04202d9aa514ae218c2d30aaba7d9b1b5b4e5c96
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/ftrace_event.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/debugfs.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/kmemcheck.h>
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/fs.h>
27
28 #include <asm/local.h>
29
30 static void update_pages_handler(struct work_struct *work);
31
32 /*
33  * The ring buffer header is special. We must manually up keep it.
34  */
35 int ring_buffer_print_entry_header(struct trace_seq *s)
36 {
37         int ret;
38
39         ret = trace_seq_puts(s, "# compressed entry header\n");
40         ret = trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         ret = trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         ret = trace_seq_puts(s, "\tarray       :   32 bits\n");
43         ret = trace_seq_putc(s, '\n');
44         ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
45                                RINGBUF_TYPE_PADDING);
46         ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                                RINGBUF_TYPE_TIME_EXTEND);
48         ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
49                                RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
50
51         return ret;
52 }
53
54 /*
55  * The ring buffer is made up of a list of pages. A separate list of pages is
56  * allocated for each CPU. A writer may only write to a buffer that is
57  * associated with the CPU it is currently executing on.  A reader may read
58  * from any per cpu buffer.
59  *
60  * The reader is special. For each per cpu buffer, the reader has its own
61  * reader page. When a reader has read the entire reader page, this reader
62  * page is swapped with another page in the ring buffer.
63  *
64  * Now, as long as the writer is off the reader page, the reader can do what
65  * ever it wants with that page. The writer will never write to that page
66  * again (as long as it is out of the ring buffer).
67  *
68  * Here's some silly ASCII art.
69  *
70  *   +------+
71  *   |reader|          RING BUFFER
72  *   |page  |
73  *   +------+        +---+   +---+   +---+
74  *                   |   |-->|   |-->|   |
75  *                   +---+   +---+   +---+
76  *                     ^               |
77  *                     |               |
78  *                     +---------------+
79  *
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |------------------v
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *      ^            |   |-->|   |-->|   |
97  *      |            +---+   +---+   +---+
98  *      |                              |
99  *      |                              |
100  *      +------------------------------+
101  *
102  *
103  *   +------+
104  *   |buffer|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |   |   |-->|   |
108  *      |   New      +---+   +---+   +---+
109  *      |  Reader------^               |
110  *      |   page                       |
111  *      +------------------------------+
112  *
113  *
114  * After we make this swap, the reader can hand this page off to the splice
115  * code and be done with it. It can even allocate a new page if it needs to
116  * and swap that into the ring buffer.
117  *
118  * We will be using cmpxchg soon to make all this lockless.
119  *
120  */
121
122 /*
123  * A fast way to enable or disable all ring buffers is to
124  * call tracing_on or tracing_off. Turning off the ring buffers
125  * prevents all ring buffers from being recorded to.
126  * Turning this switch on, makes it OK to write to the
127  * ring buffer, if the ring buffer is enabled itself.
128  *
129  * There's three layers that must be on in order to write
130  * to the ring buffer.
131  *
132  * 1) This global flag must be set.
133  * 2) The ring buffer must be enabled for recording.
134  * 3) The per cpu buffer must be enabled for recording.
135  *
136  * In case of an anomaly, this global flag has a bit set that
137  * will permantly disable all ring buffers.
138  */
139
140 /*
141  * Global flag to disable all recording to ring buffers
142  *  This has two bits: ON, DISABLED
143  *
144  *  ON   DISABLED
145  * ---- ----------
146  *   0      0        : ring buffers are off
147  *   1      0        : ring buffers are on
148  *   X      1        : ring buffers are permanently disabled
149  */
150
151 enum {
152         RB_BUFFERS_ON_BIT       = 0,
153         RB_BUFFERS_DISABLED_BIT = 1,
154 };
155
156 enum {
157         RB_BUFFERS_ON           = 1 << RB_BUFFERS_ON_BIT,
158         RB_BUFFERS_DISABLED     = 1 << RB_BUFFERS_DISABLED_BIT,
159 };
160
161 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
162
163 /* Used for individual buffers (after the counter) */
164 #define RB_BUFFER_OFF           (1 << 20)
165
166 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
167
168 /**
169  * tracing_off_permanent - permanently disable ring buffers
170  *
171  * This function, once called, will disable all ring buffers
172  * permanently.
173  */
174 void tracing_off_permanent(void)
175 {
176         set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
177 }
178
179 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
180 #define RB_ALIGNMENT            4U
181 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
182 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
183
184 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
185 # define RB_FORCE_8BYTE_ALIGNMENT       0
186 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
187 #else
188 # define RB_FORCE_8BYTE_ALIGNMENT       1
189 # define RB_ARCH_ALIGNMENT              8U
190 #endif
191
192 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
193
194 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
196
197 enum {
198         RB_LEN_TIME_EXTEND = 8,
199         RB_LEN_TIME_STAMP = 16,
200 };
201
202 #define skip_time_extend(event) \
203         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
205 static inline int rb_null_event(struct ring_buffer_event *event)
206 {
207         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
208 }
209
210 static void rb_event_set_padding(struct ring_buffer_event *event)
211 {
212         /* padding has a NULL time_delta */
213         event->type_len = RINGBUF_TYPE_PADDING;
214         event->time_delta = 0;
215 }
216
217 static unsigned
218 rb_event_data_length(struct ring_buffer_event *event)
219 {
220         unsigned length;
221
222         if (event->type_len)
223                 length = event->type_len * RB_ALIGNMENT;
224         else
225                 length = event->array[0];
226         return length + RB_EVNT_HDR_SIZE;
227 }
228
229 /*
230  * Return the length of the given event. Will return
231  * the length of the time extend if the event is a
232  * time extend.
233  */
234 static inline unsigned
235 rb_event_length(struct ring_buffer_event *event)
236 {
237         switch (event->type_len) {
238         case RINGBUF_TYPE_PADDING:
239                 if (rb_null_event(event))
240                         /* undefined */
241                         return -1;
242                 return  event->array[0] + RB_EVNT_HDR_SIZE;
243
244         case RINGBUF_TYPE_TIME_EXTEND:
245                 return RB_LEN_TIME_EXTEND;
246
247         case RINGBUF_TYPE_TIME_STAMP:
248                 return RB_LEN_TIME_STAMP;
249
250         case RINGBUF_TYPE_DATA:
251                 return rb_event_data_length(event);
252         default:
253                 BUG();
254         }
255         /* not hit */
256         return 0;
257 }
258
259 /*
260  * Return total length of time extend and data,
261  *   or just the event length for all other events.
262  */
263 static inline unsigned
264 rb_event_ts_length(struct ring_buffer_event *event)
265 {
266         unsigned len = 0;
267
268         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269                 /* time extends include the data event after it */
270                 len = RB_LEN_TIME_EXTEND;
271                 event = skip_time_extend(event);
272         }
273         return len + rb_event_length(event);
274 }
275
276 /**
277  * ring_buffer_event_length - return the length of the event
278  * @event: the event to get the length of
279  *
280  * Returns the size of the data load of a data event.
281  * If the event is something other than a data event, it
282  * returns the size of the event itself. With the exception
283  * of a TIME EXTEND, where it still returns the size of the
284  * data load of the data event after it.
285  */
286 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287 {
288         unsigned length;
289
290         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291                 event = skip_time_extend(event);
292
293         length = rb_event_length(event);
294         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
295                 return length;
296         length -= RB_EVNT_HDR_SIZE;
297         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298                 length -= sizeof(event->array[0]);
299         return length;
300 }
301 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
302
303 /* inline for ring buffer fast paths */
304 static void *
305 rb_event_data(struct ring_buffer_event *event)
306 {
307         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308                 event = skip_time_extend(event);
309         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
310         /* If length is in len field, then array[0] has the data */
311         if (event->type_len)
312                 return (void *)&event->array[0];
313         /* Otherwise length is in array[0] and array[1] has the data */
314         return (void *)&event->array[1];
315 }
316
317 /**
318  * ring_buffer_event_data - return the data of the event
319  * @event: the event to get the data from
320  */
321 void *ring_buffer_event_data(struct ring_buffer_event *event)
322 {
323         return rb_event_data(event);
324 }
325 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
326
327 #define for_each_buffer_cpu(buffer, cpu)                \
328         for_each_cpu(cpu, buffer->cpumask)
329
330 #define TS_SHIFT        27
331 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
332 #define TS_DELTA_TEST   (~TS_MASK)
333
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS        (1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED        (1 << 30)
338
339 struct buffer_data_page {
340         u64              time_stamp;    /* page time stamp */
341         local_t          commit;        /* write committed index */
342         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
343 };
344
345 /*
346  * Note, the buffer_page list must be first. The buffer pages
347  * are allocated in cache lines, which means that each buffer
348  * page will be at the beginning of a cache line, and thus
349  * the least significant bits will be zero. We use this to
350  * add flags in the list struct pointers, to make the ring buffer
351  * lockless.
352  */
353 struct buffer_page {
354         struct list_head list;          /* list of buffer pages */
355         local_t          write;         /* index for next write */
356         unsigned         read;          /* index for next read */
357         local_t          entries;       /* entries on this page */
358         unsigned long    real_end;      /* real end of data */
359         struct buffer_data_page *page;  /* Actual data page */
360 };
361
362 /*
363  * The buffer page counters, write and entries, must be reset
364  * atomically when crossing page boundaries. To synchronize this
365  * update, two counters are inserted into the number. One is
366  * the actual counter for the write position or count on the page.
367  *
368  * The other is a counter of updaters. Before an update happens
369  * the update partition of the counter is incremented. This will
370  * allow the updater to update the counter atomically.
371  *
372  * The counter is 20 bits, and the state data is 12.
373  */
374 #define RB_WRITE_MASK           0xfffff
375 #define RB_WRITE_INTCNT         (1 << 20)
376
377 static void rb_init_page(struct buffer_data_page *bpage)
378 {
379         local_set(&bpage->commit, 0);
380 }
381
382 /**
383  * ring_buffer_page_len - the size of data on the page.
384  * @page: The page to read
385  *
386  * Returns the amount of data on the page, including buffer page header.
387  */
388 size_t ring_buffer_page_len(void *page)
389 {
390         return local_read(&((struct buffer_data_page *)page)->commit)
391                 + BUF_PAGE_HDR_SIZE;
392 }
393
394 /*
395  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396  * this issue out.
397  */
398 static void free_buffer_page(struct buffer_page *bpage)
399 {
400         free_page((unsigned long)bpage->page);
401         kfree(bpage);
402 }
403
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline int test_time_stamp(u64 delta)
408 {
409         if (delta & TS_DELTA_TEST)
410                 return 1;
411         return 0;
412 }
413
414 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
415
416 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
419 int ring_buffer_print_page_header(struct trace_seq *s)
420 {
421         struct buffer_data_page field;
422         int ret;
423
424         ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
425                                "offset:0;\tsize:%u;\tsigned:%u;\n",
426                                (unsigned int)sizeof(field.time_stamp),
427                                (unsigned int)is_signed_type(u64));
428
429         ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
430                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
431                                (unsigned int)offsetof(typeof(field), commit),
432                                (unsigned int)sizeof(field.commit),
433                                (unsigned int)is_signed_type(long));
434
435         ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
437                                (unsigned int)offsetof(typeof(field), commit),
438                                1,
439                                (unsigned int)is_signed_type(long));
440
441         ret = trace_seq_printf(s, "\tfield: char data;\t"
442                                "offset:%u;\tsize:%u;\tsigned:%u;\n",
443                                (unsigned int)offsetof(typeof(field), data),
444                                (unsigned int)BUF_PAGE_SIZE,
445                                (unsigned int)is_signed_type(char));
446
447         return ret;
448 }
449
450 struct rb_irq_work {
451         struct irq_work                 work;
452         wait_queue_head_t               waiters;
453         bool                            waiters_pending;
454 };
455
456 /*
457  * head_page == tail_page && head == tail then buffer is empty.
458  */
459 struct ring_buffer_per_cpu {
460         int                             cpu;
461         atomic_t                        record_disabled;
462         struct ring_buffer              *buffer;
463         raw_spinlock_t                  reader_lock;    /* serialize readers */
464         arch_spinlock_t                 lock;
465         struct lock_class_key           lock_key;
466         unsigned int                    nr_pages;
467         struct list_head                *pages;
468         struct buffer_page              *head_page;     /* read from head */
469         struct buffer_page              *tail_page;     /* write to tail */
470         struct buffer_page              *commit_page;   /* committed pages */
471         struct buffer_page              *reader_page;
472         unsigned long                   lost_events;
473         unsigned long                   last_overrun;
474         local_t                         entries_bytes;
475         local_t                         entries;
476         local_t                         overrun;
477         local_t                         commit_overrun;
478         local_t                         dropped_events;
479         local_t                         committing;
480         local_t                         commits;
481         unsigned long                   read;
482         unsigned long                   read_bytes;
483         u64                             write_stamp;
484         u64                             read_stamp;
485         /* ring buffer pages to update, > 0 to add, < 0 to remove */
486         int                             nr_pages_to_update;
487         struct list_head                new_pages; /* new pages to add */
488         struct work_struct              update_pages_work;
489         struct completion               update_done;
490
491         struct rb_irq_work              irq_work;
492 };
493
494 struct ring_buffer {
495         unsigned                        flags;
496         int                             cpus;
497         atomic_t                        record_disabled;
498         atomic_t                        resize_disabled;
499         cpumask_var_t                   cpumask;
500
501         struct lock_class_key           *reader_lock_key;
502
503         struct mutex                    mutex;
504
505         struct ring_buffer_per_cpu      **buffers;
506
507 #ifdef CONFIG_HOTPLUG_CPU
508         struct notifier_block           cpu_notify;
509 #endif
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513 };
514
515 struct ring_buffer_iter {
516         struct ring_buffer_per_cpu      *cpu_buffer;
517         unsigned long                   head;
518         struct buffer_page              *head_page;
519         struct buffer_page              *cache_reader_page;
520         unsigned long                   cache_read;
521         u64                             read_stamp;
522 };
523
524 /*
525  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526  *
527  * Schedules a delayed work to wake up any task that is blocked on the
528  * ring buffer waiters queue.
529  */
530 static void rb_wake_up_waiters(struct irq_work *work)
531 {
532         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534         wake_up_all(&rbwork->waiters);
535 }
536
537 /**
538  * ring_buffer_wait - wait for input to the ring buffer
539  * @buffer: buffer to wait on
540  * @cpu: the cpu buffer to wait on
541  *
542  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543  * as data is added to any of the @buffer's cpu buffers. Otherwise
544  * it will wait for data to be added to a specific cpu buffer.
545  */
546 int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547 {
548         struct ring_buffer_per_cpu *cpu_buffer;
549         DEFINE_WAIT(wait);
550         struct rb_irq_work *work;
551
552         /*
553          * Depending on what the caller is waiting for, either any
554          * data in any cpu buffer, or a specific buffer, put the
555          * caller on the appropriate wait queue.
556          */
557         if (cpu == RING_BUFFER_ALL_CPUS)
558                 work = &buffer->irq_work;
559         else {
560                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561                         return -ENODEV;
562                 cpu_buffer = buffer->buffers[cpu];
563                 work = &cpu_buffer->irq_work;
564         }
565
566
567         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569         /*
570          * The events can happen in critical sections where
571          * checking a work queue can cause deadlocks.
572          * After adding a task to the queue, this flag is set
573          * only to notify events to try to wake up the queue
574          * using irq_work.
575          *
576          * We don't clear it even if the buffer is no longer
577          * empty. The flag only causes the next event to run
578          * irq_work to do the work queue wake up. The worse
579          * that can happen if we race with !trace_empty() is that
580          * an event will cause an irq_work to try to wake up
581          * an empty queue.
582          *
583          * There's no reason to protect this flag either, as
584          * the work queue and irq_work logic will do the necessary
585          * synchronization for the wake ups. The only thing
586          * that is necessary is that the wake up happens after
587          * a task has been queued. It's OK for spurious wake ups.
588          */
589         work->waiters_pending = true;
590
591         if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592             (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593                 schedule();
594
595         finish_wait(&work->waiters, &wait);
596         return 0;
597 }
598
599 /**
600  * ring_buffer_poll_wait - poll on buffer input
601  * @buffer: buffer to wait on
602  * @cpu: the cpu buffer to wait on
603  * @filp: the file descriptor
604  * @poll_table: The poll descriptor
605  *
606  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607  * as data is added to any of the @buffer's cpu buffers. Otherwise
608  * it will wait for data to be added to a specific cpu buffer.
609  *
610  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611  * zero otherwise.
612  */
613 int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614                           struct file *filp, poll_table *poll_table)
615 {
616         struct ring_buffer_per_cpu *cpu_buffer;
617         struct rb_irq_work *work;
618
619         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
620             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
621                 return POLLIN | POLLRDNORM;
622
623         if (cpu == RING_BUFFER_ALL_CPUS)
624                 work = &buffer->irq_work;
625         else {
626                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
627                         return -EINVAL;
628
629                 cpu_buffer = buffer->buffers[cpu];
630                 work = &cpu_buffer->irq_work;
631         }
632
633         work->waiters_pending = true;
634         poll_wait(filp, &work->waiters, poll_table);
635
636         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
637             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
638                 return POLLIN | POLLRDNORM;
639         return 0;
640 }
641
642 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
643 #define RB_WARN_ON(b, cond)                                             \
644         ({                                                              \
645                 int _____ret = unlikely(cond);                          \
646                 if (_____ret) {                                         \
647                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
648                                 struct ring_buffer_per_cpu *__b =       \
649                                         (void *)b;                      \
650                                 atomic_inc(&__b->buffer->record_disabled); \
651                         } else                                          \
652                                 atomic_inc(&b->record_disabled);        \
653                         WARN_ON(1);                                     \
654                 }                                                       \
655                 _____ret;                                               \
656         })
657
658 /* Up this if you want to test the TIME_EXTENTS and normalization */
659 #define DEBUG_SHIFT 0
660
661 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
662 {
663         /* shift to debug/test normalization and TIME_EXTENTS */
664         return buffer->clock() << DEBUG_SHIFT;
665 }
666
667 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
668 {
669         u64 time;
670
671         preempt_disable_notrace();
672         time = rb_time_stamp(buffer);
673         preempt_enable_no_resched_notrace();
674
675         return time;
676 }
677 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
678
679 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
680                                       int cpu, u64 *ts)
681 {
682         /* Just stupid testing the normalize function and deltas */
683         *ts >>= DEBUG_SHIFT;
684 }
685 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
686
687 /*
688  * Making the ring buffer lockless makes things tricky.
689  * Although writes only happen on the CPU that they are on,
690  * and they only need to worry about interrupts. Reads can
691  * happen on any CPU.
692  *
693  * The reader page is always off the ring buffer, but when the
694  * reader finishes with a page, it needs to swap its page with
695  * a new one from the buffer. The reader needs to take from
696  * the head (writes go to the tail). But if a writer is in overwrite
697  * mode and wraps, it must push the head page forward.
698  *
699  * Here lies the problem.
700  *
701  * The reader must be careful to replace only the head page, and
702  * not another one. As described at the top of the file in the
703  * ASCII art, the reader sets its old page to point to the next
704  * page after head. It then sets the page after head to point to
705  * the old reader page. But if the writer moves the head page
706  * during this operation, the reader could end up with the tail.
707  *
708  * We use cmpxchg to help prevent this race. We also do something
709  * special with the page before head. We set the LSB to 1.
710  *
711  * When the writer must push the page forward, it will clear the
712  * bit that points to the head page, move the head, and then set
713  * the bit that points to the new head page.
714  *
715  * We also don't want an interrupt coming in and moving the head
716  * page on another writer. Thus we use the second LSB to catch
717  * that too. Thus:
718  *
719  * head->list->prev->next        bit 1          bit 0
720  *                              -------        -------
721  * Normal page                     0              0
722  * Points to head page             0              1
723  * New head page                   1              0
724  *
725  * Note we can not trust the prev pointer of the head page, because:
726  *
727  * +----+       +-----+        +-----+
728  * |    |------>|  T  |---X--->|  N  |
729  * |    |<------|     |        |     |
730  * +----+       +-----+        +-----+
731  *   ^                           ^ |
732  *   |          +-----+          | |
733  *   +----------|  R  |----------+ |
734  *              |     |<-----------+
735  *              +-----+
736  *
737  * Key:  ---X-->  HEAD flag set in pointer
738  *         T      Tail page
739  *         R      Reader page
740  *         N      Next page
741  *
742  * (see __rb_reserve_next() to see where this happens)
743  *
744  *  What the above shows is that the reader just swapped out
745  *  the reader page with a page in the buffer, but before it
746  *  could make the new header point back to the new page added
747  *  it was preempted by a writer. The writer moved forward onto
748  *  the new page added by the reader and is about to move forward
749  *  again.
750  *
751  *  You can see, it is legitimate for the previous pointer of
752  *  the head (or any page) not to point back to itself. But only
753  *  temporarially.
754  */
755
756 #define RB_PAGE_NORMAL          0UL
757 #define RB_PAGE_HEAD            1UL
758 #define RB_PAGE_UPDATE          2UL
759
760
761 #define RB_FLAG_MASK            3UL
762
763 /* PAGE_MOVED is not part of the mask */
764 #define RB_PAGE_MOVED           4UL
765
766 /*
767  * rb_list_head - remove any bit
768  */
769 static struct list_head *rb_list_head(struct list_head *list)
770 {
771         unsigned long val = (unsigned long)list;
772
773         return (struct list_head *)(val & ~RB_FLAG_MASK);
774 }
775
776 /*
777  * rb_is_head_page - test if the given page is the head page
778  *
779  * Because the reader may move the head_page pointer, we can
780  * not trust what the head page is (it may be pointing to
781  * the reader page). But if the next page is a header page,
782  * its flags will be non zero.
783  */
784 static inline int
785 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
786                 struct buffer_page *page, struct list_head *list)
787 {
788         unsigned long val;
789
790         val = (unsigned long)list->next;
791
792         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
793                 return RB_PAGE_MOVED;
794
795         return val & RB_FLAG_MASK;
796 }
797
798 /*
799  * rb_is_reader_page
800  *
801  * The unique thing about the reader page, is that, if the
802  * writer is ever on it, the previous pointer never points
803  * back to the reader page.
804  */
805 static int rb_is_reader_page(struct buffer_page *page)
806 {
807         struct list_head *list = page->list.prev;
808
809         return rb_list_head(list->next) != &page->list;
810 }
811
812 /*
813  * rb_set_list_to_head - set a list_head to be pointing to head.
814  */
815 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
816                                 struct list_head *list)
817 {
818         unsigned long *ptr;
819
820         ptr = (unsigned long *)&list->next;
821         *ptr |= RB_PAGE_HEAD;
822         *ptr &= ~RB_PAGE_UPDATE;
823 }
824
825 /*
826  * rb_head_page_activate - sets up head page
827  */
828 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
829 {
830         struct buffer_page *head;
831
832         head = cpu_buffer->head_page;
833         if (!head)
834                 return;
835
836         /*
837          * Set the previous list pointer to have the HEAD flag.
838          */
839         rb_set_list_to_head(cpu_buffer, head->list.prev);
840 }
841
842 static void rb_list_head_clear(struct list_head *list)
843 {
844         unsigned long *ptr = (unsigned long *)&list->next;
845
846         *ptr &= ~RB_FLAG_MASK;
847 }
848
849 /*
850  * rb_head_page_dactivate - clears head page ptr (for free list)
851  */
852 static void
853 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
854 {
855         struct list_head *hd;
856
857         /* Go through the whole list and clear any pointers found. */
858         rb_list_head_clear(cpu_buffer->pages);
859
860         list_for_each(hd, cpu_buffer->pages)
861                 rb_list_head_clear(hd);
862 }
863
864 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
865                             struct buffer_page *head,
866                             struct buffer_page *prev,
867                             int old_flag, int new_flag)
868 {
869         struct list_head *list;
870         unsigned long val = (unsigned long)&head->list;
871         unsigned long ret;
872
873         list = &prev->list;
874
875         val &= ~RB_FLAG_MASK;
876
877         ret = cmpxchg((unsigned long *)&list->next,
878                       val | old_flag, val | new_flag);
879
880         /* check if the reader took the page */
881         if ((ret & ~RB_FLAG_MASK) != val)
882                 return RB_PAGE_MOVED;
883
884         return ret & RB_FLAG_MASK;
885 }
886
887 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
888                                    struct buffer_page *head,
889                                    struct buffer_page *prev,
890                                    int old_flag)
891 {
892         return rb_head_page_set(cpu_buffer, head, prev,
893                                 old_flag, RB_PAGE_UPDATE);
894 }
895
896 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
897                                  struct buffer_page *head,
898                                  struct buffer_page *prev,
899                                  int old_flag)
900 {
901         return rb_head_page_set(cpu_buffer, head, prev,
902                                 old_flag, RB_PAGE_HEAD);
903 }
904
905 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
906                                    struct buffer_page *head,
907                                    struct buffer_page *prev,
908                                    int old_flag)
909 {
910         return rb_head_page_set(cpu_buffer, head, prev,
911                                 old_flag, RB_PAGE_NORMAL);
912 }
913
914 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
915                                struct buffer_page **bpage)
916 {
917         struct list_head *p = rb_list_head((*bpage)->list.next);
918
919         *bpage = list_entry(p, struct buffer_page, list);
920 }
921
922 static struct buffer_page *
923 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
924 {
925         struct buffer_page *head;
926         struct buffer_page *page;
927         struct list_head *list;
928         int i;
929
930         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
931                 return NULL;
932
933         /* sanity check */
934         list = cpu_buffer->pages;
935         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
936                 return NULL;
937
938         page = head = cpu_buffer->head_page;
939         /*
940          * It is possible that the writer moves the header behind
941          * where we started, and we miss in one loop.
942          * A second loop should grab the header, but we'll do
943          * three loops just because I'm paranoid.
944          */
945         for (i = 0; i < 3; i++) {
946                 do {
947                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
948                                 cpu_buffer->head_page = page;
949                                 return page;
950                         }
951                         rb_inc_page(cpu_buffer, &page);
952                 } while (page != head);
953         }
954
955         RB_WARN_ON(cpu_buffer, 1);
956
957         return NULL;
958 }
959
960 static int rb_head_page_replace(struct buffer_page *old,
961                                 struct buffer_page *new)
962 {
963         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
964         unsigned long val;
965         unsigned long ret;
966
967         val = *ptr & ~RB_FLAG_MASK;
968         val |= RB_PAGE_HEAD;
969
970         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
971
972         return ret == val;
973 }
974
975 /*
976  * rb_tail_page_update - move the tail page forward
977  *
978  * Returns 1 if moved tail page, 0 if someone else did.
979  */
980 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
981                                struct buffer_page *tail_page,
982                                struct buffer_page *next_page)
983 {
984         struct buffer_page *old_tail;
985         unsigned long old_entries;
986         unsigned long old_write;
987         int ret = 0;
988
989         /*
990          * The tail page now needs to be moved forward.
991          *
992          * We need to reset the tail page, but without messing
993          * with possible erasing of data brought in by interrupts
994          * that have moved the tail page and are currently on it.
995          *
996          * We add a counter to the write field to denote this.
997          */
998         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
999         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1000
1001         /*
1002          * Just make sure we have seen our old_write and synchronize
1003          * with any interrupts that come in.
1004          */
1005         barrier();
1006
1007         /*
1008          * If the tail page is still the same as what we think
1009          * it is, then it is up to us to update the tail
1010          * pointer.
1011          */
1012         if (tail_page == cpu_buffer->tail_page) {
1013                 /* Zero the write counter */
1014                 unsigned long val = old_write & ~RB_WRITE_MASK;
1015                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1016
1017                 /*
1018                  * This will only succeed if an interrupt did
1019                  * not come in and change it. In which case, we
1020                  * do not want to modify it.
1021                  *
1022                  * We add (void) to let the compiler know that we do not care
1023                  * about the return value of these functions. We use the
1024                  * cmpxchg to only update if an interrupt did not already
1025                  * do it for us. If the cmpxchg fails, we don't care.
1026                  */
1027                 (void)local_cmpxchg(&next_page->write, old_write, val);
1028                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1029
1030                 /*
1031                  * No need to worry about races with clearing out the commit.
1032                  * it only can increment when a commit takes place. But that
1033                  * only happens in the outer most nested commit.
1034                  */
1035                 local_set(&next_page->page->commit, 0);
1036
1037                 old_tail = cmpxchg(&cpu_buffer->tail_page,
1038                                    tail_page, next_page);
1039
1040                 if (old_tail == tail_page)
1041                         ret = 1;
1042         }
1043
1044         return ret;
1045 }
1046
1047 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1048                           struct buffer_page *bpage)
1049 {
1050         unsigned long val = (unsigned long)bpage;
1051
1052         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1053                 return 1;
1054
1055         return 0;
1056 }
1057
1058 /**
1059  * rb_check_list - make sure a pointer to a list has the last bits zero
1060  */
1061 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1062                          struct list_head *list)
1063 {
1064         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1065                 return 1;
1066         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1067                 return 1;
1068         return 0;
1069 }
1070
1071 /**
1072  * rb_check_pages - integrity check of buffer pages
1073  * @cpu_buffer: CPU buffer with pages to test
1074  *
1075  * As a safety measure we check to make sure the data pages have not
1076  * been corrupted.
1077  */
1078 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1079 {
1080         struct list_head *head = cpu_buffer->pages;
1081         struct buffer_page *bpage, *tmp;
1082
1083         /* Reset the head page if it exists */
1084         if (cpu_buffer->head_page)
1085                 rb_set_head_page(cpu_buffer);
1086
1087         rb_head_page_deactivate(cpu_buffer);
1088
1089         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1090                 return -1;
1091         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1092                 return -1;
1093
1094         if (rb_check_list(cpu_buffer, head))
1095                 return -1;
1096
1097         list_for_each_entry_safe(bpage, tmp, head, list) {
1098                 if (RB_WARN_ON(cpu_buffer,
1099                                bpage->list.next->prev != &bpage->list))
1100                         return -1;
1101                 if (RB_WARN_ON(cpu_buffer,
1102                                bpage->list.prev->next != &bpage->list))
1103                         return -1;
1104                 if (rb_check_list(cpu_buffer, &bpage->list))
1105                         return -1;
1106         }
1107
1108         rb_head_page_activate(cpu_buffer);
1109
1110         return 0;
1111 }
1112
1113 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
1114 {
1115         int i;
1116         struct buffer_page *bpage, *tmp;
1117
1118         for (i = 0; i < nr_pages; i++) {
1119                 struct page *page;
1120                 /*
1121                  * __GFP_NORETRY flag makes sure that the allocation fails
1122                  * gracefully without invoking oom-killer and the system is
1123                  * not destabilized.
1124                  */
1125                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1126                                     GFP_KERNEL | __GFP_NORETRY,
1127                                     cpu_to_node(cpu));
1128                 if (!bpage)
1129                         goto free_pages;
1130
1131                 list_add(&bpage->list, pages);
1132
1133                 page = alloc_pages_node(cpu_to_node(cpu),
1134                                         GFP_KERNEL | __GFP_NORETRY, 0);
1135                 if (!page)
1136                         goto free_pages;
1137                 bpage->page = page_address(page);
1138                 rb_init_page(bpage->page);
1139         }
1140
1141         return 0;
1142
1143 free_pages:
1144         list_for_each_entry_safe(bpage, tmp, pages, list) {
1145                 list_del_init(&bpage->list);
1146                 free_buffer_page(bpage);
1147         }
1148
1149         return -ENOMEM;
1150 }
1151
1152 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1153                              unsigned nr_pages)
1154 {
1155         LIST_HEAD(pages);
1156
1157         WARN_ON(!nr_pages);
1158
1159         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1160                 return -ENOMEM;
1161
1162         /*
1163          * The ring buffer page list is a circular list that does not
1164          * start and end with a list head. All page list items point to
1165          * other pages.
1166          */
1167         cpu_buffer->pages = pages.next;
1168         list_del(&pages);
1169
1170         cpu_buffer->nr_pages = nr_pages;
1171
1172         rb_check_pages(cpu_buffer);
1173
1174         return 0;
1175 }
1176
1177 static struct ring_buffer_per_cpu *
1178 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1179 {
1180         struct ring_buffer_per_cpu *cpu_buffer;
1181         struct buffer_page *bpage;
1182         struct page *page;
1183         int ret;
1184
1185         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1186                                   GFP_KERNEL, cpu_to_node(cpu));
1187         if (!cpu_buffer)
1188                 return NULL;
1189
1190         cpu_buffer->cpu = cpu;
1191         cpu_buffer->buffer = buffer;
1192         raw_spin_lock_init(&cpu_buffer->reader_lock);
1193         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1194         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1195         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1196         init_completion(&cpu_buffer->update_done);
1197         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1198         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1199
1200         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1201                             GFP_KERNEL, cpu_to_node(cpu));
1202         if (!bpage)
1203                 goto fail_free_buffer;
1204
1205         rb_check_bpage(cpu_buffer, bpage);
1206
1207         cpu_buffer->reader_page = bpage;
1208         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1209         if (!page)
1210                 goto fail_free_reader;
1211         bpage->page = page_address(page);
1212         rb_init_page(bpage->page);
1213
1214         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1215         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1216
1217         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1218         if (ret < 0)
1219                 goto fail_free_reader;
1220
1221         cpu_buffer->head_page
1222                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1223         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1224
1225         rb_head_page_activate(cpu_buffer);
1226
1227         return cpu_buffer;
1228
1229  fail_free_reader:
1230         free_buffer_page(cpu_buffer->reader_page);
1231
1232  fail_free_buffer:
1233         kfree(cpu_buffer);
1234         return NULL;
1235 }
1236
1237 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1238 {
1239         struct list_head *head = cpu_buffer->pages;
1240         struct buffer_page *bpage, *tmp;
1241
1242         free_buffer_page(cpu_buffer->reader_page);
1243
1244         rb_head_page_deactivate(cpu_buffer);
1245
1246         if (head) {
1247                 list_for_each_entry_safe(bpage, tmp, head, list) {
1248                         list_del_init(&bpage->list);
1249                         free_buffer_page(bpage);
1250                 }
1251                 bpage = list_entry(head, struct buffer_page, list);
1252                 free_buffer_page(bpage);
1253         }
1254
1255         kfree(cpu_buffer);
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 static int rb_cpu_notify(struct notifier_block *self,
1260                          unsigned long action, void *hcpu);
1261 #endif
1262
1263 /**
1264  * __ring_buffer_alloc - allocate a new ring_buffer
1265  * @size: the size in bytes per cpu that is needed.
1266  * @flags: attributes to set for the ring buffer.
1267  *
1268  * Currently the only flag that is available is the RB_FL_OVERWRITE
1269  * flag. This flag means that the buffer will overwrite old data
1270  * when the buffer wraps. If this flag is not set, the buffer will
1271  * drop data when the tail hits the head.
1272  */
1273 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1274                                         struct lock_class_key *key)
1275 {
1276         struct ring_buffer *buffer;
1277         int bsize;
1278         int cpu, nr_pages;
1279
1280         /* keep it in its own cache line */
1281         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1282                          GFP_KERNEL);
1283         if (!buffer)
1284                 return NULL;
1285
1286         if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1287                 goto fail_free_buffer;
1288
1289         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1290         buffer->flags = flags;
1291         buffer->clock = trace_clock_local;
1292         buffer->reader_lock_key = key;
1293
1294         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1295         init_waitqueue_head(&buffer->irq_work.waiters);
1296
1297         /* need at least two pages */
1298         if (nr_pages < 2)
1299                 nr_pages = 2;
1300
1301         /*
1302          * In case of non-hotplug cpu, if the ring-buffer is allocated
1303          * in early initcall, it will not be notified of secondary cpus.
1304          * In that off case, we need to allocate for all possible cpus.
1305          */
1306 #ifdef CONFIG_HOTPLUG_CPU
1307         get_online_cpus();
1308         cpumask_copy(buffer->cpumask, cpu_online_mask);
1309 #else
1310         cpumask_copy(buffer->cpumask, cpu_possible_mask);
1311 #endif
1312         buffer->cpus = nr_cpu_ids;
1313
1314         bsize = sizeof(void *) * nr_cpu_ids;
1315         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1316                                   GFP_KERNEL);
1317         if (!buffer->buffers)
1318                 goto fail_free_cpumask;
1319
1320         for_each_buffer_cpu(buffer, cpu) {
1321                 buffer->buffers[cpu] =
1322                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1323                 if (!buffer->buffers[cpu])
1324                         goto fail_free_buffers;
1325         }
1326
1327 #ifdef CONFIG_HOTPLUG_CPU
1328         buffer->cpu_notify.notifier_call = rb_cpu_notify;
1329         buffer->cpu_notify.priority = 0;
1330         register_cpu_notifier(&buffer->cpu_notify);
1331 #endif
1332
1333         put_online_cpus();
1334         mutex_init(&buffer->mutex);
1335
1336         return buffer;
1337
1338  fail_free_buffers:
1339         for_each_buffer_cpu(buffer, cpu) {
1340                 if (buffer->buffers[cpu])
1341                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1342         }
1343         kfree(buffer->buffers);
1344
1345  fail_free_cpumask:
1346         free_cpumask_var(buffer->cpumask);
1347         put_online_cpus();
1348
1349  fail_free_buffer:
1350         kfree(buffer);
1351         return NULL;
1352 }
1353 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1354
1355 /**
1356  * ring_buffer_free - free a ring buffer.
1357  * @buffer: the buffer to free.
1358  */
1359 void
1360 ring_buffer_free(struct ring_buffer *buffer)
1361 {
1362         int cpu;
1363
1364         get_online_cpus();
1365
1366 #ifdef CONFIG_HOTPLUG_CPU
1367         unregister_cpu_notifier(&buffer->cpu_notify);
1368 #endif
1369
1370         for_each_buffer_cpu(buffer, cpu)
1371                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1372
1373         put_online_cpus();
1374
1375         kfree(buffer->buffers);
1376         free_cpumask_var(buffer->cpumask);
1377
1378         kfree(buffer);
1379 }
1380 EXPORT_SYMBOL_GPL(ring_buffer_free);
1381
1382 void ring_buffer_set_clock(struct ring_buffer *buffer,
1383                            u64 (*clock)(void))
1384 {
1385         buffer->clock = clock;
1386 }
1387
1388 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1389
1390 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1391 {
1392         return local_read(&bpage->entries) & RB_WRITE_MASK;
1393 }
1394
1395 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1396 {
1397         return local_read(&bpage->write) & RB_WRITE_MASK;
1398 }
1399
1400 static int
1401 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1402 {
1403         struct list_head *tail_page, *to_remove, *next_page;
1404         struct buffer_page *to_remove_page, *tmp_iter_page;
1405         struct buffer_page *last_page, *first_page;
1406         unsigned int nr_removed;
1407         unsigned long head_bit;
1408         int page_entries;
1409
1410         head_bit = 0;
1411
1412         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1413         atomic_inc(&cpu_buffer->record_disabled);
1414         /*
1415          * We don't race with the readers since we have acquired the reader
1416          * lock. We also don't race with writers after disabling recording.
1417          * This makes it easy to figure out the first and the last page to be
1418          * removed from the list. We unlink all the pages in between including
1419          * the first and last pages. This is done in a busy loop so that we
1420          * lose the least number of traces.
1421          * The pages are freed after we restart recording and unlock readers.
1422          */
1423         tail_page = &cpu_buffer->tail_page->list;
1424
1425         /*
1426          * tail page might be on reader page, we remove the next page
1427          * from the ring buffer
1428          */
1429         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1430                 tail_page = rb_list_head(tail_page->next);
1431         to_remove = tail_page;
1432
1433         /* start of pages to remove */
1434         first_page = list_entry(rb_list_head(to_remove->next),
1435                                 struct buffer_page, list);
1436
1437         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1438                 to_remove = rb_list_head(to_remove)->next;
1439                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1440         }
1441
1442         next_page = rb_list_head(to_remove)->next;
1443
1444         /*
1445          * Now we remove all pages between tail_page and next_page.
1446          * Make sure that we have head_bit value preserved for the
1447          * next page
1448          */
1449         tail_page->next = (struct list_head *)((unsigned long)next_page |
1450                                                 head_bit);
1451         next_page = rb_list_head(next_page);
1452         next_page->prev = tail_page;
1453
1454         /* make sure pages points to a valid page in the ring buffer */
1455         cpu_buffer->pages = next_page;
1456
1457         /* update head page */
1458         if (head_bit)
1459                 cpu_buffer->head_page = list_entry(next_page,
1460                                                 struct buffer_page, list);
1461
1462         /*
1463          * change read pointer to make sure any read iterators reset
1464          * themselves
1465          */
1466         cpu_buffer->read = 0;
1467
1468         /* pages are removed, resume tracing and then free the pages */
1469         atomic_dec(&cpu_buffer->record_disabled);
1470         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1471
1472         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1473
1474         /* last buffer page to remove */
1475         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1476                                 list);
1477         tmp_iter_page = first_page;
1478
1479         do {
1480                 to_remove_page = tmp_iter_page;
1481                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1482
1483                 /* update the counters */
1484                 page_entries = rb_page_entries(to_remove_page);
1485                 if (page_entries) {
1486                         /*
1487                          * If something was added to this page, it was full
1488                          * since it is not the tail page. So we deduct the
1489                          * bytes consumed in ring buffer from here.
1490                          * Increment overrun to account for the lost events.
1491                          */
1492                         local_add(page_entries, &cpu_buffer->overrun);
1493                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1494                 }
1495
1496                 /*
1497                  * We have already removed references to this list item, just
1498                  * free up the buffer_page and its page
1499                  */
1500                 free_buffer_page(to_remove_page);
1501                 nr_removed--;
1502
1503         } while (to_remove_page != last_page);
1504
1505         RB_WARN_ON(cpu_buffer, nr_removed);
1506
1507         return nr_removed == 0;
1508 }
1509
1510 static int
1511 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1512 {
1513         struct list_head *pages = &cpu_buffer->new_pages;
1514         int retries, success;
1515
1516         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1517         /*
1518          * We are holding the reader lock, so the reader page won't be swapped
1519          * in the ring buffer. Now we are racing with the writer trying to
1520          * move head page and the tail page.
1521          * We are going to adapt the reader page update process where:
1522          * 1. We first splice the start and end of list of new pages between
1523          *    the head page and its previous page.
1524          * 2. We cmpxchg the prev_page->next to point from head page to the
1525          *    start of new pages list.
1526          * 3. Finally, we update the head->prev to the end of new list.
1527          *
1528          * We will try this process 10 times, to make sure that we don't keep
1529          * spinning.
1530          */
1531         retries = 10;
1532         success = 0;
1533         while (retries--) {
1534                 struct list_head *head_page, *prev_page, *r;
1535                 struct list_head *last_page, *first_page;
1536                 struct list_head *head_page_with_bit;
1537
1538                 head_page = &rb_set_head_page(cpu_buffer)->list;
1539                 if (!head_page)
1540                         break;
1541                 prev_page = head_page->prev;
1542
1543                 first_page = pages->next;
1544                 last_page  = pages->prev;
1545
1546                 head_page_with_bit = (struct list_head *)
1547                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1548
1549                 last_page->next = head_page_with_bit;
1550                 first_page->prev = prev_page;
1551
1552                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1553
1554                 if (r == head_page_with_bit) {
1555                         /*
1556                          * yay, we replaced the page pointer to our new list,
1557                          * now, we just have to update to head page's prev
1558                          * pointer to point to end of list
1559                          */
1560                         head_page->prev = last_page;
1561                         success = 1;
1562                         break;
1563                 }
1564         }
1565
1566         if (success)
1567                 INIT_LIST_HEAD(pages);
1568         /*
1569          * If we weren't successful in adding in new pages, warn and stop
1570          * tracing
1571          */
1572         RB_WARN_ON(cpu_buffer, !success);
1573         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1574
1575         /* free pages if they weren't inserted */
1576         if (!success) {
1577                 struct buffer_page *bpage, *tmp;
1578                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1579                                          list) {
1580                         list_del_init(&bpage->list);
1581                         free_buffer_page(bpage);
1582                 }
1583         }
1584         return success;
1585 }
1586
1587 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1588 {
1589         int success;
1590
1591         if (cpu_buffer->nr_pages_to_update > 0)
1592                 success = rb_insert_pages(cpu_buffer);
1593         else
1594                 success = rb_remove_pages(cpu_buffer,
1595                                         -cpu_buffer->nr_pages_to_update);
1596
1597         if (success)
1598                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1599 }
1600
1601 static void update_pages_handler(struct work_struct *work)
1602 {
1603         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1604                         struct ring_buffer_per_cpu, update_pages_work);
1605         rb_update_pages(cpu_buffer);
1606         complete(&cpu_buffer->update_done);
1607 }
1608
1609 /**
1610  * ring_buffer_resize - resize the ring buffer
1611  * @buffer: the buffer to resize.
1612  * @size: the new size.
1613  * @cpu_id: the cpu buffer to resize
1614  *
1615  * Minimum size is 2 * BUF_PAGE_SIZE.
1616  *
1617  * Returns 0 on success and < 0 on failure.
1618  */
1619 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1620                         int cpu_id)
1621 {
1622         struct ring_buffer_per_cpu *cpu_buffer;
1623         unsigned nr_pages;
1624         int cpu, err = 0;
1625
1626         /*
1627          * Always succeed at resizing a non-existent buffer:
1628          */
1629         if (!buffer)
1630                 return size;
1631
1632         /* Make sure the requested buffer exists */
1633         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1634             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1635                 return size;
1636
1637         size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1638         size *= BUF_PAGE_SIZE;
1639
1640         /* we need a minimum of two pages */
1641         if (size < BUF_PAGE_SIZE * 2)
1642                 size = BUF_PAGE_SIZE * 2;
1643
1644         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1645
1646         /*
1647          * Don't succeed if resizing is disabled, as a reader might be
1648          * manipulating the ring buffer and is expecting a sane state while
1649          * this is true.
1650          */
1651         if (atomic_read(&buffer->resize_disabled))
1652                 return -EBUSY;
1653
1654         /* prevent another thread from changing buffer sizes */
1655         mutex_lock(&buffer->mutex);
1656
1657         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1658                 /* calculate the pages to update */
1659                 for_each_buffer_cpu(buffer, cpu) {
1660                         cpu_buffer = buffer->buffers[cpu];
1661
1662                         cpu_buffer->nr_pages_to_update = nr_pages -
1663                                                         cpu_buffer->nr_pages;
1664                         /*
1665                          * nothing more to do for removing pages or no update
1666                          */
1667                         if (cpu_buffer->nr_pages_to_update <= 0)
1668                                 continue;
1669                         /*
1670                          * to add pages, make sure all new pages can be
1671                          * allocated without receiving ENOMEM
1672                          */
1673                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1674                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1675                                                 &cpu_buffer->new_pages, cpu)) {
1676                                 /* not enough memory for new pages */
1677                                 err = -ENOMEM;
1678                                 goto out_err;
1679                         }
1680                 }
1681
1682                 get_online_cpus();
1683                 /*
1684                  * Fire off all the required work handlers
1685                  * We can't schedule on offline CPUs, but it's not necessary
1686                  * since we can change their buffer sizes without any race.
1687                  */
1688                 for_each_buffer_cpu(buffer, cpu) {
1689                         cpu_buffer = buffer->buffers[cpu];
1690                         if (!cpu_buffer->nr_pages_to_update)
1691                                 continue;
1692
1693                         /* The update must run on the CPU that is being updated. */
1694                         preempt_disable();
1695                         if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1696                                 rb_update_pages(cpu_buffer);
1697                                 cpu_buffer->nr_pages_to_update = 0;
1698                         } else {
1699                                 /*
1700                                  * Can not disable preemption for schedule_work_on()
1701                                  * on PREEMPT_RT.
1702                                  */
1703                                 preempt_enable();
1704                                 schedule_work_on(cpu,
1705                                                 &cpu_buffer->update_pages_work);
1706                                 preempt_disable();
1707                         }
1708                         preempt_enable();
1709                 }
1710
1711                 /* wait for all the updates to complete */
1712                 for_each_buffer_cpu(buffer, cpu) {
1713                         cpu_buffer = buffer->buffers[cpu];
1714                         if (!cpu_buffer->nr_pages_to_update)
1715                                 continue;
1716
1717                         if (cpu_online(cpu))
1718                                 wait_for_completion(&cpu_buffer->update_done);
1719                         cpu_buffer->nr_pages_to_update = 0;
1720                 }
1721
1722                 put_online_cpus();
1723         } else {
1724                 /* Make sure this CPU has been intitialized */
1725                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1726                         goto out;
1727
1728                 cpu_buffer = buffer->buffers[cpu_id];
1729
1730                 if (nr_pages == cpu_buffer->nr_pages)
1731                         goto out;
1732
1733                 cpu_buffer->nr_pages_to_update = nr_pages -
1734                                                 cpu_buffer->nr_pages;
1735
1736                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1737                 if (cpu_buffer->nr_pages_to_update > 0 &&
1738                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1739                                             &cpu_buffer->new_pages, cpu_id)) {
1740                         err = -ENOMEM;
1741                         goto out_err;
1742                 }
1743
1744                 get_online_cpus();
1745
1746                 preempt_disable();
1747                 /* The update must run on the CPU that is being updated. */
1748                 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1749                         rb_update_pages(cpu_buffer);
1750                 else {
1751                         /*
1752                          * Can not disable preemption for schedule_work_on()
1753                          * on PREEMPT_RT.
1754                          */
1755                         preempt_enable();
1756                         schedule_work_on(cpu_id,
1757                                          &cpu_buffer->update_pages_work);
1758                         wait_for_completion(&cpu_buffer->update_done);
1759                         preempt_disable();
1760                 }
1761                 preempt_enable();
1762
1763                 cpu_buffer->nr_pages_to_update = 0;
1764                 put_online_cpus();
1765         }
1766
1767  out:
1768         /*
1769          * The ring buffer resize can happen with the ring buffer
1770          * enabled, so that the update disturbs the tracing as little
1771          * as possible. But if the buffer is disabled, we do not need
1772          * to worry about that, and we can take the time to verify
1773          * that the buffer is not corrupt.
1774          */
1775         if (atomic_read(&buffer->record_disabled)) {
1776                 atomic_inc(&buffer->record_disabled);
1777                 /*
1778                  * Even though the buffer was disabled, we must make sure
1779                  * that it is truly disabled before calling rb_check_pages.
1780                  * There could have been a race between checking
1781                  * record_disable and incrementing it.
1782                  */
1783                 synchronize_sched();
1784                 for_each_buffer_cpu(buffer, cpu) {
1785                         cpu_buffer = buffer->buffers[cpu];
1786                         rb_check_pages(cpu_buffer);
1787                 }
1788                 atomic_dec(&buffer->record_disabled);
1789         }
1790
1791         mutex_unlock(&buffer->mutex);
1792         return size;
1793
1794  out_err:
1795         for_each_buffer_cpu(buffer, cpu) {
1796                 struct buffer_page *bpage, *tmp;
1797
1798                 cpu_buffer = buffer->buffers[cpu];
1799                 cpu_buffer->nr_pages_to_update = 0;
1800
1801                 if (list_empty(&cpu_buffer->new_pages))
1802                         continue;
1803
1804                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1805                                         list) {
1806                         list_del_init(&bpage->list);
1807                         free_buffer_page(bpage);
1808                 }
1809         }
1810         mutex_unlock(&buffer->mutex);
1811         return err;
1812 }
1813 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1814
1815 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1816 {
1817         mutex_lock(&buffer->mutex);
1818         if (val)
1819                 buffer->flags |= RB_FL_OVERWRITE;
1820         else
1821                 buffer->flags &= ~RB_FL_OVERWRITE;
1822         mutex_unlock(&buffer->mutex);
1823 }
1824 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1825
1826 static inline void *
1827 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1828 {
1829         return bpage->data + index;
1830 }
1831
1832 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1833 {
1834         return bpage->page->data + index;
1835 }
1836
1837 static inline struct ring_buffer_event *
1838 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1839 {
1840         return __rb_page_index(cpu_buffer->reader_page,
1841                                cpu_buffer->reader_page->read);
1842 }
1843
1844 static inline struct ring_buffer_event *
1845 rb_iter_head_event(struct ring_buffer_iter *iter)
1846 {
1847         return __rb_page_index(iter->head_page, iter->head);
1848 }
1849
1850 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1851 {
1852         return local_read(&bpage->page->commit);
1853 }
1854
1855 /* Size is determined by what has been committed */
1856 static inline unsigned rb_page_size(struct buffer_page *bpage)
1857 {
1858         return rb_page_commit(bpage);
1859 }
1860
1861 static inline unsigned
1862 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1863 {
1864         return rb_page_commit(cpu_buffer->commit_page);
1865 }
1866
1867 static inline unsigned
1868 rb_event_index(struct ring_buffer_event *event)
1869 {
1870         unsigned long addr = (unsigned long)event;
1871
1872         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1873 }
1874
1875 static inline int
1876 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1877                    struct ring_buffer_event *event)
1878 {
1879         unsigned long addr = (unsigned long)event;
1880         unsigned long index;
1881
1882         index = rb_event_index(event);
1883         addr &= PAGE_MASK;
1884
1885         return cpu_buffer->commit_page->page == (void *)addr &&
1886                 rb_commit_index(cpu_buffer) == index;
1887 }
1888
1889 static void
1890 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1891 {
1892         unsigned long max_count;
1893
1894         /*
1895          * We only race with interrupts and NMIs on this CPU.
1896          * If we own the commit event, then we can commit
1897          * all others that interrupted us, since the interruptions
1898          * are in stack format (they finish before they come
1899          * back to us). This allows us to do a simple loop to
1900          * assign the commit to the tail.
1901          */
1902  again:
1903         max_count = cpu_buffer->nr_pages * 100;
1904
1905         while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1906                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1907                         return;
1908                 if (RB_WARN_ON(cpu_buffer,
1909                                rb_is_reader_page(cpu_buffer->tail_page)))
1910                         return;
1911                 local_set(&cpu_buffer->commit_page->page->commit,
1912                           rb_page_write(cpu_buffer->commit_page));
1913                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1914                 cpu_buffer->write_stamp =
1915                         cpu_buffer->commit_page->page->time_stamp;
1916                 /* add barrier to keep gcc from optimizing too much */
1917                 barrier();
1918         }
1919         while (rb_commit_index(cpu_buffer) !=
1920                rb_page_write(cpu_buffer->commit_page)) {
1921
1922                 local_set(&cpu_buffer->commit_page->page->commit,
1923                           rb_page_write(cpu_buffer->commit_page));
1924                 RB_WARN_ON(cpu_buffer,
1925                            local_read(&cpu_buffer->commit_page->page->commit) &
1926                            ~RB_WRITE_MASK);
1927                 barrier();
1928         }
1929
1930         /* again, keep gcc from optimizing */
1931         barrier();
1932
1933         /*
1934          * If an interrupt came in just after the first while loop
1935          * and pushed the tail page forward, we will be left with
1936          * a dangling commit that will never go forward.
1937          */
1938         if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1939                 goto again;
1940 }
1941
1942 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1943 {
1944         cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1945         cpu_buffer->reader_page->read = 0;
1946 }
1947
1948 static void rb_inc_iter(struct ring_buffer_iter *iter)
1949 {
1950         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1951
1952         /*
1953          * The iterator could be on the reader page (it starts there).
1954          * But the head could have moved, since the reader was
1955          * found. Check for this case and assign the iterator
1956          * to the head page instead of next.
1957          */
1958         if (iter->head_page == cpu_buffer->reader_page)
1959                 iter->head_page = rb_set_head_page(cpu_buffer);
1960         else
1961                 rb_inc_page(cpu_buffer, &iter->head_page);
1962
1963         iter->read_stamp = iter->head_page->page->time_stamp;
1964         iter->head = 0;
1965 }
1966
1967 /* Slow path, do not inline */
1968 static noinline struct ring_buffer_event *
1969 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1970 {
1971         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1972
1973         /* Not the first event on the page? */
1974         if (rb_event_index(event)) {
1975                 event->time_delta = delta & TS_MASK;
1976                 event->array[0] = delta >> TS_SHIFT;
1977         } else {
1978                 /* nope, just zero it */
1979                 event->time_delta = 0;
1980                 event->array[0] = 0;
1981         }
1982
1983         return skip_time_extend(event);
1984 }
1985
1986 /**
1987  * rb_update_event - update event type and data
1988  * @event: the even to update
1989  * @type: the type of event
1990  * @length: the size of the event field in the ring buffer
1991  *
1992  * Update the type and data fields of the event. The length
1993  * is the actual size that is written to the ring buffer,
1994  * and with this, we can determine what to place into the
1995  * data field.
1996  */
1997 static void
1998 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1999                 struct ring_buffer_event *event, unsigned length,
2000                 int add_timestamp, u64 delta)
2001 {
2002         /* Only a commit updates the timestamp */
2003         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2004                 delta = 0;
2005
2006         /*
2007          * If we need to add a timestamp, then we
2008          * add it to the start of the resevered space.
2009          */
2010         if (unlikely(add_timestamp)) {
2011                 event = rb_add_time_stamp(event, delta);
2012                 length -= RB_LEN_TIME_EXTEND;
2013                 delta = 0;
2014         }
2015
2016         event->time_delta = delta;
2017         length -= RB_EVNT_HDR_SIZE;
2018         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2019                 event->type_len = 0;
2020                 event->array[0] = length;
2021         } else
2022                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2023 }
2024
2025 /*
2026  * rb_handle_head_page - writer hit the head page
2027  *
2028  * Returns: +1 to retry page
2029  *           0 to continue
2030  *          -1 on error
2031  */
2032 static int
2033 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2034                     struct buffer_page *tail_page,
2035                     struct buffer_page *next_page)
2036 {
2037         struct buffer_page *new_head;
2038         int entries;
2039         int type;
2040         int ret;
2041
2042         entries = rb_page_entries(next_page);
2043
2044         /*
2045          * The hard part is here. We need to move the head
2046          * forward, and protect against both readers on
2047          * other CPUs and writers coming in via interrupts.
2048          */
2049         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2050                                        RB_PAGE_HEAD);
2051
2052         /*
2053          * type can be one of four:
2054          *  NORMAL - an interrupt already moved it for us
2055          *  HEAD   - we are the first to get here.
2056          *  UPDATE - we are the interrupt interrupting
2057          *           a current move.
2058          *  MOVED  - a reader on another CPU moved the next
2059          *           pointer to its reader page. Give up
2060          *           and try again.
2061          */
2062
2063         switch (type) {
2064         case RB_PAGE_HEAD:
2065                 /*
2066                  * We changed the head to UPDATE, thus
2067                  * it is our responsibility to update
2068                  * the counters.
2069                  */
2070                 local_add(entries, &cpu_buffer->overrun);
2071                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2072
2073                 /*
2074                  * The entries will be zeroed out when we move the
2075                  * tail page.
2076                  */
2077
2078                 /* still more to do */
2079                 break;
2080
2081         case RB_PAGE_UPDATE:
2082                 /*
2083                  * This is an interrupt that interrupt the
2084                  * previous update. Still more to do.
2085                  */
2086                 break;
2087         case RB_PAGE_NORMAL:
2088                 /*
2089                  * An interrupt came in before the update
2090                  * and processed this for us.
2091                  * Nothing left to do.
2092                  */
2093                 return 1;
2094         case RB_PAGE_MOVED:
2095                 /*
2096                  * The reader is on another CPU and just did
2097                  * a swap with our next_page.
2098                  * Try again.
2099                  */
2100                 return 1;
2101         default:
2102                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2103                 return -1;
2104         }
2105
2106         /*
2107          * Now that we are here, the old head pointer is
2108          * set to UPDATE. This will keep the reader from
2109          * swapping the head page with the reader page.
2110          * The reader (on another CPU) will spin till
2111          * we are finished.
2112          *
2113          * We just need to protect against interrupts
2114          * doing the job. We will set the next pointer
2115          * to HEAD. After that, we set the old pointer
2116          * to NORMAL, but only if it was HEAD before.
2117          * otherwise we are an interrupt, and only
2118          * want the outer most commit to reset it.
2119          */
2120         new_head = next_page;
2121         rb_inc_page(cpu_buffer, &new_head);
2122
2123         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2124                                     RB_PAGE_NORMAL);
2125
2126         /*
2127          * Valid returns are:
2128          *  HEAD   - an interrupt came in and already set it.
2129          *  NORMAL - One of two things:
2130          *            1) We really set it.
2131          *            2) A bunch of interrupts came in and moved
2132          *               the page forward again.
2133          */
2134         switch (ret) {
2135         case RB_PAGE_HEAD:
2136         case RB_PAGE_NORMAL:
2137                 /* OK */
2138                 break;
2139         default:
2140                 RB_WARN_ON(cpu_buffer, 1);
2141                 return -1;
2142         }
2143
2144         /*
2145          * It is possible that an interrupt came in,
2146          * set the head up, then more interrupts came in
2147          * and moved it again. When we get back here,
2148          * the page would have been set to NORMAL but we
2149          * just set it back to HEAD.
2150          *
2151          * How do you detect this? Well, if that happened
2152          * the tail page would have moved.
2153          */
2154         if (ret == RB_PAGE_NORMAL) {
2155                 /*
2156                  * If the tail had moved passed next, then we need
2157                  * to reset the pointer.
2158                  */
2159                 if (cpu_buffer->tail_page != tail_page &&
2160                     cpu_buffer->tail_page != next_page)
2161                         rb_head_page_set_normal(cpu_buffer, new_head,
2162                                                 next_page,
2163                                                 RB_PAGE_HEAD);
2164         }
2165
2166         /*
2167          * If this was the outer most commit (the one that
2168          * changed the original pointer from HEAD to UPDATE),
2169          * then it is up to us to reset it to NORMAL.
2170          */
2171         if (type == RB_PAGE_HEAD) {
2172                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2173                                               tail_page,
2174                                               RB_PAGE_UPDATE);
2175                 if (RB_WARN_ON(cpu_buffer,
2176                                ret != RB_PAGE_UPDATE))
2177                         return -1;
2178         }
2179
2180         return 0;
2181 }
2182
2183 static unsigned rb_calculate_event_length(unsigned length)
2184 {
2185         struct ring_buffer_event event; /* Used only for sizeof array */
2186
2187         /* zero length can cause confusions */
2188         if (!length)
2189                 length = 1;
2190
2191         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2192                 length += sizeof(event.array[0]);
2193
2194         length += RB_EVNT_HDR_SIZE;
2195         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2196
2197         return length;
2198 }
2199
2200 static inline void
2201 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2202               struct buffer_page *tail_page,
2203               unsigned long tail, unsigned long length)
2204 {
2205         struct ring_buffer_event *event;
2206
2207         /*
2208          * Only the event that crossed the page boundary
2209          * must fill the old tail_page with padding.
2210          */
2211         if (tail >= BUF_PAGE_SIZE) {
2212                 /*
2213                  * If the page was filled, then we still need
2214                  * to update the real_end. Reset it to zero
2215                  * and the reader will ignore it.
2216                  */
2217                 if (tail == BUF_PAGE_SIZE)
2218                         tail_page->real_end = 0;
2219
2220                 local_sub(length, &tail_page->write);
2221                 return;
2222         }
2223
2224         event = __rb_page_index(tail_page, tail);
2225         kmemcheck_annotate_bitfield(event, bitfield);
2226
2227         /* account for padding bytes */
2228         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2229
2230         /*
2231          * Save the original length to the meta data.
2232          * This will be used by the reader to add lost event
2233          * counter.
2234          */
2235         tail_page->real_end = tail;
2236
2237         /*
2238          * If this event is bigger than the minimum size, then
2239          * we need to be careful that we don't subtract the
2240          * write counter enough to allow another writer to slip
2241          * in on this page.
2242          * We put in a discarded commit instead, to make sure
2243          * that this space is not used again.
2244          *
2245          * If we are less than the minimum size, we don't need to
2246          * worry about it.
2247          */
2248         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2249                 /* No room for any events */
2250
2251                 /* Mark the rest of the page with padding */
2252                 rb_event_set_padding(event);
2253
2254                 /* Set the write back to the previous setting */
2255                 local_sub(length, &tail_page->write);
2256                 return;
2257         }
2258
2259         /* Put in a discarded event */
2260         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2261         event->type_len = RINGBUF_TYPE_PADDING;
2262         /* time delta must be non zero */
2263         event->time_delta = 1;
2264
2265         /* Set write to end of buffer */
2266         length = (tail + length) - BUF_PAGE_SIZE;
2267         local_sub(length, &tail_page->write);
2268 }
2269
2270 /*
2271  * This is the slow path, force gcc not to inline it.
2272  */
2273 static noinline struct ring_buffer_event *
2274 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2275              unsigned long length, unsigned long tail,
2276              struct buffer_page *tail_page, u64 ts)
2277 {
2278         struct buffer_page *commit_page = cpu_buffer->commit_page;
2279         struct ring_buffer *buffer = cpu_buffer->buffer;
2280         struct buffer_page *next_page;
2281         int ret;
2282
2283         next_page = tail_page;
2284
2285         rb_inc_page(cpu_buffer, &next_page);
2286
2287         /*
2288          * If for some reason, we had an interrupt storm that made
2289          * it all the way around the buffer, bail, and warn
2290          * about it.
2291          */
2292         if (unlikely(next_page == commit_page)) {
2293                 local_inc(&cpu_buffer->commit_overrun);
2294                 goto out_reset;
2295         }
2296
2297         /*
2298          * This is where the fun begins!
2299          *
2300          * We are fighting against races between a reader that
2301          * could be on another CPU trying to swap its reader
2302          * page with the buffer head.
2303          *
2304          * We are also fighting against interrupts coming in and
2305          * moving the head or tail on us as well.
2306          *
2307          * If the next page is the head page then we have filled
2308          * the buffer, unless the commit page is still on the
2309          * reader page.
2310          */
2311         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2312
2313                 /*
2314                  * If the commit is not on the reader page, then
2315                  * move the header page.
2316                  */
2317                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2318                         /*
2319                          * If we are not in overwrite mode,
2320                          * this is easy, just stop here.
2321                          */
2322                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2323                                 local_inc(&cpu_buffer->dropped_events);
2324                                 goto out_reset;
2325                         }
2326
2327                         ret = rb_handle_head_page(cpu_buffer,
2328                                                   tail_page,
2329                                                   next_page);
2330                         if (ret < 0)
2331                                 goto out_reset;
2332                         if (ret)
2333                                 goto out_again;
2334                 } else {
2335                         /*
2336                          * We need to be careful here too. The
2337                          * commit page could still be on the reader
2338                          * page. We could have a small buffer, and
2339                          * have filled up the buffer with events
2340                          * from interrupts and such, and wrapped.
2341                          *
2342                          * Note, if the tail page is also the on the
2343                          * reader_page, we let it move out.
2344                          */
2345                         if (unlikely((cpu_buffer->commit_page !=
2346                                       cpu_buffer->tail_page) &&
2347                                      (cpu_buffer->commit_page ==
2348                                       cpu_buffer->reader_page))) {
2349                                 local_inc(&cpu_buffer->commit_overrun);
2350                                 goto out_reset;
2351                         }
2352                 }
2353         }
2354
2355         ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2356         if (ret) {
2357                 /*
2358                  * Nested commits always have zero deltas, so
2359                  * just reread the time stamp
2360                  */
2361                 ts = rb_time_stamp(buffer);
2362                 next_page->page->time_stamp = ts;
2363         }
2364
2365  out_again:
2366
2367         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2368
2369         /* fail and let the caller try again */
2370         return ERR_PTR(-EAGAIN);
2371
2372  out_reset:
2373         /* reset write */
2374         rb_reset_tail(cpu_buffer, tail_page, tail, length);
2375
2376         return NULL;
2377 }
2378
2379 static struct ring_buffer_event *
2380 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2381                   unsigned long length, u64 ts,
2382                   u64 delta, int add_timestamp)
2383 {
2384         struct buffer_page *tail_page;
2385         struct ring_buffer_event *event;
2386         unsigned long tail, write;
2387
2388         /*
2389          * If the time delta since the last event is too big to
2390          * hold in the time field of the event, then we append a
2391          * TIME EXTEND event ahead of the data event.
2392          */
2393         if (unlikely(add_timestamp))
2394                 length += RB_LEN_TIME_EXTEND;
2395
2396         tail_page = cpu_buffer->tail_page;
2397         write = local_add_return(length, &tail_page->write);
2398
2399         /* set write to only the index of the write */
2400         write &= RB_WRITE_MASK;
2401         tail = write - length;
2402
2403         /*
2404          * If this is the first commit on the page, then it has the same
2405          * timestamp as the page itself.
2406          */
2407         if (!tail)
2408                 delta = 0;
2409
2410         /* See if we shot pass the end of this buffer page */
2411         if (unlikely(write > BUF_PAGE_SIZE))
2412                 return rb_move_tail(cpu_buffer, length, tail,
2413                                     tail_page, ts);
2414
2415         /* We reserved something on the buffer */
2416
2417         event = __rb_page_index(tail_page, tail);
2418         kmemcheck_annotate_bitfield(event, bitfield);
2419         rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2420
2421         local_inc(&tail_page->entries);
2422
2423         /*
2424          * If this is the first commit on the page, then update
2425          * its timestamp.
2426          */
2427         if (!tail)
2428                 tail_page->page->time_stamp = ts;
2429
2430         /* account for these added bytes */
2431         local_add(length, &cpu_buffer->entries_bytes);
2432
2433         return event;
2434 }
2435
2436 static inline int
2437 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2438                   struct ring_buffer_event *event)
2439 {
2440         unsigned long new_index, old_index;
2441         struct buffer_page *bpage;
2442         unsigned long index;
2443         unsigned long addr;
2444
2445         new_index = rb_event_index(event);
2446         old_index = new_index + rb_event_ts_length(event);
2447         addr = (unsigned long)event;
2448         addr &= PAGE_MASK;
2449
2450         bpage = cpu_buffer->tail_page;
2451
2452         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2453                 unsigned long write_mask =
2454                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2455                 unsigned long event_length = rb_event_length(event);
2456                 /*
2457                  * This is on the tail page. It is possible that
2458                  * a write could come in and move the tail page
2459                  * and write to the next page. That is fine
2460                  * because we just shorten what is on this page.
2461                  */
2462                 old_index += write_mask;
2463                 new_index += write_mask;
2464                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2465                 if (index == old_index) {
2466                         /* update counters */
2467                         local_sub(event_length, &cpu_buffer->entries_bytes);
2468                         return 1;
2469                 }
2470         }
2471
2472         /* could not discard */
2473         return 0;
2474 }
2475
2476 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2477 {
2478         local_inc(&cpu_buffer->committing);
2479         local_inc(&cpu_buffer->commits);
2480 }
2481
2482 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2483 {
2484         unsigned long commits;
2485
2486         if (RB_WARN_ON(cpu_buffer,
2487                        !local_read(&cpu_buffer->committing)))
2488                 return;
2489
2490  again:
2491         commits = local_read(&cpu_buffer->commits);
2492         /* synchronize with interrupts */
2493         barrier();
2494         if (local_read(&cpu_buffer->committing) == 1)
2495                 rb_set_commit_to_write(cpu_buffer);
2496
2497         local_dec(&cpu_buffer->committing);
2498
2499         /* synchronize with interrupts */
2500         barrier();
2501
2502         /*
2503          * Need to account for interrupts coming in between the
2504          * updating of the commit page and the clearing of the
2505          * committing counter.
2506          */
2507         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2508             !local_read(&cpu_buffer->committing)) {
2509                 local_inc(&cpu_buffer->committing);
2510                 goto again;
2511         }
2512 }
2513
2514 static struct ring_buffer_event *
2515 rb_reserve_next_event(struct ring_buffer *buffer,
2516                       struct ring_buffer_per_cpu *cpu_buffer,
2517                       unsigned long length)
2518 {
2519         struct ring_buffer_event *event;
2520         u64 ts, delta;
2521         int nr_loops = 0;
2522         int add_timestamp;
2523         u64 diff;
2524
2525         rb_start_commit(cpu_buffer);
2526
2527 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2528         /*
2529          * Due to the ability to swap a cpu buffer from a buffer
2530          * it is possible it was swapped before we committed.
2531          * (committing stops a swap). We check for it here and
2532          * if it happened, we have to fail the write.
2533          */
2534         barrier();
2535         if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2536                 local_dec(&cpu_buffer->committing);
2537                 local_dec(&cpu_buffer->commits);
2538                 return NULL;
2539         }
2540 #endif
2541
2542         length = rb_calculate_event_length(length);
2543  again:
2544         add_timestamp = 0;
2545         delta = 0;
2546
2547         /*
2548          * We allow for interrupts to reenter here and do a trace.
2549          * If one does, it will cause this original code to loop
2550          * back here. Even with heavy interrupts happening, this
2551          * should only happen a few times in a row. If this happens
2552          * 1000 times in a row, there must be either an interrupt
2553          * storm or we have something buggy.
2554          * Bail!
2555          */
2556         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2557                 goto out_fail;
2558
2559         ts = rb_time_stamp(cpu_buffer->buffer);
2560         diff = ts - cpu_buffer->write_stamp;
2561
2562         /* make sure this diff is calculated here */
2563         barrier();
2564
2565         /* Did the write stamp get updated already? */
2566         if (likely(ts >= cpu_buffer->write_stamp)) {
2567                 delta = diff;
2568                 if (unlikely(test_time_stamp(delta))) {
2569                         int local_clock_stable = 1;
2570 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2571                         local_clock_stable = sched_clock_stable();
2572 #endif
2573                         WARN_ONCE(delta > (1ULL << 59),
2574                                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2575                                   (unsigned long long)delta,
2576                                   (unsigned long long)ts,
2577                                   (unsigned long long)cpu_buffer->write_stamp,
2578                                   local_clock_stable ? "" :
2579                                   "If you just came from a suspend/resume,\n"
2580                                   "please switch to the trace global clock:\n"
2581                                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2582                         add_timestamp = 1;
2583                 }
2584         }
2585
2586         event = __rb_reserve_next(cpu_buffer, length, ts,
2587                                   delta, add_timestamp);
2588         if (unlikely(PTR_ERR(event) == -EAGAIN))
2589                 goto again;
2590
2591         if (!event)
2592                 goto out_fail;
2593
2594         return event;
2595
2596  out_fail:
2597         rb_end_commit(cpu_buffer);
2598         return NULL;
2599 }
2600
2601 #ifdef CONFIG_TRACING
2602
2603 /*
2604  * The lock and unlock are done within a preempt disable section.
2605  * The current_context per_cpu variable can only be modified
2606  * by the current task between lock and unlock. But it can
2607  * be modified more than once via an interrupt. To pass this
2608  * information from the lock to the unlock without having to
2609  * access the 'in_interrupt()' functions again (which do show
2610  * a bit of overhead in something as critical as function tracing,
2611  * we use a bitmask trick.
2612  *
2613  *  bit 0 =  NMI context
2614  *  bit 1 =  IRQ context
2615  *  bit 2 =  SoftIRQ context
2616  *  bit 3 =  normal context.
2617  *
2618  * This works because this is the order of contexts that can
2619  * preempt other contexts. A SoftIRQ never preempts an IRQ
2620  * context.
2621  *
2622  * When the context is determined, the corresponding bit is
2623  * checked and set (if it was set, then a recursion of that context
2624  * happened).
2625  *
2626  * On unlock, we need to clear this bit. To do so, just subtract
2627  * 1 from the current_context and AND it to itself.
2628  *
2629  * (binary)
2630  *  101 - 1 = 100
2631  *  101 & 100 = 100 (clearing bit zero)
2632  *
2633  *  1010 - 1 = 1001
2634  *  1010 & 1001 = 1000 (clearing bit 1)
2635  *
2636  * The least significant bit can be cleared this way, and it
2637  * just so happens that it is the same bit corresponding to
2638  * the current context.
2639  */
2640 static DEFINE_PER_CPU(unsigned int, current_context);
2641
2642 static __always_inline int trace_recursive_lock(void)
2643 {
2644         unsigned int val = this_cpu_read(current_context);
2645         int bit;
2646
2647         if (in_interrupt()) {
2648                 if (in_nmi())
2649                         bit = 0;
2650                 else if (in_irq())
2651                         bit = 1;
2652                 else
2653                         bit = 2;
2654         } else
2655                 bit = 3;
2656
2657         if (unlikely(val & (1 << bit)))
2658                 return 1;
2659
2660         val |= (1 << bit);
2661         this_cpu_write(current_context, val);
2662
2663         return 0;
2664 }
2665
2666 static __always_inline void trace_recursive_unlock(void)
2667 {
2668         unsigned int val = this_cpu_read(current_context);
2669
2670         val--;
2671         val &= this_cpu_read(current_context);
2672         this_cpu_write(current_context, val);
2673 }
2674
2675 #else
2676
2677 #define trace_recursive_lock()          (0)
2678 #define trace_recursive_unlock()        do { } while (0)
2679
2680 #endif
2681
2682 /**
2683  * ring_buffer_lock_reserve - reserve a part of the buffer
2684  * @buffer: the ring buffer to reserve from
2685  * @length: the length of the data to reserve (excluding event header)
2686  *
2687  * Returns a reseverd event on the ring buffer to copy directly to.
2688  * The user of this interface will need to get the body to write into
2689  * and can use the ring_buffer_event_data() interface.
2690  *
2691  * The length is the length of the data needed, not the event length
2692  * which also includes the event header.
2693  *
2694  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2695  * If NULL is returned, then nothing has been allocated or locked.
2696  */
2697 struct ring_buffer_event *
2698 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2699 {
2700         struct ring_buffer_per_cpu *cpu_buffer;
2701         struct ring_buffer_event *event;
2702         int cpu;
2703
2704         if (ring_buffer_flags != RB_BUFFERS_ON)
2705                 return NULL;
2706
2707         /* If we are tracing schedule, we don't want to recurse */
2708         preempt_disable_notrace();
2709
2710         if (atomic_read(&buffer->record_disabled))
2711                 goto out_nocheck;
2712
2713         if (trace_recursive_lock())
2714                 goto out_nocheck;
2715
2716         cpu = raw_smp_processor_id();
2717
2718         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2719                 goto out;
2720
2721         cpu_buffer = buffer->buffers[cpu];
2722
2723         if (atomic_read(&cpu_buffer->record_disabled))
2724                 goto out;
2725
2726         if (length > BUF_MAX_DATA_SIZE)
2727                 goto out;
2728
2729         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2730         if (!event)
2731                 goto out;
2732
2733         return event;
2734
2735  out:
2736         trace_recursive_unlock();
2737
2738  out_nocheck:
2739         preempt_enable_notrace();
2740         return NULL;
2741 }
2742 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2743
2744 static void
2745 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2746                       struct ring_buffer_event *event)
2747 {
2748         u64 delta;
2749
2750         /*
2751          * The event first in the commit queue updates the
2752          * time stamp.
2753          */
2754         if (rb_event_is_commit(cpu_buffer, event)) {
2755                 /*
2756                  * A commit event that is first on a page
2757                  * updates the write timestamp with the page stamp
2758                  */
2759                 if (!rb_event_index(event))
2760                         cpu_buffer->write_stamp =
2761                                 cpu_buffer->commit_page->page->time_stamp;
2762                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2763                         delta = event->array[0];
2764                         delta <<= TS_SHIFT;
2765                         delta += event->time_delta;
2766                         cpu_buffer->write_stamp += delta;
2767                 } else
2768                         cpu_buffer->write_stamp += event->time_delta;
2769         }
2770 }
2771
2772 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2773                       struct ring_buffer_event *event)
2774 {
2775         local_inc(&cpu_buffer->entries);
2776         rb_update_write_stamp(cpu_buffer, event);
2777         rb_end_commit(cpu_buffer);
2778 }
2779
2780 static __always_inline void
2781 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2782 {
2783         if (buffer->irq_work.waiters_pending) {
2784                 buffer->irq_work.waiters_pending = false;
2785                 /* irq_work_queue() supplies it's own memory barriers */
2786                 irq_work_queue(&buffer->irq_work.work);
2787         }
2788
2789         if (cpu_buffer->irq_work.waiters_pending) {
2790                 cpu_buffer->irq_work.waiters_pending = false;
2791                 /* irq_work_queue() supplies it's own memory barriers */
2792                 irq_work_queue(&cpu_buffer->irq_work.work);
2793         }
2794 }
2795
2796 /**
2797  * ring_buffer_unlock_commit - commit a reserved
2798  * @buffer: The buffer to commit to
2799  * @event: The event pointer to commit.
2800  *
2801  * This commits the data to the ring buffer, and releases any locks held.
2802  *
2803  * Must be paired with ring_buffer_lock_reserve.
2804  */
2805 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2806                               struct ring_buffer_event *event)
2807 {
2808         struct ring_buffer_per_cpu *cpu_buffer;
2809         int cpu = raw_smp_processor_id();
2810
2811         cpu_buffer = buffer->buffers[cpu];
2812
2813         rb_commit(cpu_buffer, event);
2814
2815         rb_wakeups(buffer, cpu_buffer);
2816
2817         trace_recursive_unlock();
2818
2819         preempt_enable_notrace();
2820
2821         return 0;
2822 }
2823 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2824
2825 static inline void rb_event_discard(struct ring_buffer_event *event)
2826 {
2827         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2828                 event = skip_time_extend(event);
2829
2830         /* array[0] holds the actual length for the discarded event */
2831         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2832         event->type_len = RINGBUF_TYPE_PADDING;
2833         /* time delta must be non zero */
2834         if (!event->time_delta)
2835                 event->time_delta = 1;
2836 }
2837
2838 /*
2839  * Decrement the entries to the page that an event is on.
2840  * The event does not even need to exist, only the pointer
2841  * to the page it is on. This may only be called before the commit
2842  * takes place.
2843  */
2844 static inline void
2845 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2846                    struct ring_buffer_event *event)
2847 {
2848         unsigned long addr = (unsigned long)event;
2849         struct buffer_page *bpage = cpu_buffer->commit_page;
2850         struct buffer_page *start;
2851
2852         addr &= PAGE_MASK;
2853
2854         /* Do the likely case first */
2855         if (likely(bpage->page == (void *)addr)) {
2856                 local_dec(&bpage->entries);
2857                 return;
2858         }
2859
2860         /*
2861          * Because the commit page may be on the reader page we
2862          * start with the next page and check the end loop there.
2863          */
2864         rb_inc_page(cpu_buffer, &bpage);
2865         start = bpage;
2866         do {
2867                 if (bpage->page == (void *)addr) {
2868                         local_dec(&bpage->entries);
2869                         return;
2870                 }
2871                 rb_inc_page(cpu_buffer, &bpage);
2872         } while (bpage != start);
2873
2874         /* commit not part of this buffer?? */
2875         RB_WARN_ON(cpu_buffer, 1);
2876 }
2877
2878 /**
2879  * ring_buffer_commit_discard - discard an event that has not been committed
2880  * @buffer: the ring buffer
2881  * @event: non committed event to discard
2882  *
2883  * Sometimes an event that is in the ring buffer needs to be ignored.
2884  * This function lets the user discard an event in the ring buffer
2885  * and then that event will not be read later.
2886  *
2887  * This function only works if it is called before the the item has been
2888  * committed. It will try to free the event from the ring buffer
2889  * if another event has not been added behind it.
2890  *
2891  * If another event has been added behind it, it will set the event
2892  * up as discarded, and perform the commit.
2893  *
2894  * If this function is called, do not call ring_buffer_unlock_commit on
2895  * the event.
2896  */
2897 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2898                                 struct ring_buffer_event *event)
2899 {
2900         struct ring_buffer_per_cpu *cpu_buffer;
2901         int cpu;
2902
2903         /* The event is discarded regardless */
2904         rb_event_discard(event);
2905
2906         cpu = smp_processor_id();
2907         cpu_buffer = buffer->buffers[cpu];
2908
2909         /*
2910          * This must only be called if the event has not been
2911          * committed yet. Thus we can assume that preemption
2912          * is still disabled.
2913          */
2914         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2915
2916         rb_decrement_entry(cpu_buffer, event);
2917         if (rb_try_to_discard(cpu_buffer, event))
2918                 goto out;
2919
2920         /*
2921          * The commit is still visible by the reader, so we
2922          * must still update the timestamp.
2923          */
2924         rb_update_write_stamp(cpu_buffer, event);
2925  out:
2926         rb_end_commit(cpu_buffer);
2927
2928         trace_recursive_unlock();
2929
2930         preempt_enable_notrace();
2931
2932 }
2933 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2934
2935 /**
2936  * ring_buffer_write - write data to the buffer without reserving
2937  * @buffer: The ring buffer to write to.
2938  * @length: The length of the data being written (excluding the event header)
2939  * @data: The data to write to the buffer.
2940  *
2941  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2942  * one function. If you already have the data to write to the buffer, it
2943  * may be easier to simply call this function.
2944  *
2945  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2946  * and not the length of the event which would hold the header.
2947  */
2948 int ring_buffer_write(struct ring_buffer *buffer,
2949                       unsigned long length,
2950                       void *data)
2951 {
2952         struct ring_buffer_per_cpu *cpu_buffer;
2953         struct ring_buffer_event *event;
2954         void *body;
2955         int ret = -EBUSY;
2956         int cpu;
2957
2958         if (ring_buffer_flags != RB_BUFFERS_ON)
2959                 return -EBUSY;
2960
2961         preempt_disable_notrace();
2962
2963         if (atomic_read(&buffer->record_disabled))
2964                 goto out;
2965
2966         cpu = raw_smp_processor_id();
2967
2968         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2969                 goto out;
2970
2971         cpu_buffer = buffer->buffers[cpu];
2972
2973         if (atomic_read(&cpu_buffer->record_disabled))
2974                 goto out;
2975
2976         if (length > BUF_MAX_DATA_SIZE)
2977                 goto out;
2978
2979         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2980         if (!event)
2981                 goto out;
2982
2983         body = rb_event_data(event);
2984
2985         memcpy(body, data, length);
2986
2987         rb_commit(cpu_buffer, event);
2988
2989         rb_wakeups(buffer, cpu_buffer);
2990
2991         ret = 0;
2992  out:
2993         preempt_enable_notrace();
2994
2995         return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(ring_buffer_write);
2998
2999 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3000 {
3001         struct buffer_page *reader = cpu_buffer->reader_page;
3002         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3003         struct buffer_page *commit = cpu_buffer->commit_page;
3004
3005         /* In case of error, head will be NULL */
3006         if (unlikely(!head))
3007                 return 1;
3008
3009         return reader->read == rb_page_commit(reader) &&
3010                 (commit == reader ||
3011                  (commit == head &&
3012                   head->read == rb_page_commit(commit)));
3013 }
3014
3015 /**
3016  * ring_buffer_record_disable - stop all writes into the buffer
3017  * @buffer: The ring buffer to stop writes to.
3018  *
3019  * This prevents all writes to the buffer. Any attempt to write
3020  * to the buffer after this will fail and return NULL.
3021  *
3022  * The caller should call synchronize_sched() after this.
3023  */
3024 void ring_buffer_record_disable(struct ring_buffer *buffer)
3025 {
3026         atomic_inc(&buffer->record_disabled);
3027 }
3028 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3029
3030 /**
3031  * ring_buffer_record_enable - enable writes to the buffer
3032  * @buffer: The ring buffer to enable writes
3033  *
3034  * Note, multiple disables will need the same number of enables
3035  * to truly enable the writing (much like preempt_disable).
3036  */
3037 void ring_buffer_record_enable(struct ring_buffer *buffer)
3038 {
3039         atomic_dec(&buffer->record_disabled);
3040 }
3041 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3042
3043 /**
3044  * ring_buffer_record_off - stop all writes into the buffer
3045  * @buffer: The ring buffer to stop writes to.
3046  *
3047  * This prevents all writes to the buffer. Any attempt to write
3048  * to the buffer after this will fail and return NULL.
3049  *
3050  * This is different than ring_buffer_record_disable() as
3051  * it works like an on/off switch, where as the disable() version
3052  * must be paired with a enable().
3053  */
3054 void ring_buffer_record_off(struct ring_buffer *buffer)
3055 {
3056         unsigned int rd;
3057         unsigned int new_rd;
3058
3059         do {
3060                 rd = atomic_read(&buffer->record_disabled);
3061                 new_rd = rd | RB_BUFFER_OFF;
3062         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3063 }
3064 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3065
3066 /**
3067  * ring_buffer_record_on - restart writes into the buffer
3068  * @buffer: The ring buffer to start writes to.
3069  *
3070  * This enables all writes to the buffer that was disabled by
3071  * ring_buffer_record_off().
3072  *
3073  * This is different than ring_buffer_record_enable() as
3074  * it works like an on/off switch, where as the enable() version
3075  * must be paired with a disable().
3076  */
3077 void ring_buffer_record_on(struct ring_buffer *buffer)
3078 {
3079         unsigned int rd;
3080         unsigned int new_rd;
3081
3082         do {
3083                 rd = atomic_read(&buffer->record_disabled);
3084                 new_rd = rd & ~RB_BUFFER_OFF;
3085         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3086 }
3087 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3088
3089 /**
3090  * ring_buffer_record_is_on - return true if the ring buffer can write
3091  * @buffer: The ring buffer to see if write is enabled
3092  *
3093  * Returns true if the ring buffer is in a state that it accepts writes.
3094  */
3095 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3096 {
3097         return !atomic_read(&buffer->record_disabled);
3098 }
3099
3100 /**
3101  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3102  * @buffer: The ring buffer to stop writes to.
3103  * @cpu: The CPU buffer to stop
3104  *
3105  * This prevents all writes to the buffer. Any attempt to write
3106  * to the buffer after this will fail and return NULL.
3107  *
3108  * The caller should call synchronize_sched() after this.
3109  */
3110 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3111 {
3112         struct ring_buffer_per_cpu *cpu_buffer;
3113
3114         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3115                 return;
3116
3117         cpu_buffer = buffer->buffers[cpu];
3118         atomic_inc(&cpu_buffer->record_disabled);
3119 }
3120 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3121
3122 /**
3123  * ring_buffer_record_enable_cpu - enable writes to the buffer
3124  * @buffer: The ring buffer to enable writes
3125  * @cpu: The CPU to enable.
3126  *
3127  * Note, multiple disables will need the same number of enables
3128  * to truly enable the writing (much like preempt_disable).
3129  */
3130 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3131 {
3132         struct ring_buffer_per_cpu *cpu_buffer;
3133
3134         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3135                 return;
3136
3137         cpu_buffer = buffer->buffers[cpu];
3138         atomic_dec(&cpu_buffer->record_disabled);
3139 }
3140 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3141
3142 /*
3143  * The total entries in the ring buffer is the running counter
3144  * of entries entered into the ring buffer, minus the sum of
3145  * the entries read from the ring buffer and the number of
3146  * entries that were overwritten.
3147  */
3148 static inline unsigned long
3149 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3150 {
3151         return local_read(&cpu_buffer->entries) -
3152                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3153 }
3154
3155 /**
3156  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3157  * @buffer: The ring buffer
3158  * @cpu: The per CPU buffer to read from.
3159  */
3160 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3161 {
3162         unsigned long flags;
3163         struct ring_buffer_per_cpu *cpu_buffer;
3164         struct buffer_page *bpage;
3165         u64 ret = 0;
3166
3167         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3168                 return 0;
3169
3170         cpu_buffer = buffer->buffers[cpu];
3171         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3172         /*
3173          * if the tail is on reader_page, oldest time stamp is on the reader
3174          * page
3175          */
3176         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3177                 bpage = cpu_buffer->reader_page;
3178         else
3179                 bpage = rb_set_head_page(cpu_buffer);
3180         if (bpage)
3181                 ret = bpage->page->time_stamp;
3182         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3183
3184         return ret;
3185 }
3186 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3187
3188 /**
3189  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3190  * @buffer: The ring buffer
3191  * @cpu: The per CPU buffer to read from.
3192  */
3193 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3194 {
3195         struct ring_buffer_per_cpu *cpu_buffer;
3196         unsigned long ret;
3197
3198         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3199                 return 0;
3200
3201         cpu_buffer = buffer->buffers[cpu];
3202         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3203
3204         return ret;
3205 }
3206 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3207
3208 /**
3209  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3210  * @buffer: The ring buffer
3211  * @cpu: The per CPU buffer to get the entries from.
3212  */
3213 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3214 {
3215         struct ring_buffer_per_cpu *cpu_buffer;
3216
3217         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3218                 return 0;
3219
3220         cpu_buffer = buffer->buffers[cpu];
3221
3222         return rb_num_of_entries(cpu_buffer);
3223 }
3224 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3225
3226 /**
3227  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3228  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3229  * @buffer: The ring buffer
3230  * @cpu: The per CPU buffer to get the number of overruns from
3231  */
3232 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3233 {
3234         struct ring_buffer_per_cpu *cpu_buffer;
3235         unsigned long ret;
3236
3237         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3238                 return 0;
3239
3240         cpu_buffer = buffer->buffers[cpu];
3241         ret = local_read(&cpu_buffer->overrun);
3242
3243         return ret;
3244 }
3245 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3246
3247 /**
3248  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3249  * commits failing due to the buffer wrapping around while there are uncommitted
3250  * events, such as during an interrupt storm.
3251  * @buffer: The ring buffer
3252  * @cpu: The per CPU buffer to get the number of overruns from
3253  */
3254 unsigned long
3255 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3256 {
3257         struct ring_buffer_per_cpu *cpu_buffer;
3258         unsigned long ret;
3259
3260         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3261                 return 0;
3262
3263         cpu_buffer = buffer->buffers[cpu];
3264         ret = local_read(&cpu_buffer->commit_overrun);
3265
3266         return ret;
3267 }
3268 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3269
3270 /**
3271  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3272  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3273  * @buffer: The ring buffer
3274  * @cpu: The per CPU buffer to get the number of overruns from
3275  */
3276 unsigned long
3277 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3278 {
3279         struct ring_buffer_per_cpu *cpu_buffer;
3280         unsigned long ret;
3281
3282         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3283                 return 0;
3284
3285         cpu_buffer = buffer->buffers[cpu];
3286         ret = local_read(&cpu_buffer->dropped_events);
3287
3288         return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3291
3292 /**
3293  * ring_buffer_read_events_cpu - get the number of events successfully read
3294  * @buffer: The ring buffer
3295  * @cpu: The per CPU buffer to get the number of events read
3296  */
3297 unsigned long
3298 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3299 {
3300         struct ring_buffer_per_cpu *cpu_buffer;
3301
3302         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3303                 return 0;
3304
3305         cpu_buffer = buffer->buffers[cpu];
3306         return cpu_buffer->read;
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3309
3310 /**
3311  * ring_buffer_entries - get the number of entries in a buffer
3312  * @buffer: The ring buffer
3313  *
3314  * Returns the total number of entries in the ring buffer
3315  * (all CPU entries)
3316  */
3317 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3318 {
3319         struct ring_buffer_per_cpu *cpu_buffer;
3320         unsigned long entries = 0;
3321         int cpu;
3322
3323         /* if you care about this being correct, lock the buffer */
3324         for_each_buffer_cpu(buffer, cpu) {
3325                 cpu_buffer = buffer->buffers[cpu];
3326                 entries += rb_num_of_entries(cpu_buffer);
3327         }
3328
3329         return entries;
3330 }
3331 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3332
3333 /**
3334  * ring_buffer_overruns - get the number of overruns in buffer
3335  * @buffer: The ring buffer
3336  *
3337  * Returns the total number of overruns in the ring buffer
3338  * (all CPU entries)
3339  */
3340 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3341 {
3342         struct ring_buffer_per_cpu *cpu_buffer;
3343         unsigned long overruns = 0;
3344         int cpu;
3345
3346         /* if you care about this being correct, lock the buffer */
3347         for_each_buffer_cpu(buffer, cpu) {
3348                 cpu_buffer = buffer->buffers[cpu];
3349                 overruns += local_read(&cpu_buffer->overrun);
3350         }
3351
3352         return overruns;
3353 }
3354 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3355
3356 static void rb_iter_reset(struct ring_buffer_iter *iter)
3357 {
3358         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3359
3360         /* Iterator usage is expected to have record disabled */
3361         if (list_empty(&cpu_buffer->reader_page->list)) {
3362                 iter->head_page = rb_set_head_page(cpu_buffer);
3363                 if (unlikely(!iter->head_page))
3364                         return;
3365                 iter->head = iter->head_page->read;
3366         } else {
3367                 iter->head_page = cpu_buffer->reader_page;
3368                 iter->head = cpu_buffer->reader_page->read;
3369         }
3370         if (iter->head)
3371                 iter->read_stamp = cpu_buffer->read_stamp;
3372         else
3373                 iter->read_stamp = iter->head_page->page->time_stamp;
3374         iter->cache_reader_page = cpu_buffer->reader_page;
3375         iter->cache_read = cpu_buffer->read;
3376 }
3377
3378 /**
3379  * ring_buffer_iter_reset - reset an iterator
3380  * @iter: The iterator to reset
3381  *
3382  * Resets the iterator, so that it will start from the beginning
3383  * again.
3384  */
3385 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3386 {
3387         struct ring_buffer_per_cpu *cpu_buffer;
3388         unsigned long flags;
3389
3390         if (!iter)
3391                 return;
3392
3393         cpu_buffer = iter->cpu_buffer;
3394
3395         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3396         rb_iter_reset(iter);
3397         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3398 }
3399 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3400
3401 /**
3402  * ring_buffer_iter_empty - check if an iterator has no more to read
3403  * @iter: The iterator to check
3404  */
3405 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3406 {
3407         struct ring_buffer_per_cpu *cpu_buffer;
3408
3409         cpu_buffer = iter->cpu_buffer;
3410
3411         return iter->head_page == cpu_buffer->commit_page &&
3412                 iter->head == rb_commit_index(cpu_buffer);
3413 }
3414 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3415
3416 static void
3417 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3418                      struct ring_buffer_event *event)
3419 {
3420         u64 delta;
3421
3422         switch (event->type_len) {
3423         case RINGBUF_TYPE_PADDING:
3424                 return;
3425
3426         case RINGBUF_TYPE_TIME_EXTEND:
3427                 delta = event->array[0];
3428                 delta <<= TS_SHIFT;
3429                 delta += event->time_delta;
3430                 cpu_buffer->read_stamp += delta;
3431                 return;
3432
3433         case RINGBUF_TYPE_TIME_STAMP:
3434                 /* FIXME: not implemented */
3435                 return;
3436
3437         case RINGBUF_TYPE_DATA:
3438                 cpu_buffer->read_stamp += event->time_delta;
3439                 return;
3440
3441         default:
3442                 BUG();
3443         }
3444         return;
3445 }
3446
3447 static void
3448 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3449                           struct ring_buffer_event *event)
3450 {
3451         u64 delta;
3452
3453         switch (event->type_len) {
3454         case RINGBUF_TYPE_PADDING:
3455                 return;
3456
3457         case RINGBUF_TYPE_TIME_EXTEND:
3458                 delta = event->array[0];
3459                 delta <<= TS_SHIFT;
3460                 delta += event->time_delta;
3461                 iter->read_stamp += delta;
3462                 return;
3463
3464         case RINGBUF_TYPE_TIME_STAMP:
3465                 /* FIXME: not implemented */
3466                 return;
3467
3468         case RINGBUF_TYPE_DATA:
3469                 iter->read_stamp += event->time_delta;
3470                 return;
3471
3472         default:
3473                 BUG();
3474         }
3475         return;
3476 }
3477
3478 static struct buffer_page *
3479 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3480 {
3481         struct buffer_page *reader = NULL;
3482         unsigned long overwrite;
3483         unsigned long flags;
3484         int nr_loops = 0;
3485         int ret;
3486
3487         local_irq_save(flags);
3488         arch_spin_lock(&cpu_buffer->lock);
3489
3490  again:
3491         /*
3492          * This should normally only loop twice. But because the
3493          * start of the reader inserts an empty page, it causes
3494          * a case where we will loop three times. There should be no
3495          * reason to loop four times (that I know of).
3496          */
3497         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3498                 reader = NULL;
3499                 goto out;
3500         }
3501
3502         reader = cpu_buffer->reader_page;
3503
3504         /* If there's more to read, return this page */
3505         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3506                 goto out;
3507
3508         /* Never should we have an index greater than the size */
3509         if (RB_WARN_ON(cpu_buffer,
3510                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3511                 goto out;
3512
3513         /* check if we caught up to the tail */
3514         reader = NULL;
3515         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3516                 goto out;
3517
3518         /* Don't bother swapping if the ring buffer is empty */
3519         if (rb_num_of_entries(cpu_buffer) == 0)
3520                 goto out;
3521
3522         /*
3523          * Reset the reader page to size zero.
3524          */
3525         local_set(&cpu_buffer->reader_page->write, 0);
3526         local_set(&cpu_buffer->reader_page->entries, 0);
3527         local_set(&cpu_buffer->reader_page->page->commit, 0);
3528         cpu_buffer->reader_page->real_end = 0;
3529
3530  spin:
3531         /*
3532          * Splice the empty reader page into the list around the head.
3533          */
3534         reader = rb_set_head_page(cpu_buffer);
3535         if (!reader)
3536                 goto out;
3537         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3538         cpu_buffer->reader_page->list.prev = reader->list.prev;
3539
3540         /*
3541          * cpu_buffer->pages just needs to point to the buffer, it
3542          *  has no specific buffer page to point to. Lets move it out
3543          *  of our way so we don't accidentally swap it.
3544          */
3545         cpu_buffer->pages = reader->list.prev;
3546
3547         /* The reader page will be pointing to the new head */
3548         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3549
3550         /*
3551          * We want to make sure we read the overruns after we set up our
3552          * pointers to the next object. The writer side does a
3553          * cmpxchg to cross pages which acts as the mb on the writer
3554          * side. Note, the reader will constantly fail the swap
3555          * while the writer is updating the pointers, so this
3556          * guarantees that the overwrite recorded here is the one we
3557          * want to compare with the last_overrun.
3558          */
3559         smp_mb();
3560         overwrite = local_read(&(cpu_buffer->overrun));
3561
3562         /*
3563          * Here's the tricky part.
3564          *
3565          * We need to move the pointer past the header page.
3566          * But we can only do that if a writer is not currently
3567          * moving it. The page before the header page has the
3568          * flag bit '1' set if it is pointing to the page we want.
3569          * but if the writer is in the process of moving it
3570          * than it will be '2' or already moved '0'.
3571          */
3572
3573         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3574
3575         /*
3576          * If we did not convert it, then we must try again.
3577          */
3578         if (!ret)
3579                 goto spin;
3580
3581         /*
3582          * Yeah! We succeeded in replacing the page.
3583          *
3584          * Now make the new head point back to the reader page.
3585          */
3586         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3587         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3588
3589         /* Finally update the reader page to the new head */
3590         cpu_buffer->reader_page = reader;
3591         rb_reset_reader_page(cpu_buffer);
3592
3593         if (overwrite != cpu_buffer->last_overrun) {
3594                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3595                 cpu_buffer->last_overrun = overwrite;
3596         }
3597
3598         goto again;
3599
3600  out:
3601         arch_spin_unlock(&cpu_buffer->lock);
3602         local_irq_restore(flags);
3603
3604         return reader;
3605 }
3606
3607 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3608 {
3609         struct ring_buffer_event *event;
3610         struct buffer_page *reader;
3611         unsigned length;
3612
3613         reader = rb_get_reader_page(cpu_buffer);
3614
3615         /* This function should not be called when buffer is empty */
3616         if (RB_WARN_ON(cpu_buffer, !reader))
3617                 return;
3618
3619         event = rb_reader_event(cpu_buffer);
3620
3621         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3622                 cpu_buffer->read++;
3623
3624         rb_update_read_stamp(cpu_buffer, event);
3625
3626         length = rb_event_length(event);
3627         cpu_buffer->reader_page->read += length;
3628 }
3629
3630 static void rb_advance_iter(struct ring_buffer_iter *iter)
3631 {
3632         struct ring_buffer_per_cpu *cpu_buffer;
3633         struct ring_buffer_event *event;
3634         unsigned length;
3635
3636         cpu_buffer = iter->cpu_buffer;
3637
3638         /*
3639          * Check if we are at the end of the buffer.
3640          */
3641         if (iter->head >= rb_page_size(iter->head_page)) {
3642                 /* discarded commits can make the page empty */
3643                 if (iter->head_page == cpu_buffer->commit_page)
3644                         return;
3645                 rb_inc_iter(iter);
3646                 return;
3647         }
3648
3649         event = rb_iter_head_event(iter);
3650
3651         length = rb_event_length(event);
3652
3653         /*
3654          * This should not be called to advance the header if we are
3655          * at the tail of the buffer.
3656          */
3657         if (RB_WARN_ON(cpu_buffer,
3658                        (iter->head_page == cpu_buffer->commit_page) &&
3659                        (iter->head + length > rb_commit_index(cpu_buffer))))
3660                 return;
3661
3662         rb_update_iter_read_stamp(iter, event);
3663
3664         iter->head += length;
3665
3666         /* check for end of page padding */
3667         if ((iter->head >= rb_page_size(iter->head_page)) &&
3668             (iter->head_page != cpu_buffer->commit_page))
3669                 rb_inc_iter(iter);
3670 }
3671
3672 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3673 {
3674         return cpu_buffer->lost_events;
3675 }
3676
3677 static struct ring_buffer_event *
3678 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3679                unsigned long *lost_events)
3680 {
3681         struct ring_buffer_event *event;
3682         struct buffer_page *reader;
3683         int nr_loops = 0;
3684
3685  again:
3686         /*
3687          * We repeat when a time extend is encountered.
3688          * Since the time extend is always attached to a data event,
3689          * we should never loop more than once.
3690          * (We never hit the following condition more than twice).
3691          */
3692         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3693                 return NULL;
3694
3695         reader = rb_get_reader_page(cpu_buffer);
3696         if (!reader)
3697                 return NULL;
3698
3699         event = rb_reader_event(cpu_buffer);
3700
3701         switch (event->type_len) {
3702         case RINGBUF_TYPE_PADDING:
3703                 if (rb_null_event(event))
3704                         RB_WARN_ON(cpu_buffer, 1);
3705                 /*
3706                  * Because the writer could be discarding every
3707                  * event it creates (which would probably be bad)
3708                  * if we were to go back to "again" then we may never
3709                  * catch up, and will trigger the warn on, or lock
3710                  * the box. Return the padding, and we will release
3711                  * the current locks, and try again.
3712                  */
3713                 return event;
3714
3715         case RINGBUF_TYPE_TIME_EXTEND:
3716                 /* Internal data, OK to advance */
3717                 rb_advance_reader(cpu_buffer);
3718                 goto again;
3719
3720         case RINGBUF_TYPE_TIME_STAMP:
3721                 /* FIXME: not implemented */
3722                 rb_advance_reader(cpu_buffer);
3723                 goto again;
3724
3725         case RINGBUF_TYPE_DATA:
3726                 if (ts) {
3727                         *ts = cpu_buffer->read_stamp + event->time_delta;
3728                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3729                                                          cpu_buffer->cpu, ts);
3730                 }
3731                 if (lost_events)
3732                         *lost_events = rb_lost_events(cpu_buffer);
3733                 return event;
3734
3735         default:
3736                 BUG();
3737         }
3738
3739         return NULL;
3740 }
3741 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3742
3743 static struct ring_buffer_event *
3744 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3745 {
3746         struct ring_buffer *buffer;
3747         struct ring_buffer_per_cpu *cpu_buffer;
3748         struct ring_buffer_event *event;
3749         int nr_loops = 0;
3750
3751         cpu_buffer = iter->cpu_buffer;
3752         buffer = cpu_buffer->buffer;
3753
3754         /*
3755          * Check if someone performed a consuming read to
3756          * the buffer. A consuming read invalidates the iterator
3757          * and we need to reset the iterator in this case.
3758          */
3759         if (unlikely(iter->cache_read != cpu_buffer->read ||
3760                      iter->cache_reader_page != cpu_buffer->reader_page))
3761                 rb_iter_reset(iter);
3762
3763  again:
3764         if (ring_buffer_iter_empty(iter))
3765                 return NULL;
3766
3767         /*
3768          * We repeat when a time extend is encountered.
3769          * Since the time extend is always attached to a data event,
3770          * we should never loop more than once.
3771          * (We never hit the following condition more than twice).
3772          */
3773         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3774                 return NULL;
3775
3776         if (rb_per_cpu_empty(cpu_buffer))
3777                 return NULL;
3778
3779         if (iter->head >= local_read(&iter->head_page->page->commit)) {
3780                 rb_inc_iter(iter);
3781                 goto again;
3782         }
3783
3784         event = rb_iter_head_event(iter);
3785
3786         switch (event->type_len) {
3787         case RINGBUF_TYPE_PADDING:
3788                 if (rb_null_event(event)) {
3789                         rb_inc_iter(iter);
3790                         goto again;
3791                 }
3792                 rb_advance_iter(iter);
3793                 return event;
3794
3795         case RINGBUF_TYPE_TIME_EXTEND:
3796                 /* Internal data, OK to advance */
3797                 rb_advance_iter(iter);
3798                 goto again;
3799
3800         case RINGBUF_TYPE_TIME_STAMP:
3801                 /* FIXME: not implemented */
3802                 rb_advance_iter(iter);
3803                 goto again;
3804
3805         case RINGBUF_TYPE_DATA:
3806                 if (ts) {
3807                         *ts = iter->read_stamp + event->time_delta;
3808                         ring_buffer_normalize_time_stamp(buffer,
3809                                                          cpu_buffer->cpu, ts);
3810                 }
3811                 return event;
3812
3813         default:
3814                 BUG();
3815         }
3816
3817         return NULL;
3818 }
3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3820
3821 static inline int rb_ok_to_lock(void)
3822 {
3823         /*
3824          * If an NMI die dumps out the content of the ring buffer
3825          * do not grab locks. We also permanently disable the ring
3826          * buffer too. A one time deal is all you get from reading
3827          * the ring buffer from an NMI.
3828          */
3829         if (likely(!in_nmi()))
3830                 return 1;
3831
3832         tracing_off_permanent();
3833         return 0;
3834 }
3835
3836 /**
3837  * ring_buffer_peek - peek at the next event to be read
3838  * @buffer: The ring buffer to read
3839  * @cpu: The cpu to peak at
3840  * @ts: The timestamp counter of this event.
3841  * @lost_events: a variable to store if events were lost (may be NULL)
3842  *
3843  * This will return the event that will be read next, but does
3844  * not consume the data.
3845  */
3846 struct ring_buffer_event *
3847 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3848                  unsigned long *lost_events)
3849 {
3850         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3851         struct ring_buffer_event *event;
3852         unsigned long flags;
3853         int dolock;
3854
3855         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3856                 return NULL;
3857
3858         dolock = rb_ok_to_lock();
3859  again:
3860         local_irq_save(flags);
3861         if (dolock)
3862                 raw_spin_lock(&cpu_buffer->reader_lock);
3863         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3864         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3865                 rb_advance_reader(cpu_buffer);
3866         if (dolock)
3867                 raw_spin_unlock(&cpu_buffer->reader_lock);
3868         local_irq_restore(flags);
3869
3870         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3871                 goto again;
3872
3873         return event;
3874 }
3875
3876 /**
3877  * ring_buffer_iter_peek - peek at the next event to be read
3878  * @iter: The ring buffer iterator
3879  * @ts: The timestamp counter of this event.
3880  *
3881  * This will return the event that will be read next, but does
3882  * not increment the iterator.
3883  */
3884 struct ring_buffer_event *
3885 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3886 {
3887         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3888         struct ring_buffer_event *event;
3889         unsigned long flags;
3890
3891  again:
3892         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3893         event = rb_iter_peek(iter, ts);
3894         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3895
3896         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3897                 goto again;
3898
3899         return event;
3900 }
3901
3902 /**
3903  * ring_buffer_consume - return an event and consume it
3904  * @buffer: The ring buffer to get the next event from
3905  * @cpu: the cpu to read the buffer from
3906  * @ts: a variable to store the timestamp (may be NULL)
3907  * @lost_events: a variable to store if events were lost (may be NULL)
3908  *
3909  * Returns the next event in the ring buffer, and that event is consumed.
3910  * Meaning, that sequential reads will keep returning a different event,
3911  * and eventually empty the ring buffer if the producer is slower.
3912  */
3913 struct ring_buffer_event *
3914 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3915                     unsigned long *lost_events)
3916 {
3917         struct ring_buffer_per_cpu *cpu_buffer;
3918         struct ring_buffer_event *event = NULL;
3919         unsigned long flags;
3920         int dolock;
3921
3922         dolock = rb_ok_to_lock();
3923
3924  again:
3925         /* might be called in atomic */
3926         preempt_disable();
3927
3928         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3929                 goto out;
3930
3931         cpu_buffer = buffer->buffers[cpu];
3932         local_irq_save(flags);
3933         if (dolock)
3934                 raw_spin_lock(&cpu_buffer->reader_lock);
3935
3936         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3937         if (event) {
3938                 cpu_buffer->lost_events = 0;
3939                 rb_advance_reader(cpu_buffer);
3940         }
3941
3942         if (dolock)
3943                 raw_spin_unlock(&cpu_buffer->reader_lock);
3944         local_irq_restore(flags);
3945
3946  out:
3947         preempt_enable();
3948
3949         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3950                 goto again;
3951
3952         return event;
3953 }
3954 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3955
3956 /**
3957  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3958  * @buffer: The ring buffer to read from
3959  * @cpu: The cpu buffer to iterate over
3960  *
3961  * This performs the initial preparations necessary to iterate
3962  * through the buffer.  Memory is allocated, buffer recording
3963  * is disabled, and the iterator pointer is returned to the caller.
3964  *
3965  * Disabling buffer recordng prevents the reading from being
3966  * corrupted. This is not a consuming read, so a producer is not
3967  * expected.
3968  *
3969  * After a sequence of ring_buffer_read_prepare calls, the user is
3970  * expected to make at least one call to ring_buffer_read_prepare_sync.
3971  * Afterwards, ring_buffer_read_start is invoked to get things going
3972  * for real.
3973  *
3974  * This overall must be paired with ring_buffer_read_finish.
3975  */
3976 struct ring_buffer_iter *
3977 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3978 {
3979         struct ring_buffer_per_cpu *cpu_buffer;
3980         struct ring_buffer_iter *iter;
3981
3982         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3983                 return NULL;
3984
3985         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3986         if (!iter)
3987                 return NULL;
3988
3989         cpu_buffer = buffer->buffers[cpu];
3990
3991         iter->cpu_buffer = cpu_buffer;
3992
3993         atomic_inc(&buffer->resize_disabled);
3994         atomic_inc(&cpu_buffer->record_disabled);
3995
3996         return iter;
3997 }
3998 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3999
4000 /**
4001  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4002  *
4003  * All previously invoked ring_buffer_read_prepare calls to prepare
4004  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4005  * calls on those iterators are allowed.
4006  */
4007 void
4008 ring_buffer_read_prepare_sync(void)
4009 {
4010         synchronize_sched();
4011 }
4012 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4013
4014 /**
4015  * ring_buffer_read_start - start a non consuming read of the buffer
4016  * @iter: The iterator returned by ring_buffer_read_prepare
4017  *
4018  * This finalizes the startup of an iteration through the buffer.
4019  * The iterator comes from a call to ring_buffer_read_prepare and
4020  * an intervening ring_buffer_read_prepare_sync must have been
4021  * performed.
4022  *
4023  * Must be paired with ring_buffer_read_finish.
4024  */
4025 void
4026 ring_buffer_read_start(struct ring_buffer_iter *iter)
4027 {
4028         struct ring_buffer_per_cpu *cpu_buffer;
4029         unsigned long flags;
4030
4031         if (!iter)
4032                 return;
4033
4034         cpu_buffer = iter->cpu_buffer;
4035
4036         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4037         arch_spin_lock(&cpu_buffer->lock);
4038         rb_iter_reset(iter);
4039         arch_spin_unlock(&cpu_buffer->lock);
4040         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4041 }
4042 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4043
4044 /**
4045  * ring_buffer_read_finish - finish reading the iterator of the buffer
4046  * @iter: The iterator retrieved by ring_buffer_start
4047  *
4048  * This re-enables the recording to the buffer, and frees the
4049  * iterator.
4050  */
4051 void
4052 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4053 {
4054         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4055         unsigned long flags;
4056
4057         /*
4058          * Ring buffer is disabled from recording, here's a good place
4059          * to check the integrity of the ring buffer.
4060          * Must prevent readers from trying to read, as the check
4061          * clears the HEAD page and readers require it.
4062          */
4063         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4064         rb_check_pages(cpu_buffer);
4065         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4066
4067         atomic_dec(&cpu_buffer->record_disabled);
4068         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4069         kfree(iter);
4070 }
4071 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4072
4073 /**
4074  * ring_buffer_read - read the next item in the ring buffer by the iterator
4075  * @iter: The ring buffer iterator
4076  * @ts: The time stamp of the event read.
4077  *
4078  * This reads the next event in the ring buffer and increments the iterator.
4079  */
4080 struct ring_buffer_event *
4081 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4082 {
4083         struct ring_buffer_event *event;
4084         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4085         unsigned long flags;
4086
4087         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4088  again:
4089         event = rb_iter_peek(iter, ts);
4090         if (!event)
4091                 goto out;
4092
4093         if (event->type_len == RINGBUF_TYPE_PADDING)
4094                 goto again;
4095
4096         rb_advance_iter(iter);
4097  out:
4098         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4099
4100         return event;
4101 }
4102 EXPORT_SYMBOL_GPL(ring_buffer_read);
4103
4104 /**
4105  * ring_buffer_size - return the size of the ring buffer (in bytes)
4106  * @buffer: The ring buffer.
4107  */
4108 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4109 {
4110         /*
4111          * Earlier, this method returned
4112          *      BUF_PAGE_SIZE * buffer->nr_pages
4113          * Since the nr_pages field is now removed, we have converted this to
4114          * return the per cpu buffer value.
4115          */
4116         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4117                 return 0;
4118
4119         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4120 }
4121 EXPORT_SYMBOL_GPL(ring_buffer_size);
4122
4123 static void
4124 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4125 {
4126         rb_head_page_deactivate(cpu_buffer);
4127
4128         cpu_buffer->head_page
4129                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4130         local_set(&cpu_buffer->head_page->write, 0);
4131         local_set(&cpu_buffer->head_page->entries, 0);
4132         local_set(&cpu_buffer->head_page->page->commit, 0);
4133
4134         cpu_buffer->head_page->read = 0;
4135
4136         cpu_buffer->tail_page = cpu_buffer->head_page;
4137         cpu_buffer->commit_page = cpu_buffer->head_page;
4138
4139         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4140         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4141         local_set(&cpu_buffer->reader_page->write, 0);
4142         local_set(&cpu_buffer->reader_page->entries, 0);
4143         local_set(&cpu_buffer->reader_page->page->commit, 0);
4144         cpu_buffer->reader_page->read = 0;
4145
4146         local_set(&cpu_buffer->entries_bytes, 0);
4147         local_set(&cpu_buffer->overrun, 0);
4148         local_set(&cpu_buffer->commit_overrun, 0);
4149         local_set(&cpu_buffer->dropped_events, 0);
4150         local_set(&cpu_buffer->entries, 0);
4151         local_set(&cpu_buffer->committing, 0);
4152         local_set(&cpu_buffer->commits, 0);
4153         cpu_buffer->read = 0;
4154         cpu_buffer->read_bytes = 0;
4155
4156         cpu_buffer->write_stamp = 0;
4157         cpu_buffer->read_stamp = 0;
4158
4159         cpu_buffer->lost_events = 0;
4160         cpu_buffer->last_overrun = 0;
4161
4162         rb_head_page_activate(cpu_buffer);
4163 }
4164
4165 /**
4166  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4167  * @buffer: The ring buffer to reset a per cpu buffer of
4168  * @cpu: The CPU buffer to be reset
4169  */
4170 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4171 {
4172         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4173         unsigned long flags;
4174
4175         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4176                 return;
4177
4178         atomic_inc(&buffer->resize_disabled);
4179         atomic_inc(&cpu_buffer->record_disabled);
4180
4181         /* Make sure all commits have finished */
4182         synchronize_sched();
4183
4184         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4185
4186         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4187                 goto out;
4188
4189         arch_spin_lock(&cpu_buffer->lock);
4190
4191         rb_reset_cpu(cpu_buffer);
4192
4193         arch_spin_unlock(&cpu_buffer->lock);
4194
4195  out:
4196         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4197
4198         atomic_dec(&cpu_buffer->record_disabled);
4199         atomic_dec(&buffer->resize_disabled);
4200 }
4201 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4202
4203 /**
4204  * ring_buffer_reset - reset a ring buffer
4205  * @buffer: The ring buffer to reset all cpu buffers
4206  */
4207 void ring_buffer_reset(struct ring_buffer *buffer)
4208 {
4209         int cpu;
4210
4211         for_each_buffer_cpu(buffer, cpu)
4212                 ring_buffer_reset_cpu(buffer, cpu);
4213 }
4214 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4215
4216 /**
4217  * rind_buffer_empty - is the ring buffer empty?
4218  * @buffer: The ring buffer to test
4219  */
4220 int ring_buffer_empty(struct ring_buffer *buffer)
4221 {
4222         struct ring_buffer_per_cpu *cpu_buffer;
4223         unsigned long flags;
4224         int dolock;
4225         int cpu;
4226         int ret;
4227
4228         dolock = rb_ok_to_lock();
4229
4230         /* yes this is racy, but if you don't like the race, lock the buffer */
4231         for_each_buffer_cpu(buffer, cpu) {
4232                 cpu_buffer = buffer->buffers[cpu];
4233                 local_irq_save(flags);
4234                 if (dolock)
4235                         raw_spin_lock(&cpu_buffer->reader_lock);
4236                 ret = rb_per_cpu_empty(cpu_buffer);
4237                 if (dolock)
4238                         raw_spin_unlock(&cpu_buffer->reader_lock);
4239                 local_irq_restore(flags);
4240
4241                 if (!ret)
4242                         return 0;
4243         }
4244
4245         return 1;
4246 }
4247 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4248
4249 /**
4250  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4251  * @buffer: The ring buffer
4252  * @cpu: The CPU buffer to test
4253  */
4254 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4255 {
4256         struct ring_buffer_per_cpu *cpu_buffer;
4257         unsigned long flags;
4258         int dolock;
4259         int ret;
4260
4261         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4262                 return 1;
4263
4264         dolock = rb_ok_to_lock();
4265
4266         cpu_buffer = buffer->buffers[cpu];
4267         local_irq_save(flags);
4268         if (dolock)
4269                 raw_spin_lock(&cpu_buffer->reader_lock);
4270         ret = rb_per_cpu_empty(cpu_buffer);
4271         if (dolock)
4272                 raw_spin_unlock(&cpu_buffer->reader_lock);
4273         local_irq_restore(flags);
4274
4275         return ret;
4276 }
4277 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4278
4279 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4280 /**
4281  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4282  * @buffer_a: One buffer to swap with
4283  * @buffer_b: The other buffer to swap with
4284  *
4285  * This function is useful for tracers that want to take a "snapshot"
4286  * of a CPU buffer and has another back up buffer lying around.
4287  * it is expected that the tracer handles the cpu buffer not being
4288  * used at the moment.
4289  */
4290 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4291                          struct ring_buffer *buffer_b, int cpu)
4292 {
4293         struct ring_buffer_per_cpu *cpu_buffer_a;
4294         struct ring_buffer_per_cpu *cpu_buffer_b;
4295         int ret = -EINVAL;
4296
4297         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4298             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4299                 goto out;
4300
4301         cpu_buffer_a = buffer_a->buffers[cpu];
4302         cpu_buffer_b = buffer_b->buffers[cpu];
4303
4304         /* At least make sure the two buffers are somewhat the same */
4305         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4306                 goto out;
4307
4308         ret = -EAGAIN;
4309
4310         if (ring_buffer_flags != RB_BUFFERS_ON)
4311                 goto out;
4312
4313         if (atomic_read(&buffer_a->record_disabled))
4314                 goto out;
4315
4316         if (atomic_read(&buffer_b->record_disabled))
4317                 goto out;
4318
4319         if (atomic_read(&cpu_buffer_a->record_disabled))
4320                 goto out;
4321
4322         if (atomic_read(&cpu_buffer_b->record_disabled))
4323                 goto out;
4324
4325         /*
4326          * We can't do a synchronize_sched here because this
4327          * function can be called in atomic context.
4328          * Normally this will be called from the same CPU as cpu.
4329          * If not it's up to the caller to protect this.
4330          */
4331         atomic_inc(&cpu_buffer_a->record_disabled);
4332         atomic_inc(&cpu_buffer_b->record_disabled);
4333
4334         ret = -EBUSY;
4335         if (local_read(&cpu_buffer_a->committing))
4336                 goto out_dec;
4337         if (local_read(&cpu_buffer_b->committing))
4338                 goto out_dec;
4339
4340         buffer_a->buffers[cpu] = cpu_buffer_b;
4341         buffer_b->buffers[cpu] = cpu_buffer_a;
4342
4343         cpu_buffer_b->buffer = buffer_a;
4344         cpu_buffer_a->buffer = buffer_b;
4345
4346         ret = 0;
4347
4348 out_dec:
4349         atomic_dec(&cpu_buffer_a->record_disabled);
4350         atomic_dec(&cpu_buffer_b->record_disabled);
4351 out:
4352         return ret;
4353 }
4354 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4355 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4356
4357 /**
4358  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4359  * @buffer: the buffer to allocate for.
4360  * @cpu: the cpu buffer to allocate.
4361  *
4362  * This function is used in conjunction with ring_buffer_read_page.
4363  * When reading a full page from the ring buffer, these functions
4364  * can be used to speed up the process. The calling function should
4365  * allocate a few pages first with this function. Then when it
4366  * needs to get pages from the ring buffer, it passes the result
4367  * of this function into ring_buffer_read_page, which will swap
4368  * the page that was allocated, with the read page of the buffer.
4369  *
4370  * Returns:
4371  *  The page allocated, or NULL on error.
4372  */
4373 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4374 {
4375         struct buffer_data_page *bpage;
4376         struct page *page;
4377
4378         page = alloc_pages_node(cpu_to_node(cpu),
4379                                 GFP_KERNEL | __GFP_NORETRY, 0);
4380         if (!page)
4381                 return NULL;
4382
4383         bpage = page_address(page);
4384
4385         rb_init_page(bpage);
4386
4387         return bpage;
4388 }
4389 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4390
4391 /**
4392  * ring_buffer_free_read_page - free an allocated read page
4393  * @buffer: the buffer the page was allocate for
4394  * @data: the page to free
4395  *
4396  * Free a page allocated from ring_buffer_alloc_read_page.
4397  */
4398 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4399 {
4400         free_page((unsigned long)data);
4401 }
4402 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4403
4404 /**
4405  * ring_buffer_read_page - extract a page from the ring buffer
4406  * @buffer: buffer to extract from
4407  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4408  * @len: amount to extract
4409  * @cpu: the cpu of the buffer to extract
4410  * @full: should the extraction only happen when the page is full.
4411  *
4412  * This function will pull out a page from the ring buffer and consume it.
4413  * @data_page must be the address of the variable that was returned
4414  * from ring_buffer_alloc_read_page. This is because the page might be used
4415  * to swap with a page in the ring buffer.
4416  *
4417  * for example:
4418  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4419  *      if (!rpage)
4420  *              return error;
4421  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4422  *      if (ret >= 0)
4423  *              process_page(rpage, ret);
4424  *
4425  * When @full is set, the function will not return true unless
4426  * the writer is off the reader page.
4427  *
4428  * Note: it is up to the calling functions to handle sleeps and wakeups.
4429  *  The ring buffer can be used anywhere in the kernel and can not
4430  *  blindly call wake_up. The layer that uses the ring buffer must be
4431  *  responsible for that.
4432  *
4433  * Returns:
4434  *  >=0 if data has been transferred, returns the offset of consumed data.
4435  *  <0 if no data has been transferred.
4436  */
4437 int ring_buffer_read_page(struct ring_buffer *buffer,
4438                           void **data_page, size_t len, int cpu, int full)
4439 {
4440         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4441         struct ring_buffer_event *event;
4442         struct buffer_data_page *bpage;
4443         struct buffer_page *reader;
4444         unsigned long missed_events;
4445         unsigned long flags;
4446         unsigned int commit;
4447         unsigned int read;
4448         u64 save_timestamp;
4449         int ret = -1;
4450
4451         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4452                 goto out;
4453
4454         /*
4455          * If len is not big enough to hold the page header, then
4456          * we can not copy anything.
4457          */
4458         if (len <= BUF_PAGE_HDR_SIZE)
4459                 goto out;
4460
4461         len -= BUF_PAGE_HDR_SIZE;
4462
4463         if (!data_page)
4464                 goto out;
4465
4466         bpage = *data_page;
4467         if (!bpage)
4468                 goto out;
4469
4470         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4471
4472         reader = rb_get_reader_page(cpu_buffer);
4473         if (!reader)
4474                 goto out_unlock;
4475
4476         event = rb_reader_event(cpu_buffer);
4477
4478         read = reader->read;
4479         commit = rb_page_commit(reader);
4480
4481         /* Check if any events were dropped */
4482         missed_events = cpu_buffer->lost_events;
4483
4484         /*
4485          * If this page has been partially read or
4486          * if len is not big enough to read the rest of the page or
4487          * a writer is still on the page, then
4488          * we must copy the data from the page to the buffer.
4489          * Otherwise, we can simply swap the page with the one passed in.
4490          */
4491         if (read || (len < (commit - read)) ||
4492             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4493                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4494                 unsigned int rpos = read;
4495                 unsigned int pos = 0;
4496                 unsigned int size;
4497
4498                 if (full)
4499                         goto out_unlock;
4500
4501                 if (len > (commit - read))
4502                         len = (commit - read);
4503
4504                 /* Always keep the time extend and data together */
4505                 size = rb_event_ts_length(event);
4506
4507                 if (len < size)
4508                         goto out_unlock;
4509
4510                 /* save the current timestamp, since the user will need it */
4511                 save_timestamp = cpu_buffer->read_stamp;
4512
4513                 /* Need to copy one event at a time */
4514                 do {
4515                         /* We need the size of one event, because
4516                          * rb_advance_reader only advances by one event,
4517                          * whereas rb_event_ts_length may include the size of
4518                          * one or two events.
4519                          * We have already ensured there's enough space if this
4520                          * is a time extend. */
4521                         size = rb_event_length(event);
4522                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4523
4524                         len -= size;
4525
4526                         rb_advance_reader(cpu_buffer);
4527                         rpos = reader->read;
4528                         pos += size;
4529
4530                         if (rpos >= commit)
4531                                 break;
4532
4533                         event = rb_reader_event(cpu_buffer);
4534                         /* Always keep the time extend and data together */
4535                         size = rb_event_ts_length(event);
4536                 } while (len >= size);
4537
4538                 /* update bpage */
4539                 local_set(&bpage->commit, pos);
4540                 bpage->time_stamp = save_timestamp;
4541
4542                 /* we copied everything to the beginning */
4543                 read = 0;
4544         } else {
4545                 /* update the entry counter */
4546                 cpu_buffer->read += rb_page_entries(reader);
4547                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4548
4549                 /* swap the pages */
4550                 rb_init_page(bpage);
4551                 bpage = reader->page;
4552                 reader->page = *data_page;
4553                 local_set(&reader->write, 0);
4554                 local_set(&reader->entries, 0);
4555                 reader->read = 0;
4556                 *data_page = bpage;
4557
4558                 /*
4559                  * Use the real_end for the data size,
4560                  * This gives us a chance to store the lost events
4561                  * on the page.
4562                  */
4563                 if (reader->real_end)
4564                         local_set(&bpage->commit, reader->real_end);
4565         }
4566         ret = read;
4567
4568         cpu_buffer->lost_events = 0;
4569
4570         commit = local_read(&bpage->commit);
4571         /*
4572          * Set a flag in the commit field if we lost events
4573          */
4574         if (missed_events) {
4575                 /* If there is room at the end of the page to save the
4576                  * missed events, then record it there.
4577                  */
4578                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4579                         memcpy(&bpage->data[commit], &missed_events,
4580                                sizeof(missed_events));
4581                         local_add(RB_MISSED_STORED, &bpage->commit);
4582                         commit += sizeof(missed_events);
4583                 }
4584                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4585         }
4586
4587         /*
4588          * This page may be off to user land. Zero it out here.
4589          */
4590         if (commit < BUF_PAGE_SIZE)
4591                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4592
4593  out_unlock:
4594         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4595
4596  out:
4597         return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4600
4601 #ifdef CONFIG_HOTPLUG_CPU
4602 static int rb_cpu_notify(struct notifier_block *self,
4603                          unsigned long action, void *hcpu)
4604 {
4605         struct ring_buffer *buffer =
4606                 container_of(self, struct ring_buffer, cpu_notify);
4607         long cpu = (long)hcpu;
4608         int cpu_i, nr_pages_same;
4609         unsigned int nr_pages;
4610
4611         switch (action) {
4612         case CPU_UP_PREPARE:
4613         case CPU_UP_PREPARE_FROZEN:
4614                 if (cpumask_test_cpu(cpu, buffer->cpumask))
4615                         return NOTIFY_OK;
4616
4617                 nr_pages = 0;
4618                 nr_pages_same = 1;
4619                 /* check if all cpu sizes are same */
4620                 for_each_buffer_cpu(buffer, cpu_i) {
4621                         /* fill in the size from first enabled cpu */
4622                         if (nr_pages == 0)
4623                                 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4624                         if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4625                                 nr_pages_same = 0;
4626                                 break;
4627                         }
4628                 }
4629                 /* allocate minimum pages, user can later expand it */
4630                 if (!nr_pages_same)
4631                         nr_pages = 2;
4632                 buffer->buffers[cpu] =
4633                         rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4634                 if (!buffer->buffers[cpu]) {
4635                         WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4636                              cpu);
4637                         return NOTIFY_OK;
4638                 }
4639                 smp_wmb();
4640                 cpumask_set_cpu(cpu, buffer->cpumask);
4641                 break;
4642         case CPU_DOWN_PREPARE:
4643         case CPU_DOWN_PREPARE_FROZEN:
4644                 /*
4645                  * Do nothing.
4646                  *  If we were to free the buffer, then the user would
4647                  *  lose any trace that was in the buffer.
4648                  */
4649                 break;
4650         default:
4651                 break;
4652         }
4653         return NOTIFY_OK;
4654 }
4655 #endif
4656
4657 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4658 /*
4659  * This is a basic integrity check of the ring buffer.
4660  * Late in the boot cycle this test will run when configured in.
4661  * It will kick off a thread per CPU that will go into a loop
4662  * writing to the per cpu ring buffer various sizes of data.
4663  * Some of the data will be large items, some small.
4664  *
4665  * Another thread is created that goes into a spin, sending out
4666  * IPIs to the other CPUs to also write into the ring buffer.
4667  * this is to test the nesting ability of the buffer.
4668  *
4669  * Basic stats are recorded and reported. If something in the
4670  * ring buffer should happen that's not expected, a big warning
4671  * is displayed and all ring buffers are disabled.
4672  */
4673 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4674
4675 struct rb_test_data {
4676         struct ring_buffer      *buffer;
4677         unsigned long           events;
4678         unsigned long           bytes_written;
4679         unsigned long           bytes_alloc;
4680         unsigned long           bytes_dropped;
4681         unsigned long           events_nested;
4682         unsigned long           bytes_written_nested;
4683         unsigned long           bytes_alloc_nested;
4684         unsigned long           bytes_dropped_nested;
4685         int                     min_size_nested;
4686         int                     max_size_nested;
4687         int                     max_size;
4688         int                     min_size;
4689         int                     cpu;
4690         int                     cnt;
4691 };
4692
4693 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4694
4695 /* 1 meg per cpu */
4696 #define RB_TEST_BUFFER_SIZE     1048576
4697
4698 static char rb_string[] __initdata =
4699         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4700         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4701         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4702
4703 static bool rb_test_started __initdata;
4704
4705 struct rb_item {
4706         int size;
4707         char str[];
4708 };
4709
4710 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4711 {
4712         struct ring_buffer_event *event;
4713         struct rb_item *item;
4714         bool started;
4715         int event_len;
4716         int size;
4717         int len;
4718         int cnt;
4719
4720         /* Have nested writes different that what is written */
4721         cnt = data->cnt + (nested ? 27 : 0);
4722
4723         /* Multiply cnt by ~e, to make some unique increment */
4724         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4725
4726         len = size + sizeof(struct rb_item);
4727
4728         started = rb_test_started;
4729         /* read rb_test_started before checking buffer enabled */
4730         smp_rmb();
4731
4732         event = ring_buffer_lock_reserve(data->buffer, len);
4733         if (!event) {
4734                 /* Ignore dropped events before test starts. */
4735                 if (started) {
4736                         if (nested)
4737                                 data->bytes_dropped += len;
4738                         else
4739                                 data->bytes_dropped_nested += len;
4740                 }
4741                 return len;
4742         }
4743
4744         event_len = ring_buffer_event_length(event);
4745
4746         if (RB_WARN_ON(data->buffer, event_len < len))
4747                 goto out;
4748
4749         item = ring_buffer_event_data(event);
4750         item->size = size;
4751         memcpy(item->str, rb_string, size);
4752
4753         if (nested) {
4754                 data->bytes_alloc_nested += event_len;
4755                 data->bytes_written_nested += len;
4756                 data->events_nested++;
4757                 if (!data->min_size_nested || len < data->min_size_nested)
4758                         data->min_size_nested = len;
4759                 if (len > data->max_size_nested)
4760                         data->max_size_nested = len;
4761         } else {
4762                 data->bytes_alloc += event_len;
4763                 data->bytes_written += len;
4764                 data->events++;
4765                 if (!data->min_size || len < data->min_size)
4766                         data->max_size = len;
4767                 if (len > data->max_size)
4768                         data->max_size = len;
4769         }
4770
4771  out:
4772         ring_buffer_unlock_commit(data->buffer, event);
4773
4774         return 0;
4775 }
4776
4777 static __init int rb_test(void *arg)
4778 {
4779         struct rb_test_data *data = arg;
4780
4781         while (!kthread_should_stop()) {
4782                 rb_write_something(data, false);
4783                 data->cnt++;
4784
4785                 set_current_state(TASK_INTERRUPTIBLE);
4786                 /* Now sleep between a min of 100-300us and a max of 1ms */
4787                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4788         }
4789
4790         return 0;
4791 }
4792
4793 static __init void rb_ipi(void *ignore)
4794 {
4795         struct rb_test_data *data;
4796         int cpu = smp_processor_id();
4797
4798         data = &rb_data[cpu];
4799         rb_write_something(data, true);
4800 }
4801
4802 static __init int rb_hammer_test(void *arg)
4803 {
4804         while (!kthread_should_stop()) {
4805
4806                 /* Send an IPI to all cpus to write data! */
4807                 smp_call_function(rb_ipi, NULL, 1);
4808                 /* No sleep, but for non preempt, let others run */
4809                 schedule();
4810         }
4811
4812         return 0;
4813 }
4814
4815 static __init int test_ringbuffer(void)
4816 {
4817         struct task_struct *rb_hammer;
4818         struct ring_buffer *buffer;
4819         int cpu;
4820         int ret = 0;
4821
4822         pr_info("Running ring buffer tests...\n");
4823
4824         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4825         if (WARN_ON(!buffer))
4826                 return 0;
4827
4828         /* Disable buffer so that threads can't write to it yet */
4829         ring_buffer_record_off(buffer);
4830
4831         for_each_online_cpu(cpu) {
4832                 rb_data[cpu].buffer = buffer;
4833                 rb_data[cpu].cpu = cpu;
4834                 rb_data[cpu].cnt = cpu;
4835                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4836                                                  "rbtester/%d", cpu);
4837                 if (WARN_ON(!rb_threads[cpu])) {
4838                         pr_cont("FAILED\n");
4839                         ret = -1;
4840                         goto out_free;
4841                 }
4842
4843                 kthread_bind(rb_threads[cpu], cpu);
4844                 wake_up_process(rb_threads[cpu]);
4845         }
4846
4847         /* Now create the rb hammer! */
4848         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4849         if (WARN_ON(!rb_hammer)) {
4850                 pr_cont("FAILED\n");
4851                 ret = -1;
4852                 goto out_free;
4853         }
4854
4855         ring_buffer_record_on(buffer);
4856         /*
4857          * Show buffer is enabled before setting rb_test_started.
4858          * Yes there's a small race window where events could be
4859          * dropped and the thread wont catch it. But when a ring
4860          * buffer gets enabled, there will always be some kind of
4861          * delay before other CPUs see it. Thus, we don't care about
4862          * those dropped events. We care about events dropped after
4863          * the threads see that the buffer is active.
4864          */
4865         smp_wmb();
4866         rb_test_started = true;
4867
4868         set_current_state(TASK_INTERRUPTIBLE);
4869         /* Just run for 10 seconds */;
4870         schedule_timeout(10 * HZ);
4871
4872         kthread_stop(rb_hammer);
4873
4874  out_free:
4875         for_each_online_cpu(cpu) {
4876                 if (!rb_threads[cpu])
4877                         break;
4878                 kthread_stop(rb_threads[cpu]);
4879         }
4880         if (ret) {
4881                 ring_buffer_free(buffer);
4882                 return ret;
4883         }
4884
4885         /* Report! */
4886         pr_info("finished\n");
4887         for_each_online_cpu(cpu) {
4888                 struct ring_buffer_event *event;
4889                 struct rb_test_data *data = &rb_data[cpu];
4890                 struct rb_item *item;
4891                 unsigned long total_events;
4892                 unsigned long total_dropped;
4893                 unsigned long total_written;
4894                 unsigned long total_alloc;
4895                 unsigned long total_read = 0;
4896                 unsigned long total_size = 0;
4897                 unsigned long total_len = 0;
4898                 unsigned long total_lost = 0;
4899                 unsigned long lost;
4900                 int big_event_size;
4901                 int small_event_size;
4902
4903                 ret = -1;
4904
4905                 total_events = data->events + data->events_nested;
4906                 total_written = data->bytes_written + data->bytes_written_nested;
4907                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4908                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4909
4910                 big_event_size = data->max_size + data->max_size_nested;
4911                 small_event_size = data->min_size + data->min_size_nested;
4912
4913                 pr_info("CPU %d:\n", cpu);
4914                 pr_info("              events:    %ld\n", total_events);
4915                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4916                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4917                 pr_info("       written bytes:    %ld\n", total_written);
4918                 pr_info("       biggest event:    %d\n", big_event_size);
4919                 pr_info("      smallest event:    %d\n", small_event_size);
4920
4921                 if (RB_WARN_ON(buffer, total_dropped))
4922                         break;
4923
4924                 ret = 0;
4925
4926                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4927                         total_lost += lost;
4928                         item = ring_buffer_event_data(event);
4929                         total_len += ring_buffer_event_length(event);
4930                         total_size += item->size + sizeof(struct rb_item);
4931                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4932                                 pr_info("FAILED!\n");
4933                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4934                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4935                                 RB_WARN_ON(buffer, 1);
4936                                 ret = -1;
4937                                 break;
4938                         }
4939                         total_read++;
4940                 }
4941                 if (ret)
4942                         break;
4943
4944                 ret = -1;
4945
4946                 pr_info("         read events:   %ld\n", total_read);
4947                 pr_info("         lost events:   %ld\n", total_lost);
4948                 pr_info("        total events:   %ld\n", total_lost + total_read);
4949                 pr_info("  recorded len bytes:   %ld\n", total_len);
4950                 pr_info(" recorded size bytes:   %ld\n", total_size);
4951                 if (total_lost)
4952                         pr_info(" With dropped events, record len and size may not match\n"
4953                                 " alloced and written from above\n");
4954                 if (!total_lost) {
4955                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4956                                        total_size != total_written))
4957                                 break;
4958                 }
4959                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4960                         break;
4961
4962                 ret = 0;
4963         }
4964         if (!ret)
4965                 pr_info("Ring buffer PASSED!\n");
4966
4967         ring_buffer_free(buffer);
4968         return 0;
4969 }
4970
4971 late_initcall(test_ringbuffer);
4972 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */