27ab68c54f32534bf38b34970352760501ecad02
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
84  * inode->i_private (with i_mutex making sure that it has only one user at
85  * a time): we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
89         pgoff_t start;          /* start of range currently being fallocated */
90         pgoff_t next;           /* the next page offset to be fallocated */
91         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
92         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
93 };
94
95 /* Flag allocation requirements to shmem_getpage */
96 enum sgp_type {
97         SGP_READ,       /* don't exceed i_size, don't allocate page */
98         SGP_CACHE,      /* don't exceed i_size, may allocate page */
99         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
100         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
101         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
102 };
103
104 #ifdef CONFIG_TMPFS
105 static unsigned long shmem_default_max_blocks(void)
106 {
107         return totalram_pages / 2;
108 }
109
110 static unsigned long shmem_default_max_inodes(void)
111 {
112         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
113 }
114 #endif
115
116 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
117 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
118                                 struct shmem_inode_info *info, pgoff_t index);
119 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
120         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
121
122 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
123         struct page **pagep, enum sgp_type sgp, int *fault_type)
124 {
125         return shmem_getpage_gfp(inode, index, pagep, sgp,
126                         mapping_gfp_mask(inode->i_mapping), fault_type);
127 }
128
129 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
130 {
131         return sb->s_fs_info;
132 }
133
134 /*
135  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
136  * for shared memory and for shared anonymous (/dev/zero) mappings
137  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
138  * consistent with the pre-accounting of private mappings ...
139  */
140 static inline int shmem_acct_size(unsigned long flags, loff_t size)
141 {
142         return (flags & VM_NORESERVE) ?
143                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
144 }
145
146 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
147 {
148         if (!(flags & VM_NORESERVE))
149                 vm_unacct_memory(VM_ACCT(size));
150 }
151
152 /*
153  * ... whereas tmpfs objects are accounted incrementally as
154  * pages are allocated, in order to allow huge sparse files.
155  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
156  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
157  */
158 static inline int shmem_acct_block(unsigned long flags)
159 {
160         return (flags & VM_NORESERVE) ?
161                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
162 }
163
164 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
165 {
166         if (flags & VM_NORESERVE)
167                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
168 }
169
170 static const struct super_operations shmem_ops;
171 static const struct address_space_operations shmem_aops;
172 static const struct file_operations shmem_file_operations;
173 static const struct inode_operations shmem_inode_operations;
174 static const struct inode_operations shmem_dir_inode_operations;
175 static const struct inode_operations shmem_special_inode_operations;
176 static const struct vm_operations_struct shmem_vm_ops;
177
178 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
179         .ra_pages       = 0,    /* No readahead */
180         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
181 };
182
183 static LIST_HEAD(shmem_swaplist);
184 static DEFINE_MUTEX(shmem_swaplist_mutex);
185
186 static int shmem_reserve_inode(struct super_block *sb)
187 {
188         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
189         if (sbinfo->max_inodes) {
190                 spin_lock(&sbinfo->stat_lock);
191                 if (!sbinfo->free_inodes) {
192                         spin_unlock(&sbinfo->stat_lock);
193                         return -ENOSPC;
194                 }
195                 sbinfo->free_inodes--;
196                 spin_unlock(&sbinfo->stat_lock);
197         }
198         return 0;
199 }
200
201 static void shmem_free_inode(struct super_block *sb)
202 {
203         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
204         if (sbinfo->max_inodes) {
205                 spin_lock(&sbinfo->stat_lock);
206                 sbinfo->free_inodes++;
207                 spin_unlock(&sbinfo->stat_lock);
208         }
209 }
210
211 /**
212  * shmem_recalc_inode - recalculate the block usage of an inode
213  * @inode: inode to recalc
214  *
215  * We have to calculate the free blocks since the mm can drop
216  * undirtied hole pages behind our back.
217  *
218  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
219  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
220  *
221  * It has to be called with the spinlock held.
222  */
223 static void shmem_recalc_inode(struct inode *inode)
224 {
225         struct shmem_inode_info *info = SHMEM_I(inode);
226         long freed;
227
228         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
229         if (freed > 0) {
230                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
231                 if (sbinfo->max_blocks)
232                         percpu_counter_add(&sbinfo->used_blocks, -freed);
233                 info->alloced -= freed;
234                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
235                 shmem_unacct_blocks(info->flags, freed);
236         }
237 }
238
239 /*
240  * Replace item expected in radix tree by a new item, while holding tree lock.
241  */
242 static int shmem_radix_tree_replace(struct address_space *mapping,
243                         pgoff_t index, void *expected, void *replacement)
244 {
245         void **pslot;
246         void *item;
247
248         VM_BUG_ON(!expected);
249         VM_BUG_ON(!replacement);
250         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
251         if (!pslot)
252                 return -ENOENT;
253         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
254         if (item != expected)
255                 return -ENOENT;
256         radix_tree_replace_slot(pslot, replacement);
257         return 0;
258 }
259
260 /*
261  * Sometimes, before we decide whether to proceed or to fail, we must check
262  * that an entry was not already brought back from swap by a racing thread.
263  *
264  * Checking page is not enough: by the time a SwapCache page is locked, it
265  * might be reused, and again be SwapCache, using the same swap as before.
266  */
267 static bool shmem_confirm_swap(struct address_space *mapping,
268                                pgoff_t index, swp_entry_t swap)
269 {
270         void *item;
271
272         rcu_read_lock();
273         item = radix_tree_lookup(&mapping->page_tree, index);
274         rcu_read_unlock();
275         return item == swp_to_radix_entry(swap);
276 }
277
278 /*
279  * Like add_to_page_cache_locked, but error if expected item has gone.
280  */
281 static int shmem_add_to_page_cache(struct page *page,
282                                    struct address_space *mapping,
283                                    pgoff_t index, gfp_t gfp, void *expected)
284 {
285         int error;
286
287         VM_BUG_ON_PAGE(!PageLocked(page), page);
288         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
289
290         page_cache_get(page);
291         page->mapping = mapping;
292         page->index = index;
293
294         spin_lock_irq(&mapping->tree_lock);
295         if (!expected)
296                 error = radix_tree_insert(&mapping->page_tree, index, page);
297         else
298                 error = shmem_radix_tree_replace(mapping, index, expected,
299                                                                  page);
300         if (!error) {
301                 mapping->nrpages++;
302                 __inc_zone_page_state(page, NR_FILE_PAGES);
303                 __inc_zone_page_state(page, NR_SHMEM);
304                 spin_unlock_irq(&mapping->tree_lock);
305         } else {
306                 page->mapping = NULL;
307                 spin_unlock_irq(&mapping->tree_lock);
308                 page_cache_release(page);
309         }
310         return error;
311 }
312
313 /*
314  * Like delete_from_page_cache, but substitutes swap for page.
315  */
316 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
317 {
318         struct address_space *mapping = page->mapping;
319         int error;
320
321         spin_lock_irq(&mapping->tree_lock);
322         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
323         page->mapping = NULL;
324         mapping->nrpages--;
325         __dec_zone_page_state(page, NR_FILE_PAGES);
326         __dec_zone_page_state(page, NR_SHMEM);
327         spin_unlock_irq(&mapping->tree_lock);
328         page_cache_release(page);
329         BUG_ON(error);
330 }
331
332 /*
333  * Like find_get_pages, but collecting swap entries as well as pages.
334  */
335 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
336                                         pgoff_t start, unsigned int nr_pages,
337                                         struct page **pages, pgoff_t *indices)
338 {
339         void **slot;
340         unsigned int ret = 0;
341         struct radix_tree_iter iter;
342
343         if (!nr_pages)
344                 return 0;
345
346         rcu_read_lock();
347 restart:
348         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
349                 struct page *page;
350 repeat:
351                 page = radix_tree_deref_slot(slot);
352                 if (unlikely(!page))
353                         continue;
354                 if (radix_tree_exception(page)) {
355                         if (radix_tree_deref_retry(page))
356                                 goto restart;
357                         /*
358                          * Otherwise, we must be storing a swap entry
359                          * here as an exceptional entry: so return it
360                          * without attempting to raise page count.
361                          */
362                         goto export;
363                 }
364                 if (!page_cache_get_speculative(page))
365                         goto repeat;
366
367                 /* Has the page moved? */
368                 if (unlikely(page != *slot)) {
369                         page_cache_release(page);
370                         goto repeat;
371                 }
372 export:
373                 indices[ret] = iter.index;
374                 pages[ret] = page;
375                 if (++ret == nr_pages)
376                         break;
377         }
378         rcu_read_unlock();
379         return ret;
380 }
381
382 /*
383  * Remove swap entry from radix tree, free the swap and its page cache.
384  */
385 static int shmem_free_swap(struct address_space *mapping,
386                            pgoff_t index, void *radswap)
387 {
388         void *old;
389
390         spin_lock_irq(&mapping->tree_lock);
391         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
392         spin_unlock_irq(&mapping->tree_lock);
393         if (old != radswap)
394                 return -ENOENT;
395         free_swap_and_cache(radix_to_swp_entry(radswap));
396         return 0;
397 }
398
399 /*
400  * Pagevec may contain swap entries, so shuffle up pages before releasing.
401  */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404         int i, j;
405
406         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407                 struct page *page = pvec->pages[i];
408                 if (!radix_tree_exceptional_entry(page))
409                         pvec->pages[j++] = page;
410         }
411         pvec->nr = j;
412 }
413
414 /*
415  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416  */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419         struct pagevec pvec;
420         pgoff_t indices[PAGEVEC_SIZE];
421         pgoff_t index = 0;
422
423         pagevec_init(&pvec, 0);
424         /*
425          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426          */
427         while (!mapping_unevictable(mapping)) {
428                 /*
429                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431                  */
432                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433                                         PAGEVEC_SIZE, pvec.pages, indices);
434                 if (!pvec.nr)
435                         break;
436                 index = indices[pvec.nr - 1] + 1;
437                 shmem_deswap_pagevec(&pvec);
438                 check_move_unevictable_pages(pvec.pages, pvec.nr);
439                 pagevec_release(&pvec);
440                 cond_resched();
441         }
442 }
443
444 /*
445  * Remove range of pages and swap entries from radix tree, and free them.
446  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447  */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449                                                                  bool unfalloc)
450 {
451         struct address_space *mapping = inode->i_mapping;
452         struct shmem_inode_info *info = SHMEM_I(inode);
453         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457         struct pagevec pvec;
458         pgoff_t indices[PAGEVEC_SIZE];
459         long nr_swaps_freed = 0;
460         pgoff_t index;
461         int i;
462
463         if (lend == -1)
464                 end = -1;       /* unsigned, so actually very big */
465
466         pagevec_init(&pvec, 0);
467         index = start;
468         while (index < end) {
469                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
471                                                         pvec.pages, indices);
472                 if (!pvec.nr)
473                         break;
474                 mem_cgroup_uncharge_start();
475                 for (i = 0; i < pagevec_count(&pvec); i++) {
476                         struct page *page = pvec.pages[i];
477
478                         index = indices[i];
479                         if (index >= end)
480                                 break;
481
482                         if (radix_tree_exceptional_entry(page)) {
483                                 if (unfalloc)
484                                         continue;
485                                 nr_swaps_freed += !shmem_free_swap(mapping,
486                                                                 index, page);
487                                 continue;
488                         }
489
490                         if (!trylock_page(page))
491                                 continue;
492                         if (!unfalloc || !PageUptodate(page)) {
493                                 if (page->mapping == mapping) {
494                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
495                                         truncate_inode_page(mapping, page);
496                                 }
497                         }
498                         unlock_page(page);
499                 }
500                 shmem_deswap_pagevec(&pvec);
501                 pagevec_release(&pvec);
502                 mem_cgroup_uncharge_end();
503                 cond_resched();
504                 index++;
505         }
506
507         if (partial_start) {
508                 struct page *page = NULL;
509                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510                 if (page) {
511                         unsigned int top = PAGE_CACHE_SIZE;
512                         if (start > end) {
513                                 top = partial_end;
514                                 partial_end = 0;
515                         }
516                         zero_user_segment(page, partial_start, top);
517                         set_page_dirty(page);
518                         unlock_page(page);
519                         page_cache_release(page);
520                 }
521         }
522         if (partial_end) {
523                 struct page *page = NULL;
524                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
525                 if (page) {
526                         zero_user_segment(page, 0, partial_end);
527                         set_page_dirty(page);
528                         unlock_page(page);
529                         page_cache_release(page);
530                 }
531         }
532         if (start >= end)
533                 return;
534
535         index = start;
536         while (index < end) {
537                 cond_resched();
538                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
540                                                         pvec.pages, indices);
541                 if (!pvec.nr) {
542                         /* If all gone or hole-punch or unfalloc, we're done */
543                         if (index == start || end != -1)
544                                 break;
545                         /* But if truncating, restart to make sure all gone */
546                         index = start;
547                         continue;
548                 }
549                 mem_cgroup_uncharge_start();
550                 for (i = 0; i < pagevec_count(&pvec); i++) {
551                         struct page *page = pvec.pages[i];
552
553                         index = indices[i];
554                         if (index >= end)
555                                 break;
556
557                         if (radix_tree_exceptional_entry(page)) {
558                                 if (unfalloc)
559                                         continue;
560                                 if (shmem_free_swap(mapping, index, page)) {
561                                         /* Swap was replaced by page: retry */
562                                         index--;
563                                         break;
564                                 }
565                                 nr_swaps_freed++;
566                                 continue;
567                         }
568
569                         lock_page(page);
570                         if (!unfalloc || !PageUptodate(page)) {
571                                 if (page->mapping == mapping) {
572                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
573                                         truncate_inode_page(mapping, page);
574                                 } else {
575                                         /* Page was replaced by swap: retry */
576                                         unlock_page(page);
577                                         index--;
578                                         break;
579                                 }
580                         }
581                         unlock_page(page);
582                 }
583                 shmem_deswap_pagevec(&pvec);
584                 pagevec_release(&pvec);
585                 mem_cgroup_uncharge_end();
586                 index++;
587         }
588
589         spin_lock(&info->lock);
590         info->swapped -= nr_swaps_freed;
591         shmem_recalc_inode(inode);
592         spin_unlock(&info->lock);
593 }
594
595 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
596 {
597         shmem_undo_range(inode, lstart, lend, false);
598         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
599 }
600 EXPORT_SYMBOL_GPL(shmem_truncate_range);
601
602 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
603 {
604         struct inode *inode = dentry->d_inode;
605         int error;
606
607         error = inode_change_ok(inode, attr);
608         if (error)
609                 return error;
610
611         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
612                 loff_t oldsize = inode->i_size;
613                 loff_t newsize = attr->ia_size;
614
615                 if (newsize != oldsize) {
616                         i_size_write(inode, newsize);
617                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
618                 }
619                 if (newsize < oldsize) {
620                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
621                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
622                         shmem_truncate_range(inode, newsize, (loff_t)-1);
623                         /* unmap again to remove racily COWed private pages */
624                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
625                 }
626         }
627
628         setattr_copy(inode, attr);
629         if (attr->ia_valid & ATTR_MODE)
630                 error = posix_acl_chmod(inode, inode->i_mode);
631         return error;
632 }
633
634 static void shmem_evict_inode(struct inode *inode)
635 {
636         struct shmem_inode_info *info = SHMEM_I(inode);
637
638         if (inode->i_mapping->a_ops == &shmem_aops) {
639                 shmem_unacct_size(info->flags, inode->i_size);
640                 inode->i_size = 0;
641                 shmem_truncate_range(inode, 0, (loff_t)-1);
642                 if (!list_empty(&info->swaplist)) {
643                         mutex_lock(&shmem_swaplist_mutex);
644                         list_del_init(&info->swaplist);
645                         mutex_unlock(&shmem_swaplist_mutex);
646                 }
647         } else
648                 kfree(info->symlink);
649
650         simple_xattrs_free(&info->xattrs);
651         WARN_ON(inode->i_blocks);
652         shmem_free_inode(inode->i_sb);
653         clear_inode(inode);
654 }
655
656 /*
657  * If swap found in inode, free it and move page from swapcache to filecache.
658  */
659 static int shmem_unuse_inode(struct shmem_inode_info *info,
660                              swp_entry_t swap, struct page **pagep)
661 {
662         struct address_space *mapping = info->vfs_inode.i_mapping;
663         void *radswap;
664         pgoff_t index;
665         gfp_t gfp;
666         int error = 0;
667
668         radswap = swp_to_radix_entry(swap);
669         index = radix_tree_locate_item(&mapping->page_tree, radswap);
670         if (index == -1)
671                 return 0;
672
673         /*
674          * Move _head_ to start search for next from here.
675          * But be careful: shmem_evict_inode checks list_empty without taking
676          * mutex, and there's an instant in list_move_tail when info->swaplist
677          * would appear empty, if it were the only one on shmem_swaplist.
678          */
679         if (shmem_swaplist.next != &info->swaplist)
680                 list_move_tail(&shmem_swaplist, &info->swaplist);
681
682         gfp = mapping_gfp_mask(mapping);
683         if (shmem_should_replace_page(*pagep, gfp)) {
684                 mutex_unlock(&shmem_swaplist_mutex);
685                 error = shmem_replace_page(pagep, gfp, info, index);
686                 mutex_lock(&shmem_swaplist_mutex);
687                 /*
688                  * We needed to drop mutex to make that restrictive page
689                  * allocation, but the inode might have been freed while we
690                  * dropped it: although a racing shmem_evict_inode() cannot
691                  * complete without emptying the radix_tree, our page lock
692                  * on this swapcache page is not enough to prevent that -
693                  * free_swap_and_cache() of our swap entry will only
694                  * trylock_page(), removing swap from radix_tree whatever.
695                  *
696                  * We must not proceed to shmem_add_to_page_cache() if the
697                  * inode has been freed, but of course we cannot rely on
698                  * inode or mapping or info to check that.  However, we can
699                  * safely check if our swap entry is still in use (and here
700                  * it can't have got reused for another page): if it's still
701                  * in use, then the inode cannot have been freed yet, and we
702                  * can safely proceed (if it's no longer in use, that tells
703                  * nothing about the inode, but we don't need to unuse swap).
704                  */
705                 if (!page_swapcount(*pagep))
706                         error = -ENOENT;
707         }
708
709         /*
710          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
711          * but also to hold up shmem_evict_inode(): so inode cannot be freed
712          * beneath us (pagelock doesn't help until the page is in pagecache).
713          */
714         if (!error)
715                 error = shmem_add_to_page_cache(*pagep, mapping, index,
716                                                 GFP_NOWAIT, radswap);
717         if (error != -ENOMEM) {
718                 /*
719                  * Truncation and eviction use free_swap_and_cache(), which
720                  * only does trylock page: if we raced, best clean up here.
721                  */
722                 delete_from_swap_cache(*pagep);
723                 set_page_dirty(*pagep);
724                 if (!error) {
725                         spin_lock(&info->lock);
726                         info->swapped--;
727                         spin_unlock(&info->lock);
728                         swap_free(swap);
729                 }
730                 error = 1;      /* not an error, but entry was found */
731         }
732         return error;
733 }
734
735 /*
736  * Search through swapped inodes to find and replace swap by page.
737  */
738 int shmem_unuse(swp_entry_t swap, struct page *page)
739 {
740         struct list_head *this, *next;
741         struct shmem_inode_info *info;
742         int found = 0;
743         int error = 0;
744
745         /*
746          * There's a faint possibility that swap page was replaced before
747          * caller locked it: caller will come back later with the right page.
748          */
749         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
750                 goto out;
751
752         /*
753          * Charge page using GFP_KERNEL while we can wait, before taking
754          * the shmem_swaplist_mutex which might hold up shmem_writepage().
755          * Charged back to the user (not to caller) when swap account is used.
756          */
757         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
758         if (error)
759                 goto out;
760         /* No radix_tree_preload: swap entry keeps a place for page in tree */
761
762         mutex_lock(&shmem_swaplist_mutex);
763         list_for_each_safe(this, next, &shmem_swaplist) {
764                 info = list_entry(this, struct shmem_inode_info, swaplist);
765                 if (info->swapped)
766                         found = shmem_unuse_inode(info, swap, &page);
767                 else
768                         list_del_init(&info->swaplist);
769                 cond_resched();
770                 if (found)
771                         break;
772         }
773         mutex_unlock(&shmem_swaplist_mutex);
774
775         if (found < 0)
776                 error = found;
777 out:
778         unlock_page(page);
779         page_cache_release(page);
780         return error;
781 }
782
783 /*
784  * Move the page from the page cache to the swap cache.
785  */
786 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
787 {
788         struct shmem_inode_info *info;
789         struct address_space *mapping;
790         struct inode *inode;
791         swp_entry_t swap;
792         pgoff_t index;
793
794         BUG_ON(!PageLocked(page));
795         mapping = page->mapping;
796         index = page->index;
797         inode = mapping->host;
798         info = SHMEM_I(inode);
799         if (info->flags & VM_LOCKED)
800                 goto redirty;
801         if (!total_swap_pages)
802                 goto redirty;
803
804         /*
805          * shmem_backing_dev_info's capabilities prevent regular writeback or
806          * sync from ever calling shmem_writepage; but a stacking filesystem
807          * might use ->writepage of its underlying filesystem, in which case
808          * tmpfs should write out to swap only in response to memory pressure,
809          * and not for the writeback threads or sync.
810          */
811         if (!wbc->for_reclaim) {
812                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
813                 goto redirty;
814         }
815
816         /*
817          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
818          * value into swapfile.c, the only way we can correctly account for a
819          * fallocated page arriving here is now to initialize it and write it.
820          *
821          * That's okay for a page already fallocated earlier, but if we have
822          * not yet completed the fallocation, then (a) we want to keep track
823          * of this page in case we have to undo it, and (b) it may not be a
824          * good idea to continue anyway, once we're pushing into swap.  So
825          * reactivate the page, and let shmem_fallocate() quit when too many.
826          */
827         if (!PageUptodate(page)) {
828                 if (inode->i_private) {
829                         struct shmem_falloc *shmem_falloc;
830                         spin_lock(&inode->i_lock);
831                         shmem_falloc = inode->i_private;
832                         if (shmem_falloc &&
833                             !shmem_falloc->waitq &&
834                             index >= shmem_falloc->start &&
835                             index < shmem_falloc->next)
836                                 shmem_falloc->nr_unswapped++;
837                         else
838                                 shmem_falloc = NULL;
839                         spin_unlock(&inode->i_lock);
840                         if (shmem_falloc)
841                                 goto redirty;
842                 }
843                 clear_highpage(page);
844                 flush_dcache_page(page);
845                 SetPageUptodate(page);
846         }
847
848         swap = get_swap_page();
849         if (!swap.val)
850                 goto redirty;
851
852         /*
853          * Add inode to shmem_unuse()'s list of swapped-out inodes,
854          * if it's not already there.  Do it now before the page is
855          * moved to swap cache, when its pagelock no longer protects
856          * the inode from eviction.  But don't unlock the mutex until
857          * we've incremented swapped, because shmem_unuse_inode() will
858          * prune a !swapped inode from the swaplist under this mutex.
859          */
860         mutex_lock(&shmem_swaplist_mutex);
861         if (list_empty(&info->swaplist))
862                 list_add_tail(&info->swaplist, &shmem_swaplist);
863
864         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
865                 swap_shmem_alloc(swap);
866                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
867
868                 spin_lock(&info->lock);
869                 info->swapped++;
870                 shmem_recalc_inode(inode);
871                 spin_unlock(&info->lock);
872
873                 mutex_unlock(&shmem_swaplist_mutex);
874                 BUG_ON(page_mapped(page));
875                 swap_writepage(page, wbc);
876                 return 0;
877         }
878
879         mutex_unlock(&shmem_swaplist_mutex);
880         swapcache_free(swap, NULL);
881 redirty:
882         set_page_dirty(page);
883         if (wbc->for_reclaim)
884                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
885         unlock_page(page);
886         return 0;
887 }
888
889 #ifdef CONFIG_NUMA
890 #ifdef CONFIG_TMPFS
891 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
892 {
893         char buffer[64];
894
895         if (!mpol || mpol->mode == MPOL_DEFAULT)
896                 return;         /* show nothing */
897
898         mpol_to_str(buffer, sizeof(buffer), mpol);
899
900         seq_printf(seq, ",mpol=%s", buffer);
901 }
902
903 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
904 {
905         struct mempolicy *mpol = NULL;
906         if (sbinfo->mpol) {
907                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
908                 mpol = sbinfo->mpol;
909                 mpol_get(mpol);
910                 spin_unlock(&sbinfo->stat_lock);
911         }
912         return mpol;
913 }
914 #endif /* CONFIG_TMPFS */
915
916 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
917                         struct shmem_inode_info *info, pgoff_t index)
918 {
919         struct vm_area_struct pvma;
920         struct page *page;
921
922         /* Create a pseudo vma that just contains the policy */
923         pvma.vm_start = 0;
924         /* Bias interleave by inode number to distribute better across nodes */
925         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
926         pvma.vm_ops = NULL;
927         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
928
929         page = swapin_readahead(swap, gfp, &pvma, 0);
930
931         /* Drop reference taken by mpol_shared_policy_lookup() */
932         mpol_cond_put(pvma.vm_policy);
933
934         return page;
935 }
936
937 static struct page *shmem_alloc_page(gfp_t gfp,
938                         struct shmem_inode_info *info, pgoff_t index)
939 {
940         struct vm_area_struct pvma;
941         struct page *page;
942
943         /* Create a pseudo vma that just contains the policy */
944         pvma.vm_start = 0;
945         /* Bias interleave by inode number to distribute better across nodes */
946         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
947         pvma.vm_ops = NULL;
948         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
949
950         page = alloc_page_vma(gfp, &pvma, 0);
951
952         /* Drop reference taken by mpol_shared_policy_lookup() */
953         mpol_cond_put(pvma.vm_policy);
954
955         return page;
956 }
957 #else /* !CONFIG_NUMA */
958 #ifdef CONFIG_TMPFS
959 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
960 {
961 }
962 #endif /* CONFIG_TMPFS */
963
964 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
965                         struct shmem_inode_info *info, pgoff_t index)
966 {
967         return swapin_readahead(swap, gfp, NULL, 0);
968 }
969
970 static inline struct page *shmem_alloc_page(gfp_t gfp,
971                         struct shmem_inode_info *info, pgoff_t index)
972 {
973         return alloc_page(gfp);
974 }
975 #endif /* CONFIG_NUMA */
976
977 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
978 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
979 {
980         return NULL;
981 }
982 #endif
983
984 /*
985  * When a page is moved from swapcache to shmem filecache (either by the
986  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
987  * shmem_unuse_inode()), it may have been read in earlier from swap, in
988  * ignorance of the mapping it belongs to.  If that mapping has special
989  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
990  * we may need to copy to a suitable page before moving to filecache.
991  *
992  * In a future release, this may well be extended to respect cpuset and
993  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
994  * but for now it is a simple matter of zone.
995  */
996 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
997 {
998         return page_zonenum(page) > gfp_zone(gfp);
999 }
1000
1001 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1002                                 struct shmem_inode_info *info, pgoff_t index)
1003 {
1004         struct page *oldpage, *newpage;
1005         struct address_space *swap_mapping;
1006         pgoff_t swap_index;
1007         int error;
1008
1009         oldpage = *pagep;
1010         swap_index = page_private(oldpage);
1011         swap_mapping = page_mapping(oldpage);
1012
1013         /*
1014          * We have arrived here because our zones are constrained, so don't
1015          * limit chance of success by further cpuset and node constraints.
1016          */
1017         gfp &= ~GFP_CONSTRAINT_MASK;
1018         newpage = shmem_alloc_page(gfp, info, index);
1019         if (!newpage)
1020                 return -ENOMEM;
1021
1022         page_cache_get(newpage);
1023         copy_highpage(newpage, oldpage);
1024         flush_dcache_page(newpage);
1025
1026         __set_page_locked(newpage);
1027         SetPageUptodate(newpage);
1028         SetPageSwapBacked(newpage);
1029         set_page_private(newpage, swap_index);
1030         SetPageSwapCache(newpage);
1031
1032         /*
1033          * Our caller will very soon move newpage out of swapcache, but it's
1034          * a nice clean interface for us to replace oldpage by newpage there.
1035          */
1036         spin_lock_irq(&swap_mapping->tree_lock);
1037         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1038                                                                    newpage);
1039         if (!error) {
1040                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1041                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1042         }
1043         spin_unlock_irq(&swap_mapping->tree_lock);
1044
1045         if (unlikely(error)) {
1046                 /*
1047                  * Is this possible?  I think not, now that our callers check
1048                  * both PageSwapCache and page_private after getting page lock;
1049                  * but be defensive.  Reverse old to newpage for clear and free.
1050                  */
1051                 oldpage = newpage;
1052         } else {
1053                 mem_cgroup_replace_page_cache(oldpage, newpage);
1054                 lru_cache_add_anon(newpage);
1055                 *pagep = newpage;
1056         }
1057
1058         ClearPageSwapCache(oldpage);
1059         set_page_private(oldpage, 0);
1060
1061         unlock_page(oldpage);
1062         page_cache_release(oldpage);
1063         page_cache_release(oldpage);
1064         return error;
1065 }
1066
1067 /*
1068  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1069  *
1070  * If we allocate a new one we do not mark it dirty. That's up to the
1071  * vm. If we swap it in we mark it dirty since we also free the swap
1072  * entry since a page cannot live in both the swap and page cache
1073  */
1074 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1075         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1076 {
1077         struct address_space *mapping = inode->i_mapping;
1078         struct shmem_inode_info *info;
1079         struct shmem_sb_info *sbinfo;
1080         struct page *page;
1081         swp_entry_t swap;
1082         int error;
1083         int once = 0;
1084         int alloced = 0;
1085
1086         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1087                 return -EFBIG;
1088 repeat:
1089         swap.val = 0;
1090         page = find_lock_page(mapping, index);
1091         if (radix_tree_exceptional_entry(page)) {
1092                 swap = radix_to_swp_entry(page);
1093                 page = NULL;
1094         }
1095
1096         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1097             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1098                 error = -EINVAL;
1099                 goto failed;
1100         }
1101
1102         /* fallocated page? */
1103         if (page && !PageUptodate(page)) {
1104                 if (sgp != SGP_READ)
1105                         goto clear;
1106                 unlock_page(page);
1107                 page_cache_release(page);
1108                 page = NULL;
1109         }
1110         if (page || (sgp == SGP_READ && !swap.val)) {
1111                 *pagep = page;
1112                 return 0;
1113         }
1114
1115         /*
1116          * Fast cache lookup did not find it:
1117          * bring it back from swap or allocate.
1118          */
1119         info = SHMEM_I(inode);
1120         sbinfo = SHMEM_SB(inode->i_sb);
1121
1122         if (swap.val) {
1123                 /* Look it up and read it in.. */
1124                 page = lookup_swap_cache(swap);
1125                 if (!page) {
1126                         /* here we actually do the io */
1127                         if (fault_type)
1128                                 *fault_type |= VM_FAULT_MAJOR;
1129                         page = shmem_swapin(swap, gfp, info, index);
1130                         if (!page) {
1131                                 error = -ENOMEM;
1132                                 goto failed;
1133                         }
1134                 }
1135
1136                 /* We have to do this with page locked to prevent races */
1137                 lock_page(page);
1138                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1139                     !shmem_confirm_swap(mapping, index, swap)) {
1140                         error = -EEXIST;        /* try again */
1141                         goto unlock;
1142                 }
1143                 if (!PageUptodate(page)) {
1144                         error = -EIO;
1145                         goto failed;
1146                 }
1147                 wait_on_page_writeback(page);
1148
1149                 if (shmem_should_replace_page(page, gfp)) {
1150                         error = shmem_replace_page(&page, gfp, info, index);
1151                         if (error)
1152                                 goto failed;
1153                 }
1154
1155                 error = mem_cgroup_cache_charge(page, current->mm,
1156                                                 gfp & GFP_RECLAIM_MASK);
1157                 if (!error) {
1158                         error = shmem_add_to_page_cache(page, mapping, index,
1159                                                 gfp, swp_to_radix_entry(swap));
1160                         /*
1161                          * We already confirmed swap under page lock, and make
1162                          * no memory allocation here, so usually no possibility
1163                          * of error; but free_swap_and_cache() only trylocks a
1164                          * page, so it is just possible that the entry has been
1165                          * truncated or holepunched since swap was confirmed.
1166                          * shmem_undo_range() will have done some of the
1167                          * unaccounting, now delete_from_swap_cache() will do
1168                          * the rest (including mem_cgroup_uncharge_swapcache).
1169                          * Reset swap.val? No, leave it so "failed" goes back to
1170                          * "repeat": reading a hole and writing should succeed.
1171                          */
1172                         if (error)
1173                                 delete_from_swap_cache(page);
1174                 }
1175                 if (error)
1176                         goto failed;
1177
1178                 spin_lock(&info->lock);
1179                 info->swapped--;
1180                 shmem_recalc_inode(inode);
1181                 spin_unlock(&info->lock);
1182
1183                 delete_from_swap_cache(page);
1184                 set_page_dirty(page);
1185                 swap_free(swap);
1186
1187         } else {
1188                 if (shmem_acct_block(info->flags)) {
1189                         error = -ENOSPC;
1190                         goto failed;
1191                 }
1192                 if (sbinfo->max_blocks) {
1193                         if (percpu_counter_compare(&sbinfo->used_blocks,
1194                                                 sbinfo->max_blocks) >= 0) {
1195                                 error = -ENOSPC;
1196                                 goto unacct;
1197                         }
1198                         percpu_counter_inc(&sbinfo->used_blocks);
1199                 }
1200
1201                 page = shmem_alloc_page(gfp, info, index);
1202                 if (!page) {
1203                         error = -ENOMEM;
1204                         goto decused;
1205                 }
1206
1207                 SetPageSwapBacked(page);
1208                 __set_page_locked(page);
1209                 error = mem_cgroup_cache_charge(page, current->mm,
1210                                                 gfp & GFP_RECLAIM_MASK);
1211                 if (error)
1212                         goto decused;
1213                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1214                 if (!error) {
1215                         error = shmem_add_to_page_cache(page, mapping, index,
1216                                                         gfp, NULL);
1217                         radix_tree_preload_end();
1218                 }
1219                 if (error) {
1220                         mem_cgroup_uncharge_cache_page(page);
1221                         goto decused;
1222                 }
1223                 lru_cache_add_anon(page);
1224
1225                 spin_lock(&info->lock);
1226                 info->alloced++;
1227                 inode->i_blocks += BLOCKS_PER_PAGE;
1228                 shmem_recalc_inode(inode);
1229                 spin_unlock(&info->lock);
1230                 alloced = true;
1231
1232                 /*
1233                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1234                  */
1235                 if (sgp == SGP_FALLOC)
1236                         sgp = SGP_WRITE;
1237 clear:
1238                 /*
1239                  * Let SGP_WRITE caller clear ends if write does not fill page;
1240                  * but SGP_FALLOC on a page fallocated earlier must initialize
1241                  * it now, lest undo on failure cancel our earlier guarantee.
1242                  */
1243                 if (sgp != SGP_WRITE) {
1244                         clear_highpage(page);
1245                         flush_dcache_page(page);
1246                         SetPageUptodate(page);
1247                 }
1248                 if (sgp == SGP_DIRTY)
1249                         set_page_dirty(page);
1250         }
1251
1252         /* Perhaps the file has been truncated since we checked */
1253         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1254             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1255                 error = -EINVAL;
1256                 if (alloced)
1257                         goto trunc;
1258                 else
1259                         goto failed;
1260         }
1261         *pagep = page;
1262         return 0;
1263
1264         /*
1265          * Error recovery.
1266          */
1267 trunc:
1268         info = SHMEM_I(inode);
1269         ClearPageDirty(page);
1270         delete_from_page_cache(page);
1271         spin_lock(&info->lock);
1272         info->alloced--;
1273         inode->i_blocks -= BLOCKS_PER_PAGE;
1274         spin_unlock(&info->lock);
1275 decused:
1276         sbinfo = SHMEM_SB(inode->i_sb);
1277         if (sbinfo->max_blocks)
1278                 percpu_counter_add(&sbinfo->used_blocks, -1);
1279 unacct:
1280         shmem_unacct_blocks(info->flags, 1);
1281 failed:
1282         if (swap.val && error != -EINVAL &&
1283             !shmem_confirm_swap(mapping, index, swap))
1284                 error = -EEXIST;
1285 unlock:
1286         if (page) {
1287                 unlock_page(page);
1288                 page_cache_release(page);
1289         }
1290         if (error == -ENOSPC && !once++) {
1291                 info = SHMEM_I(inode);
1292                 spin_lock(&info->lock);
1293                 shmem_recalc_inode(inode);
1294                 spin_unlock(&info->lock);
1295                 goto repeat;
1296         }
1297         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1298                 goto repeat;
1299         return error;
1300 }
1301
1302 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1303 {
1304         struct inode *inode = file_inode(vma->vm_file);
1305         int error;
1306         int ret = VM_FAULT_LOCKED;
1307
1308         /*
1309          * Trinity finds that probing a hole which tmpfs is punching can
1310          * prevent the hole-punch from ever completing: which in turn
1311          * locks writers out with its hold on i_mutex.  So refrain from
1312          * faulting pages into the hole while it's being punched.  Although
1313          * shmem_undo_range() does remove the additions, it may be unable to
1314          * keep up, as each new page needs its own unmap_mapping_range() call,
1315          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1316          *
1317          * It does not matter if we sometimes reach this check just before the
1318          * hole-punch begins, so that one fault then races with the punch:
1319          * we just need to make racing faults a rare case.
1320          *
1321          * The implementation below would be much simpler if we just used a
1322          * standard mutex or completion: but we cannot take i_mutex in fault,
1323          * and bloating every shmem inode for this unlikely case would be sad.
1324          */
1325         if (unlikely(inode->i_private)) {
1326                 struct shmem_falloc *shmem_falloc;
1327
1328                 spin_lock(&inode->i_lock);
1329                 shmem_falloc = inode->i_private;
1330                 if (shmem_falloc &&
1331                     shmem_falloc->waitq &&
1332                     vmf->pgoff >= shmem_falloc->start &&
1333                     vmf->pgoff < shmem_falloc->next) {
1334                         wait_queue_head_t *shmem_falloc_waitq;
1335                         DEFINE_WAIT(shmem_fault_wait);
1336
1337                         ret = VM_FAULT_NOPAGE;
1338                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1339                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1340                                 /* It's polite to up mmap_sem if we can */
1341                                 up_read(&vma->vm_mm->mmap_sem);
1342                                 ret = VM_FAULT_RETRY;
1343                         }
1344
1345                         shmem_falloc_waitq = shmem_falloc->waitq;
1346                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1347                                         TASK_UNINTERRUPTIBLE);
1348                         spin_unlock(&inode->i_lock);
1349                         schedule();
1350
1351                         /*
1352                          * shmem_falloc_waitq points into the shmem_fallocate()
1353                          * stack of the hole-punching task: shmem_falloc_waitq
1354                          * is usually invalid by the time we reach here, but
1355                          * finish_wait() does not dereference it in that case;
1356                          * though i_lock needed lest racing with wake_up_all().
1357                          */
1358                         spin_lock(&inode->i_lock);
1359                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1360                         spin_unlock(&inode->i_lock);
1361                         return ret;
1362                 }
1363                 spin_unlock(&inode->i_lock);
1364         }
1365
1366         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1367         if (error)
1368                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1369
1370         if (ret & VM_FAULT_MAJOR) {
1371                 count_vm_event(PGMAJFAULT);
1372                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1373         }
1374         return ret;
1375 }
1376
1377 #ifdef CONFIG_NUMA
1378 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1379 {
1380         struct inode *inode = file_inode(vma->vm_file);
1381         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1382 }
1383
1384 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1385                                           unsigned long addr)
1386 {
1387         struct inode *inode = file_inode(vma->vm_file);
1388         pgoff_t index;
1389
1390         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1391         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1392 }
1393 #endif
1394
1395 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1396 {
1397         struct inode *inode = file_inode(file);
1398         struct shmem_inode_info *info = SHMEM_I(inode);
1399         int retval = -ENOMEM;
1400
1401         spin_lock(&info->lock);
1402         if (lock && !(info->flags & VM_LOCKED)) {
1403                 if (!user_shm_lock(inode->i_size, user))
1404                         goto out_nomem;
1405                 info->flags |= VM_LOCKED;
1406                 mapping_set_unevictable(file->f_mapping);
1407         }
1408         if (!lock && (info->flags & VM_LOCKED) && user) {
1409                 user_shm_unlock(inode->i_size, user);
1410                 info->flags &= ~VM_LOCKED;
1411                 mapping_clear_unevictable(file->f_mapping);
1412         }
1413         retval = 0;
1414
1415 out_nomem:
1416         spin_unlock(&info->lock);
1417         return retval;
1418 }
1419
1420 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1421 {
1422         file_accessed(file);
1423         vma->vm_ops = &shmem_vm_ops;
1424         return 0;
1425 }
1426
1427 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1428                                      umode_t mode, dev_t dev, unsigned long flags)
1429 {
1430         struct inode *inode;
1431         struct shmem_inode_info *info;
1432         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1433
1434         if (shmem_reserve_inode(sb))
1435                 return NULL;
1436
1437         inode = new_inode(sb);
1438         if (inode) {
1439                 inode->i_ino = get_next_ino();
1440                 inode_init_owner(inode, dir, mode);
1441                 inode->i_blocks = 0;
1442                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1443                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1444                 inode->i_generation = get_seconds();
1445                 info = SHMEM_I(inode);
1446                 memset(info, 0, (char *)inode - (char *)info);
1447                 spin_lock_init(&info->lock);
1448                 info->flags = flags & VM_NORESERVE;
1449                 INIT_LIST_HEAD(&info->swaplist);
1450                 simple_xattrs_init(&info->xattrs);
1451                 cache_no_acl(inode);
1452
1453                 switch (mode & S_IFMT) {
1454                 default:
1455                         inode->i_op = &shmem_special_inode_operations;
1456                         init_special_inode(inode, mode, dev);
1457                         break;
1458                 case S_IFREG:
1459                         inode->i_mapping->a_ops = &shmem_aops;
1460                         inode->i_op = &shmem_inode_operations;
1461                         inode->i_fop = &shmem_file_operations;
1462                         mpol_shared_policy_init(&info->policy,
1463                                                  shmem_get_sbmpol(sbinfo));
1464                         break;
1465                 case S_IFDIR:
1466                         inc_nlink(inode);
1467                         /* Some things misbehave if size == 0 on a directory */
1468                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1469                         inode->i_op = &shmem_dir_inode_operations;
1470                         inode->i_fop = &simple_dir_operations;
1471                         break;
1472                 case S_IFLNK:
1473                         /*
1474                          * Must not load anything in the rbtree,
1475                          * mpol_free_shared_policy will not be called.
1476                          */
1477                         mpol_shared_policy_init(&info->policy, NULL);
1478                         break;
1479                 }
1480         } else
1481                 shmem_free_inode(sb);
1482         return inode;
1483 }
1484
1485 #ifdef CONFIG_TMPFS
1486 static const struct inode_operations shmem_symlink_inode_operations;
1487 static const struct inode_operations shmem_short_symlink_operations;
1488
1489 #ifdef CONFIG_TMPFS_XATTR
1490 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1491 #else
1492 #define shmem_initxattrs NULL
1493 #endif
1494
1495 static int
1496 shmem_write_begin(struct file *file, struct address_space *mapping,
1497                         loff_t pos, unsigned len, unsigned flags,
1498                         struct page **pagep, void **fsdata)
1499 {
1500         struct inode *inode = mapping->host;
1501         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1502         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1503 }
1504
1505 static int
1506 shmem_write_end(struct file *file, struct address_space *mapping,
1507                         loff_t pos, unsigned len, unsigned copied,
1508                         struct page *page, void *fsdata)
1509 {
1510         struct inode *inode = mapping->host;
1511
1512         if (pos + copied > inode->i_size)
1513                 i_size_write(inode, pos + copied);
1514
1515         if (!PageUptodate(page)) {
1516                 if (copied < PAGE_CACHE_SIZE) {
1517                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1518                         zero_user_segments(page, 0, from,
1519                                         from + copied, PAGE_CACHE_SIZE);
1520                 }
1521                 SetPageUptodate(page);
1522         }
1523         set_page_dirty(page);
1524         unlock_page(page);
1525         page_cache_release(page);
1526
1527         return copied;
1528 }
1529
1530 static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1531 {
1532         struct inode *inode = file_inode(filp);
1533         struct address_space *mapping = inode->i_mapping;
1534         pgoff_t index;
1535         unsigned long offset;
1536         enum sgp_type sgp = SGP_READ;
1537
1538         /*
1539          * Might this read be for a stacking filesystem?  Then when reading
1540          * holes of a sparse file, we actually need to allocate those pages,
1541          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1542          */
1543         if (segment_eq(get_fs(), KERNEL_DS))
1544                 sgp = SGP_DIRTY;
1545
1546         index = *ppos >> PAGE_CACHE_SHIFT;
1547         offset = *ppos & ~PAGE_CACHE_MASK;
1548
1549         for (;;) {
1550                 struct page *page = NULL;
1551                 pgoff_t end_index;
1552                 unsigned long nr, ret;
1553                 loff_t i_size = i_size_read(inode);
1554
1555                 end_index = i_size >> PAGE_CACHE_SHIFT;
1556                 if (index > end_index)
1557                         break;
1558                 if (index == end_index) {
1559                         nr = i_size & ~PAGE_CACHE_MASK;
1560                         if (nr <= offset)
1561                                 break;
1562                 }
1563
1564                 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1565                 if (desc->error) {
1566                         if (desc->error == -EINVAL)
1567                                 desc->error = 0;
1568                         break;
1569                 }
1570                 if (page)
1571                         unlock_page(page);
1572
1573                 /*
1574                  * We must evaluate after, since reads (unlike writes)
1575                  * are called without i_mutex protection against truncate
1576                  */
1577                 nr = PAGE_CACHE_SIZE;
1578                 i_size = i_size_read(inode);
1579                 end_index = i_size >> PAGE_CACHE_SHIFT;
1580                 if (index == end_index) {
1581                         nr = i_size & ~PAGE_CACHE_MASK;
1582                         if (nr <= offset) {
1583                                 if (page)
1584                                         page_cache_release(page);
1585                                 break;
1586                         }
1587                 }
1588                 nr -= offset;
1589
1590                 if (page) {
1591                         /*
1592                          * If users can be writing to this page using arbitrary
1593                          * virtual addresses, take care about potential aliasing
1594                          * before reading the page on the kernel side.
1595                          */
1596                         if (mapping_writably_mapped(mapping))
1597                                 flush_dcache_page(page);
1598                         /*
1599                          * Mark the page accessed if we read the beginning.
1600                          */
1601                         if (!offset)
1602                                 mark_page_accessed(page);
1603                 } else {
1604                         page = ZERO_PAGE(0);
1605                         page_cache_get(page);
1606                 }
1607
1608                 /*
1609                  * Ok, we have the page, and it's up-to-date, so
1610                  * now we can copy it to user space...
1611                  *
1612                  * The actor routine returns how many bytes were actually used..
1613                  * NOTE! This may not be the same as how much of a user buffer
1614                  * we filled up (we may be padding etc), so we can only update
1615                  * "pos" here (the actor routine has to update the user buffer
1616                  * pointers and the remaining count).
1617                  */
1618                 ret = actor(desc, page, offset, nr);
1619                 offset += ret;
1620                 index += offset >> PAGE_CACHE_SHIFT;
1621                 offset &= ~PAGE_CACHE_MASK;
1622
1623                 page_cache_release(page);
1624                 if (ret != nr || !desc->count)
1625                         break;
1626
1627                 cond_resched();
1628         }
1629
1630         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1631         file_accessed(filp);
1632 }
1633
1634 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1635                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1636 {
1637         struct file *filp = iocb->ki_filp;
1638         ssize_t retval;
1639         unsigned long seg;
1640         size_t count;
1641         loff_t *ppos = &iocb->ki_pos;
1642
1643         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1644         if (retval)
1645                 return retval;
1646
1647         for (seg = 0; seg < nr_segs; seg++) {
1648                 read_descriptor_t desc;
1649
1650                 desc.written = 0;
1651                 desc.arg.buf = iov[seg].iov_base;
1652                 desc.count = iov[seg].iov_len;
1653                 if (desc.count == 0)
1654                         continue;
1655                 desc.error = 0;
1656                 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1657                 retval += desc.written;
1658                 if (desc.error) {
1659                         retval = retval ?: desc.error;
1660                         break;
1661                 }
1662                 if (desc.count > 0)
1663                         break;
1664         }
1665         return retval;
1666 }
1667
1668 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1669                                 struct pipe_inode_info *pipe, size_t len,
1670                                 unsigned int flags)
1671 {
1672         struct address_space *mapping = in->f_mapping;
1673         struct inode *inode = mapping->host;
1674         unsigned int loff, nr_pages, req_pages;
1675         struct page *pages[PIPE_DEF_BUFFERS];
1676         struct partial_page partial[PIPE_DEF_BUFFERS];
1677         struct page *page;
1678         pgoff_t index, end_index;
1679         loff_t isize, left;
1680         int error, page_nr;
1681         struct splice_pipe_desc spd = {
1682                 .pages = pages,
1683                 .partial = partial,
1684                 .nr_pages_max = PIPE_DEF_BUFFERS,
1685                 .flags = flags,
1686                 .ops = &page_cache_pipe_buf_ops,
1687                 .spd_release = spd_release_page,
1688         };
1689
1690         isize = i_size_read(inode);
1691         if (unlikely(*ppos >= isize))
1692                 return 0;
1693
1694         left = isize - *ppos;
1695         if (unlikely(left < len))
1696                 len = left;
1697
1698         if (splice_grow_spd(pipe, &spd))
1699                 return -ENOMEM;
1700
1701         index = *ppos >> PAGE_CACHE_SHIFT;
1702         loff = *ppos & ~PAGE_CACHE_MASK;
1703         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1704         nr_pages = min(req_pages, pipe->buffers);
1705
1706         spd.nr_pages = find_get_pages_contig(mapping, index,
1707                                                 nr_pages, spd.pages);
1708         index += spd.nr_pages;
1709         error = 0;
1710
1711         while (spd.nr_pages < nr_pages) {
1712                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1713                 if (error)
1714                         break;
1715                 unlock_page(page);
1716                 spd.pages[spd.nr_pages++] = page;
1717                 index++;
1718         }
1719
1720         index = *ppos >> PAGE_CACHE_SHIFT;
1721         nr_pages = spd.nr_pages;
1722         spd.nr_pages = 0;
1723
1724         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1725                 unsigned int this_len;
1726
1727                 if (!len)
1728                         break;
1729
1730                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1731                 page = spd.pages[page_nr];
1732
1733                 if (!PageUptodate(page) || page->mapping != mapping) {
1734                         error = shmem_getpage(inode, index, &page,
1735                                                         SGP_CACHE, NULL);
1736                         if (error)
1737                                 break;
1738                         unlock_page(page);
1739                         page_cache_release(spd.pages[page_nr]);
1740                         spd.pages[page_nr] = page;
1741                 }
1742
1743                 isize = i_size_read(inode);
1744                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1745                 if (unlikely(!isize || index > end_index))
1746                         break;
1747
1748                 if (end_index == index) {
1749                         unsigned int plen;
1750
1751                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1752                         if (plen <= loff)
1753                                 break;
1754
1755                         this_len = min(this_len, plen - loff);
1756                         len = this_len;
1757                 }
1758
1759                 spd.partial[page_nr].offset = loff;
1760                 spd.partial[page_nr].len = this_len;
1761                 len -= this_len;
1762                 loff = 0;
1763                 spd.nr_pages++;
1764                 index++;
1765         }
1766
1767         while (page_nr < nr_pages)
1768                 page_cache_release(spd.pages[page_nr++]);
1769
1770         if (spd.nr_pages)
1771                 error = splice_to_pipe(pipe, &spd);
1772
1773         splice_shrink_spd(&spd);
1774
1775         if (error > 0) {
1776                 *ppos += error;
1777                 file_accessed(in);
1778         }
1779         return error;
1780 }
1781
1782 /*
1783  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1784  */
1785 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1786                                     pgoff_t index, pgoff_t end, int whence)
1787 {
1788         struct page *page;
1789         struct pagevec pvec;
1790         pgoff_t indices[PAGEVEC_SIZE];
1791         bool done = false;
1792         int i;
1793
1794         pagevec_init(&pvec, 0);
1795         pvec.nr = 1;            /* start small: we may be there already */
1796         while (!done) {
1797                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1798                                         pvec.nr, pvec.pages, indices);
1799                 if (!pvec.nr) {
1800                         if (whence == SEEK_DATA)
1801                                 index = end;
1802                         break;
1803                 }
1804                 for (i = 0; i < pvec.nr; i++, index++) {
1805                         if (index < indices[i]) {
1806                                 if (whence == SEEK_HOLE) {
1807                                         done = true;
1808                                         break;
1809                                 }
1810                                 index = indices[i];
1811                         }
1812                         page = pvec.pages[i];
1813                         if (page && !radix_tree_exceptional_entry(page)) {
1814                                 if (!PageUptodate(page))
1815                                         page = NULL;
1816                         }
1817                         if (index >= end ||
1818                             (page && whence == SEEK_DATA) ||
1819                             (!page && whence == SEEK_HOLE)) {
1820                                 done = true;
1821                                 break;
1822                         }
1823                 }
1824                 shmem_deswap_pagevec(&pvec);
1825                 pagevec_release(&pvec);
1826                 pvec.nr = PAGEVEC_SIZE;
1827                 cond_resched();
1828         }
1829         return index;
1830 }
1831
1832 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1833 {
1834         struct address_space *mapping = file->f_mapping;
1835         struct inode *inode = mapping->host;
1836         pgoff_t start, end;
1837         loff_t new_offset;
1838
1839         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1840                 return generic_file_llseek_size(file, offset, whence,
1841                                         MAX_LFS_FILESIZE, i_size_read(inode));
1842         mutex_lock(&inode->i_mutex);
1843         /* We're holding i_mutex so we can access i_size directly */
1844
1845         if (offset < 0)
1846                 offset = -EINVAL;
1847         else if (offset >= inode->i_size)
1848                 offset = -ENXIO;
1849         else {
1850                 start = offset >> PAGE_CACHE_SHIFT;
1851                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1852                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1853                 new_offset <<= PAGE_CACHE_SHIFT;
1854                 if (new_offset > offset) {
1855                         if (new_offset < inode->i_size)
1856                                 offset = new_offset;
1857                         else if (whence == SEEK_DATA)
1858                                 offset = -ENXIO;
1859                         else
1860                                 offset = inode->i_size;
1861                 }
1862         }
1863
1864         if (offset >= 0)
1865                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1866         mutex_unlock(&inode->i_mutex);
1867         return offset;
1868 }
1869
1870 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1871                                                          loff_t len)
1872 {
1873         struct inode *inode = file_inode(file);
1874         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1875         struct shmem_falloc shmem_falloc;
1876         pgoff_t start, index, end;
1877         int error;
1878
1879         mutex_lock(&inode->i_mutex);
1880
1881         if (mode & FALLOC_FL_PUNCH_HOLE) {
1882                 struct address_space *mapping = file->f_mapping;
1883                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1884                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1885                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
1886
1887                 shmem_falloc.waitq = &shmem_falloc_waitq;
1888                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
1889                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
1890                 spin_lock(&inode->i_lock);
1891                 inode->i_private = &shmem_falloc;
1892                 spin_unlock(&inode->i_lock);
1893
1894                 if ((u64)unmap_end > (u64)unmap_start)
1895                         unmap_mapping_range(mapping, unmap_start,
1896                                             1 + unmap_end - unmap_start, 0);
1897                 shmem_truncate_range(inode, offset, offset + len - 1);
1898                 /* No need to unmap again: hole-punching leaves COWed pages */
1899
1900                 spin_lock(&inode->i_lock);
1901                 inode->i_private = NULL;
1902                 wake_up_all(&shmem_falloc_waitq);
1903                 spin_unlock(&inode->i_lock);
1904                 error = 0;
1905                 goto out;
1906         }
1907
1908         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1909         error = inode_newsize_ok(inode, offset + len);
1910         if (error)
1911                 goto out;
1912
1913         start = offset >> PAGE_CACHE_SHIFT;
1914         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1915         /* Try to avoid a swapstorm if len is impossible to satisfy */
1916         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1917                 error = -ENOSPC;
1918                 goto out;
1919         }
1920
1921         shmem_falloc.waitq = NULL;
1922         shmem_falloc.start = start;
1923         shmem_falloc.next  = start;
1924         shmem_falloc.nr_falloced = 0;
1925         shmem_falloc.nr_unswapped = 0;
1926         spin_lock(&inode->i_lock);
1927         inode->i_private = &shmem_falloc;
1928         spin_unlock(&inode->i_lock);
1929
1930         for (index = start; index < end; index++) {
1931                 struct page *page;
1932
1933                 /*
1934                  * Good, the fallocate(2) manpage permits EINTR: we may have
1935                  * been interrupted because we are using up too much memory.
1936                  */
1937                 if (signal_pending(current))
1938                         error = -EINTR;
1939                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1940                         error = -ENOMEM;
1941                 else
1942                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1943                                                                         NULL);
1944                 if (error) {
1945                         /* Remove the !PageUptodate pages we added */
1946                         shmem_undo_range(inode,
1947                                 (loff_t)start << PAGE_CACHE_SHIFT,
1948                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1949                         goto undone;
1950                 }
1951
1952                 /*
1953                  * Inform shmem_writepage() how far we have reached.
1954                  * No need for lock or barrier: we have the page lock.
1955                  */
1956                 shmem_falloc.next++;
1957                 if (!PageUptodate(page))
1958                         shmem_falloc.nr_falloced++;
1959
1960                 /*
1961                  * If !PageUptodate, leave it that way so that freeable pages
1962                  * can be recognized if we need to rollback on error later.
1963                  * But set_page_dirty so that memory pressure will swap rather
1964                  * than free the pages we are allocating (and SGP_CACHE pages
1965                  * might still be clean: we now need to mark those dirty too).
1966                  */
1967                 set_page_dirty(page);
1968                 unlock_page(page);
1969                 page_cache_release(page);
1970                 cond_resched();
1971         }
1972
1973         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1974                 i_size_write(inode, offset + len);
1975         inode->i_ctime = CURRENT_TIME;
1976 undone:
1977         spin_lock(&inode->i_lock);
1978         inode->i_private = NULL;
1979         spin_unlock(&inode->i_lock);
1980 out:
1981         mutex_unlock(&inode->i_mutex);
1982         return error;
1983 }
1984
1985 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1986 {
1987         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1988
1989         buf->f_type = TMPFS_MAGIC;
1990         buf->f_bsize = PAGE_CACHE_SIZE;
1991         buf->f_namelen = NAME_MAX;
1992         if (sbinfo->max_blocks) {
1993                 buf->f_blocks = sbinfo->max_blocks;
1994                 buf->f_bavail =
1995                 buf->f_bfree  = sbinfo->max_blocks -
1996                                 percpu_counter_sum(&sbinfo->used_blocks);
1997         }
1998         if (sbinfo->max_inodes) {
1999                 buf->f_files = sbinfo->max_inodes;
2000                 buf->f_ffree = sbinfo->free_inodes;
2001         }
2002         /* else leave those fields 0 like simple_statfs */
2003         return 0;
2004 }
2005
2006 /*
2007  * File creation. Allocate an inode, and we're done..
2008  */
2009 static int
2010 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2011 {
2012         struct inode *inode;
2013         int error = -ENOSPC;
2014
2015         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2016         if (inode) {
2017                 error = simple_acl_create(dir, inode);
2018                 if (error)
2019                         goto out_iput;
2020                 error = security_inode_init_security(inode, dir,
2021                                                      &dentry->d_name,
2022                                                      shmem_initxattrs, NULL);
2023                 if (error && error != -EOPNOTSUPP)
2024                         goto out_iput;
2025
2026                 error = 0;
2027                 dir->i_size += BOGO_DIRENT_SIZE;
2028                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2029                 d_instantiate(dentry, inode);
2030                 dget(dentry); /* Extra count - pin the dentry in core */
2031         }
2032         return error;
2033 out_iput:
2034         iput(inode);
2035         return error;
2036 }
2037
2038 static int
2039 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2040 {
2041         struct inode *inode;
2042         int error = -ENOSPC;
2043
2044         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2045         if (inode) {
2046                 error = security_inode_init_security(inode, dir,
2047                                                      NULL,
2048                                                      shmem_initxattrs, NULL);
2049                 if (error && error != -EOPNOTSUPP)
2050                         goto out_iput;
2051                 error = simple_acl_create(dir, inode);
2052                 if (error)
2053                         goto out_iput;
2054                 d_tmpfile(dentry, inode);
2055         }
2056         return error;
2057 out_iput:
2058         iput(inode);
2059         return error;
2060 }
2061
2062 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2063 {
2064         int error;
2065
2066         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2067                 return error;
2068         inc_nlink(dir);
2069         return 0;
2070 }
2071
2072 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2073                 bool excl)
2074 {
2075         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2076 }
2077
2078 /*
2079  * Link a file..
2080  */
2081 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2082 {
2083         struct inode *inode = old_dentry->d_inode;
2084         int ret;
2085
2086         /*
2087          * No ordinary (disk based) filesystem counts links as inodes;
2088          * but each new link needs a new dentry, pinning lowmem, and
2089          * tmpfs dentries cannot be pruned until they are unlinked.
2090          */
2091         ret = shmem_reserve_inode(inode->i_sb);
2092         if (ret)
2093                 goto out;
2094
2095         dir->i_size += BOGO_DIRENT_SIZE;
2096         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2097         inc_nlink(inode);
2098         ihold(inode);   /* New dentry reference */
2099         dget(dentry);           /* Extra pinning count for the created dentry */
2100         d_instantiate(dentry, inode);
2101 out:
2102         return ret;
2103 }
2104
2105 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2106 {
2107         struct inode *inode = dentry->d_inode;
2108
2109         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2110                 shmem_free_inode(inode->i_sb);
2111
2112         dir->i_size -= BOGO_DIRENT_SIZE;
2113         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2114         drop_nlink(inode);
2115         dput(dentry);   /* Undo the count from "create" - this does all the work */
2116         return 0;
2117 }
2118
2119 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2120 {
2121         if (!simple_empty(dentry))
2122                 return -ENOTEMPTY;
2123
2124         drop_nlink(dentry->d_inode);
2125         drop_nlink(dir);
2126         return shmem_unlink(dir, dentry);
2127 }
2128
2129 /*
2130  * The VFS layer already does all the dentry stuff for rename,
2131  * we just have to decrement the usage count for the target if
2132  * it exists so that the VFS layer correctly free's it when it
2133  * gets overwritten.
2134  */
2135 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2136 {
2137         struct inode *inode = old_dentry->d_inode;
2138         int they_are_dirs = S_ISDIR(inode->i_mode);
2139
2140         if (!simple_empty(new_dentry))
2141                 return -ENOTEMPTY;
2142
2143         if (new_dentry->d_inode) {
2144                 (void) shmem_unlink(new_dir, new_dentry);
2145                 if (they_are_dirs) {
2146                         drop_nlink(new_dentry->d_inode);
2147                         drop_nlink(old_dir);
2148                 }
2149         } else if (they_are_dirs) {
2150                 drop_nlink(old_dir);
2151                 inc_nlink(new_dir);
2152         }
2153
2154         old_dir->i_size -= BOGO_DIRENT_SIZE;
2155         new_dir->i_size += BOGO_DIRENT_SIZE;
2156         old_dir->i_ctime = old_dir->i_mtime =
2157         new_dir->i_ctime = new_dir->i_mtime =
2158         inode->i_ctime = CURRENT_TIME;
2159         return 0;
2160 }
2161
2162 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2163 {
2164         int error;
2165         int len;
2166         struct inode *inode;
2167         struct page *page;
2168         char *kaddr;
2169         struct shmem_inode_info *info;
2170
2171         len = strlen(symname) + 1;
2172         if (len > PAGE_CACHE_SIZE)
2173                 return -ENAMETOOLONG;
2174
2175         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2176         if (!inode)
2177                 return -ENOSPC;
2178
2179         error = security_inode_init_security(inode, dir, &dentry->d_name,
2180                                              shmem_initxattrs, NULL);
2181         if (error) {
2182                 if (error != -EOPNOTSUPP) {
2183                         iput(inode);
2184                         return error;
2185                 }
2186                 error = 0;
2187         }
2188
2189         info = SHMEM_I(inode);
2190         inode->i_size = len-1;
2191         if (len <= SHORT_SYMLINK_LEN) {
2192                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2193                 if (!info->symlink) {
2194                         iput(inode);
2195                         return -ENOMEM;
2196                 }
2197                 inode->i_op = &shmem_short_symlink_operations;
2198         } else {
2199                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2200                 if (error) {
2201                         iput(inode);
2202                         return error;
2203                 }
2204                 inode->i_mapping->a_ops = &shmem_aops;
2205                 inode->i_op = &shmem_symlink_inode_operations;
2206                 kaddr = kmap_atomic(page);
2207                 memcpy(kaddr, symname, len);
2208                 kunmap_atomic(kaddr);
2209                 SetPageUptodate(page);
2210                 set_page_dirty(page);
2211                 unlock_page(page);
2212                 page_cache_release(page);
2213         }
2214         dir->i_size += BOGO_DIRENT_SIZE;
2215         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2216         d_instantiate(dentry, inode);
2217         dget(dentry);
2218         return 0;
2219 }
2220
2221 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2222 {
2223         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2224         return NULL;
2225 }
2226
2227 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2228 {
2229         struct page *page = NULL;
2230         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2231         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2232         if (page)
2233                 unlock_page(page);
2234         return page;
2235 }
2236
2237 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2238 {
2239         if (!IS_ERR(nd_get_link(nd))) {
2240                 struct page *page = cookie;
2241                 kunmap(page);
2242                 mark_page_accessed(page);
2243                 page_cache_release(page);
2244         }
2245 }
2246
2247 #ifdef CONFIG_TMPFS_XATTR
2248 /*
2249  * Superblocks without xattr inode operations may get some security.* xattr
2250  * support from the LSM "for free". As soon as we have any other xattrs
2251  * like ACLs, we also need to implement the security.* handlers at
2252  * filesystem level, though.
2253  */
2254
2255 /*
2256  * Callback for security_inode_init_security() for acquiring xattrs.
2257  */
2258 static int shmem_initxattrs(struct inode *inode,
2259                             const struct xattr *xattr_array,
2260                             void *fs_info)
2261 {
2262         struct shmem_inode_info *info = SHMEM_I(inode);
2263         const struct xattr *xattr;
2264         struct simple_xattr *new_xattr;
2265         size_t len;
2266
2267         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2268                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2269                 if (!new_xattr)
2270                         return -ENOMEM;
2271
2272                 len = strlen(xattr->name) + 1;
2273                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2274                                           GFP_KERNEL);
2275                 if (!new_xattr->name) {
2276                         kfree(new_xattr);
2277                         return -ENOMEM;
2278                 }
2279
2280                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2281                        XATTR_SECURITY_PREFIX_LEN);
2282                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2283                        xattr->name, len);
2284
2285                 simple_xattr_list_add(&info->xattrs, new_xattr);
2286         }
2287
2288         return 0;
2289 }
2290
2291 static const struct xattr_handler *shmem_xattr_handlers[] = {
2292 #ifdef CONFIG_TMPFS_POSIX_ACL
2293         &posix_acl_access_xattr_handler,
2294         &posix_acl_default_xattr_handler,
2295 #endif
2296         NULL
2297 };
2298
2299 static int shmem_xattr_validate(const char *name)
2300 {
2301         struct { const char *prefix; size_t len; } arr[] = {
2302                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2303                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2304         };
2305         int i;
2306
2307         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2308                 size_t preflen = arr[i].len;
2309                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2310                         if (!name[preflen])
2311                                 return -EINVAL;
2312                         return 0;
2313                 }
2314         }
2315         return -EOPNOTSUPP;
2316 }
2317
2318 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2319                               void *buffer, size_t size)
2320 {
2321         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2322         int err;
2323
2324         /*
2325          * If this is a request for a synthetic attribute in the system.*
2326          * namespace use the generic infrastructure to resolve a handler
2327          * for it via sb->s_xattr.
2328          */
2329         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2330                 return generic_getxattr(dentry, name, buffer, size);
2331
2332         err = shmem_xattr_validate(name);
2333         if (err)
2334                 return err;
2335
2336         return simple_xattr_get(&info->xattrs, name, buffer, size);
2337 }
2338
2339 static int shmem_setxattr(struct dentry *dentry, const char *name,
2340                           const void *value, size_t size, int flags)
2341 {
2342         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2343         int err;
2344
2345         /*
2346          * If this is a request for a synthetic attribute in the system.*
2347          * namespace use the generic infrastructure to resolve a handler
2348          * for it via sb->s_xattr.
2349          */
2350         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2351                 return generic_setxattr(dentry, name, value, size, flags);
2352
2353         err = shmem_xattr_validate(name);
2354         if (err)
2355                 return err;
2356
2357         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2358 }
2359
2360 static int shmem_removexattr(struct dentry *dentry, const char *name)
2361 {
2362         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2363         int err;
2364
2365         /*
2366          * If this is a request for a synthetic attribute in the system.*
2367          * namespace use the generic infrastructure to resolve a handler
2368          * for it via sb->s_xattr.
2369          */
2370         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2371                 return generic_removexattr(dentry, name);
2372
2373         err = shmem_xattr_validate(name);
2374         if (err)
2375                 return err;
2376
2377         return simple_xattr_remove(&info->xattrs, name);
2378 }
2379
2380 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2381 {
2382         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2383         return simple_xattr_list(&info->xattrs, buffer, size);
2384 }
2385 #endif /* CONFIG_TMPFS_XATTR */
2386
2387 static const struct inode_operations shmem_short_symlink_operations = {
2388         .readlink       = generic_readlink,
2389         .follow_link    = shmem_follow_short_symlink,
2390 #ifdef CONFIG_TMPFS_XATTR
2391         .setxattr       = shmem_setxattr,
2392         .getxattr       = shmem_getxattr,
2393         .listxattr      = shmem_listxattr,
2394         .removexattr    = shmem_removexattr,
2395 #endif
2396 };
2397
2398 static const struct inode_operations shmem_symlink_inode_operations = {
2399         .readlink       = generic_readlink,
2400         .follow_link    = shmem_follow_link,
2401         .put_link       = shmem_put_link,
2402 #ifdef CONFIG_TMPFS_XATTR
2403         .setxattr       = shmem_setxattr,
2404         .getxattr       = shmem_getxattr,
2405         .listxattr      = shmem_listxattr,
2406         .removexattr    = shmem_removexattr,
2407 #endif
2408 };
2409
2410 static struct dentry *shmem_get_parent(struct dentry *child)
2411 {
2412         return ERR_PTR(-ESTALE);
2413 }
2414
2415 static int shmem_match(struct inode *ino, void *vfh)
2416 {
2417         __u32 *fh = vfh;
2418         __u64 inum = fh[2];
2419         inum = (inum << 32) | fh[1];
2420         return ino->i_ino == inum && fh[0] == ino->i_generation;
2421 }
2422
2423 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2424                 struct fid *fid, int fh_len, int fh_type)
2425 {
2426         struct inode *inode;
2427         struct dentry *dentry = NULL;
2428         u64 inum;
2429
2430         if (fh_len < 3)
2431                 return NULL;
2432
2433         inum = fid->raw[2];
2434         inum = (inum << 32) | fid->raw[1];
2435
2436         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2437                         shmem_match, fid->raw);
2438         if (inode) {
2439                 dentry = d_find_alias(inode);
2440                 iput(inode);
2441         }
2442
2443         return dentry;
2444 }
2445
2446 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2447                                 struct inode *parent)
2448 {
2449         if (*len < 3) {
2450                 *len = 3;
2451                 return FILEID_INVALID;
2452         }
2453
2454         if (inode_unhashed(inode)) {
2455                 /* Unfortunately insert_inode_hash is not idempotent,
2456                  * so as we hash inodes here rather than at creation
2457                  * time, we need a lock to ensure we only try
2458                  * to do it once
2459                  */
2460                 static DEFINE_SPINLOCK(lock);
2461                 spin_lock(&lock);
2462                 if (inode_unhashed(inode))
2463                         __insert_inode_hash(inode,
2464                                             inode->i_ino + inode->i_generation);
2465                 spin_unlock(&lock);
2466         }
2467
2468         fh[0] = inode->i_generation;
2469         fh[1] = inode->i_ino;
2470         fh[2] = ((__u64)inode->i_ino) >> 32;
2471
2472         *len = 3;
2473         return 1;
2474 }
2475
2476 static const struct export_operations shmem_export_ops = {
2477         .get_parent     = shmem_get_parent,
2478         .encode_fh      = shmem_encode_fh,
2479         .fh_to_dentry   = shmem_fh_to_dentry,
2480 };
2481
2482 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2483                                bool remount)
2484 {
2485         char *this_char, *value, *rest;
2486         struct mempolicy *mpol = NULL;
2487         uid_t uid;
2488         gid_t gid;
2489
2490         while (options != NULL) {
2491                 this_char = options;
2492                 for (;;) {
2493                         /*
2494                          * NUL-terminate this option: unfortunately,
2495                          * mount options form a comma-separated list,
2496                          * but mpol's nodelist may also contain commas.
2497                          */
2498                         options = strchr(options, ',');
2499                         if (options == NULL)
2500                                 break;
2501                         options++;
2502                         if (!isdigit(*options)) {
2503                                 options[-1] = '\0';
2504                                 break;
2505                         }
2506                 }
2507                 if (!*this_char)
2508                         continue;
2509                 if ((value = strchr(this_char,'=')) != NULL) {
2510                         *value++ = 0;
2511                 } else {
2512                         printk(KERN_ERR
2513                             "tmpfs: No value for mount option '%s'\n",
2514                             this_char);
2515                         goto error;
2516                 }
2517
2518                 if (!strcmp(this_char,"size")) {
2519                         unsigned long long size;
2520                         size = memparse(value,&rest);
2521                         if (*rest == '%') {
2522                                 size <<= PAGE_SHIFT;
2523                                 size *= totalram_pages;
2524                                 do_div(size, 100);
2525                                 rest++;
2526                         }
2527                         if (*rest)
2528                                 goto bad_val;
2529                         sbinfo->max_blocks =
2530                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2531                 } else if (!strcmp(this_char,"nr_blocks")) {
2532                         sbinfo->max_blocks = memparse(value, &rest);
2533                         if (*rest)
2534                                 goto bad_val;
2535                 } else if (!strcmp(this_char,"nr_inodes")) {
2536                         sbinfo->max_inodes = memparse(value, &rest);
2537                         if (*rest)
2538                                 goto bad_val;
2539                 } else if (!strcmp(this_char,"mode")) {
2540                         if (remount)
2541                                 continue;
2542                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2543                         if (*rest)
2544                                 goto bad_val;
2545                 } else if (!strcmp(this_char,"uid")) {
2546                         if (remount)
2547                                 continue;
2548                         uid = simple_strtoul(value, &rest, 0);
2549                         if (*rest)
2550                                 goto bad_val;
2551                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2552                         if (!uid_valid(sbinfo->uid))
2553                                 goto bad_val;
2554                 } else if (!strcmp(this_char,"gid")) {
2555                         if (remount)
2556                                 continue;
2557                         gid = simple_strtoul(value, &rest, 0);
2558                         if (*rest)
2559                                 goto bad_val;
2560                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2561                         if (!gid_valid(sbinfo->gid))
2562                                 goto bad_val;
2563                 } else if (!strcmp(this_char,"mpol")) {
2564                         mpol_put(mpol);
2565                         mpol = NULL;
2566                         if (mpol_parse_str(value, &mpol))
2567                                 goto bad_val;
2568                 } else {
2569                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2570                                this_char);
2571                         goto error;
2572                 }
2573         }
2574         sbinfo->mpol = mpol;
2575         return 0;
2576
2577 bad_val:
2578         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2579                value, this_char);
2580 error:
2581         mpol_put(mpol);
2582         return 1;
2583
2584 }
2585
2586 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2587 {
2588         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2589         struct shmem_sb_info config = *sbinfo;
2590         unsigned long inodes;
2591         int error = -EINVAL;
2592
2593         config.mpol = NULL;
2594         if (shmem_parse_options(data, &config, true))
2595                 return error;
2596
2597         spin_lock(&sbinfo->stat_lock);
2598         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2599         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2600                 goto out;
2601         if (config.max_inodes < inodes)
2602                 goto out;
2603         /*
2604          * Those tests disallow limited->unlimited while any are in use;
2605          * but we must separately disallow unlimited->limited, because
2606          * in that case we have no record of how much is already in use.
2607          */
2608         if (config.max_blocks && !sbinfo->max_blocks)
2609                 goto out;
2610         if (config.max_inodes && !sbinfo->max_inodes)
2611                 goto out;
2612
2613         error = 0;
2614         sbinfo->max_blocks  = config.max_blocks;
2615         sbinfo->max_inodes  = config.max_inodes;
2616         sbinfo->free_inodes = config.max_inodes - inodes;
2617
2618         /*
2619          * Preserve previous mempolicy unless mpol remount option was specified.
2620          */
2621         if (config.mpol) {
2622                 mpol_put(sbinfo->mpol);
2623                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2624         }
2625 out:
2626         spin_unlock(&sbinfo->stat_lock);
2627         return error;
2628 }
2629
2630 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2631 {
2632         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2633
2634         if (sbinfo->max_blocks != shmem_default_max_blocks())
2635                 seq_printf(seq, ",size=%luk",
2636                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2637         if (sbinfo->max_inodes != shmem_default_max_inodes())
2638                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2639         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2640                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2641         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2642                 seq_printf(seq, ",uid=%u",
2643                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2644         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2645                 seq_printf(seq, ",gid=%u",
2646                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2647         shmem_show_mpol(seq, sbinfo->mpol);
2648         return 0;
2649 }
2650 #endif /* CONFIG_TMPFS */
2651
2652 static void shmem_put_super(struct super_block *sb)
2653 {
2654         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2655
2656         percpu_counter_destroy(&sbinfo->used_blocks);
2657         mpol_put(sbinfo->mpol);
2658         kfree(sbinfo);
2659         sb->s_fs_info = NULL;
2660 }
2661
2662 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2663 {
2664         struct inode *inode;
2665         struct shmem_sb_info *sbinfo;
2666         int err = -ENOMEM;
2667
2668         /* Round up to L1_CACHE_BYTES to resist false sharing */
2669         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2670                                 L1_CACHE_BYTES), GFP_KERNEL);
2671         if (!sbinfo)
2672                 return -ENOMEM;
2673
2674         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2675         sbinfo->uid = current_fsuid();
2676         sbinfo->gid = current_fsgid();
2677         sb->s_fs_info = sbinfo;
2678
2679 #ifdef CONFIG_TMPFS
2680         /*
2681          * Per default we only allow half of the physical ram per
2682          * tmpfs instance, limiting inodes to one per page of lowmem;
2683          * but the internal instance is left unlimited.
2684          */
2685         if (!(sb->s_flags & MS_KERNMOUNT)) {
2686                 sbinfo->max_blocks = shmem_default_max_blocks();
2687                 sbinfo->max_inodes = shmem_default_max_inodes();
2688                 if (shmem_parse_options(data, sbinfo, false)) {
2689                         err = -EINVAL;
2690                         goto failed;
2691                 }
2692         } else {
2693                 sb->s_flags |= MS_NOUSER;
2694         }
2695         sb->s_export_op = &shmem_export_ops;
2696         sb->s_flags |= MS_NOSEC;
2697 #else
2698         sb->s_flags |= MS_NOUSER;
2699 #endif
2700
2701         spin_lock_init(&sbinfo->stat_lock);
2702         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2703                 goto failed;
2704         sbinfo->free_inodes = sbinfo->max_inodes;
2705
2706         sb->s_maxbytes = MAX_LFS_FILESIZE;
2707         sb->s_blocksize = PAGE_CACHE_SIZE;
2708         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2709         sb->s_magic = TMPFS_MAGIC;
2710         sb->s_op = &shmem_ops;
2711         sb->s_time_gran = 1;
2712 #ifdef CONFIG_TMPFS_XATTR
2713         sb->s_xattr = shmem_xattr_handlers;
2714 #endif
2715 #ifdef CONFIG_TMPFS_POSIX_ACL
2716         sb->s_flags |= MS_POSIXACL;
2717 #endif
2718
2719         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2720         if (!inode)
2721                 goto failed;
2722         inode->i_uid = sbinfo->uid;
2723         inode->i_gid = sbinfo->gid;
2724         sb->s_root = d_make_root(inode);
2725         if (!sb->s_root)
2726                 goto failed;
2727         return 0;
2728
2729 failed:
2730         shmem_put_super(sb);
2731         return err;
2732 }
2733
2734 static struct kmem_cache *shmem_inode_cachep;
2735
2736 static struct inode *shmem_alloc_inode(struct super_block *sb)
2737 {
2738         struct shmem_inode_info *info;
2739         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2740         if (!info)
2741                 return NULL;
2742         return &info->vfs_inode;
2743 }
2744
2745 static void shmem_destroy_callback(struct rcu_head *head)
2746 {
2747         struct inode *inode = container_of(head, struct inode, i_rcu);
2748         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2749 }
2750
2751 static void shmem_destroy_inode(struct inode *inode)
2752 {
2753         if (S_ISREG(inode->i_mode))
2754                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2755         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2756 }
2757
2758 static void shmem_init_inode(void *foo)
2759 {
2760         struct shmem_inode_info *info = foo;
2761         inode_init_once(&info->vfs_inode);
2762 }
2763
2764 static int shmem_init_inodecache(void)
2765 {
2766         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2767                                 sizeof(struct shmem_inode_info),
2768                                 0, SLAB_PANIC, shmem_init_inode);
2769         return 0;
2770 }
2771
2772 static void shmem_destroy_inodecache(void)
2773 {
2774         kmem_cache_destroy(shmem_inode_cachep);
2775 }
2776
2777 static const struct address_space_operations shmem_aops = {
2778         .writepage      = shmem_writepage,
2779         .set_page_dirty = __set_page_dirty_no_writeback,
2780 #ifdef CONFIG_TMPFS
2781         .write_begin    = shmem_write_begin,
2782         .write_end      = shmem_write_end,
2783 #endif
2784         .migratepage    = migrate_page,
2785         .error_remove_page = generic_error_remove_page,
2786 };
2787
2788 static const struct file_operations shmem_file_operations = {
2789         .mmap           = shmem_mmap,
2790 #ifdef CONFIG_TMPFS
2791         .llseek         = shmem_file_llseek,
2792         .read           = do_sync_read,
2793         .write          = do_sync_write,
2794         .aio_read       = shmem_file_aio_read,
2795         .aio_write      = generic_file_aio_write,
2796         .fsync          = noop_fsync,
2797         .splice_read    = shmem_file_splice_read,
2798         .splice_write   = generic_file_splice_write,
2799         .fallocate      = shmem_fallocate,
2800 #endif
2801 };
2802
2803 static const struct inode_operations shmem_inode_operations = {
2804         .setattr        = shmem_setattr,
2805 #ifdef CONFIG_TMPFS_XATTR
2806         .setxattr       = shmem_setxattr,
2807         .getxattr       = shmem_getxattr,
2808         .listxattr      = shmem_listxattr,
2809         .removexattr    = shmem_removexattr,
2810         .set_acl        = simple_set_acl,
2811 #endif
2812 };
2813
2814 static const struct inode_operations shmem_dir_inode_operations = {
2815 #ifdef CONFIG_TMPFS
2816         .create         = shmem_create,
2817         .lookup         = simple_lookup,
2818         .link           = shmem_link,
2819         .unlink         = shmem_unlink,
2820         .symlink        = shmem_symlink,
2821         .mkdir          = shmem_mkdir,
2822         .rmdir          = shmem_rmdir,
2823         .mknod          = shmem_mknod,
2824         .rename         = shmem_rename,
2825         .tmpfile        = shmem_tmpfile,
2826 #endif
2827 #ifdef CONFIG_TMPFS_XATTR
2828         .setxattr       = shmem_setxattr,
2829         .getxattr       = shmem_getxattr,
2830         .listxattr      = shmem_listxattr,
2831         .removexattr    = shmem_removexattr,
2832 #endif
2833 #ifdef CONFIG_TMPFS_POSIX_ACL
2834         .setattr        = shmem_setattr,
2835         .set_acl        = simple_set_acl,
2836 #endif
2837 };
2838
2839 static const struct inode_operations shmem_special_inode_operations = {
2840 #ifdef CONFIG_TMPFS_XATTR
2841         .setxattr       = shmem_setxattr,
2842         .getxattr       = shmem_getxattr,
2843         .listxattr      = shmem_listxattr,
2844         .removexattr    = shmem_removexattr,
2845 #endif
2846 #ifdef CONFIG_TMPFS_POSIX_ACL
2847         .setattr        = shmem_setattr,
2848         .set_acl        = simple_set_acl,
2849 #endif
2850 };
2851
2852 static const struct super_operations shmem_ops = {
2853         .alloc_inode    = shmem_alloc_inode,
2854         .destroy_inode  = shmem_destroy_inode,
2855 #ifdef CONFIG_TMPFS
2856         .statfs         = shmem_statfs,
2857         .remount_fs     = shmem_remount_fs,
2858         .show_options   = shmem_show_options,
2859 #endif
2860         .evict_inode    = shmem_evict_inode,
2861         .drop_inode     = generic_delete_inode,
2862         .put_super      = shmem_put_super,
2863 };
2864
2865 static const struct vm_operations_struct shmem_vm_ops = {
2866         .fault          = shmem_fault,
2867 #ifdef CONFIG_NUMA
2868         .set_policy     = shmem_set_policy,
2869         .get_policy     = shmem_get_policy,
2870 #endif
2871         .remap_pages    = generic_file_remap_pages,
2872 };
2873
2874 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2875         int flags, const char *dev_name, void *data)
2876 {
2877         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2878 }
2879
2880 static struct file_system_type shmem_fs_type = {
2881         .owner          = THIS_MODULE,
2882         .name           = "tmpfs",
2883         .mount          = shmem_mount,
2884         .kill_sb        = kill_litter_super,
2885         .fs_flags       = FS_USERNS_MOUNT,
2886 };
2887
2888 int __init shmem_init(void)
2889 {
2890         int error;
2891
2892         /* If rootfs called this, don't re-init */
2893         if (shmem_inode_cachep)
2894                 return 0;
2895
2896         error = bdi_init(&shmem_backing_dev_info);
2897         if (error)
2898                 goto out4;
2899
2900         error = shmem_init_inodecache();
2901         if (error)
2902                 goto out3;
2903
2904         error = register_filesystem(&shmem_fs_type);
2905         if (error) {
2906                 printk(KERN_ERR "Could not register tmpfs\n");
2907                 goto out2;
2908         }
2909
2910         shm_mnt = kern_mount(&shmem_fs_type);
2911         if (IS_ERR(shm_mnt)) {
2912                 error = PTR_ERR(shm_mnt);
2913                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2914                 goto out1;
2915         }
2916         return 0;
2917
2918 out1:
2919         unregister_filesystem(&shmem_fs_type);
2920 out2:
2921         shmem_destroy_inodecache();
2922 out3:
2923         bdi_destroy(&shmem_backing_dev_info);
2924 out4:
2925         shm_mnt = ERR_PTR(error);
2926         return error;
2927 }
2928
2929 #else /* !CONFIG_SHMEM */
2930
2931 /*
2932  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2933  *
2934  * This is intended for small system where the benefits of the full
2935  * shmem code (swap-backed and resource-limited) are outweighed by
2936  * their complexity. On systems without swap this code should be
2937  * effectively equivalent, but much lighter weight.
2938  */
2939
2940 static struct file_system_type shmem_fs_type = {
2941         .name           = "tmpfs",
2942         .mount          = ramfs_mount,
2943         .kill_sb        = kill_litter_super,
2944         .fs_flags       = FS_USERNS_MOUNT,
2945 };
2946
2947 int __init shmem_init(void)
2948 {
2949         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2950
2951         shm_mnt = kern_mount(&shmem_fs_type);
2952         BUG_ON(IS_ERR(shm_mnt));
2953
2954         return 0;
2955 }
2956
2957 int shmem_unuse(swp_entry_t swap, struct page *page)
2958 {
2959         return 0;
2960 }
2961
2962 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2963 {
2964         return 0;
2965 }
2966
2967 void shmem_unlock_mapping(struct address_space *mapping)
2968 {
2969 }
2970
2971 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2972 {
2973         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2974 }
2975 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2976
2977 #define shmem_vm_ops                            generic_file_vm_ops
2978 #define shmem_file_operations                   ramfs_file_operations
2979 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2980 #define shmem_acct_size(flags, size)            0
2981 #define shmem_unacct_size(flags, size)          do {} while (0)
2982
2983 #endif /* CONFIG_SHMEM */
2984
2985 /* common code */
2986
2987 static struct dentry_operations anon_ops = {
2988         .d_dname = simple_dname
2989 };
2990
2991 static struct file *__shmem_file_setup(const char *name, loff_t size,
2992                                        unsigned long flags, unsigned int i_flags)
2993 {
2994         struct file *res;
2995         struct inode *inode;
2996         struct path path;
2997         struct super_block *sb;
2998         struct qstr this;
2999
3000         if (IS_ERR(shm_mnt))
3001                 return ERR_CAST(shm_mnt);
3002
3003         if (size < 0 || size > MAX_LFS_FILESIZE)
3004                 return ERR_PTR(-EINVAL);
3005
3006         if (shmem_acct_size(flags, size))
3007                 return ERR_PTR(-ENOMEM);
3008
3009         res = ERR_PTR(-ENOMEM);
3010         this.name = name;
3011         this.len = strlen(name);
3012         this.hash = 0; /* will go */
3013         sb = shm_mnt->mnt_sb;
3014         path.dentry = d_alloc_pseudo(sb, &this);
3015         if (!path.dentry)
3016                 goto put_memory;
3017         d_set_d_op(path.dentry, &anon_ops);
3018         path.mnt = mntget(shm_mnt);
3019
3020         res = ERR_PTR(-ENOSPC);
3021         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3022         if (!inode)
3023                 goto put_dentry;
3024
3025         inode->i_flags |= i_flags;
3026         d_instantiate(path.dentry, inode);
3027         inode->i_size = size;
3028         clear_nlink(inode);     /* It is unlinked */
3029         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3030         if (IS_ERR(res))
3031                 goto put_dentry;
3032
3033         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3034                   &shmem_file_operations);
3035         if (IS_ERR(res))
3036                 goto put_dentry;
3037
3038         return res;
3039
3040 put_dentry:
3041         path_put(&path);
3042 put_memory:
3043         shmem_unacct_size(flags, size);
3044         return res;
3045 }
3046
3047 /**
3048  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3049  *      kernel internal.  There will be NO LSM permission checks against the
3050  *      underlying inode.  So users of this interface must do LSM checks at a
3051  *      higher layer.  The one user is the big_key implementation.  LSM checks
3052  *      are provided at the key level rather than the inode level.
3053  * @name: name for dentry (to be seen in /proc/<pid>/maps
3054  * @size: size to be set for the file
3055  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3056  */
3057 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3058 {
3059         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3060 }
3061
3062 /**
3063  * shmem_file_setup - get an unlinked file living in tmpfs
3064  * @name: name for dentry (to be seen in /proc/<pid>/maps
3065  * @size: size to be set for the file
3066  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3067  */
3068 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3069 {
3070         return __shmem_file_setup(name, size, flags, 0);
3071 }
3072 EXPORT_SYMBOL_GPL(shmem_file_setup);
3073
3074 /**
3075  * shmem_zero_setup - setup a shared anonymous mapping
3076  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3077  */
3078 int shmem_zero_setup(struct vm_area_struct *vma)
3079 {
3080         struct file *file;
3081         loff_t size = vma->vm_end - vma->vm_start;
3082
3083         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3084         if (IS_ERR(file))
3085                 return PTR_ERR(file);
3086
3087         if (vma->vm_file)
3088                 fput(vma->vm_file);
3089         vma->vm_file = file;
3090         vma->vm_ops = &shmem_vm_ops;
3091         return 0;
3092 }
3093
3094 /**
3095  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3096  * @mapping:    the page's address_space
3097  * @index:      the page index
3098  * @gfp:        the page allocator flags to use if allocating
3099  *
3100  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3101  * with any new page allocations done using the specified allocation flags.
3102  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3103  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3104  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3105  *
3106  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3107  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3108  */
3109 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3110                                          pgoff_t index, gfp_t gfp)
3111 {
3112 #ifdef CONFIG_SHMEM
3113         struct inode *inode = mapping->host;
3114         struct page *page;
3115         int error;
3116
3117         BUG_ON(mapping->a_ops != &shmem_aops);
3118         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3119         if (error)
3120                 page = ERR_PTR(error);
3121         else
3122                 unlock_page(page);
3123         return page;
3124 #else
3125         /*
3126          * The tiny !SHMEM case uses ramfs without swap
3127          */
3128         return read_cache_page_gfp(mapping, index, gfp);
3129 #endif
3130 }
3131 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);