_options,
2852 #endif
2853         .evict_inode    = shmem_evict_inode,
2854         .drop_inode     = generic_delete_inode,
2855         .put_super      = shmem_put_super,
2856 };
2857
2858 static const struct vm_operations_struct shmem_vm_ops = {
2859         .fault          = shmem_fault,
2860 #ifdef CONFIG_NUMA
2861         .set_policy     = shmem_set_policy,
2862         .get_policy     = shmem_get_policy,
2863 #endif
2864         .remap_pages    = generic_file_remap_pages,
2865 };
2866
2867 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2868         int flags, const char *dev_name, void *data)
2869 {
2870         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2871 }
2872
2873 static struct file_system_type shmem_fs_type = {
2874         .owner          = THIS_MODULE,
2875         .name           = "tmpfs",
2876         .mount          = shmem_mount,
2877         .kill_sb        = kill_litter_super,
2878         .fs_flags       = FS_USERNS_MOUNT,
2879 };
2880
2881 int __init shmem_init(void)
2882 {
2883         int error;
2884
2885         /* If rootfs called this, don't re-init */
2886         if (shmem_inode_cachep)
2887                 return 0;
2888
2889         error = bdi_init(&shmem_backing_dev_info);
2890         if (error)
2891                 goto out4;
2892
2893         error = shmem_init_inodecache();
2894         if (error)
2895                 goto out3;
2896
2897         error = register_filesystem(&shmem_fs_type);
2898         if (error) {
2899                 printk(KERN_ERR "Could not register tmpfs\n");
2900                 goto out2;
2901         }
2902
2903         shm_mnt = kern_mount(&shmem_fs_type);
2904         if (IS_ERR(shm_mnt)) {
2905                 error = PTR_ERR(shm_mnt);
2906                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2907                 goto out1;
2908         }
2909         return 0;
2910
2911 out1:
2912         unregister_filesystem(&shmem_fs_type);
2913 out2:
2914         shmem_destroy_inodecache();
2915 out3:
2916         bdi_destroy(&shmem_backing_dev_info);
2917 out4:
2918         shm_mnt = ERR_PTR(error);
2919         return error;
2920 }
2921
2922 #else /* !CONFIG_SHMEM */
2923
2924 /*
2925  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2926  *
2927  * This is intended for small system where the benefits of the full
2928  * shmem code (swap-backed and resource-limited) are outweighed by
2929  * their complexity. On systems without swap this code should be
2930  * effectively equivalent, but much lighter weight.
2931  */
2932
2933 static struct file_system_type shmem_fs_type = {
2934         .name           = "tmpfs",
2935         .mount          = ramfs_mount,
2936         .kill_sb        = kill_litter_super,
2937         .fs_flags       = FS_USERNS_MOUNT,
2938 };
2939
2940 int __init shmem_init(void)
2941 {
2942         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2943
2944         shm_mnt = kern_mount(&shmem_fs_type);
2945         BUG_ON(IS_ERR(shm_mnt));
2946
2947         return 0;
2948 }
2949
2950 int shmem_unuse(swp_entry_t swap, struct page *page)
2951 {
2952         return 0;
2953 }
2954
2955 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2956 {
2957         return 0;
2958 }
2959
2960 void shmem_unlock_mapping(struct address_space *mapping)
2961 {
2962 }
2963
2964 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2965 {
2966         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2967 }
2968 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2969
2970 #define shmem_vm_ops                            generic_file_vm_ops
2971 #define shmem_file_operations                   ramfs_file_operations
2972 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2973 #define shmem_acct_size(flags, size)            0
2974 #define shmem_unacct_size(flags, size)          do {} while (0)
2975
2976 #endif /* CONFIG_SHMEM */
2977
2978 /* common code */
2979
2980 static struct dentry_operations anon_ops = {
2981         .d_dname = simple_dname
2982 };
2983
2984 static struct file *__shmem_file_setup(const char *name, loff_t size,
2985                                        unsigned long flags, unsigned int i_flags)
2986 {
2987         struct file *res;
2988         struct inode *inode;
2989         struct path path;
2990         struct super_block *sb;
2991         struct qstr this;
2992
2993         if (IS_ERR(shm_mnt))
2994                 return ERR_CAST(shm_mnt);
2995
2996         if (size < 0 || size > MAX_LFS_FILESIZE)
2997                 return ERR_PTR(-EINVAL);
2998
2999         if (shmem_acct_size(flags, size))
3000                 return ERR_PTR(-ENOMEM);
3001
3002         res = ERR_PTR(-ENOMEM);
3003         this.name = name;
3004         this.len = strlen(name);
3005         this.hash = 0; /* will go */
3006         sb = shm_mnt->mnt_sb;
3007         path.dentry = d_alloc_pseudo(sb, &this);
3008         if (!path.dentry)
3009                 goto put_memory;
3010         d_set_d_op(path.dentry, &anon_ops);
3011         path.mnt = mntget(shm_mnt);
3012
3013         res = ERR_PTR(-ENOSPC);
3014         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3015         if (!inode)
3016                 goto put_dentry;
3017
3018         inode->i_flags |= i_flags;
3019         d_instantiate(path.dentry, inode);
3020         inode->i_size = size;
3021         clear_nlink(inode);     /* It is unlinked */
3022         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3023         if (IS_ERR(res))
3024                 goto put_dentry;
3025
3026         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3027                   &shmem_file_operations);
3028         if (IS_ERR(res))
3029                 goto put_dentry;
3030
3031         return res;
3032
3033 put_dentry:
3034         path_put(&path);
3035 put_memory:
3036         shmem_unacct_size(flags, size);
3037         return res;
3038 }
3039
3040 /**
3041  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3042  *      kernel internal.  There will be NO LSM permission checks against the
3043  *      underlying inode.  So users of this interface must do LSM checks at a
3044  *      higher layer.  The one user is the big_key implementation.  LSM checks
3045  *      are provided at the key level rather than the inode level.
3046  * @name: name for dentry (to be seen in /proc/<pid>/maps
3047  * @size: size to be set for the file
3048  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3049  */
3050 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3051 {
3052         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3053 }
3054
3055 /**
3056  * shmem_file_setup - get an unlinked file living in tmpfs
3057  * @name: name for dentry (to be seen in /proc/<pid>/maps
3058  * @size: size to be set for the file
3059  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3060  */
3061 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3062 {
3063         return __shmem_file_setup(name, size, flags, 0);
3064 }
3065 EXPORT_SYMBOL_GPL(shmem_file_setup);
3066
3067 /**
3068  * shmem_zero_setup - setup a shared anonymous mapping
3069  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3070  */
3071 int shmem_zero_setup(struct vm_area_struct *vma)
3072 {
3073         struct file *file;
3074         loff_t size = vma->vm_end - vma->vm_start;
3075
3076         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3077         if (IS_ERR(file))
3078                 return PTR_ERR(file);
3079
3080         if (vma->vm_file)
3081                 fput(vma->vm_file);
3082         vma->vm_file = file;
3083         vma->vm_ops = &shmem_vm_ops;
3084         return 0;
3085 }
3086
3087 /**
3088  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3089  * @mapping:    the page's address_space
3090  * @index:      the page index
3091  * @gfp:        the page allocator flags to use if allocating
3092  *
3093  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3094  * with any new page allocations done using the specified allocation flags.
3095  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3096  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3097  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3098  *
3099  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3100  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3101  */
3102 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3103                                          pgoff_t index, gfp_t gfp)
3104 {
3105 #ifdef CONFIG_SHMEM
3106         struct inode *inode = mapping->host;
3107         struct page *page;
3108         int error;
3109
3110         BUG_ON(mapping->a_ops != &shmem_aops);
3111         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3112         if (error)
3113                 page = ERR_PTR(error);
3114         else
3115                 unlock_page(page);
3116         return page;
3117 #else
3118         /*
3119          * The tiny !SHMEM case uses ramfs without swap
3120          */
3121         return read_cache_page_gfp(mapping, index, gfp);
3122 #endif
3123 }
3124 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);