mm/memory-failure.c: fix memory leak by race between poison and unpoison
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481         int nid = page_to_nid(page);
482         list_move(&page->lru, &h->hugepage_freelists[nid]);
483         h->free_huge_pages++;
484         h->free_huge_pages_node[nid]++;
485 }
486
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489         struct page *page;
490
491         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492                 if (!is_migrate_isolate_page(page))
493                         break;
494         /*
495          * if 'non-isolated free hugepage' not found on the list,
496          * the allocation fails.
497          */
498         if (&h->hugepage_freelists[nid] == &page->lru)
499                 return NULL;
500         list_move(&page->lru, &h->hugepage_activelist);
501         set_page_refcounted(page);
502         h->free_huge_pages--;
503         h->free_huge_pages_node[nid]--;
504         return page;
505 }
506
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510         if (hugepages_treat_as_movable || hugepage_migration_support(h))
511                 return GFP_HIGHUSER_MOVABLE;
512         else
513                 return GFP_HIGHUSER;
514 }
515
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517                                 struct vm_area_struct *vma,
518                                 unsigned long address, int avoid_reserve,
519                                 long chg)
520 {
521         struct page *page = NULL;
522         struct mempolicy *mpol;
523         nodemask_t *nodemask;
524         struct zonelist *zonelist;
525         struct zone *zone;
526         struct zoneref *z;
527         unsigned int cpuset_mems_cookie;
528
529         /*
530          * A child process with MAP_PRIVATE mappings created by their parent
531          * have no page reserves. This check ensures that reservations are
532          * not "stolen". The child may still get SIGKILLed
533          */
534         if (!vma_has_reserves(vma, chg) &&
535                         h->free_huge_pages - h->resv_huge_pages == 0)
536                 goto err;
537
538         /* If reserves cannot be used, ensure enough pages are in the pool */
539         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540                 goto err;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask(h), &mpol, &nodemask);
546
547         for_each_zone_zonelist_nodemask(zone, z, zonelist,
548                                                 MAX_NR_ZONES - 1, nodemask) {
549                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
551                         if (page) {
552                                 if (avoid_reserve)
553                                         break;
554                                 if (!vma_has_reserves(vma, chg))
555                                         break;
556
557                                 SetPagePrivate(page);
558                                 h->resv_huge_pages--;
559                                 break;
560                         }
561                 }
562         }
563
564         mpol_cond_put(mpol);
565         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566                 goto retry_cpuset;
567         return page;
568
569 err:
570         return NULL;
571 }
572
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575         int i;
576
577         VM_BUG_ON(h->order >= MAX_ORDER);
578
579         h->nr_huge_pages--;
580         h->nr_huge_pages_node[page_to_nid(page)]--;
581         for (i = 0; i < pages_per_huge_page(h); i++) {
582                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583                                 1 << PG_referenced | 1 << PG_dirty |
584                                 1 << PG_active | 1 << PG_reserved |
585                                 1 << PG_private | 1 << PG_writeback);
586         }
587         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
588         set_compound_page_dtor(page, NULL);
589         set_page_refcounted(page);
590         arch_release_hugepage(page);
591         __free_pages(page, huge_page_order(h));
592 }
593
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596         struct hstate *h;
597
598         for_each_hstate(h) {
599                 if (huge_page_size(h) == size)
600                         return h;
601         }
602         return NULL;
603 }
604
605 static void free_huge_page(struct page *page)
606 {
607         /*
608          * Can't pass hstate in here because it is called from the
609          * compound page destructor.
610          */
611         struct hstate *h = page_hstate(page);
612         int nid = page_to_nid(page);
613         struct hugepage_subpool *spool =
614                 (struct hugepage_subpool *)page_private(page);
615         bool restore_reserve;
616
617         set_page_private(page, 0);
618         page->mapping = NULL;
619         BUG_ON(page_count(page));
620         BUG_ON(page_mapcount(page));
621         restore_reserve = PagePrivate(page);
622         ClearPagePrivate(page);
623
624         spin_lock(&hugetlb_lock);
625         hugetlb_cgroup_uncharge_page(hstate_index(h),
626                                      pages_per_huge_page(h), page);
627         if (restore_reserve)
628                 h->resv_huge_pages++;
629
630         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631                 /* remove the page from active list */
632                 list_del(&page->lru);
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 arch_clear_hugepage_flags(page);
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         INIT_LIST_HEAD(&page->lru);
647         set_compound_page_dtor(page, free_huge_page);
648         spin_lock(&hugetlb_lock);
649         set_hugetlb_cgroup(page, NULL);
650         h->nr_huge_pages++;
651         h->nr_huge_pages_node[nid]++;
652         spin_unlock(&hugetlb_lock);
653         put_page(page); /* free it into the hugepage allocator */
654 }
655
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658         int i;
659         int nr_pages = 1 << order;
660         struct page *p = page + 1;
661
662         /* we rely on prep_new_huge_page to set the destructor */
663         set_compound_order(page, order);
664         __SetPageHead(page);
665         __ClearPageReserved(page);
666         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667                 __SetPageTail(p);
668                 /*
669                  * For gigantic hugepages allocated through bootmem at
670                  * boot, it's safer to be consistent with the not-gigantic
671                  * hugepages and clear the PG_reserved bit from all tail pages
672                  * too.  Otherwse drivers using get_user_pages() to access tail
673                  * pages may get the reference counting wrong if they see
674                  * PG_reserved set on a tail page (despite the head page not
675                  * having PG_reserved set).  Enforcing this consistency between
676                  * head and tail pages allows drivers to optimize away a check
677                  * on the head page when they need know if put_page() is needed
678                  * after get_user_pages().
679                  */
680                 __ClearPageReserved(p);
681                 set_page_count(p, 0);
682                 p->first_page = page;
683         }
684 }
685
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693         if (!PageCompound(page))
694                 return 0;
695
696         page = compound_head(page);
697         return get_compound_page_dtor(page) == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHuge);
700
701 /*
702  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703  * normal or transparent huge pages.
704  */
705 int PageHeadHuge(struct page *page_head)
706 {
707         if (!PageHead(page_head))
708                 return 0;
709
710         return get_compound_page_dtor(page_head) == free_huge_page;
711 }
712
713 pgoff_t __basepage_index(struct page *page)
714 {
715         struct page *page_head = compound_head(page);
716         pgoff_t index = page_index(page_head);
717         unsigned long compound_idx;
718
719         if (!PageHuge(page_head))
720                 return page_index(page);
721
722         if (compound_order(page_head) >= MAX_ORDER)
723                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724         else
725                 compound_idx = page - page_head;
726
727         return (index << compound_order(page_head)) + compound_idx;
728 }
729
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
731 {
732         struct page *page;
733
734         if (h->order >= MAX_ORDER)
735                 return NULL;
736
737         page = alloc_pages_exact_node(nid,
738                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739                                                 __GFP_REPEAT|__GFP_NOWARN,
740                 huge_page_order(h));
741         if (page) {
742                 if (arch_prepare_hugepage(page)) {
743                         __free_pages(page, huge_page_order(h));
744                         return NULL;
745                 }
746                 prep_new_huge_page(h, page, nid);
747         }
748
749         return page;
750 }
751
752 /*
753  * common helper functions for hstate_next_node_to_{alloc|free}.
754  * We may have allocated or freed a huge page based on a different
755  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756  * be outside of *nodes_allowed.  Ensure that we use an allowed
757  * node for alloc or free.
758  */
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760 {
761         nid = next_node(nid, *nodes_allowed);
762         if (nid == MAX_NUMNODES)
763                 nid = first_node(*nodes_allowed);
764         VM_BUG_ON(nid >= MAX_NUMNODES);
765
766         return nid;
767 }
768
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
770 {
771         if (!node_isset(nid, *nodes_allowed))
772                 nid = next_node_allowed(nid, nodes_allowed);
773         return nid;
774 }
775
776 /*
777  * returns the previously saved node ["this node"] from which to
778  * allocate a persistent huge page for the pool and advance the
779  * next node from which to allocate, handling wrap at end of node
780  * mask.
781  */
782 static int hstate_next_node_to_alloc(struct hstate *h,
783                                         nodemask_t *nodes_allowed)
784 {
785         int nid;
786
787         VM_BUG_ON(!nodes_allowed);
788
789         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791
792         return nid;
793 }
794
795 /*
796  * helper for free_pool_huge_page() - return the previously saved
797  * node ["this node"] from which to free a huge page.  Advance the
798  * next node id whether or not we find a free huge page to free so
799  * that the next attempt to free addresses the next node.
800  */
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802 {
803         int nid;
804
805         VM_BUG_ON(!nodes_allowed);
806
807         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809
810         return nid;
811 }
812
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
814         for (nr_nodes = nodes_weight(*mask);                            \
815                 nr_nodes > 0 &&                                         \
816                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
817                 nr_nodes--)
818
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
820         for (nr_nodes = nodes_weight(*mask);                            \
821                 nr_nodes > 0 &&                                         \
822                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
823                 nr_nodes--)
824
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
826 {
827         struct page *page;
828         int nr_nodes, node;
829         int ret = 0;
830
831         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832                 page = alloc_fresh_huge_page_node(h, node);
833                 if (page) {
834                         ret = 1;
835                         break;
836                 }
837         }
838
839         if (ret)
840                 count_vm_event(HTLB_BUDDY_PGALLOC);
841         else
842                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
843
844         return ret;
845 }
846
847 /*
848  * Free huge page from pool from next node to free.
849  * Attempt to keep persistent huge pages more or less
850  * balanced over allowed nodes.
851  * Called with hugetlb_lock locked.
852  */
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854                                                          bool acct_surplus)
855 {
856         int nr_nodes, node;
857         int ret = 0;
858
859         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860                 /*
861                  * If we're returning unused surplus pages, only examine
862                  * nodes with surplus pages.
863                  */
864                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865                     !list_empty(&h->hugepage_freelists[node])) {
866                         struct page *page =
867                                 list_entry(h->hugepage_freelists[node].next,
868                                           struct page, lru);
869                         list_del(&page->lru);
870                         h->free_huge_pages--;
871                         h->free_huge_pages_node[node]--;
872                         if (acct_surplus) {
873                                 h->surplus_huge_pages--;
874                                 h->surplus_huge_pages_node[node]--;
875                         }
876                         update_and_free_page(h, page);
877                         ret = 1;
878                         break;
879                 }
880         }
881
882         return ret;
883 }
884
885 /*
886  * Dissolve a given free hugepage into free buddy pages. This function does
887  * nothing for in-use (including surplus) hugepages.
888  */
889 static void dissolve_free_huge_page(struct page *page)
890 {
891         spin_lock(&hugetlb_lock);
892         if (PageHuge(page) && !page_count(page)) {
893                 struct hstate *h = page_hstate(page);
894                 int nid = page_to_nid(page);
895                 list_del(&page->lru);
896                 h->free_huge_pages--;
897                 h->free_huge_pages_node[nid]--;
898                 update_and_free_page(h, page);
899         }
900         spin_unlock(&hugetlb_lock);
901 }
902
903 /*
904  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905  * make specified memory blocks removable from the system.
906  * Note that start_pfn should aligned with (minimum) hugepage size.
907  */
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
909 {
910         unsigned int order = 8 * sizeof(void *);
911         unsigned long pfn;
912         struct hstate *h;
913
914         /* Set scan step to minimum hugepage size */
915         for_each_hstate(h)
916                 if (order > huge_page_order(h))
917                         order = huge_page_order(h);
918         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920                 dissolve_free_huge_page(pfn_to_page(pfn));
921 }
922
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924 {
925         struct page *page;
926         unsigned int r_nid;
927
928         if (h->order >= MAX_ORDER)
929                 return NULL;
930
931         /*
932          * Assume we will successfully allocate the surplus page to
933          * prevent racing processes from causing the surplus to exceed
934          * overcommit
935          *
936          * This however introduces a different race, where a process B
937          * tries to grow the static hugepage pool while alloc_pages() is
938          * called by process A. B will only examine the per-node
939          * counters in determining if surplus huge pages can be
940          * converted to normal huge pages in adjust_pool_surplus(). A
941          * won't be able to increment the per-node counter, until the
942          * lock is dropped by B, but B doesn't drop hugetlb_lock until
943          * no more huge pages can be converted from surplus to normal
944          * state (and doesn't try to convert again). Thus, we have a
945          * case where a surplus huge page exists, the pool is grown, and
946          * the surplus huge page still exists after, even though it
947          * should just have been converted to a normal huge page. This
948          * does not leak memory, though, as the hugepage will be freed
949          * once it is out of use. It also does not allow the counters to
950          * go out of whack in adjust_pool_surplus() as we don't modify
951          * the node values until we've gotten the hugepage and only the
952          * per-node value is checked there.
953          */
954         spin_lock(&hugetlb_lock);
955         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956                 spin_unlock(&hugetlb_lock);
957                 return NULL;
958         } else {
959                 h->nr_huge_pages++;
960                 h->surplus_huge_pages++;
961         }
962         spin_unlock(&hugetlb_lock);
963
964         if (nid == NUMA_NO_NODE)
965                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966                                    __GFP_REPEAT|__GFP_NOWARN,
967                                    huge_page_order(h));
968         else
969                 page = alloc_pages_exact_node(nid,
970                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972
973         if (page && arch_prepare_hugepage(page)) {
974                 __free_pages(page, huge_page_order(h));
975                 page = NULL;
976         }
977
978         spin_lock(&hugetlb_lock);
979         if (page) {
980                 INIT_LIST_HEAD(&page->lru);
981                 r_nid = page_to_nid(page);
982                 set_compound_page_dtor(page, free_huge_page);
983                 set_hugetlb_cgroup(page, NULL);
984                 /*
985                  * We incremented the global counters already
986                  */
987                 h->nr_huge_pages_node[r_nid]++;
988                 h->surplus_huge_pages_node[r_nid]++;
989                 __count_vm_event(HTLB_BUDDY_PGALLOC);
990         } else {
991                 h->nr_huge_pages--;
992                 h->surplus_huge_pages--;
993                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994         }
995         spin_unlock(&hugetlb_lock);
996
997         return page;
998 }
999
1000 /*
1001  * This allocation function is useful in the context where vma is irrelevant.
1002  * E.g. soft-offlining uses this function because it only cares physical
1003  * address of error page.
1004  */
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1006 {
1007         struct page *page = NULL;
1008
1009         spin_lock(&hugetlb_lock);
1010         if (h->free_huge_pages - h->resv_huge_pages > 0)
1011                 page = dequeue_huge_page_node(h, nid);
1012         spin_unlock(&hugetlb_lock);
1013
1014         if (!page)
1015                 page = alloc_buddy_huge_page(h, nid);
1016
1017         return page;
1018 }
1019
1020 /*
1021  * Increase the hugetlb pool such that it can accommodate a reservation
1022  * of size 'delta'.
1023  */
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1025 {
1026         struct list_head surplus_list;
1027         struct page *page, *tmp;
1028         int ret, i;
1029         int needed, allocated;
1030         bool alloc_ok = true;
1031
1032         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033         if (needed <= 0) {
1034                 h->resv_huge_pages += delta;
1035                 return 0;
1036         }
1037
1038         allocated = 0;
1039         INIT_LIST_HEAD(&surplus_list);
1040
1041         ret = -ENOMEM;
1042 retry:
1043         spin_unlock(&hugetlb_lock);
1044         for (i = 0; i < needed; i++) {
1045                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046                 if (!page) {
1047                         alloc_ok = false;
1048                         break;
1049                 }
1050                 list_add(&page->lru, &surplus_list);
1051         }
1052         allocated += i;
1053
1054         /*
1055          * After retaking hugetlb_lock, we need to recalculate 'needed'
1056          * because either resv_huge_pages or free_huge_pages may have changed.
1057          */
1058         spin_lock(&hugetlb_lock);
1059         needed = (h->resv_huge_pages + delta) -
1060                         (h->free_huge_pages + allocated);
1061         if (needed > 0) {
1062                 if (alloc_ok)
1063                         goto retry;
1064                 /*
1065                  * We were not able to allocate enough pages to
1066                  * satisfy the entire reservation so we free what
1067                  * we've allocated so far.
1068                  */
1069                 goto free;
1070         }
1071         /*
1072          * The surplus_list now contains _at_least_ the number of extra pages
1073          * needed to accommodate the reservation.  Add the appropriate number
1074          * of pages to the hugetlb pool and free the extras back to the buddy
1075          * allocator.  Commit the entire reservation here to prevent another
1076          * process from stealing the pages as they are added to the pool but
1077          * before they are reserved.
1078          */
1079         needed += allocated;
1080         h->resv_huge_pages += delta;
1081         ret = 0;
1082
1083         /* Free the needed pages to the hugetlb pool */
1084         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085                 if ((--needed) < 0)
1086                         break;
1087                 /*
1088                  * This page is now managed by the hugetlb allocator and has
1089                  * no users -- drop the buddy allocator's reference.
1090                  */
1091                 put_page_testzero(page);
1092                 VM_BUG_ON_PAGE(page_count(page), page);
1093                 enqueue_huge_page(h, page);
1094         }
1095 free:
1096         spin_unlock(&hugetlb_lock);
1097
1098         /* Free unnecessary surplus pages to the buddy allocator */
1099         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100                 put_page(page);
1101         spin_lock(&hugetlb_lock);
1102
1103         return ret;
1104 }
1105
1106 /*
1107  * When releasing a hugetlb pool reservation, any surplus pages that were
1108  * allocated to satisfy the reservation must be explicitly freed if they were
1109  * never used.
1110  * Called with hugetlb_lock held.
1111  */
1112 static void return_unused_surplus_pages(struct hstate *h,
1113                                         unsigned long unused_resv_pages)
1114 {
1115         unsigned long nr_pages;
1116
1117         /* Uncommit the reservation */
1118         h->resv_huge_pages -= unused_resv_pages;
1119
1120         /* Cannot return gigantic pages currently */
1121         if (h->order >= MAX_ORDER)
1122                 return;
1123
1124         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125
1126         /*
1127          * We want to release as many surplus pages as possible, spread
1128          * evenly across all nodes with memory. Iterate across these nodes
1129          * until we can no longer free unreserved surplus pages. This occurs
1130          * when the nodes with surplus pages have no free pages.
1131          * free_pool_huge_page() will balance the the freed pages across the
1132          * on-line nodes with memory and will handle the hstate accounting.
1133          */
1134         while (nr_pages--) {
1135                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136                         break;
1137                 cond_resched_lock(&hugetlb_lock);
1138         }
1139 }
1140
1141 /*
1142  * Determine if the huge page at addr within the vma has an associated
1143  * reservation.  Where it does not we will need to logically increase
1144  * reservation and actually increase subpool usage before an allocation
1145  * can occur.  Where any new reservation would be required the
1146  * reservation change is prepared, but not committed.  Once the page
1147  * has been allocated from the subpool and instantiated the change should
1148  * be committed via vma_commit_reservation.  No action is required on
1149  * failure.
1150  */
1151 static long vma_needs_reservation(struct hstate *h,
1152                         struct vm_area_struct *vma, unsigned long addr)
1153 {
1154         struct address_space *mapping = vma->vm_file->f_mapping;
1155         struct inode *inode = mapping->host;
1156
1157         if (vma->vm_flags & VM_MAYSHARE) {
1158                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159                 return region_chg(&inode->i_mapping->private_list,
1160                                                         idx, idx + 1);
1161
1162         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163                 return 1;
1164
1165         } else  {
1166                 long err;
1167                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1168                 struct resv_map *resv = vma_resv_map(vma);
1169
1170                 err = region_chg(&resv->regions, idx, idx + 1);
1171                 if (err < 0)
1172                         return err;
1173                 return 0;
1174         }
1175 }
1176 static void vma_commit_reservation(struct hstate *h,
1177                         struct vm_area_struct *vma, unsigned long addr)
1178 {
1179         struct address_space *mapping = vma->vm_file->f_mapping;
1180         struct inode *inode = mapping->host;
1181
1182         if (vma->vm_flags & VM_MAYSHARE) {
1183                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1185
1186         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1187                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1188                 struct resv_map *resv = vma_resv_map(vma);
1189
1190                 /* Mark this page used in the map. */
1191                 region_add(&resv->regions, idx, idx + 1);
1192         }
1193 }
1194
1195 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1196                                     unsigned long addr, int avoid_reserve)
1197 {
1198         struct hugepage_subpool *spool = subpool_vma(vma);
1199         struct hstate *h = hstate_vma(vma);
1200         struct page *page;
1201         long chg;
1202         int ret, idx;
1203         struct hugetlb_cgroup *h_cg;
1204
1205         idx = hstate_index(h);
1206         /*
1207          * Processes that did not create the mapping will have no
1208          * reserves and will not have accounted against subpool
1209          * limit. Check that the subpool limit can be made before
1210          * satisfying the allocation MAP_NORESERVE mappings may also
1211          * need pages and subpool limit allocated allocated if no reserve
1212          * mapping overlaps.
1213          */
1214         chg = vma_needs_reservation(h, vma, addr);
1215         if (chg < 0)
1216                 return ERR_PTR(-ENOMEM);
1217         if (chg || avoid_reserve)
1218                 if (hugepage_subpool_get_pages(spool, 1))
1219                         return ERR_PTR(-ENOSPC);
1220
1221         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222         if (ret) {
1223                 if (chg || avoid_reserve)
1224                         hugepage_subpool_put_pages(spool, 1);
1225                 return ERR_PTR(-ENOSPC);
1226         }
1227         spin_lock(&hugetlb_lock);
1228         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229         if (!page) {
1230                 spin_unlock(&hugetlb_lock);
1231                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1232                 if (!page) {
1233                         hugetlb_cgroup_uncharge_cgroup(idx,
1234                                                        pages_per_huge_page(h),
1235                                                        h_cg);
1236                         if (chg || avoid_reserve)
1237                                 hugepage_subpool_put_pages(spool, 1);
1238                         return ERR_PTR(-ENOSPC);
1239                 }
1240                 spin_lock(&hugetlb_lock);
1241                 list_move(&page->lru, &h->hugepage_activelist);
1242                 /* Fall through */
1243         }
1244         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245         spin_unlock(&hugetlb_lock);
1246
1247         set_page_private(page, (unsigned long)spool);
1248
1249         vma_commit_reservation(h, vma, addr);
1250         return page;
1251 }
1252
1253 /*
1254  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1255  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1256  * where no ERR_VALUE is expected to be returned.
1257  */
1258 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1259                                 unsigned long addr, int avoid_reserve)
1260 {
1261         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1262         if (IS_ERR(page))
1263                 page = NULL;
1264         return page;
1265 }
1266
1267 int __weak alloc_bootmem_huge_page(struct hstate *h)
1268 {
1269         struct huge_bootmem_page *m;
1270         int nr_nodes, node;
1271
1272         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1273                 void *addr;
1274
1275                 addr = memblock_virt_alloc_try_nid_nopanic(
1276                                 huge_page_size(h), huge_page_size(h),
1277                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1278                 if (addr) {
1279                         /*
1280                          * Use the beginning of the huge page to store the
1281                          * huge_bootmem_page struct (until gather_bootmem
1282                          * puts them into the mem_map).
1283                          */
1284                         m = addr;
1285                         goto found;
1286                 }
1287         }
1288         return 0;
1289
1290 found:
1291         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1292         /* Put them into a private list first because mem_map is not up yet */
1293         list_add(&m->list, &huge_boot_pages);
1294         m->hstate = h;
1295         return 1;
1296 }
1297
1298 static void prep_compound_huge_page(struct page *page, int order)
1299 {
1300         if (unlikely(order > (MAX_ORDER - 1)))
1301                 prep_compound_gigantic_page(page, order);
1302         else
1303                 prep_compound_page(page, order);
1304 }
1305
1306 /* Put bootmem huge pages into the standard lists after mem_map is up */
1307 static void __init gather_bootmem_prealloc(void)
1308 {
1309         struct huge_bootmem_page *m;
1310
1311         list_for_each_entry(m, &huge_boot_pages, list) {
1312                 struct hstate *h = m->hstate;
1313                 struct page *page;
1314
1315 #ifdef CONFIG_HIGHMEM
1316                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1317                 memblock_free_late(__pa(m),
1318                                    sizeof(struct huge_bootmem_page));
1319 #else
1320                 page = virt_to_page(m);
1321 #endif
1322                 WARN_ON(page_count(page) != 1);
1323                 prep_compound_huge_page(page, h->order);
1324                 WARN_ON(PageReserved(page));
1325                 prep_new_huge_page(h, page, page_to_nid(page));
1326                 /*
1327                  * If we had gigantic hugepages allocated at boot time, we need
1328                  * to restore the 'stolen' pages to totalram_pages in order to
1329                  * fix confusing memory reports from free(1) and another
1330                  * side-effects, like CommitLimit going negative.
1331                  */
1332                 if (h->order > (MAX_ORDER - 1))
1333                         adjust_managed_page_count(page, 1 << h->order);
1334         }
1335 }
1336
1337 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1338 {
1339         unsigned long i;
1340
1341         for (i = 0; i < h->max_huge_pages; ++i) {
1342                 if (h->order >= MAX_ORDER) {
1343                         if (!alloc_bootmem_huge_page(h))
1344                                 break;
1345                 } else if (!alloc_fresh_huge_page(h,
1346                                          &node_states[N_MEMORY]))
1347                         break;
1348         }
1349         h->max_huge_pages = i;
1350 }
1351
1352 static void __init hugetlb_init_hstates(void)
1353 {
1354         struct hstate *h;
1355
1356         for_each_hstate(h) {
1357                 /* oversize hugepages were init'ed in early boot */
1358                 if (h->order < MAX_ORDER)
1359                         hugetlb_hstate_alloc_pages(h);
1360         }
1361 }
1362
1363 static char * __init memfmt(char *buf, unsigned long n)
1364 {
1365         if (n >= (1UL << 30))
1366                 sprintf(buf, "%lu GB", n >> 30);
1367         else if (n >= (1UL << 20))
1368                 sprintf(buf, "%lu MB", n >> 20);
1369         else
1370                 sprintf(buf, "%lu KB", n >> 10);
1371         return buf;
1372 }
1373
1374 static void __init report_hugepages(void)
1375 {
1376         struct hstate *h;
1377
1378         for_each_hstate(h) {
1379                 char buf[32];
1380                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1381                         memfmt(buf, huge_page_size(h)),
1382                         h->free_huge_pages);
1383         }
1384 }
1385
1386 #ifdef CONFIG_HIGHMEM
1387 static void try_to_free_low(struct hstate *h, unsigned long count,
1388                                                 nodemask_t *nodes_allowed)
1389 {
1390         int i;
1391
1392         if (h->order >= MAX_ORDER)
1393                 return;
1394
1395         for_each_node_mask(i, *nodes_allowed) {
1396                 struct page *page, *next;
1397                 struct list_head *freel = &h->hugepage_freelists[i];
1398                 list_for_each_entry_safe(page, next, freel, lru) {
1399                         if (count >= h->nr_huge_pages)
1400                                 return;
1401                         if (PageHighMem(page))
1402                                 continue;
1403                         list_del(&page->lru);
1404                         update_and_free_page(h, page);
1405                         h->free_huge_pages--;
1406                         h->free_huge_pages_node[page_to_nid(page)]--;
1407                 }
1408         }
1409 }
1410 #else
1411 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1412                                                 nodemask_t *nodes_allowed)
1413 {
1414 }
1415 #endif
1416
1417 /*
1418  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1419  * balanced by operating on them in a round-robin fashion.
1420  * Returns 1 if an adjustment was made.
1421  */
1422 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1423                                 int delta)
1424 {
1425         int nr_nodes, node;
1426
1427         VM_BUG_ON(delta != -1 && delta != 1);
1428
1429         if (delta < 0) {
1430                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1431                         if (h->surplus_huge_pages_node[node])
1432                                 goto found;
1433                 }
1434         } else {
1435                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436                         if (h->surplus_huge_pages_node[node] <
1437                                         h->nr_huge_pages_node[node])
1438                                 goto found;
1439                 }
1440         }
1441         return 0;
1442
1443 found:
1444         h->surplus_huge_pages += delta;
1445         h->surplus_huge_pages_node[node] += delta;
1446         return 1;
1447 }
1448
1449 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1450 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1451                                                 nodemask_t *nodes_allowed)
1452 {
1453         unsigned long min_count, ret;
1454
1455         if (h->order >= MAX_ORDER)
1456                 return h->max_huge_pages;
1457
1458         /*
1459          * Increase the pool size
1460          * First take pages out of surplus state.  Then make up the
1461          * remaining difference by allocating fresh huge pages.
1462          *
1463          * We might race with alloc_buddy_huge_page() here and be unable
1464          * to convert a surplus huge page to a normal huge page. That is
1465          * not critical, though, it just means the overall size of the
1466          * pool might be one hugepage larger than it needs to be, but
1467          * within all the constraints specified by the sysctls.
1468          */
1469         spin_lock(&hugetlb_lock);
1470         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1471                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1472                         break;
1473         }
1474
1475         while (count > persistent_huge_pages(h)) {
1476                 /*
1477                  * If this allocation races such that we no longer need the
1478                  * page, free_huge_page will handle it by freeing the page
1479                  * and reducing the surplus.
1480                  */
1481                 spin_unlock(&hugetlb_lock);
1482                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1483                 spin_lock(&hugetlb_lock);
1484                 if (!ret)
1485                         goto out;
1486
1487                 /* Bail for signals. Probably ctrl-c from user */
1488                 if (signal_pending(current))
1489                         goto out;
1490         }
1491
1492         /*
1493          * Decrease the pool size
1494          * First return free pages to the buddy allocator (being careful
1495          * to keep enough around to satisfy reservations).  Then place
1496          * pages into surplus state as needed so the pool will shrink
1497          * to the desired size as pages become free.
1498          *
1499          * By placing pages into the surplus state independent of the
1500          * overcommit value, we are allowing the surplus pool size to
1501          * exceed overcommit. There are few sane options here. Since
1502          * alloc_buddy_huge_page() is checking the global counter,
1503          * though, we'll note that we're not allowed to exceed surplus
1504          * and won't grow the pool anywhere else. Not until one of the
1505          * sysctls are changed, or the surplus pages go out of use.
1506          */
1507         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1508         min_count = max(count, min_count);
1509         try_to_free_low(h, min_count, nodes_allowed);
1510         while (min_count < persistent_huge_pages(h)) {
1511                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1512                         break;
1513                 cond_resched_lock(&hugetlb_lock);
1514         }
1515         while (count < persistent_huge_pages(h)) {
1516                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1517                         break;
1518         }
1519 out:
1520         ret = persistent_huge_pages(h);
1521         spin_unlock(&hugetlb_lock);
1522         return ret;
1523 }
1524
1525 #define HSTATE_ATTR_RO(_name) \
1526         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1527
1528 #define HSTATE_ATTR(_name) \
1529         static struct kobj_attribute _name##_attr = \
1530                 __ATTR(_name, 0644, _name##_show, _name##_store)
1531
1532 static struct kobject *hugepages_kobj;
1533 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1534
1535 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1536
1537 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1538 {
1539         int i;
1540
1541         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1542                 if (hstate_kobjs[i] == kobj) {
1543                         if (nidp)
1544                                 *nidp = NUMA_NO_NODE;
1545                         return &hstates[i];
1546                 }
1547
1548         return kobj_to_node_hstate(kobj, nidp);
1549 }
1550
1551 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1552                                         struct kobj_attribute *attr, char *buf)
1553 {
1554         struct hstate *h;
1555         unsigned long nr_huge_pages;
1556         int nid;
1557
1558         h = kobj_to_hstate(kobj, &nid);
1559         if (nid == NUMA_NO_NODE)
1560                 nr_huge_pages = h->nr_huge_pages;
1561         else
1562                 nr_huge_pages = h->nr_huge_pages_node[nid];
1563
1564         return sprintf(buf, "%lu\n", nr_huge_pages);
1565 }
1566
1567 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568                         struct kobject *kobj, struct kobj_attribute *attr,
1569                         const char *buf, size_t len)
1570 {
1571         int err;
1572         int nid;
1573         unsigned long count;
1574         struct hstate *h;
1575         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1576
1577         err = kstrtoul(buf, 10, &count);
1578         if (err)
1579                 goto out;
1580
1581         h = kobj_to_hstate(kobj, &nid);
1582         if (h->order >= MAX_ORDER) {
1583                 err = -EINVAL;
1584                 goto out;
1585         }
1586
1587         if (nid == NUMA_NO_NODE) {
1588                 /*
1589                  * global hstate attribute
1590                  */
1591                 if (!(obey_mempolicy &&
1592                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1593                         NODEMASK_FREE(nodes_allowed);
1594                         nodes_allowed = &node_states[N_MEMORY];
1595                 }
1596         } else if (nodes_allowed) {
1597                 /*
1598                  * per node hstate attribute: adjust count to global,
1599                  * but restrict alloc/free to the specified node.
1600                  */
1601                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602                 init_nodemask_of_node(nodes_allowed, nid);
1603         } else
1604                 nodes_allowed = &node_states[N_MEMORY];
1605
1606         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1607
1608         if (nodes_allowed != &node_states[N_MEMORY])
1609                 NODEMASK_FREE(nodes_allowed);
1610
1611         return len;
1612 out:
1613         NODEMASK_FREE(nodes_allowed);
1614         return err;
1615 }
1616
1617 static ssize_t nr_hugepages_show(struct kobject *kobj,
1618                                        struct kobj_attribute *attr, char *buf)
1619 {
1620         return nr_hugepages_show_common(kobj, attr, buf);
1621 }
1622
1623 static ssize_t nr_hugepages_store(struct kobject *kobj,
1624                struct kobj_attribute *attr, const char *buf, size_t len)
1625 {
1626         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1627 }
1628 HSTATE_ATTR(nr_hugepages);
1629
1630 #ifdef CONFIG_NUMA
1631
1632 /*
1633  * hstate attribute for optionally mempolicy-based constraint on persistent
1634  * huge page alloc/free.
1635  */
1636 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637                                        struct kobj_attribute *attr, char *buf)
1638 {
1639         return nr_hugepages_show_common(kobj, attr, buf);
1640 }
1641
1642 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643                struct kobj_attribute *attr, const char *buf, size_t len)
1644 {
1645         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1646 }
1647 HSTATE_ATTR(nr_hugepages_mempolicy);
1648 #endif
1649
1650
1651 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652                                         struct kobj_attribute *attr, char *buf)
1653 {
1654         struct hstate *h = kobj_to_hstate(kobj, NULL);
1655         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1656 }
1657
1658 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659                 struct kobj_attribute *attr, const char *buf, size_t count)
1660 {
1661         int err;
1662         unsigned long input;
1663         struct hstate *h = kobj_to_hstate(kobj, NULL);
1664
1665         if (h->order >= MAX_ORDER)
1666                 return -EINVAL;
1667
1668         err = kstrtoul(buf, 10, &input);
1669         if (err)
1670                 return err;
1671
1672         spin_lock(&hugetlb_lock);
1673         h->nr_overcommit_huge_pages = input;
1674         spin_unlock(&hugetlb_lock);
1675
1676         return count;
1677 }
1678 HSTATE_ATTR(nr_overcommit_hugepages);
1679
1680 static ssize_t free_hugepages_show(struct kobject *kobj,
1681                                         struct kobj_attribute *attr, char *buf)
1682 {
1683         struct hstate *h;
1684         unsigned long free_huge_pages;
1685         int nid;
1686
1687         h = kobj_to_hstate(kobj, &nid);
1688         if (nid == NUMA_NO_NODE)
1689                 free_huge_pages = h->free_huge_pages;
1690         else
1691                 free_huge_pages = h->free_huge_pages_node[nid];
1692
1693         return sprintf(buf, "%lu\n", free_huge_pages);
1694 }
1695 HSTATE_ATTR_RO(free_hugepages);
1696
1697 static ssize_t resv_hugepages_show(struct kobject *kobj,
1698                                         struct kobj_attribute *attr, char *buf)
1699 {
1700         struct hstate *h = kobj_to_hstate(kobj, NULL);
1701         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1702 }
1703 HSTATE_ATTR_RO(resv_hugepages);
1704
1705 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706                                         struct kobj_attribute *attr, char *buf)
1707 {
1708         struct hstate *h;
1709         unsigned long surplus_huge_pages;
1710         int nid;
1711
1712         h = kobj_to_hstate(kobj, &nid);
1713         if (nid == NUMA_NO_NODE)
1714                 surplus_huge_pages = h->surplus_huge_pages;
1715         else
1716                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1717
1718         return sprintf(buf, "%lu\n", surplus_huge_pages);
1719 }
1720 HSTATE_ATTR_RO(surplus_hugepages);
1721
1722 static struct attribute *hstate_attrs[] = {
1723         &nr_hugepages_attr.attr,
1724         &nr_overcommit_hugepages_attr.attr,
1725         &free_hugepages_attr.attr,
1726         &resv_hugepages_attr.attr,
1727         &surplus_hugepages_attr.attr,
1728 #ifdef CONFIG_NUMA
1729         &nr_hugepages_mempolicy_attr.attr,
1730 #endif
1731         NULL,
1732 };
1733
1734 static struct attribute_group hstate_attr_group = {
1735         .attrs = hstate_attrs,
1736 };
1737
1738 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739                                     struct kobject **hstate_kobjs,
1740                                     struct attribute_group *hstate_attr_group)
1741 {
1742         int retval;
1743         int hi = hstate_index(h);
1744
1745         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746         if (!hstate_kobjs[hi])
1747                 return -ENOMEM;
1748
1749         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1750         if (retval)
1751                 kobject_put(hstate_kobjs[hi]);
1752
1753         return retval;
1754 }
1755
1756 static void __init hugetlb_sysfs_init(void)
1757 {
1758         struct hstate *h;
1759         int err;
1760
1761         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762         if (!hugepages_kobj)
1763                 return;
1764
1765         for_each_hstate(h) {
1766                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767                                          hstate_kobjs, &hstate_attr_group);
1768                 if (err)
1769                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1770         }
1771 }
1772
1773 #ifdef CONFIG_NUMA
1774
1775 /*
1776  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1777  * with node devices in node_devices[] using a parallel array.  The array
1778  * index of a node device or _hstate == node id.
1779  * This is here to avoid any static dependency of the node device driver, in
1780  * the base kernel, on the hugetlb module.
1781  */
1782 struct node_hstate {
1783         struct kobject          *hugepages_kobj;
1784         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1785 };
1786 struct node_hstate node_hstates[MAX_NUMNODES];
1787
1788 /*
1789  * A subset of global hstate attributes for node devices
1790  */
1791 static struct attribute *per_node_hstate_attrs[] = {
1792         &nr_hugepages_attr.attr,
1793         &free_hugepages_attr.attr,
1794         &surplus_hugepages_attr.attr,
1795         NULL,
1796 };
1797
1798 static struct attribute_group per_node_hstate_attr_group = {
1799         .attrs = per_node_hstate_attrs,
1800 };
1801
1802 /*
1803  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1804  * Returns node id via non-NULL nidp.
1805  */
1806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1807 {
1808         int nid;
1809
1810         for (nid = 0; nid < nr_node_ids; nid++) {
1811                 struct node_hstate *nhs = &node_hstates[nid];
1812                 int i;
1813                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814                         if (nhs->hstate_kobjs[i] == kobj) {
1815                                 if (nidp)
1816                                         *nidp = nid;
1817                                 return &hstates[i];
1818                         }
1819         }
1820
1821         BUG();
1822         return NULL;
1823 }
1824
1825 /*
1826  * Unregister hstate attributes from a single node device.
1827  * No-op if no hstate attributes attached.
1828  */
1829 static void hugetlb_unregister_node(struct node *node)
1830 {
1831         struct hstate *h;
1832         struct node_hstate *nhs = &node_hstates[node->dev.id];
1833
1834         if (!nhs->hugepages_kobj)
1835                 return;         /* no hstate attributes */
1836
1837         for_each_hstate(h) {
1838                 int idx = hstate_index(h);
1839                 if (nhs->hstate_kobjs[idx]) {
1840                         kobject_put(nhs->hstate_kobjs[idx]);
1841                         nhs->hstate_kobjs[idx] = NULL;
1842                 }
1843         }
1844
1845         kobject_put(nhs->hugepages_kobj);
1846         nhs->hugepages_kobj = NULL;
1847 }
1848
1849 /*
1850  * hugetlb module exit:  unregister hstate attributes from node devices
1851  * that have them.
1852  */
1853 static void hugetlb_unregister_all_nodes(void)
1854 {
1855         int nid;
1856
1857         /*
1858          * disable node device registrations.
1859          */
1860         register_hugetlbfs_with_node(NULL, NULL);
1861
1862         /*
1863          * remove hstate attributes from any nodes that have them.
1864          */
1865         for (nid = 0; nid < nr_node_ids; nid++)
1866                 hugetlb_unregister_node(node_devices[nid]);
1867 }
1868
1869 /*
1870  * Register hstate attributes for a single node device.
1871  * No-op if attributes already registered.
1872  */
1873 static void hugetlb_register_node(struct node *node)
1874 {
1875         struct hstate *h;
1876         struct node_hstate *nhs = &node_hstates[node->dev.id];
1877         int err;
1878
1879         if (nhs->hugepages_kobj)
1880                 return;         /* already allocated */
1881
1882         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1883                                                         &node->dev.kobj);
1884         if (!nhs->hugepages_kobj)
1885                 return;
1886
1887         for_each_hstate(h) {
1888                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889                                                 nhs->hstate_kobjs,
1890                                                 &per_node_hstate_attr_group);
1891                 if (err) {
1892                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893                                 h->name, node->dev.id);
1894                         hugetlb_unregister_node(node);
1895                         break;
1896                 }
1897         }
1898 }
1899
1900 /*
1901  * hugetlb init time:  register hstate attributes for all registered node
1902  * devices of nodes that have memory.  All on-line nodes should have
1903  * registered their associated device by this time.
1904  */
1905 static void hugetlb_register_all_nodes(void)
1906 {
1907         int nid;
1908
1909         for_each_node_state(nid, N_MEMORY) {
1910                 struct node *node = node_devices[nid];
1911                 if (node->dev.id == nid)
1912                         hugetlb_register_node(node);
1913         }
1914
1915         /*
1916          * Let the node device driver know we're here so it can
1917          * [un]register hstate attributes on node hotplug.
1918          */
1919         register_hugetlbfs_with_node(hugetlb_register_node,
1920                                      hugetlb_unregister_node);
1921 }
1922 #else   /* !CONFIG_NUMA */
1923
1924 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1925 {
1926         BUG();
1927         if (nidp)
1928                 *nidp = -1;
1929         return NULL;
1930 }
1931
1932 static void hugetlb_unregister_all_nodes(void) { }
1933
1934 static void hugetlb_register_all_nodes(void) { }
1935
1936 #endif
1937
1938 static void __exit hugetlb_exit(void)
1939 {
1940         struct hstate *h;
1941
1942         hugetlb_unregister_all_nodes();
1943
1944         for_each_hstate(h) {
1945                 kobject_put(hstate_kobjs[hstate_index(h)]);
1946         }
1947
1948         kobject_put(hugepages_kobj);
1949 }
1950 module_exit(hugetlb_exit);
1951
1952 static int __init hugetlb_init(void)
1953 {
1954         /* Some platform decide whether they support huge pages at boot
1955          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956          * there is no such support
1957          */
1958         if (HPAGE_SHIFT == 0)
1959                 return 0;
1960
1961         if (!size_to_hstate(default_hstate_size)) {
1962                 default_hstate_size = HPAGE_SIZE;
1963                 if (!size_to_hstate(default_hstate_size))
1964                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1965         }
1966         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1967         if (default_hstate_max_huge_pages)
1968                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1969
1970         hugetlb_init_hstates();
1971         gather_bootmem_prealloc();
1972         report_hugepages();
1973
1974         hugetlb_sysfs_init();
1975         hugetlb_register_all_nodes();
1976         hugetlb_cgroup_file_init();
1977
1978         return 0;
1979 }
1980 module_init(hugetlb_init);
1981
1982 /* Should be called on processing a hugepagesz=... option */
1983 void __init hugetlb_add_hstate(unsigned order)
1984 {
1985         struct hstate *h;
1986         unsigned long i;
1987
1988         if (size_to_hstate(PAGE_SIZE << order)) {
1989                 pr_warning("hugepagesz= specified twice, ignoring\n");
1990                 return;
1991         }
1992         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1993         BUG_ON(order == 0);
1994         h = &hstates[hugetlb_max_hstate++];
1995         h->order = order;
1996         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1997         h->nr_huge_pages = 0;
1998         h->free_huge_pages = 0;
1999         for (i = 0; i < MAX_NUMNODES; ++i)
2000                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2001         INIT_LIST_HEAD(&h->hugepage_activelist);
2002         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2004         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005                                         huge_page_size(h)/1024);
2006
2007         parsed_hstate = h;
2008 }
2009
2010 static int __init hugetlb_nrpages_setup(char *s)
2011 {
2012         unsigned long *mhp;
2013         static unsigned long *last_mhp;
2014
2015         /*
2016          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2017          * so this hugepages= parameter goes to the "default hstate".
2018          */
2019         if (!hugetlb_max_hstate)
2020                 mhp = &default_hstate_max_huge_pages;
2021         else
2022                 mhp = &parsed_hstate->max_huge_pages;
2023
2024         if (mhp == last_mhp) {
2025                 pr_warning("hugepages= specified twice without "
2026                            "interleaving hugepagesz=, ignoring\n");
2027                 return 1;
2028         }
2029
2030         if (sscanf(s, "%lu", mhp) <= 0)
2031                 *mhp = 0;
2032
2033         /*
2034          * Global state is always initialized later in hugetlb_init.
2035          * But we need to allocate >= MAX_ORDER hstates here early to still
2036          * use the bootmem allocator.
2037          */
2038         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2039                 hugetlb_hstate_alloc_pages(parsed_hstate);
2040
2041         last_mhp = mhp;
2042
2043         return 1;
2044 }
2045 __setup("hugepages=", hugetlb_nrpages_setup);
2046
2047 static int __init hugetlb_default_setup(char *s)
2048 {
2049         default_hstate_size = memparse(s, &s);
2050         return 1;
2051 }
2052 __setup("default_hugepagesz=", hugetlb_default_setup);
2053
2054 static unsigned int cpuset_mems_nr(unsigned int *array)
2055 {
2056         int node;
2057         unsigned int nr = 0;
2058
2059         for_each_node_mask(node, cpuset_current_mems_allowed)
2060                 nr += array[node];
2061
2062         return nr;
2063 }
2064
2065 #ifdef CONFIG_SYSCTL
2066 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067                          struct ctl_table *table, int write,
2068                          void __user *buffer, size_t *length, loff_t *ppos)
2069 {
2070         struct hstate *h = &default_hstate;
2071         unsigned long tmp;
2072         int ret;
2073
2074         tmp = h->max_huge_pages;
2075
2076         if (write && h->order >= MAX_ORDER)
2077                 return -EINVAL;
2078
2079         table->data = &tmp;
2080         table->maxlen = sizeof(unsigned long);
2081         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2082         if (ret)
2083                 goto out;
2084
2085         if (write) {
2086                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2087                                                 GFP_KERNEL | __GFP_NORETRY);
2088                 if (!(obey_mempolicy &&
2089                                init_nodemask_of_mempolicy(nodes_allowed))) {
2090                         NODEMASK_FREE(nodes_allowed);
2091                         nodes_allowed = &node_states[N_MEMORY];
2092                 }
2093                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2094
2095                 if (nodes_allowed != &node_states[N_MEMORY])
2096                         NODEMASK_FREE(nodes_allowed);
2097         }
2098 out:
2099         return ret;
2100 }
2101
2102 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2103                           void __user *buffer, size_t *length, loff_t *ppos)
2104 {
2105
2106         return hugetlb_sysctl_handler_common(false, table, write,
2107                                                         buffer, length, ppos);
2108 }
2109
2110 #ifdef CONFIG_NUMA
2111 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2112                           void __user *buffer, size_t *length, loff_t *ppos)
2113 {
2114         return hugetlb_sysctl_handler_common(true, table, write,
2115                                                         buffer, length, ppos);
2116 }
2117 #endif /* CONFIG_NUMA */
2118
2119 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2120                         void __user *buffer,
2121                         size_t *length, loff_t *ppos)
2122 {
2123         struct hstate *h = &default_hstate;
2124         unsigned long tmp;
2125         int ret;
2126
2127         tmp = h->nr_overcommit_huge_pages;
2128
2129         if (write && h->order >= MAX_ORDER)
2130                 return -EINVAL;
2131
2132         table->data = &tmp;
2133         table->maxlen = sizeof(unsigned long);
2134         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2135         if (ret)
2136                 goto out;
2137
2138         if (write) {
2139                 spin_lock(&hugetlb_lock);
2140                 h->nr_overcommit_huge_pages = tmp;
2141                 spin_unlock(&hugetlb_lock);
2142         }
2143 out:
2144         return ret;
2145 }
2146
2147 #endif /* CONFIG_SYSCTL */
2148
2149 void hugetlb_report_meminfo(struct seq_file *m)
2150 {
2151         struct hstate *h = &default_hstate;
2152         seq_printf(m,
2153                         "HugePages_Total:   %5lu\n"
2154                         "HugePages_Free:    %5lu\n"
2155                         "HugePages_Rsvd:    %5lu\n"
2156                         "HugePages_Surp:    %5lu\n"
2157                         "Hugepagesize:   %8lu kB\n",
2158                         h->nr_huge_pages,
2159                         h->free_huge_pages,
2160                         h->resv_huge_pages,
2161                         h->surplus_huge_pages,
2162                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2163 }
2164
2165 int hugetlb_report_node_meminfo(int nid, char *buf)
2166 {
2167         struct hstate *h = &default_hstate;
2168         return sprintf(buf,
2169                 "Node %d HugePages_Total: %5u\n"
2170                 "Node %d HugePages_Free:  %5u\n"
2171                 "Node %d HugePages_Surp:  %5u\n",
2172                 nid, h->nr_huge_pages_node[nid],
2173                 nid, h->free_huge_pages_node[nid],
2174                 nid, h->surplus_huge_pages_node[nid]);
2175 }
2176
2177 void hugetlb_show_meminfo(void)
2178 {
2179         struct hstate *h;
2180         int nid;
2181
2182         for_each_node_state(nid, N_MEMORY)
2183                 for_each_hstate(h)
2184                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2185                                 nid,
2186                                 h->nr_huge_pages_node[nid],
2187                                 h->free_huge_pages_node[nid],
2188                                 h->surplus_huge_pages_node[nid],
2189                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2190 }
2191
2192 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2193 unsigned long hugetlb_total_pages(void)
2194 {
2195         struct hstate *h;
2196         unsigned long nr_total_pages = 0;
2197
2198         for_each_hstate(h)
2199                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2200         return nr_total_pages;
2201 }
2202
2203 static int hugetlb_acct_memory(struct hstate *h, long delta)
2204 {
2205         int ret = -ENOMEM;
2206
2207         spin_lock(&hugetlb_lock);
2208         /*
2209          * When cpuset is configured, it breaks the strict hugetlb page
2210          * reservation as the accounting is done on a global variable. Such
2211          * reservation is completely rubbish in the presence of cpuset because
2212          * the reservation is not checked against page availability for the
2213          * current cpuset. Application can still potentially OOM'ed by kernel
2214          * with lack of free htlb page in cpuset that the task is in.
2215          * Attempt to enforce strict accounting with cpuset is almost
2216          * impossible (or too ugly) because cpuset is too fluid that
2217          * task or memory node can be dynamically moved between cpusets.
2218          *
2219          * The change of semantics for shared hugetlb mapping with cpuset is
2220          * undesirable. However, in order to preserve some of the semantics,
2221          * we fall back to check against current free page availability as
2222          * a best attempt and hopefully to minimize the impact of changing
2223          * semantics that cpuset has.
2224          */
2225         if (delta > 0) {
2226                 if (gather_surplus_pages(h, delta) < 0)
2227                         goto out;
2228
2229                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2230                         return_unused_surplus_pages(h, delta);
2231                         goto out;
2232                 }
2233         }
2234
2235         ret = 0;
2236         if (delta < 0)
2237                 return_unused_surplus_pages(h, (unsigned long) -delta);
2238
2239 out:
2240         spin_unlock(&hugetlb_lock);
2241         return ret;
2242 }
2243
2244 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2245 {
2246         struct resv_map *resv = vma_resv_map(vma);
2247
2248         /*
2249          * This new VMA should share its siblings reservation map if present.
2250          * The VMA will only ever have a valid reservation map pointer where
2251          * it is being copied for another still existing VMA.  As that VMA
2252          * has a reference to the reservation map it cannot disappear until
2253          * after this open call completes.  It is therefore safe to take a
2254          * new reference here without additional locking.
2255          */
2256         if (resv)
2257                 kref_get(&resv->refs);
2258 }
2259
2260 static void resv_map_put(struct vm_area_struct *vma)
2261 {
2262         struct resv_map *resv = vma_resv_map(vma);
2263
2264         if (!resv)
2265                 return;
2266         kref_put(&resv->refs, resv_map_release);
2267 }
2268
2269 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2270 {
2271         struct hstate *h = hstate_vma(vma);
2272         struct resv_map *resv = vma_resv_map(vma);
2273         struct hugepage_subpool *spool = subpool_vma(vma);
2274         unsigned long reserve;
2275         unsigned long start;
2276         unsigned long end;
2277
2278         if (resv) {
2279                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2280                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2281
2282                 reserve = (end - start) -
2283                         region_count(&resv->regions, start, end);
2284
2285                 resv_map_put(vma);
2286
2287                 if (reserve) {
2288                         hugetlb_acct_memory(h, -reserve);
2289                         hugepage_subpool_put_pages(spool, reserve);
2290                 }
2291         }
2292 }
2293
2294 /*
2295  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2296  * handle_mm_fault() to try to instantiate regular-sized pages in the
2297  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2298  * this far.
2299  */
2300 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2301 {
2302         BUG();
2303         return 0;
2304 }
2305
2306 const struct vm_operations_struct hugetlb_vm_ops = {
2307         .fault = hugetlb_vm_op_fault,
2308         .open = hugetlb_vm_op_open,
2309         .close = hugetlb_vm_op_close,
2310 };
2311
2312 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2313                                 int writable)
2314 {
2315         pte_t entry;
2316
2317         if (writable) {
2318                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2319                                          vma->vm_page_prot)));
2320         } else {
2321                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2322                                            vma->vm_page_prot));
2323         }
2324         entry = pte_mkyoung(entry);
2325         entry = pte_mkhuge(entry);
2326         entry = arch_make_huge_pte(entry, vma, page, writable);
2327
2328         return entry;
2329 }
2330
2331 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2332                                    unsigned long address, pte_t *ptep)
2333 {
2334         pte_t entry;
2335
2336         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2337         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2338                 update_mmu_cache(vma, address, ptep);
2339 }
2340
2341
2342 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2343                             struct vm_area_struct *vma)
2344 {
2345         pte_t *src_pte, *dst_pte, entry;
2346         struct page *ptepage;
2347         unsigned long addr;
2348         int cow;
2349         struct hstate *h = hstate_vma(vma);
2350         unsigned long sz = huge_page_size(h);
2351         unsigned long mmun_start;       /* For mmu_notifiers */
2352         unsigned long mmun_end;         /* For mmu_notifiers */
2353         int ret = 0;
2354
2355         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2356
2357         mmun_start = vma->vm_start;
2358         mmun_end = vma->vm_end;
2359         if (cow)
2360                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2361
2362         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2363                 spinlock_t *src_ptl, *dst_ptl;
2364                 src_pte = huge_pte_offset(src, addr);
2365                 if (!src_pte)
2366                         continue;
2367                 dst_pte = huge_pte_alloc(dst, addr, sz);
2368                 if (!dst_pte) {
2369                         ret = -ENOMEM;
2370                         break;
2371                 }
2372
2373                 /* If the pagetables are shared don't copy or take references */
2374                 if (dst_pte == src_pte)
2375                         continue;
2376
2377                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2378                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2379                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2380                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2381                         if (cow)
2382                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2383                         entry = huge_ptep_get(src_pte);
2384                         ptepage = pte_page(entry);
2385                         get_page(ptepage);
2386                         page_dup_rmap(ptepage);
2387                         set_huge_pte_at(dst, addr, dst_pte, entry);
2388                 }
2389                 spin_unlock(src_ptl);
2390                 spin_unlock(dst_ptl);
2391         }
2392
2393         if (cow)
2394                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2395
2396         return ret;
2397 }
2398
2399 static int is_hugetlb_entry_migration(pte_t pte)
2400 {
2401         swp_entry_t swp;
2402
2403         if (huge_pte_none(pte) || pte_present(pte))
2404                 return 0;
2405         swp = pte_to_swp_entry(pte);
2406         if (non_swap_entry(swp) && is_migration_entry(swp))
2407                 return 1;
2408         else
2409                 return 0;
2410 }
2411
2412 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2413 {
2414         swp_entry_t swp;
2415
2416         if (huge_pte_none(pte) || pte_present(pte))
2417                 return 0;
2418         swp = pte_to_swp_entry(pte);
2419         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2420                 return 1;
2421         else
2422                 return 0;
2423 }
2424
2425 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2426                             unsigned long start, unsigned long end,
2427                             struct page *ref_page)
2428 {
2429         int force_flush = 0;
2430         struct mm_struct *mm = vma->vm_mm;
2431         unsigned long address;
2432         pte_t *ptep;
2433         pte_t pte;
2434         spinlock_t *ptl;
2435         struct page *page;
2436         struct hstate *h = hstate_vma(vma);
2437         unsigned long sz = huge_page_size(h);
2438         const unsigned long mmun_start = start; /* For mmu_notifiers */
2439         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2440
2441         WARN_ON(!is_vm_hugetlb_page(vma));
2442         BUG_ON(start & ~huge_page_mask(h));
2443         BUG_ON(end & ~huge_page_mask(h));
2444
2445         tlb_start_vma(tlb, vma);
2446         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2447 again:
2448         for (address = start; address < end; address += sz) {
2449                 ptep = huge_pte_offset(mm, address);
2450                 if (!ptep)
2451                         continue;
2452
2453                 ptl = huge_pte_lock(h, mm, ptep);
2454                 if (huge_pmd_unshare(mm, &address, ptep))
2455                         goto unlock;
2456
2457                 pte = huge_ptep_get(ptep);
2458                 if (huge_pte_none(pte))
2459                         goto unlock;
2460
2461                 /*
2462                  * HWPoisoned hugepage is already unmapped and dropped reference
2463                  */
2464                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2465                         huge_pte_clear(mm, address, ptep);
2466                         goto unlock;
2467                 }
2468
2469                 page = pte_page(pte);
2470                 /*
2471                  * If a reference page is supplied, it is because a specific
2472                  * page is being unmapped, not a range. Ensure the page we
2473                  * are about to unmap is the actual page of interest.
2474                  */
2475                 if (ref_page) {
2476                         if (page != ref_page)
2477                                 goto unlock;
2478
2479                         /*
2480                          * Mark the VMA as having unmapped its page so that
2481                          * future faults in this VMA will fail rather than
2482                          * looking like data was lost
2483                          */
2484                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2485                 }
2486
2487                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2488                 tlb_remove_tlb_entry(tlb, ptep, address);
2489                 if (huge_pte_dirty(pte))
2490                         set_page_dirty(page);
2491
2492                 page_remove_rmap(page);
2493                 force_flush = !__tlb_remove_page(tlb, page);
2494                 if (force_flush) {
2495                         spin_unlock(ptl);
2496                         break;
2497                 }
2498                 /* Bail out after unmapping reference page if supplied */
2499                 if (ref_page) {
2500                         spin_unlock(ptl);
2501                         break;
2502                 }
2503 unlock:
2504                 spin_unlock(ptl);
2505         }
2506         /*
2507          * mmu_gather ran out of room to batch pages, we break out of
2508          * the PTE lock to avoid doing the potential expensive TLB invalidate
2509          * and page-free while holding it.
2510          */
2511         if (force_flush) {
2512                 force_flush = 0;
2513                 tlb_flush_mmu(tlb);
2514                 if (address < end && !ref_page)
2515                         goto again;
2516         }
2517         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2518         tlb_end_vma(tlb, vma);
2519 }
2520
2521 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2522                           struct vm_area_struct *vma, unsigned long start,
2523                           unsigned long end, struct page *ref_page)
2524 {
2525         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2526
2527         /*
2528          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2529          * test will fail on a vma being torn down, and not grab a page table
2530          * on its way out.  We're lucky that the flag has such an appropriate
2531          * name, and can in fact be safely cleared here. We could clear it
2532          * before the __unmap_hugepage_range above, but all that's necessary
2533          * is to clear it before releasing the i_mmap_mutex. This works
2534          * because in the context this is called, the VMA is about to be
2535          * destroyed and the i_mmap_mutex is held.
2536          */
2537         vma->vm_flags &= ~VM_MAYSHARE;
2538 }
2539
2540 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2541                           unsigned long end, struct page *ref_page)
2542 {
2543         struct mm_struct *mm;
2544         struct mmu_gather tlb;
2545
2546         mm = vma->vm_mm;
2547
2548         tlb_gather_mmu(&tlb, mm, start, end);
2549         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2550         tlb_finish_mmu(&tlb, start, end);
2551 }
2552
2553 /*
2554  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2555  * mappping it owns the reserve page for. The intention is to unmap the page
2556  * from other VMAs and let the children be SIGKILLed if they are faulting the
2557  * same region.
2558  */
2559 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2560                                 struct page *page, unsigned long address)
2561 {
2562         struct hstate *h = hstate_vma(vma);
2563         struct vm_area_struct *iter_vma;
2564         struct address_space *mapping;
2565         pgoff_t pgoff;
2566
2567         /*
2568          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2569          * from page cache lookup which is in HPAGE_SIZE units.
2570          */
2571         address = address & huge_page_mask(h);
2572         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2573                         vma->vm_pgoff;
2574         mapping = file_inode(vma->vm_file)->i_mapping;
2575
2576         /*
2577          * Take the mapping lock for the duration of the table walk. As
2578          * this mapping should be shared between all the VMAs,
2579          * __unmap_hugepage_range() is called as the lock is already held
2580          */
2581         mutex_lock(&mapping->i_mmap_mutex);
2582         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2583                 /* Do not unmap the current VMA */
2584                 if (iter_vma == vma)
2585                         continue;
2586
2587                 /*
2588                  * Unmap the page from other VMAs without their own reserves.
2589                  * They get marked to be SIGKILLed if they fault in these
2590                  * areas. This is because a future no-page fault on this VMA
2591                  * could insert a zeroed page instead of the data existing
2592                  * from the time of fork. This would look like data corruption
2593                  */
2594                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2595                         unmap_hugepage_range(iter_vma, address,
2596                                              address + huge_page_size(h), page);
2597         }
2598         mutex_unlock(&mapping->i_mmap_mutex);
2599
2600         return 1;
2601 }
2602
2603 /*
2604  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2605  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2606  * cannot race with other handlers or page migration.
2607  * Keep the pte_same checks anyway to make transition from the mutex easier.
2608  */
2609 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2610                         unsigned long address, pte_t *ptep, pte_t pte,
2611                         struct page *pagecache_page, spinlock_t *ptl)
2612 {
2613         struct hstate *h = hstate_vma(vma);
2614         struct page *old_page, *new_page;
2615         int outside_reserve = 0;
2616         unsigned long mmun_start;       /* For mmu_notifiers */
2617         unsigned long mmun_end;         /* For mmu_notifiers */
2618
2619         old_page = pte_page(pte);
2620
2621 retry_avoidcopy:
2622         /* If no-one else is actually using this page, avoid the copy
2623          * and just make the page writable */
2624         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2625                 page_move_anon_rmap(old_page, vma, address);
2626                 set_huge_ptep_writable(vma, address, ptep);
2627                 return 0;
2628         }
2629
2630         /*
2631          * If the process that created a MAP_PRIVATE mapping is about to
2632          * perform a COW due to a shared page count, attempt to satisfy
2633          * the allocation without using the existing reserves. The pagecache
2634          * page is used to determine if the reserve at this address was
2635          * consumed or not. If reserves were used, a partial faulted mapping
2636          * at the time of fork() could consume its reserves on COW instead
2637          * of the full address range.
2638          */
2639         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2640                         old_page != pagecache_page)
2641                 outside_reserve = 1;
2642
2643         page_cache_get(old_page);
2644
2645         /* Drop page table lock as buddy allocator may be called */
2646         spin_unlock(ptl);
2647         new_page = alloc_huge_page(vma, address, outside_reserve);
2648
2649         if (IS_ERR(new_page)) {
2650                 long err = PTR_ERR(new_page);
2651                 page_cache_release(old_page);
2652
2653                 /*
2654                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2655                  * it is due to references held by a child and an insufficient
2656                  * huge page pool. To guarantee the original mappers
2657                  * reliability, unmap the page from child processes. The child
2658                  * may get SIGKILLed if it later faults.
2659                  */
2660                 if (outside_reserve) {
2661                         BUG_ON(huge_pte_none(pte));
2662                         if (unmap_ref_private(mm, vma, old_page, address)) {
2663                                 BUG_ON(huge_pte_none(pte));
2664                                 spin_lock(ptl);
2665                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2666                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2667                                         goto retry_avoidcopy;
2668                                 /*
2669                                  * race occurs while re-acquiring page table
2670                                  * lock, and our job is done.
2671                                  */
2672                                 return 0;
2673                         }
2674                         WARN_ON_ONCE(1);
2675                 }
2676
2677                 /* Caller expects lock to be held */
2678                 spin_lock(ptl);
2679                 if (err == -ENOMEM)
2680                         return VM_FAULT_OOM;
2681                 else
2682                         return VM_FAULT_SIGBUS;
2683         }
2684
2685         /*
2686          * When the original hugepage is shared one, it does not have
2687          * anon_vma prepared.
2688          */
2689         if (unlikely(anon_vma_prepare(vma))) {
2690                 page_cache_release(new_page);
2691                 page_cache_release(old_page);
2692                 /* Caller expects lock to be held */
2693                 spin_lock(ptl);
2694                 return VM_FAULT_OOM;
2695         }
2696
2697         copy_user_huge_page(new_page, old_page, address, vma,
2698                             pages_per_huge_page(h));
2699         __SetPageUptodate(new_page);
2700
2701         mmun_start = address & huge_page_mask(h);
2702         mmun_end = mmun_start + huge_page_size(h);
2703         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2704         /*
2705          * Retake the page table lock to check for racing updates
2706          * before the page tables are altered
2707          */
2708         spin_lock(ptl);
2709         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2710         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2711                 ClearPagePrivate(new_page);
2712
2713                 /* Break COW */
2714                 huge_ptep_clear_flush(vma, address, ptep);
2715                 set_huge_pte_at(mm, address, ptep,
2716                                 make_huge_pte(vma, new_page, 1));
2717                 page_remove_rmap(old_page);
2718                 hugepage_add_new_anon_rmap(new_page, vma, address);
2719                 /* Make the old page be freed below */
2720                 new_page = old_page;
2721         }
2722         spin_unlock(ptl);
2723         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2724         page_cache_release(new_page);
2725         page_cache_release(old_page);
2726
2727         /* Caller expects lock to be held */
2728         spin_lock(ptl);
2729         return 0;
2730 }
2731
2732 /* Return the pagecache page at a given address within a VMA */
2733 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2734                         struct vm_area_struct *vma, unsigned long address)
2735 {
2736         struct address_space *mapping;
2737         pgoff_t idx;
2738
2739         mapping = vma->vm_file->f_mapping;
2740         idx = vma_hugecache_offset(h, vma, address);
2741
2742         return find_lock_page(mapping, idx);
2743 }
2744
2745 /*
2746  * Return whether there is a pagecache page to back given address within VMA.
2747  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2748  */
2749 static bool hugetlbfs_pagecache_present(struct hstate *h,
2750                         struct vm_area_struct *vma, unsigned long address)
2751 {
2752         struct address_space *mapping;
2753         pgoff_t idx;
2754         struct page *page;
2755
2756         mapping = vma->vm_file->f_mapping;
2757         idx = vma_hugecache_offset(h, vma, address);
2758
2759         page = find_get_page(mapping, idx);
2760         if (page)
2761                 put_page(page);
2762         return page != NULL;
2763 }
2764
2765 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766                         unsigned long address, pte_t *ptep, unsigned int flags)
2767 {
2768         struct hstate *h = hstate_vma(vma);
2769         int ret = VM_FAULT_SIGBUS;
2770         int anon_rmap = 0;
2771         pgoff_t idx;
2772         unsigned long size;
2773         struct page *page;
2774         struct address_space *mapping;
2775         pte_t new_pte;
2776         spinlock_t *ptl;
2777
2778         /*
2779          * Currently, we are forced to kill the process in the event the
2780          * original mapper has unmapped pages from the child due to a failed
2781          * COW. Warn that such a situation has occurred as it may not be obvious
2782          */
2783         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2784                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2785                            current->pid);
2786                 return ret;
2787         }
2788
2789         mapping = vma->vm_file->f_mapping;
2790         idx = vma_hugecache_offset(h, vma, address);
2791
2792         /*
2793          * Use page lock to guard against racing truncation
2794          * before we get page_table_lock.
2795          */
2796 retry:
2797         page = find_lock_page(mapping, idx);
2798         if (!page) {
2799                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2800                 if (idx >= size)
2801                         goto out;
2802                 page = alloc_huge_page(vma, address, 0);
2803                 if (IS_ERR(page)) {
2804                         ret = PTR_ERR(page);
2805                         if (ret == -ENOMEM)
2806                                 ret = VM_FAULT_OOM;
2807                         else
2808                                 ret = VM_FAULT_SIGBUS;
2809                         goto out;
2810                 }
2811                 clear_huge_page(page, address, pages_per_huge_page(h));
2812                 __SetPageUptodate(page);
2813
2814                 if (vma->vm_flags & VM_MAYSHARE) {
2815                         int err;
2816                         struct inode *inode = mapping->host;
2817
2818                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2819                         if (err) {
2820                                 put_page(page);
2821                                 if (err == -EEXIST)
2822                                         goto retry;
2823                                 goto out;
2824                         }
2825                         ClearPagePrivate(page);
2826
2827                         spin_lock(&inode->i_lock);
2828                         inode->i_blocks += blocks_per_huge_page(h);
2829                         spin_unlock(&inode->i_lock);
2830                 } else {
2831                         lock_page(page);
2832                         if (unlikely(anon_vma_prepare(vma))) {
2833                                 ret = VM_FAULT_OOM;
2834                                 goto backout_unlocked;
2835                         }
2836                         anon_rmap = 1;
2837                 }
2838         } else {
2839                 /*
2840                  * If memory error occurs between mmap() and fault, some process
2841                  * don't have hwpoisoned swap entry for errored virtual address.
2842                  * So we need to block hugepage fault by PG_hwpoison bit check.
2843                  */
2844                 if (unlikely(PageHWPoison(page))) {
2845                         ret = VM_FAULT_HWPOISON |
2846                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2847                         goto backout_unlocked;
2848                 }
2849         }
2850
2851         /*
2852          * If we are going to COW a private mapping later, we examine the
2853          * pending reservations for this page now. This will ensure that
2854          * any allocations necessary to record that reservation occur outside
2855          * the spinlock.
2856          */
2857         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2858                 if (vma_needs_reservation(h, vma, address) < 0) {
2859                         ret = VM_FAULT_OOM;
2860                         goto backout_unlocked;
2861                 }
2862
2863         ptl = huge_pte_lockptr(h, mm, ptep);
2864         spin_lock(ptl);
2865         size = i_size_read(mapping->host) >> huge_page_shift(h);
2866         if (idx >= size)
2867                 goto backout;
2868
2869         ret = 0;
2870         if (!huge_pte_none(huge_ptep_get(ptep)))
2871                 goto backout;
2872
2873         if (anon_rmap) {
2874                 ClearPagePrivate(page);
2875                 hugepage_add_new_anon_rmap(page, vma, address);
2876         }
2877         else
2878                 page_dup_rmap(page);
2879         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2880                                 && (vma->vm_flags & VM_SHARED)));
2881         set_huge_pte_at(mm, address, ptep, new_pte);
2882
2883         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2884                 /* Optimization, do the COW without a second fault */
2885                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2886         }
2887
2888         spin_unlock(ptl);
2889         unlock_page(page);
2890 out:
2891         return ret;
2892
2893 backout:
2894         spin_unlock(ptl);
2895 backout_unlocked:
2896         unlock_page(page);
2897         put_page(page);
2898         goto out;
2899 }
2900
2901 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2902                         unsigned long address, unsigned int flags)
2903 {
2904         pte_t *ptep;
2905         pte_t entry;
2906         spinlock_t *ptl;
2907         int ret;
2908         struct page *page = NULL;
2909         struct page *pagecache_page = NULL;
2910         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2911         struct hstate *h = hstate_vma(vma);
2912
2913         address &= huge_page_mask(h);
2914
2915         ptep = huge_pte_offset(mm, address);
2916         if (ptep) {
2917                 entry = huge_ptep_get(ptep);
2918                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2919                         migration_entry_wait_huge(vma, mm, ptep);
2920                         return 0;
2921                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2922                         return VM_FAULT_HWPOISON_LARGE |
2923                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2924         }
2925
2926         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2927         if (!ptep)
2928                 return VM_FAULT_OOM;
2929
2930         /*
2931          * Serialize hugepage allocation and instantiation, so that we don't
2932          * get spurious allocation failures if two CPUs race to instantiate
2933          * the same page in the page cache.
2934          */
2935         mutex_lock(&hugetlb_instantiation_mutex);
2936         entry = huge_ptep_get(ptep);
2937         if (huge_pte_none(entry)) {
2938                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2939                 goto out_mutex;
2940         }
2941
2942         ret = 0;
2943
2944         /*
2945          * If we are going to COW the mapping later, we examine the pending
2946          * reservations for this page now. This will ensure that any
2947          * allocations necessary to record that reservation occur outside the
2948          * spinlock. For private mappings, we also lookup the pagecache
2949          * page now as it is used to determine if a reservation has been
2950          * consumed.
2951          */
2952         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2953                 if (vma_needs_reservation(h, vma, address) < 0) {
2954                         ret = VM_FAULT_OOM;
2955                         goto out_mutex;
2956                 }
2957
2958                 if (!(vma->vm_flags & VM_MAYSHARE))
2959                         pagecache_page = hugetlbfs_pagecache_page(h,
2960                                                                 vma, address);
2961         }
2962
2963         /*
2964          * hugetlb_cow() requires page locks of pte_page(entry) and
2965          * pagecache_page, so here we need take the former one
2966          * when page != pagecache_page or !pagecache_page.
2967          * Note that locking order is always pagecache_page -> page,
2968          * so no worry about deadlock.
2969          */
2970         page = pte_page(entry);
2971         get_page(page);
2972         if (page != pagecache_page)
2973                 lock_page(page);
2974
2975         ptl = huge_pte_lockptr(h, mm, ptep);
2976         spin_lock(ptl);
2977         /* Check for a racing update before calling hugetlb_cow */
2978         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2979                 goto out_ptl;
2980
2981
2982         if (flags & FAULT_FLAG_WRITE) {
2983                 if (!huge_pte_write(entry)) {
2984                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2985                                         pagecache_page, ptl);
2986                         goto out_ptl;
2987                 }
2988                 entry = huge_pte_mkdirty(entry);
2989         }
2990         entry = pte_mkyoung(entry);
2991         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2992                                                 flags & FAULT_FLAG_WRITE))
2993                 update_mmu_cache(vma, address, ptep);
2994
2995 out_ptl:
2996         spin_unlock(ptl);
2997
2998         if (pagecache_page) {
2999                 unlock_page(pagecache_page);
3000                 put_page(pagecache_page);
3001         }
3002         if (page != pagecache_page)
3003                 unlock_page(page);
3004         put_page(page);
3005
3006 out_mutex:
3007         mutex_unlock(&hugetlb_instantiation_mutex);
3008
3009         return ret;
3010 }
3011
3012 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3013                          struct page **pages, struct vm_area_struct **vmas,
3014                          unsigned long *position, unsigned long *nr_pages,
3015                          long i, unsigned int flags)
3016 {
3017         unsigned long pfn_offset;
3018         unsigned long vaddr = *position;
3019         unsigned long remainder = *nr_pages;
3020         struct hstate *h = hstate_vma(vma);
3021
3022         while (vaddr < vma->vm_end && remainder) {
3023                 pte_t *pte;
3024                 spinlock_t *ptl = NULL;
3025                 int absent;
3026                 struct page *page;
3027
3028                 /*
3029                  * Some archs (sparc64, sh*) have multiple pte_ts to
3030                  * each hugepage.  We have to make sure we get the
3031                  * first, for the page indexing below to work.
3032                  *
3033                  * Note that page table lock is not held when pte is null.
3034                  */
3035                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3036                 if (pte)
3037                         ptl = huge_pte_lock(h, mm, pte);
3038                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3039
3040                 /*
3041                  * When coredumping, it suits get_dump_page if we just return
3042                  * an error where there's an empty slot with no huge pagecache
3043                  * to back it.  This way, we avoid allocating a hugepage, and
3044                  * the sparse dumpfile avoids allocating disk blocks, but its
3045                  * huge holes still show up with zeroes where they need to be.
3046                  */
3047                 if (absent && (flags & FOLL_DUMP) &&
3048                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3049                         if (pte)
3050                                 spin_unlock(ptl);
3051                         remainder = 0;
3052                         break;
3053                 }
3054
3055                 /*
3056                  * We need call hugetlb_fault for both hugepages under migration
3057                  * (in which case hugetlb_fault waits for the migration,) and
3058                  * hwpoisoned hugepages (in which case we need to prevent the
3059                  * caller from accessing to them.) In order to do this, we use
3060                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3061                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3062                  * both cases, and because we can't follow correct pages
3063                  * directly from any kind of swap entries.
3064                  */
3065                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3066                     ((flags & FOLL_WRITE) &&
3067                       !huge_pte_write(huge_ptep_get(pte)))) {
3068                         int ret;
3069
3070                         if (pte)
3071                                 spin_unlock(ptl);
3072                         ret = hugetlb_fault(mm, vma, vaddr,
3073                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3074                         if (!(ret & VM_FAULT_ERROR))
3075                                 continue;
3076
3077                         remainder = 0;
3078                         break;
3079                 }
3080
3081                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3082                 page = pte_page(huge_ptep_get(pte));
3083 same_page:
3084                 if (pages) {
3085                         pages[i] = mem_map_offset(page, pfn_offset);
3086                         get_page_foll(pages[i]);
3087                 }
3088
3089                 if (vmas)
3090                         vmas[i] = vma;
3091
3092                 vaddr += PAGE_SIZE;
3093                 ++pfn_offset;
3094                 --remainder;
3095                 ++i;
3096                 if (vaddr < vma->vm_end && remainder &&
3097                                 pfn_offset < pages_per_huge_page(h)) {
3098                         /*
3099                          * We use pfn_offset to avoid touching the pageframes
3100                          * of this compound page.
3101                          */
3102                         goto same_page;
3103                 }
3104                 spin_unlock(ptl);
3105         }
3106         *nr_pages = remainder;
3107         *position = vaddr;
3108
3109         return i ? i : -EFAULT;
3110 }
3111
3112 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3113                 unsigned long address, unsigned long end, pgprot_t newprot)
3114 {
3115         struct mm_struct *mm = vma->vm_mm;
3116         unsigned long start = address;
3117         pte_t *ptep;
3118         pte_t pte;
3119         struct hstate *h = hstate_vma(vma);
3120         unsigned long pages = 0;
3121
3122         BUG_ON(address >= end);
3123         flush_cache_range(vma, address, end);
3124
3125         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3126         for (; address < end; address += huge_page_size(h)) {
3127                 spinlock_t *ptl;
3128                 ptep = huge_pte_offset(mm, address);
3129                 if (!ptep)
3130                         continue;
3131                 ptl = huge_pte_lock(h, mm, ptep);
3132                 if (huge_pmd_unshare(mm, &address, ptep)) {
3133                         pages++;
3134                         spin_unlock(ptl);
3135                         continue;
3136                 }
3137                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3138                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3139                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3140                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3141                         set_huge_pte_at(mm, address, ptep, pte);
3142                         pages++;
3143                 }
3144                 spin_unlock(ptl);
3145         }
3146         /*
3147          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3148          * may have cleared our pud entry and done put_page on the page table:
3149          * once we release i_mmap_mutex, another task can do the final put_page
3150          * and that page table be reused and filled with junk.
3151          */
3152         flush_tlb_range(vma, start, end);
3153         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3154
3155         return pages << h->order;
3156 }
3157
3158 int hugetlb_reserve_pages(struct inode *inode,
3159                                         long from, long to,
3160                                         struct vm_area_struct *vma,
3161                                         vm_flags_t vm_flags)
3162 {
3163         long ret, chg;
3164         struct hstate *h = hstate_inode(inode);
3165         struct hugepage_subpool *spool = subpool_inode(inode);
3166
3167         /*
3168          * Only apply hugepage reservation if asked. At fault time, an
3169          * attempt will be made for VM_NORESERVE to allocate a page
3170          * without using reserves
3171          */
3172         if (vm_flags & VM_NORESERVE)
3173                 return 0;
3174
3175         /*
3176          * Shared mappings base their reservation on the number of pages that
3177          * are already allocated on behalf of the file. Private mappings need
3178          * to reserve the full area even if read-only as mprotect() may be
3179          * called to make the mapping read-write. Assume !vma is a shm mapping
3180          */
3181         if (!vma || vma->vm_flags & VM_MAYSHARE)
3182                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3183         else {
3184                 struct resv_map *resv_map = resv_map_alloc();
3185                 if (!resv_map)
3186                         return -ENOMEM;
3187
3188                 chg = to - from;
3189
3190                 set_vma_resv_map(vma, resv_map);
3191                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3192         }
3193
3194         if (chg < 0) {
3195                 ret = chg;
3196                 goto out_err;
3197         }
3198
3199         /* There must be enough pages in the subpool for the mapping */
3200         if (hugepage_subpool_get_pages(spool, chg)) {
3201                 ret = -ENOSPC;
3202                 goto out_err;
3203         }
3204
3205         /*
3206          * Check enough hugepages are available for the reservation.
3207          * Hand the pages back to the subpool if there are not
3208          */
3209         ret = hugetlb_acct_memory(h, chg);
3210         if (ret < 0) {
3211                 hugepage_subpool_put_pages(spool, chg);
3212                 goto out_err;
3213         }
3214
3215         /*
3216          * Account for the reservations made. Shared mappings record regions
3217          * that have reservations as they are shared by multiple VMAs.
3218          * When the last VMA disappears, the region map says how much
3219          * the reservation was and the page cache tells how much of
3220          * the reservation was consumed. Private mappings are per-VMA and
3221          * only the consumed reservations are tracked. When the VMA
3222          * disappears, the original reservation is the VMA size and the
3223          * consumed reservations are stored in the map. Hence, nothing
3224          * else has to be done for private mappings here
3225          */
3226         if (!vma || vma->vm_flags & VM_MAYSHARE)
3227                 region_add(&inode->i_mapping->private_list, from, to);
3228         return 0;
3229 out_err:
3230         if (vma)
3231                 resv_map_put(vma);
3232         return ret;
3233 }
3234
3235 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3236 {
3237         struct hstate *h = hstate_inode(inode);
3238         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3239         struct hugepage_subpool *spool = subpool_inode(inode);
3240
3241         spin_lock(&inode->i_lock);
3242         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3243         spin_unlock(&inode->i_lock);
3244
3245         hugepage_subpool_put_pages(spool, (chg - freed));
3246         hugetlb_acct_memory(h, -(chg - freed));
3247 }
3248
3249 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3250 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3251                                 struct vm_area_struct *vma,
3252                                 unsigned long addr, pgoff_t idx)
3253 {
3254         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3255                                 svma->vm_start;
3256         unsigned long sbase = saddr & PUD_MASK;
3257         unsigned long s_end = sbase + PUD_SIZE;
3258
3259         /* Allow segments to share if only one is marked locked */
3260         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3261         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3262
3263         /*
3264          * match the virtual addresses, permission and the alignment of the
3265          * page table page.
3266          */
3267         if (pmd_index(addr) != pmd_index(saddr) ||
3268             vm_flags != svm_flags ||
3269             sbase < svma->vm_start || svma->vm_end < s_end)
3270                 return 0;
3271
3272         return saddr;
3273 }
3274
3275 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3276 {
3277         unsigned long base = addr & PUD_MASK;
3278         unsigned long end = base + PUD_SIZE;
3279
3280         /*
3281          * check on proper vm_flags and page table alignment
3282          */
3283         if (vma->vm_flags & VM_MAYSHARE &&
3284             vma->vm_start <= base && end <= vma->vm_end)
3285                 return 1;
3286         return 0;
3287 }
3288
3289 /*
3290  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3291  * and returns the corresponding pte. While this is not necessary for the
3292  * !shared pmd case because we can allocate the pmd later as well, it makes the
3293  * code much cleaner. pmd allocation is essential for the shared case because
3294  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3295  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3296  * bad pmd for sharing.
3297  */
3298 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3299 {
3300         struct vm_area_struct *vma = find_vma(mm, addr);
3301         struct address_space *mapping = vma->vm_file->f_mapping;
3302         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3303                         vma->vm_pgoff;
3304         struct vm_area_struct *svma;
3305         unsigned long saddr;
3306         pte_t *spte = NULL;
3307         pte_t *pte;
3308         spinlock_t *ptl;
3309
3310         if (!vma_shareable(vma, addr))
3311                 return (pte_t *)pmd_alloc(mm, pud, addr);
3312
3313         mutex_lock(&mapping->i_mmap_mutex);
3314         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3315                 if (svma == vma)
3316                         continue;
3317
3318                 saddr = page_table_shareable(svma, vma, addr, idx);
3319                 if (saddr) {
3320                         spte = huge_pte_offset(svma->vm_mm, saddr);
3321                         if (spte) {
3322                                 get_page(virt_to_page(spte));
3323                                 break;
3324                         }
3325                 }
3326         }
3327
3328         if (!spte)
3329                 goto out;
3330
3331         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3332         spin_lock(ptl);
3333         if (pud_none(*pud))
3334                 pud_populate(mm, pud,
3335                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3336         else
3337                 put_page(virt_to_page(spte));
3338         spin_unlock(ptl);
3339 out:
3340         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3341         mutex_unlock(&mapping->i_mmap_mutex);
3342         return pte;
3343 }
3344
3345 /*
3346  * unmap huge page backed by shared pte.
3347  *
3348  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3349  * indicated by page_count > 1, unmap is achieved by clearing pud and
3350  * decrementing the ref count. If count == 1, the pte page is not shared.
3351  *
3352  * called with page table lock held.
3353  *
3354  * returns: 1 successfully unmapped a shared pte page
3355  *          0 the underlying pte page is not shared, or it is the last user
3356  */
3357 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3358 {
3359         pgd_t *pgd = pgd_offset(mm, *addr);
3360         pud_t *pud = pud_offset(pgd, *addr);
3361
3362         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3363         if (page_count(virt_to_page(ptep)) == 1)
3364                 return 0;
3365
3366         pud_clear(pud);
3367         put_page(virt_to_page(ptep));
3368         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3369         return 1;
3370 }
3371 #define want_pmd_share()        (1)
3372 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3373 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3374 {
3375         return NULL;
3376 }
3377 #define want_pmd_share()        (0)
3378 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3379
3380 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3381 pte_t *huge_pte_alloc(struct mm_struct *mm,
3382                         unsigned long addr, unsigned long sz)
3383 {
3384         pgd_t *pgd;
3385         pud_t *pud;
3386         pte_t *pte = NULL;
3387
3388         pgd = pgd_offset(mm, addr);
3389         pud = pud_alloc(mm, pgd, addr);
3390         if (pud) {
3391                 if (sz == PUD_SIZE) {
3392                         pte = (pte_t *)pud;
3393                 } else {
3394                         BUG_ON(sz != PMD_SIZE);
3395                         if (want_pmd_share() && pud_none(*pud))
3396                                 pte = huge_pmd_share(mm, addr, pud);
3397                         else
3398                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3399                 }
3400         }
3401         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3402
3403         return pte;
3404 }
3405
3406 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3407 {
3408         pgd_t *pgd;
3409         pud_t *pud;
3410         pmd_t *pmd = NULL;
3411
3412         pgd = pgd_offset(mm, addr);
3413         if (pgd_present(*pgd)) {
3414                 pud = pud_offset(pgd, addr);
3415                 if (pud_present(*pud)) {
3416                         if (pud_huge(*pud))
3417                                 return (pte_t *)pud;
3418                         pmd = pmd_offset(pud, addr);
3419                 }
3420         }
3421         return (pte_t *) pmd;
3422 }
3423
3424 struct page *
3425 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3426                 pmd_t *pmd, int write)
3427 {
3428         struct page *page;
3429
3430         page = pte_page(*(pte_t *)pmd);
3431         if (page)
3432                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3433         return page;
3434 }
3435
3436 struct page *
3437 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3438                 pud_t *pud, int write)
3439 {
3440         struct page *page;
3441
3442         page = pte_page(*(pte_t *)pud);
3443         if (page)
3444                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3445         return page;
3446 }
3447
3448 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3449
3450 /* Can be overriden by architectures */
3451 __attribute__((weak)) struct page *
3452 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3453                pud_t *pud, int write)
3454 {
3455         BUG();
3456         return NULL;
3457 }
3458
3459 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3460
3461 #ifdef CONFIG_MEMORY_FAILURE
3462
3463 /* Should be called in hugetlb_lock */
3464 static int is_hugepage_on_freelist(struct page *hpage)
3465 {
3466         struct page *page;
3467         struct page *tmp;
3468         struct hstate *h = page_hstate(hpage);
3469         int nid = page_to_nid(hpage);
3470
3471         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3472                 if (page == hpage)
3473                         return 1;
3474         return 0;
3475 }
3476
3477 /*
3478  * This function is called from memory failure code.
3479  * Assume the caller holds page lock of the head page.
3480  */
3481 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3482 {
3483         struct hstate *h = page_hstate(hpage);
3484         int nid = page_to_nid(hpage);
3485         int ret = -EBUSY;
3486
3487         spin_lock(&hugetlb_lock);
3488         if (is_hugepage_on_freelist(hpage)) {
3489                 /*
3490                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3491                  * but dangling hpage->lru can trigger list-debug warnings
3492                  * (this happens when we call unpoison_memory() on it),
3493                  * so let it point to itself with list_del_init().
3494                  */
3495                 list_del_init(&hpage->lru);
3496                 set_page_refcounted(hpage);
3497                 h->free_huge_pages--;
3498                 h->free_huge_pages_node[nid]--;
3499                 ret = 0;
3500         }
3501         spin_unlock(&hugetlb_lock);
3502         return ret;
3503 }
3504 #endif
3505
3506 bool isolate_huge_page(struct page *page, struct list_head *list)
3507 {
3508         VM_BUG_ON_PAGE(!PageHead(page), page);
3509         if (!get_page_unless_zero(page))
3510                 return false;
3511         spin_lock(&hugetlb_lock);
3512         list_move_tail(&page->lru, list);
3513         spin_unlock(&hugetlb_lock);
3514         return true;
3515 }
3516
3517 void putback_active_hugepage(struct page *page)
3518 {
3519         VM_BUG_ON_PAGE(!PageHead(page), page);
3520         spin_lock(&hugetlb_lock);
3521         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3522         spin_unlock(&hugetlb_lock);
3523         put_page(page);
3524 }
3525
3526 bool is_hugepage_active(struct page *page)
3527 {
3528         VM_BUG_ON_PAGE(!PageHuge(page), page);
3529         /*
3530          * This function can be called for a tail page because the caller,
3531          * scan_movable_pages, scans through a given pfn-range which typically
3532          * covers one memory block. In systems using gigantic hugepage (1GB
3533          * for x86_64,) a hugepage is larger than a memory block, and we don't
3534          * support migrating such large hugepages for now, so return false
3535          * when called for tail pages.
3536          */
3537         if (PageTail(page))
3538                 return false;
3539         /*
3540          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3541          * so we should return false for them.
3542          */
3543         if (unlikely(PageHWPoison(page)))
3544                 return false;
3545         return page_count(page) > 0;
3546 }