perf: Handle compat ioctl
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         default:
333                 smp_mb(); /* explicit MB (B) */
334         }
335 }
336
337 /*
338  * Drop a reference to the resource addressed by a key.
339  * The hash bucket spinlock must not be held.
340  */
341 static void drop_futex_key_refs(union futex_key *key)
342 {
343         if (!key->both.ptr) {
344                 /* If we're here then we tried to put a key we failed to get */
345                 WARN_ON_ONCE(1);
346                 return;
347         }
348
349         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
350         case FUT_OFF_INODE:
351                 iput(key->shared.inode);
352                 break;
353         case FUT_OFF_MMSHARED:
354                 mmdrop(key->private.mm);
355                 break;
356         }
357 }
358
359 /**
360  * get_futex_key() - Get parameters which are the keys for a futex
361  * @uaddr:      virtual address of the futex
362  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
363  * @key:        address where result is stored.
364  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
365  *              VERIFY_WRITE)
366  *
367  * Return: a negative error code or 0
368  *
369  * The key words are stored in *key on success.
370  *
371  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
372  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
373  * We can usually work out the index without swapping in the page.
374  *
375  * lock_page() might sleep, the caller should not hold a spinlock.
376  */
377 static int
378 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
379 {
380         unsigned long address = (unsigned long)uaddr;
381         struct mm_struct *mm = current->mm;
382         struct page *page, *page_head;
383         int err, ro = 0;
384
385         /*
386          * The futex address must be "naturally" aligned.
387          */
388         key->both.offset = address % PAGE_SIZE;
389         if (unlikely((address % sizeof(u32)) != 0))
390                 return -EINVAL;
391         address -= key->both.offset;
392
393         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
394                 return -EFAULT;
395
396         /*
397          * PROCESS_PRIVATE futexes are fast.
398          * As the mm cannot disappear under us and the 'key' only needs
399          * virtual address, we dont even have to find the underlying vma.
400          * Note : We do have to check 'uaddr' is a valid user address,
401          *        but access_ok() should be faster than find_vma()
402          */
403         if (!fshared) {
404                 key->private.mm = mm;
405                 key->private.address = address;
406                 get_futex_key_refs(key);  /* implies MB (B) */
407                 return 0;
408         }
409
410 again:
411         err = get_user_pages_fast(address, 1, 1, &page);
412         /*
413          * If write access is not required (eg. FUTEX_WAIT), try
414          * and get read-only access.
415          */
416         if (err == -EFAULT && rw == VERIFY_READ) {
417                 err = get_user_pages_fast(address, 1, 0, &page);
418                 ro = 1;
419         }
420         if (err < 0)
421                 return err;
422         else
423                 err = 0;
424
425 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
426         page_head = page;
427         if (unlikely(PageTail(page))) {
428                 put_page(page);
429                 /* serialize against __split_huge_page_splitting() */
430                 local_irq_disable();
431                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
432                         page_head = compound_head(page);
433                         /*
434                          * page_head is valid pointer but we must pin
435                          * it before taking the PG_lock and/or
436                          * PG_compound_lock. The moment we re-enable
437                          * irqs __split_huge_page_splitting() can
438                          * return and the head page can be freed from
439                          * under us. We can't take the PG_lock and/or
440                          * PG_compound_lock on a page that could be
441                          * freed from under us.
442                          */
443                         if (page != page_head) {
444                                 get_page(page_head);
445                                 put_page(page);
446                         }
447                         local_irq_enable();
448                 } else {
449                         local_irq_enable();
450                         goto again;
451                 }
452         }
453 #else
454         page_head = compound_head(page);
455         if (page != page_head) {
456                 get_page(page_head);
457                 put_page(page);
458         }
459 #endif
460
461         lock_page(page_head);
462
463         /*
464          * If page_head->mapping is NULL, then it cannot be a PageAnon
465          * page; but it might be the ZERO_PAGE or in the gate area or
466          * in a special mapping (all cases which we are happy to fail);
467          * or it may have been a good file page when get_user_pages_fast
468          * found it, but truncated or holepunched or subjected to
469          * invalidate_complete_page2 before we got the page lock (also
470          * cases which we are happy to fail).  And we hold a reference,
471          * so refcount care in invalidate_complete_page's remove_mapping
472          * prevents drop_caches from setting mapping to NULL beneath us.
473          *
474          * The case we do have to guard against is when memory pressure made
475          * shmem_writepage move it from filecache to swapcache beneath us:
476          * an unlikely race, but we do need to retry for page_head->mapping.
477          */
478         if (!page_head->mapping) {
479                 int shmem_swizzled = PageSwapCache(page_head);
480                 unlock_page(page_head);
481                 put_page(page_head);
482                 if (shmem_swizzled)
483                         goto again;
484                 return -EFAULT;
485         }
486
487         /*
488          * Private mappings are handled in a simple way.
489          *
490          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
491          * it's a read-only handle, it's expected that futexes attach to
492          * the object not the particular process.
493          */
494         if (PageAnon(page_head)) {
495                 /*
496                  * A RO anonymous page will never change and thus doesn't make
497                  * sense for futex operations.
498                  */
499                 if (ro) {
500                         err = -EFAULT;
501                         goto out;
502                 }
503
504                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
505                 key->private.mm = mm;
506                 key->private.address = address;
507         } else {
508                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
509                 key->shared.inode = page_head->mapping->host;
510                 key->shared.pgoff = basepage_index(page);
511         }
512
513         get_futex_key_refs(key); /* implies MB (B) */
514
515 out:
516         unlock_page(page_head);
517         put_page(page_head);
518         return err;
519 }
520
521 static inline void put_futex_key(union futex_key *key)
522 {
523         drop_futex_key_refs(key);
524 }
525
526 /**
527  * fault_in_user_writeable() - Fault in user address and verify RW access
528  * @uaddr:      pointer to faulting user space address
529  *
530  * Slow path to fixup the fault we just took in the atomic write
531  * access to @uaddr.
532  *
533  * We have no generic implementation of a non-destructive write to the
534  * user address. We know that we faulted in the atomic pagefault
535  * disabled section so we can as well avoid the #PF overhead by
536  * calling get_user_pages() right away.
537  */
538 static int fault_in_user_writeable(u32 __user *uaddr)
539 {
540         struct mm_struct *mm = current->mm;
541         int ret;
542
543         down_read(&mm->mmap_sem);
544         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
545                                FAULT_FLAG_WRITE);
546         up_read(&mm->mmap_sem);
547
548         return ret < 0 ? ret : 0;
549 }
550
551 /**
552  * futex_top_waiter() - Return the highest priority waiter on a futex
553  * @hb:         the hash bucket the futex_q's reside in
554  * @key:        the futex key (to distinguish it from other futex futex_q's)
555  *
556  * Must be called with the hb lock held.
557  */
558 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
559                                         union futex_key *key)
560 {
561         struct futex_q *this;
562
563         plist_for_each_entry(this, &hb->chain, list) {
564                 if (match_futex(&this->key, key))
565                         return this;
566         }
567         return NULL;
568 }
569
570 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
571                                       u32 uval, u32 newval)
572 {
573         int ret;
574
575         pagefault_disable();
576         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
577         pagefault_enable();
578
579         return ret;
580 }
581
582 static int get_futex_value_locked(u32 *dest, u32 __user *from)
583 {
584         int ret;
585
586         pagefault_disable();
587         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
588         pagefault_enable();
589
590         return ret ? -EFAULT : 0;
591 }
592
593
594 /*
595  * PI code:
596  */
597 static int refill_pi_state_cache(void)
598 {
599         struct futex_pi_state *pi_state;
600
601         if (likely(current->pi_state_cache))
602                 return 0;
603
604         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
605
606         if (!pi_state)
607                 return -ENOMEM;
608
609         INIT_LIST_HEAD(&pi_state->list);
610         /* pi_mutex gets initialized later */
611         pi_state->owner = NULL;
612         atomic_set(&pi_state->refcount, 1);
613         pi_state->key = FUTEX_KEY_INIT;
614
615         current->pi_state_cache = pi_state;
616
617         return 0;
618 }
619
620 static struct futex_pi_state * alloc_pi_state(void)
621 {
622         struct futex_pi_state *pi_state = current->pi_state_cache;
623
624         WARN_ON(!pi_state);
625         current->pi_state_cache = NULL;
626
627         return pi_state;
628 }
629
630 static void free_pi_state(struct futex_pi_state *pi_state)
631 {
632         if (!atomic_dec_and_test(&pi_state->refcount))
633                 return;
634
635         /*
636          * If pi_state->owner is NULL, the owner is most probably dying
637          * and has cleaned up the pi_state already
638          */
639         if (pi_state->owner) {
640                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
641                 list_del_init(&pi_state->list);
642                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
643
644                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
645         }
646
647         if (current->pi_state_cache)
648                 kfree(pi_state);
649         else {
650                 /*
651                  * pi_state->list is already empty.
652                  * clear pi_state->owner.
653                  * refcount is at 0 - put it back to 1.
654                  */
655                 pi_state->owner = NULL;
656                 atomic_set(&pi_state->refcount, 1);
657                 current->pi_state_cache = pi_state;
658         }
659 }
660
661 /*
662  * Look up the task based on what TID userspace gave us.
663  * We dont trust it.
664  */
665 static struct task_struct * futex_find_get_task(pid_t pid)
666 {
667         struct task_struct *p;
668
669         rcu_read_lock();
670         p = find_task_by_vpid(pid);
671         if (p)
672                 get_task_struct(p);
673
674         rcu_read_unlock();
675
676         return p;
677 }
678
679 /*
680  * This task is holding PI mutexes at exit time => bad.
681  * Kernel cleans up PI-state, but userspace is likely hosed.
682  * (Robust-futex cleanup is separate and might save the day for userspace.)
683  */
684 void exit_pi_state_list(struct task_struct *curr)
685 {
686         struct list_head *next, *head = &curr->pi_state_list;
687         struct futex_pi_state *pi_state;
688         struct futex_hash_bucket *hb;
689         union futex_key key = FUTEX_KEY_INIT;
690
691         if (!futex_cmpxchg_enabled)
692                 return;
693         /*
694          * We are a ZOMBIE and nobody can enqueue itself on
695          * pi_state_list anymore, but we have to be careful
696          * versus waiters unqueueing themselves:
697          */
698         raw_spin_lock_irq(&curr->pi_lock);
699         while (!list_empty(head)) {
700
701                 next = head->next;
702                 pi_state = list_entry(next, struct futex_pi_state, list);
703                 key = pi_state->key;
704                 hb = hash_futex(&key);
705                 raw_spin_unlock_irq(&curr->pi_lock);
706
707                 spin_lock(&hb->lock);
708
709                 raw_spin_lock_irq(&curr->pi_lock);
710                 /*
711                  * We dropped the pi-lock, so re-check whether this
712                  * task still owns the PI-state:
713                  */
714                 if (head->next != next) {
715                         spin_unlock(&hb->lock);
716                         continue;
717                 }
718
719                 WARN_ON(pi_state->owner != curr);
720                 WARN_ON(list_empty(&pi_state->list));
721                 list_del_init(&pi_state->list);
722                 pi_state->owner = NULL;
723                 raw_spin_unlock_irq(&curr->pi_lock);
724
725                 rt_mutex_unlock(&pi_state->pi_mutex);
726
727                 spin_unlock(&hb->lock);
728
729                 raw_spin_lock_irq(&curr->pi_lock);
730         }
731         raw_spin_unlock_irq(&curr->pi_lock);
732 }
733
734 /*
735  * We need to check the following states:
736  *
737  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
738  *
739  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
740  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
741  *
742  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
743  *
744  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
745  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
746  *
747  * [6]  Found  | Found    | task      | 0         | 1      | Valid
748  *
749  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
750  *
751  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
752  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
753  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
754  *
755  * [1]  Indicates that the kernel can acquire the futex atomically. We
756  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
757  *
758  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
759  *      thread is found then it indicates that the owner TID has died.
760  *
761  * [3]  Invalid. The waiter is queued on a non PI futex
762  *
763  * [4]  Valid state after exit_robust_list(), which sets the user space
764  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
765  *
766  * [5]  The user space value got manipulated between exit_robust_list()
767  *      and exit_pi_state_list()
768  *
769  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
770  *      the pi_state but cannot access the user space value.
771  *
772  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
773  *
774  * [8]  Owner and user space value match
775  *
776  * [9]  There is no transient state which sets the user space TID to 0
777  *      except exit_robust_list(), but this is indicated by the
778  *      FUTEX_OWNER_DIED bit. See [4]
779  *
780  * [10] There is no transient state which leaves owner and user space
781  *      TID out of sync.
782  */
783 static int
784 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
785                 union futex_key *key, struct futex_pi_state **ps)
786 {
787         struct futex_pi_state *pi_state = NULL;
788         struct futex_q *this, *next;
789         struct task_struct *p;
790         pid_t pid = uval & FUTEX_TID_MASK;
791
792         plist_for_each_entry_safe(this, next, &hb->chain, list) {
793                 if (match_futex(&this->key, key)) {
794                         /*
795                          * Sanity check the waiter before increasing
796                          * the refcount and attaching to it.
797                          */
798                         pi_state = this->pi_state;
799                         /*
800                          * Userspace might have messed up non-PI and
801                          * PI futexes [3]
802                          */
803                         if (unlikely(!pi_state))
804                                 return -EINVAL;
805
806                         WARN_ON(!atomic_read(&pi_state->refcount));
807
808                         /*
809                          * Handle the owner died case:
810                          */
811                         if (uval & FUTEX_OWNER_DIED) {
812                                 /*
813                                  * exit_pi_state_list sets owner to NULL and
814                                  * wakes the topmost waiter. The task which
815                                  * acquires the pi_state->rt_mutex will fixup
816                                  * owner.
817                                  */
818                                 if (!pi_state->owner) {
819                                         /*
820                                          * No pi state owner, but the user
821                                          * space TID is not 0. Inconsistent
822                                          * state. [5]
823                                          */
824                                         if (pid)
825                                                 return -EINVAL;
826                                         /*
827                                          * Take a ref on the state and
828                                          * return. [4]
829                                          */
830                                         goto out_state;
831                                 }
832
833                                 /*
834                                  * If TID is 0, then either the dying owner
835                                  * has not yet executed exit_pi_state_list()
836                                  * or some waiter acquired the rtmutex in the
837                                  * pi state, but did not yet fixup the TID in
838                                  * user space.
839                                  *
840                                  * Take a ref on the state and return. [6]
841                                  */
842                                 if (!pid)
843                                         goto out_state;
844                         } else {
845                                 /*
846                                  * If the owner died bit is not set,
847                                  * then the pi_state must have an
848                                  * owner. [7]
849                                  */
850                                 if (!pi_state->owner)
851                                         return -EINVAL;
852                         }
853
854                         /*
855                          * Bail out if user space manipulated the
856                          * futex value. If pi state exists then the
857                          * owner TID must be the same as the user
858                          * space TID. [9/10]
859                          */
860                         if (pid != task_pid_vnr(pi_state->owner))
861                                 return -EINVAL;
862
863                 out_state:
864                         atomic_inc(&pi_state->refcount);
865                         *ps = pi_state;
866                         return 0;
867                 }
868         }
869
870         /*
871          * We are the first waiter - try to look up the real owner and attach
872          * the new pi_state to it, but bail out when TID = 0 [1]
873          */
874         if (!pid)
875                 return -ESRCH;
876         p = futex_find_get_task(pid);
877         if (!p)
878                 return -ESRCH;
879
880         if (!p->mm) {
881                 put_task_struct(p);
882                 return -EPERM;
883         }
884
885         /*
886          * We need to look at the task state flags to figure out,
887          * whether the task is exiting. To protect against the do_exit
888          * change of the task flags, we do this protected by
889          * p->pi_lock:
890          */
891         raw_spin_lock_irq(&p->pi_lock);
892         if (unlikely(p->flags & PF_EXITING)) {
893                 /*
894                  * The task is on the way out. When PF_EXITPIDONE is
895                  * set, we know that the task has finished the
896                  * cleanup:
897                  */
898                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
899
900                 raw_spin_unlock_irq(&p->pi_lock);
901                 put_task_struct(p);
902                 return ret;
903         }
904
905         /*
906          * No existing pi state. First waiter. [2]
907          */
908         pi_state = alloc_pi_state();
909
910         /*
911          * Initialize the pi_mutex in locked state and make 'p'
912          * the owner of it:
913          */
914         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
915
916         /* Store the key for possible exit cleanups: */
917         pi_state->key = *key;
918
919         WARN_ON(!list_empty(&pi_state->list));
920         list_add(&pi_state->list, &p->pi_state_list);
921         pi_state->owner = p;
922         raw_spin_unlock_irq(&p->pi_lock);
923
924         put_task_struct(p);
925
926         *ps = pi_state;
927
928         return 0;
929 }
930
931 /**
932  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
933  * @uaddr:              the pi futex user address
934  * @hb:                 the pi futex hash bucket
935  * @key:                the futex key associated with uaddr and hb
936  * @ps:                 the pi_state pointer where we store the result of the
937  *                      lookup
938  * @task:               the task to perform the atomic lock work for.  This will
939  *                      be "current" except in the case of requeue pi.
940  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
941  *
942  * Return:
943  *  0 - ready to wait;
944  *  1 - acquired the lock;
945  * <0 - error
946  *
947  * The hb->lock and futex_key refs shall be held by the caller.
948  */
949 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
950                                 union futex_key *key,
951                                 struct futex_pi_state **ps,
952                                 struct task_struct *task, int set_waiters)
953 {
954         int lock_taken, ret, force_take = 0;
955         u32 uval, newval, curval, vpid = task_pid_vnr(task);
956
957 retry:
958         ret = lock_taken = 0;
959
960         /*
961          * To avoid races, we attempt to take the lock here again
962          * (by doing a 0 -> TID atomic cmpxchg), while holding all
963          * the locks. It will most likely not succeed.
964          */
965         newval = vpid;
966         if (set_waiters)
967                 newval |= FUTEX_WAITERS;
968
969         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
970                 return -EFAULT;
971
972         /*
973          * Detect deadlocks.
974          */
975         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
976                 return -EDEADLK;
977
978         /*
979          * Surprise - we got the lock, but we do not trust user space at all.
980          */
981         if (unlikely(!curval)) {
982                 /*
983                  * We verify whether there is kernel state for this
984                  * futex. If not, we can safely assume, that the 0 ->
985                  * TID transition is correct. If state exists, we do
986                  * not bother to fixup the user space state as it was
987                  * corrupted already.
988                  */
989                 return futex_top_waiter(hb, key) ? -EINVAL : 1;
990         }
991
992         uval = curval;
993
994         /*
995          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
996          * to wake at the next unlock.
997          */
998         newval = curval | FUTEX_WAITERS;
999
1000         /*
1001          * Should we force take the futex? See below.
1002          */
1003         if (unlikely(force_take)) {
1004                 /*
1005                  * Keep the OWNER_DIED and the WAITERS bit and set the
1006                  * new TID value.
1007                  */
1008                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
1009                 force_take = 0;
1010                 lock_taken = 1;
1011         }
1012
1013         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1014                 return -EFAULT;
1015         if (unlikely(curval != uval))
1016                 goto retry;
1017
1018         /*
1019          * We took the lock due to forced take over.
1020          */
1021         if (unlikely(lock_taken))
1022                 return 1;
1023
1024         /*
1025          * We dont have the lock. Look up the PI state (or create it if
1026          * we are the first waiter):
1027          */
1028         ret = lookup_pi_state(uval, hb, key, ps);
1029
1030         if (unlikely(ret)) {
1031                 switch (ret) {
1032                 case -ESRCH:
1033                         /*
1034                          * We failed to find an owner for this
1035                          * futex. So we have no pi_state to block
1036                          * on. This can happen in two cases:
1037                          *
1038                          * 1) The owner died
1039                          * 2) A stale FUTEX_WAITERS bit
1040                          *
1041                          * Re-read the futex value.
1042                          */
1043                         if (get_futex_value_locked(&curval, uaddr))
1044                                 return -EFAULT;
1045
1046                         /*
1047                          * If the owner died or we have a stale
1048                          * WAITERS bit the owner TID in the user space
1049                          * futex is 0.
1050                          */
1051                         if (!(curval & FUTEX_TID_MASK)) {
1052                                 force_take = 1;
1053                                 goto retry;
1054                         }
1055                 default:
1056                         break;
1057                 }
1058         }
1059
1060         return ret;
1061 }
1062
1063 /**
1064  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1065  * @q:  The futex_q to unqueue
1066  *
1067  * The q->lock_ptr must not be NULL and must be held by the caller.
1068  */
1069 static void __unqueue_futex(struct futex_q *q)
1070 {
1071         struct futex_hash_bucket *hb;
1072
1073         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1074             || WARN_ON(plist_node_empty(&q->list)))
1075                 return;
1076
1077         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1078         plist_del(&q->list, &hb->chain);
1079         hb_waiters_dec(hb);
1080 }
1081
1082 /*
1083  * The hash bucket lock must be held when this is called.
1084  * Afterwards, the futex_q must not be accessed.
1085  */
1086 static void wake_futex(struct futex_q *q)
1087 {
1088         struct task_struct *p = q->task;
1089
1090         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1091                 return;
1092
1093         /*
1094          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1095          * a non-futex wake up happens on another CPU then the task
1096          * might exit and p would dereference a non-existing task
1097          * struct. Prevent this by holding a reference on p across the
1098          * wake up.
1099          */
1100         get_task_struct(p);
1101
1102         __unqueue_futex(q);
1103         /*
1104          * The waiting task can free the futex_q as soon as
1105          * q->lock_ptr = NULL is written, without taking any locks. A
1106          * memory barrier is required here to prevent the following
1107          * store to lock_ptr from getting ahead of the plist_del.
1108          */
1109         smp_wmb();
1110         q->lock_ptr = NULL;
1111
1112         wake_up_state(p, TASK_NORMAL);
1113         put_task_struct(p);
1114 }
1115
1116 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1117 {
1118         struct task_struct *new_owner;
1119         struct futex_pi_state *pi_state = this->pi_state;
1120         u32 uninitialized_var(curval), newval;
1121         int ret = 0;
1122
1123         if (!pi_state)
1124                 return -EINVAL;
1125
1126         /*
1127          * If current does not own the pi_state then the futex is
1128          * inconsistent and user space fiddled with the futex value.
1129          */
1130         if (pi_state->owner != current)
1131                 return -EINVAL;
1132
1133         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1134         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1135
1136         /*
1137          * It is possible that the next waiter (the one that brought
1138          * this owner to the kernel) timed out and is no longer
1139          * waiting on the lock.
1140          */
1141         if (!new_owner)
1142                 new_owner = this->task;
1143
1144         /*
1145          * We pass it to the next owner. The WAITERS bit is always
1146          * kept enabled while there is PI state around. We cleanup the
1147          * owner died bit, because we are the owner.
1148          */
1149         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1150
1151         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1152                 ret = -EFAULT;
1153         else if (curval != uval)
1154                 ret = -EINVAL;
1155         if (ret) {
1156                 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1157                 return ret;
1158         }
1159
1160         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1161         WARN_ON(list_empty(&pi_state->list));
1162         list_del_init(&pi_state->list);
1163         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1164
1165         raw_spin_lock_irq(&new_owner->pi_lock);
1166         WARN_ON(!list_empty(&pi_state->list));
1167         list_add(&pi_state->list, &new_owner->pi_state_list);
1168         pi_state->owner = new_owner;
1169         raw_spin_unlock_irq(&new_owner->pi_lock);
1170
1171         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1172         rt_mutex_unlock(&pi_state->pi_mutex);
1173
1174         return 0;
1175 }
1176
1177 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1178 {
1179         u32 uninitialized_var(oldval);
1180
1181         /*
1182          * There is no waiter, so we unlock the futex. The owner died
1183          * bit has not to be preserved here. We are the owner:
1184          */
1185         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1186                 return -EFAULT;
1187         if (oldval != uval)
1188                 return -EAGAIN;
1189
1190         return 0;
1191 }
1192
1193 /*
1194  * Express the locking dependencies for lockdep:
1195  */
1196 static inline void
1197 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1198 {
1199         if (hb1 <= hb2) {
1200                 spin_lock(&hb1->lock);
1201                 if (hb1 < hb2)
1202                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1203         } else { /* hb1 > hb2 */
1204                 spin_lock(&hb2->lock);
1205                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1206         }
1207 }
1208
1209 static inline void
1210 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1211 {
1212         spin_unlock(&hb1->lock);
1213         if (hb1 != hb2)
1214                 spin_unlock(&hb2->lock);
1215 }
1216
1217 /*
1218  * Wake up waiters matching bitset queued on this futex (uaddr).
1219  */
1220 static int
1221 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1222 {
1223         struct futex_hash_bucket *hb;
1224         struct futex_q *this, *next;
1225         union futex_key key = FUTEX_KEY_INIT;
1226         int ret;
1227
1228         if (!bitset)
1229                 return -EINVAL;
1230
1231         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1232         if (unlikely(ret != 0))
1233                 goto out;
1234
1235         hb = hash_futex(&key);
1236
1237         /* Make sure we really have tasks to wakeup */
1238         if (!hb_waiters_pending(hb))
1239                 goto out_put_key;
1240
1241         spin_lock(&hb->lock);
1242
1243         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1244                 if (match_futex (&this->key, &key)) {
1245                         if (this->pi_state || this->rt_waiter) {
1246                                 ret = -EINVAL;
1247                                 break;
1248                         }
1249
1250                         /* Check if one of the bits is set in both bitsets */
1251                         if (!(this->bitset & bitset))
1252                                 continue;
1253
1254                         wake_futex(this);
1255                         if (++ret >= nr_wake)
1256                                 break;
1257                 }
1258         }
1259
1260         spin_unlock(&hb->lock);
1261 out_put_key:
1262         put_futex_key(&key);
1263 out:
1264         return ret;
1265 }
1266
1267 /*
1268  * Wake up all waiters hashed on the physical page that is mapped
1269  * to this virtual address:
1270  */
1271 static int
1272 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1273               int nr_wake, int nr_wake2, int op)
1274 {
1275         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1276         struct futex_hash_bucket *hb1, *hb2;
1277         struct futex_q *this, *next;
1278         int ret, op_ret;
1279
1280 retry:
1281         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1282         if (unlikely(ret != 0))
1283                 goto out;
1284         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1285         if (unlikely(ret != 0))
1286                 goto out_put_key1;
1287
1288         hb1 = hash_futex(&key1);
1289         hb2 = hash_futex(&key2);
1290
1291 retry_private:
1292         double_lock_hb(hb1, hb2);
1293         op_ret = futex_atomic_op_inuser(op, uaddr2);
1294         if (unlikely(op_ret < 0)) {
1295
1296                 double_unlock_hb(hb1, hb2);
1297
1298 #ifndef CONFIG_MMU
1299                 /*
1300                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1301                  * but we might get them from range checking
1302                  */
1303                 ret = op_ret;
1304                 goto out_put_keys;
1305 #endif
1306
1307                 if (unlikely(op_ret != -EFAULT)) {
1308                         ret = op_ret;
1309                         goto out_put_keys;
1310                 }
1311
1312                 ret = fault_in_user_writeable(uaddr2);
1313                 if (ret)
1314                         goto out_put_keys;
1315
1316                 if (!(flags & FLAGS_SHARED))
1317                         goto retry_private;
1318
1319                 put_futex_key(&key2);
1320                 put_futex_key(&key1);
1321                 goto retry;
1322         }
1323
1324         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1325                 if (match_futex (&this->key, &key1)) {
1326                         if (this->pi_state || this->rt_waiter) {
1327                                 ret = -EINVAL;
1328                                 goto out_unlock;
1329                         }
1330                         wake_futex(this);
1331                         if (++ret >= nr_wake)
1332                                 break;
1333                 }
1334         }
1335
1336         if (op_ret > 0) {
1337                 op_ret = 0;
1338                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1339                         if (match_futex (&this->key, &key2)) {
1340                                 if (this->pi_state || this->rt_waiter) {
1341                                         ret = -EINVAL;
1342                                         goto out_unlock;
1343                                 }
1344                                 wake_futex(this);
1345                                 if (++op_ret >= nr_wake2)
1346                                         break;
1347                         }
1348                 }
1349                 ret += op_ret;
1350         }
1351
1352 out_unlock:
1353         double_unlock_hb(hb1, hb2);
1354 out_put_keys:
1355         put_futex_key(&key2);
1356 out_put_key1:
1357         put_futex_key(&key1);
1358 out:
1359         return ret;
1360 }
1361
1362 /**
1363  * requeue_futex() - Requeue a futex_q from one hb to another
1364  * @q:          the futex_q to requeue
1365  * @hb1:        the source hash_bucket
1366  * @hb2:        the target hash_bucket
1367  * @key2:       the new key for the requeued futex_q
1368  */
1369 static inline
1370 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1371                    struct futex_hash_bucket *hb2, union futex_key *key2)
1372 {
1373
1374         /*
1375          * If key1 and key2 hash to the same bucket, no need to
1376          * requeue.
1377          */
1378         if (likely(&hb1->chain != &hb2->chain)) {
1379                 plist_del(&q->list, &hb1->chain);
1380                 hb_waiters_dec(hb1);
1381                 plist_add(&q->list, &hb2->chain);
1382                 hb_waiters_inc(hb2);
1383                 q->lock_ptr = &hb2->lock;
1384         }
1385         get_futex_key_refs(key2);
1386         q->key = *key2;
1387 }
1388
1389 /**
1390  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1391  * @q:          the futex_q
1392  * @key:        the key of the requeue target futex
1393  * @hb:         the hash_bucket of the requeue target futex
1394  *
1395  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1396  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1397  * to the requeue target futex so the waiter can detect the wakeup on the right
1398  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1399  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1400  * to protect access to the pi_state to fixup the owner later.  Must be called
1401  * with both q->lock_ptr and hb->lock held.
1402  */
1403 static inline
1404 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1405                            struct futex_hash_bucket *hb)
1406 {
1407         get_futex_key_refs(key);
1408         q->key = *key;
1409
1410         __unqueue_futex(q);
1411
1412         WARN_ON(!q->rt_waiter);
1413         q->rt_waiter = NULL;
1414
1415         q->lock_ptr = &hb->lock;
1416
1417         wake_up_state(q->task, TASK_NORMAL);
1418 }
1419
1420 /**
1421  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1422  * @pifutex:            the user address of the to futex
1423  * @hb1:                the from futex hash bucket, must be locked by the caller
1424  * @hb2:                the to futex hash bucket, must be locked by the caller
1425  * @key1:               the from futex key
1426  * @key2:               the to futex key
1427  * @ps:                 address to store the pi_state pointer
1428  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1429  *
1430  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1431  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1432  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1433  * hb1 and hb2 must be held by the caller.
1434  *
1435  * Return:
1436  *  0 - failed to acquire the lock atomically;
1437  * >0 - acquired the lock, return value is vpid of the top_waiter
1438  * <0 - error
1439  */
1440 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1441                                  struct futex_hash_bucket *hb1,
1442                                  struct futex_hash_bucket *hb2,
1443                                  union futex_key *key1, union futex_key *key2,
1444                                  struct futex_pi_state **ps, int set_waiters)
1445 {
1446         struct futex_q *top_waiter = NULL;
1447         u32 curval;
1448         int ret, vpid;
1449
1450         if (get_futex_value_locked(&curval, pifutex))
1451                 return -EFAULT;
1452
1453         /*
1454          * Find the top_waiter and determine if there are additional waiters.
1455          * If the caller intends to requeue more than 1 waiter to pifutex,
1456          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1457          * as we have means to handle the possible fault.  If not, don't set
1458          * the bit unecessarily as it will force the subsequent unlock to enter
1459          * the kernel.
1460          */
1461         top_waiter = futex_top_waiter(hb1, key1);
1462
1463         /* There are no waiters, nothing for us to do. */
1464         if (!top_waiter)
1465                 return 0;
1466
1467         /* Ensure we requeue to the expected futex. */
1468         if (!match_futex(top_waiter->requeue_pi_key, key2))
1469                 return -EINVAL;
1470
1471         /*
1472          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1473          * the contended case or if set_waiters is 1.  The pi_state is returned
1474          * in ps in contended cases.
1475          */
1476         vpid = task_pid_vnr(top_waiter->task);
1477         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1478                                    set_waiters);
1479         if (ret == 1) {
1480                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1481                 return vpid;
1482         }
1483         return ret;
1484 }
1485
1486 /**
1487  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1488  * @uaddr1:     source futex user address
1489  * @flags:      futex flags (FLAGS_SHARED, etc.)
1490  * @uaddr2:     target futex user address
1491  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1492  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1493  * @cmpval:     @uaddr1 expected value (or %NULL)
1494  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1495  *              pi futex (pi to pi requeue is not supported)
1496  *
1497  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1498  * uaddr2 atomically on behalf of the top waiter.
1499  *
1500  * Return:
1501  * >=0 - on success, the number of tasks requeued or woken;
1502  *  <0 - on error
1503  */
1504 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1505                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1506                          u32 *cmpval, int requeue_pi)
1507 {
1508         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1509         int drop_count = 0, task_count = 0, ret;
1510         struct futex_pi_state *pi_state = NULL;
1511         struct futex_hash_bucket *hb1, *hb2;
1512         struct futex_q *this, *next;
1513
1514         if (requeue_pi) {
1515                 /*
1516                  * Requeue PI only works on two distinct uaddrs. This
1517                  * check is only valid for private futexes. See below.
1518                  */
1519                 if (uaddr1 == uaddr2)
1520                         return -EINVAL;
1521
1522                 /*
1523                  * requeue_pi requires a pi_state, try to allocate it now
1524                  * without any locks in case it fails.
1525                  */
1526                 if (refill_pi_state_cache())
1527                         return -ENOMEM;
1528                 /*
1529                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1530                  * + nr_requeue, since it acquires the rt_mutex prior to
1531                  * returning to userspace, so as to not leave the rt_mutex with
1532                  * waiters and no owner.  However, second and third wake-ups
1533                  * cannot be predicted as they involve race conditions with the
1534                  * first wake and a fault while looking up the pi_state.  Both
1535                  * pthread_cond_signal() and pthread_cond_broadcast() should
1536                  * use nr_wake=1.
1537                  */
1538                 if (nr_wake != 1)
1539                         return -EINVAL;
1540         }
1541
1542 retry:
1543         if (pi_state != NULL) {
1544                 /*
1545                  * We will have to lookup the pi_state again, so free this one
1546                  * to keep the accounting correct.
1547                  */
1548                 free_pi_state(pi_state);
1549                 pi_state = NULL;
1550         }
1551
1552         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1553         if (unlikely(ret != 0))
1554                 goto out;
1555         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1556                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1557         if (unlikely(ret != 0))
1558                 goto out_put_key1;
1559
1560         /*
1561          * The check above which compares uaddrs is not sufficient for
1562          * shared futexes. We need to compare the keys:
1563          */
1564         if (requeue_pi && match_futex(&key1, &key2)) {
1565                 ret = -EINVAL;
1566                 goto out_put_keys;
1567         }
1568
1569         hb1 = hash_futex(&key1);
1570         hb2 = hash_futex(&key2);
1571
1572 retry_private:
1573         hb_waiters_inc(hb2);
1574         double_lock_hb(hb1, hb2);
1575
1576         if (likely(cmpval != NULL)) {
1577                 u32 curval;
1578
1579                 ret = get_futex_value_locked(&curval, uaddr1);
1580
1581                 if (unlikely(ret)) {
1582                         double_unlock_hb(hb1, hb2);
1583                         hb_waiters_dec(hb2);
1584
1585                         ret = get_user(curval, uaddr1);
1586                         if (ret)
1587                                 goto out_put_keys;
1588
1589                         if (!(flags & FLAGS_SHARED))
1590                                 goto retry_private;
1591
1592                         put_futex_key(&key2);
1593                         put_futex_key(&key1);
1594                         goto retry;
1595                 }
1596                 if (curval != *cmpval) {
1597                         ret = -EAGAIN;
1598                         goto out_unlock;
1599                 }
1600         }
1601
1602         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1603                 /*
1604                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1605                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1606                  * bit.  We force this here where we are able to easily handle
1607                  * faults rather in the requeue loop below.
1608                  */
1609                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1610                                                  &key2, &pi_state, nr_requeue);
1611
1612                 /*
1613                  * At this point the top_waiter has either taken uaddr2 or is
1614                  * waiting on it.  If the former, then the pi_state will not
1615                  * exist yet, look it up one more time to ensure we have a
1616                  * reference to it. If the lock was taken, ret contains the
1617                  * vpid of the top waiter task.
1618                  */
1619                 if (ret > 0) {
1620                         WARN_ON(pi_state);
1621                         drop_count++;
1622                         task_count++;
1623                         /*
1624                          * If we acquired the lock, then the user
1625                          * space value of uaddr2 should be vpid. It
1626                          * cannot be changed by the top waiter as it
1627                          * is blocked on hb2 lock if it tries to do
1628                          * so. If something fiddled with it behind our
1629                          * back the pi state lookup might unearth
1630                          * it. So we rather use the known value than
1631                          * rereading and handing potential crap to
1632                          * lookup_pi_state.
1633                          */
1634                         ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1635                 }
1636
1637                 switch (ret) {
1638                 case 0:
1639                         break;
1640                 case -EFAULT:
1641                         double_unlock_hb(hb1, hb2);
1642                         hb_waiters_dec(hb2);
1643                         put_futex_key(&key2);
1644                         put_futex_key(&key1);
1645                         ret = fault_in_user_writeable(uaddr2);
1646                         if (!ret)
1647                                 goto retry;
1648                         goto out;
1649                 case -EAGAIN:
1650                         /* The owner was exiting, try again. */
1651                         double_unlock_hb(hb1, hb2);
1652                         hb_waiters_dec(hb2);
1653                         put_futex_key(&key2);
1654                         put_futex_key(&key1);
1655                         cond_resched();
1656                         goto retry;
1657                 default:
1658                         goto out_unlock;
1659                 }
1660         }
1661
1662         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1663                 if (task_count - nr_wake >= nr_requeue)
1664                         break;
1665
1666                 if (!match_futex(&this->key, &key1))
1667                         continue;
1668
1669                 /*
1670                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1671                  * be paired with each other and no other futex ops.
1672                  *
1673                  * We should never be requeueing a futex_q with a pi_state,
1674                  * which is awaiting a futex_unlock_pi().
1675                  */
1676                 if ((requeue_pi && !this->rt_waiter) ||
1677                     (!requeue_pi && this->rt_waiter) ||
1678                     this->pi_state) {
1679                         ret = -EINVAL;
1680                         break;
1681                 }
1682
1683                 /*
1684                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1685                  * lock, we already woke the top_waiter.  If not, it will be
1686                  * woken by futex_unlock_pi().
1687                  */
1688                 if (++task_count <= nr_wake && !requeue_pi) {
1689                         wake_futex(this);
1690                         continue;
1691                 }
1692
1693                 /* Ensure we requeue to the expected futex for requeue_pi. */
1694                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1695                         ret = -EINVAL;
1696                         break;
1697                 }
1698
1699                 /*
1700                  * Requeue nr_requeue waiters and possibly one more in the case
1701                  * of requeue_pi if we couldn't acquire the lock atomically.
1702                  */
1703                 if (requeue_pi) {
1704                         /* Prepare the waiter to take the rt_mutex. */
1705                         atomic_inc(&pi_state->refcount);
1706                         this->pi_state = pi_state;
1707                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1708                                                         this->rt_waiter,
1709                                                         this->task, 1);
1710                         if (ret == 1) {
1711                                 /* We got the lock. */
1712                                 requeue_pi_wake_futex(this, &key2, hb2);
1713                                 drop_count++;
1714                                 continue;
1715                         } else if (ret) {
1716                                 /* -EDEADLK */
1717                                 this->pi_state = NULL;
1718                                 free_pi_state(pi_state);
1719                                 goto out_unlock;
1720                         }
1721                 }
1722                 requeue_futex(this, hb1, hb2, &key2);
1723                 drop_count++;
1724         }
1725
1726 out_unlock:
1727         double_unlock_hb(hb1, hb2);
1728         hb_waiters_dec(hb2);
1729
1730         /*
1731          * drop_futex_key_refs() must be called outside the spinlocks. During
1732          * the requeue we moved futex_q's from the hash bucket at key1 to the
1733          * one at key2 and updated their key pointer.  We no longer need to
1734          * hold the references to key1.
1735          */
1736         while (--drop_count >= 0)
1737                 drop_futex_key_refs(&key1);
1738
1739 out_put_keys:
1740         put_futex_key(&key2);
1741 out_put_key1:
1742         put_futex_key(&key1);
1743 out:
1744         if (pi_state != NULL)
1745                 free_pi_state(pi_state);
1746         return ret ? ret : task_count;
1747 }
1748
1749 /* The key must be already stored in q->key. */
1750 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1751         __acquires(&hb->lock)
1752 {
1753         struct futex_hash_bucket *hb;
1754
1755         hb = hash_futex(&q->key);
1756
1757         /*
1758          * Increment the counter before taking the lock so that
1759          * a potential waker won't miss a to-be-slept task that is
1760          * waiting for the spinlock. This is safe as all queue_lock()
1761          * users end up calling queue_me(). Similarly, for housekeeping,
1762          * decrement the counter at queue_unlock() when some error has
1763          * occurred and we don't end up adding the task to the list.
1764          */
1765         hb_waiters_inc(hb);
1766
1767         q->lock_ptr = &hb->lock;
1768
1769         spin_lock(&hb->lock); /* implies MB (A) */
1770         return hb;
1771 }
1772
1773 static inline void
1774 queue_unlock(struct futex_hash_bucket *hb)
1775         __releases(&hb->lock)
1776 {
1777         spin_unlock(&hb->lock);
1778         hb_waiters_dec(hb);
1779 }
1780
1781 /**
1782  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1783  * @q:  The futex_q to enqueue
1784  * @hb: The destination hash bucket
1785  *
1786  * The hb->lock must be held by the caller, and is released here. A call to
1787  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1788  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1789  * or nothing if the unqueue is done as part of the wake process and the unqueue
1790  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1791  * an example).
1792  */
1793 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1794         __releases(&hb->lock)
1795 {
1796         int prio;
1797
1798         /*
1799          * The priority used to register this element is
1800          * - either the real thread-priority for the real-time threads
1801          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1802          * - or MAX_RT_PRIO for non-RT threads.
1803          * Thus, all RT-threads are woken first in priority order, and
1804          * the others are woken last, in FIFO order.
1805          */
1806         prio = min(current->normal_prio, MAX_RT_PRIO);
1807
1808         plist_node_init(&q->list, prio);
1809         plist_add(&q->list, &hb->chain);
1810         q->task = current;
1811         spin_unlock(&hb->lock);
1812 }
1813
1814 /**
1815  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1816  * @q:  The futex_q to unqueue
1817  *
1818  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1819  * be paired with exactly one earlier call to queue_me().
1820  *
1821  * Return:
1822  *   1 - if the futex_q was still queued (and we removed unqueued it);
1823  *   0 - if the futex_q was already removed by the waking thread
1824  */
1825 static int unqueue_me(struct futex_q *q)
1826 {
1827         spinlock_t *lock_ptr;
1828         int ret = 0;
1829
1830         /* In the common case we don't take the spinlock, which is nice. */
1831 retry:
1832         lock_ptr = q->lock_ptr;
1833         barrier();
1834         if (lock_ptr != NULL) {
1835                 spin_lock(lock_ptr);
1836                 /*
1837                  * q->lock_ptr can change between reading it and
1838                  * spin_lock(), causing us to take the wrong lock.  This
1839                  * corrects the race condition.
1840                  *
1841                  * Reasoning goes like this: if we have the wrong lock,
1842                  * q->lock_ptr must have changed (maybe several times)
1843                  * between reading it and the spin_lock().  It can
1844                  * change again after the spin_lock() but only if it was
1845                  * already changed before the spin_lock().  It cannot,
1846                  * however, change back to the original value.  Therefore
1847                  * we can detect whether we acquired the correct lock.
1848                  */
1849                 if (unlikely(lock_ptr != q->lock_ptr)) {
1850                         spin_unlock(lock_ptr);
1851                         goto retry;
1852                 }
1853                 __unqueue_futex(q);
1854
1855                 BUG_ON(q->pi_state);
1856
1857                 spin_unlock(lock_ptr);
1858                 ret = 1;
1859         }
1860
1861         drop_futex_key_refs(&q->key);
1862         return ret;
1863 }
1864
1865 /*
1866  * PI futexes can not be requeued and must remove themself from the
1867  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1868  * and dropped here.
1869  */
1870 static void unqueue_me_pi(struct futex_q *q)
1871         __releases(q->lock_ptr)
1872 {
1873         __unqueue_futex(q);
1874
1875         BUG_ON(!q->pi_state);
1876         free_pi_state(q->pi_state);
1877         q->pi_state = NULL;
1878
1879         spin_unlock(q->lock_ptr);
1880 }
1881
1882 /*
1883  * Fixup the pi_state owner with the new owner.
1884  *
1885  * Must be called with hash bucket lock held and mm->sem held for non
1886  * private futexes.
1887  */
1888 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1889                                 struct task_struct *newowner)
1890 {
1891         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1892         struct futex_pi_state *pi_state = q->pi_state;
1893         struct task_struct *oldowner = pi_state->owner;
1894         u32 uval, uninitialized_var(curval), newval;
1895         int ret;
1896
1897         /* Owner died? */
1898         if (!pi_state->owner)
1899                 newtid |= FUTEX_OWNER_DIED;
1900
1901         /*
1902          * We are here either because we stole the rtmutex from the
1903          * previous highest priority waiter or we are the highest priority
1904          * waiter but failed to get the rtmutex the first time.
1905          * We have to replace the newowner TID in the user space variable.
1906          * This must be atomic as we have to preserve the owner died bit here.
1907          *
1908          * Note: We write the user space value _before_ changing the pi_state
1909          * because we can fault here. Imagine swapped out pages or a fork
1910          * that marked all the anonymous memory readonly for cow.
1911          *
1912          * Modifying pi_state _before_ the user space value would
1913          * leave the pi_state in an inconsistent state when we fault
1914          * here, because we need to drop the hash bucket lock to
1915          * handle the fault. This might be observed in the PID check
1916          * in lookup_pi_state.
1917          */
1918 retry:
1919         if (get_futex_value_locked(&uval, uaddr))
1920                 goto handle_fault;
1921
1922         while (1) {
1923                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1924
1925                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1926                         goto handle_fault;
1927                 if (curval == uval)
1928                         break;
1929                 uval = curval;
1930         }
1931
1932         /*
1933          * We fixed up user space. Now we need to fix the pi_state
1934          * itself.
1935          */
1936         if (pi_state->owner != NULL) {
1937                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1938                 WARN_ON(list_empty(&pi_state->list));
1939                 list_del_init(&pi_state->list);
1940                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1941         }
1942
1943         pi_state->owner = newowner;
1944
1945         raw_spin_lock_irq(&newowner->pi_lock);
1946         WARN_ON(!list_empty(&pi_state->list));
1947         list_add(&pi_state->list, &newowner->pi_state_list);
1948         raw_spin_unlock_irq(&newowner->pi_lock);
1949         return 0;
1950
1951         /*
1952          * To handle the page fault we need to drop the hash bucket
1953          * lock here. That gives the other task (either the highest priority
1954          * waiter itself or the task which stole the rtmutex) the
1955          * chance to try the fixup of the pi_state. So once we are
1956          * back from handling the fault we need to check the pi_state
1957          * after reacquiring the hash bucket lock and before trying to
1958          * do another fixup. When the fixup has been done already we
1959          * simply return.
1960          */
1961 handle_fault:
1962         spin_unlock(q->lock_ptr);
1963
1964         ret = fault_in_user_writeable(uaddr);
1965
1966         spin_lock(q->lock_ptr);
1967
1968         /*
1969          * Check if someone else fixed it for us:
1970          */
1971         if (pi_state->owner != oldowner)
1972                 return 0;
1973
1974         if (ret)
1975                 return ret;
1976
1977         goto retry;
1978 }
1979
1980 static long futex_wait_restart(struct restart_block *restart);
1981
1982 /**
1983  * fixup_owner() - Post lock pi_state and corner case management
1984  * @uaddr:      user address of the futex
1985  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1986  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1987  *
1988  * After attempting to lock an rt_mutex, this function is called to cleanup
1989  * the pi_state owner as well as handle race conditions that may allow us to
1990  * acquire the lock. Must be called with the hb lock held.
1991  *
1992  * Return:
1993  *  1 - success, lock taken;
1994  *  0 - success, lock not taken;
1995  * <0 - on error (-EFAULT)
1996  */
1997 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1998 {
1999         struct task_struct *owner;
2000         int ret = 0;
2001
2002         if (locked) {
2003                 /*
2004                  * Got the lock. We might not be the anticipated owner if we
2005                  * did a lock-steal - fix up the PI-state in that case:
2006                  */
2007                 if (q->pi_state->owner != current)
2008                         ret = fixup_pi_state_owner(uaddr, q, current);
2009                 goto out;
2010         }
2011
2012         /*
2013          * Catch the rare case, where the lock was released when we were on the
2014          * way back before we locked the hash bucket.
2015          */
2016         if (q->pi_state->owner == current) {
2017                 /*
2018                  * Try to get the rt_mutex now. This might fail as some other
2019                  * task acquired the rt_mutex after we removed ourself from the
2020                  * rt_mutex waiters list.
2021                  */
2022                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2023                         locked = 1;
2024                         goto out;
2025                 }
2026
2027                 /*
2028                  * pi_state is incorrect, some other task did a lock steal and
2029                  * we returned due to timeout or signal without taking the
2030                  * rt_mutex. Too late.
2031                  */
2032                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2033                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2034                 if (!owner)
2035                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2036                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2037                 ret = fixup_pi_state_owner(uaddr, q, owner);
2038                 goto out;
2039         }
2040
2041         /*
2042          * Paranoia check. If we did not take the lock, then we should not be
2043          * the owner of the rt_mutex.
2044          */
2045         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2046                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2047                                 "pi-state %p\n", ret,
2048                                 q->pi_state->pi_mutex.owner,
2049                                 q->pi_state->owner);
2050
2051 out:
2052         return ret ? ret : locked;
2053 }
2054
2055 /**
2056  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2057  * @hb:         the futex hash bucket, must be locked by the caller
2058  * @q:          the futex_q to queue up on
2059  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2060  */
2061 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2062                                 struct hrtimer_sleeper *timeout)
2063 {
2064         /*
2065          * The task state is guaranteed to be set before another task can
2066          * wake it. set_current_state() is implemented using set_mb() and
2067          * queue_me() calls spin_unlock() upon completion, both serializing
2068          * access to the hash list and forcing another memory barrier.
2069          */
2070         set_current_state(TASK_INTERRUPTIBLE);
2071         queue_me(q, hb);
2072
2073         /* Arm the timer */
2074         if (timeout) {
2075                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2076                 if (!hrtimer_active(&timeout->timer))
2077                         timeout->task = NULL;
2078         }
2079
2080         /*
2081          * If we have been removed from the hash list, then another task
2082          * has tried to wake us, and we can skip the call to schedule().
2083          */
2084         if (likely(!plist_node_empty(&q->list))) {
2085                 /*
2086                  * If the timer has already expired, current will already be
2087                  * flagged for rescheduling. Only call schedule if there
2088                  * is no timeout, or if it has yet to expire.
2089                  */
2090                 if (!timeout || timeout->task)
2091                         freezable_schedule();
2092         }
2093         __set_current_state(TASK_RUNNING);
2094 }
2095
2096 /**
2097  * futex_wait_setup() - Prepare to wait on a futex
2098  * @uaddr:      the futex userspace address
2099  * @val:        the expected value
2100  * @flags:      futex flags (FLAGS_SHARED, etc.)
2101  * @q:          the associated futex_q
2102  * @hb:         storage for hash_bucket pointer to be returned to caller
2103  *
2104  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2105  * compare it with the expected value.  Handle atomic faults internally.
2106  * Return with the hb lock held and a q.key reference on success, and unlocked
2107  * with no q.key reference on failure.
2108  *
2109  * Return:
2110  *  0 - uaddr contains val and hb has been locked;
2111  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2112  */
2113 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2114                            struct futex_q *q, struct futex_hash_bucket **hb)
2115 {
2116         u32 uval;
2117         int ret;
2118
2119         /*
2120          * Access the page AFTER the hash-bucket is locked.
2121          * Order is important:
2122          *
2123          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2124          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2125          *
2126          * The basic logical guarantee of a futex is that it blocks ONLY
2127          * if cond(var) is known to be true at the time of blocking, for
2128          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2129          * would open a race condition where we could block indefinitely with
2130          * cond(var) false, which would violate the guarantee.
2131          *
2132          * On the other hand, we insert q and release the hash-bucket only
2133          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2134          * absorb a wakeup if *uaddr does not match the desired values
2135          * while the syscall executes.
2136          */
2137 retry:
2138         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2139         if (unlikely(ret != 0))
2140                 return ret;
2141
2142 retry_private:
2143         *hb = queue_lock(q);
2144
2145         ret = get_futex_value_locked(&uval, uaddr);
2146
2147         if (ret) {
2148                 queue_unlock(*hb);
2149
2150                 ret = get_user(uval, uaddr);
2151                 if (ret)
2152                         goto out;
2153
2154                 if (!(flags & FLAGS_SHARED))
2155                         goto retry_private;
2156
2157                 put_futex_key(&q->key);
2158                 goto retry;
2159         }
2160
2161         if (uval != val) {
2162                 queue_unlock(*hb);
2163                 ret = -EWOULDBLOCK;
2164         }
2165
2166 out:
2167         if (ret)
2168                 put_futex_key(&q->key);
2169         return ret;
2170 }
2171
2172 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2173                       ktime_t *abs_time, u32 bitset)
2174 {
2175         struct hrtimer_sleeper timeout, *to = NULL;
2176         struct restart_block *restart;
2177         struct futex_hash_bucket *hb;
2178         struct futex_q q = futex_q_init;
2179         int ret;
2180
2181         if (!bitset)
2182                 return -EINVAL;
2183         q.bitset = bitset;
2184
2185         if (abs_time) {
2186                 to = &timeout;
2187
2188                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2189                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2190                                       HRTIMER_MODE_ABS);
2191                 hrtimer_init_sleeper(to, current);
2192                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2193                                              current->timer_slack_ns);
2194         }
2195
2196 retry:
2197         /*
2198          * Prepare to wait on uaddr. On success, holds hb lock and increments
2199          * q.key refs.
2200          */
2201         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2202         if (ret)
2203                 goto out;
2204
2205         /* queue_me and wait for wakeup, timeout, or a signal. */
2206         futex_wait_queue_me(hb, &q, to);
2207
2208         /* If we were woken (and unqueued), we succeeded, whatever. */
2209         ret = 0;
2210         /* unqueue_me() drops q.key ref */
2211         if (!unqueue_me(&q))
2212                 goto out;
2213         ret = -ETIMEDOUT;
2214         if (to && !to->task)
2215                 goto out;
2216
2217         /*
2218          * We expect signal_pending(current), but we might be the
2219          * victim of a spurious wakeup as well.
2220          */
2221         if (!signal_pending(current))
2222                 goto retry;
2223
2224         ret = -ERESTARTSYS;
2225         if (!abs_time)
2226                 goto out;
2227
2228         restart = &current_thread_info()->restart_block;
2229         restart->fn = futex_wait_restart;
2230         restart->futex.uaddr = uaddr;
2231         restart->futex.val = val;
2232         restart->futex.time = abs_time->tv64;
2233         restart->futex.bitset = bitset;
2234         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2235
2236         ret = -ERESTART_RESTARTBLOCK;
2237
2238 out:
2239         if (to) {
2240                 hrtimer_cancel(&to->timer);
2241                 destroy_hrtimer_on_stack(&to->timer);
2242         }
2243         return ret;
2244 }
2245
2246
2247 static long futex_wait_restart(struct restart_block *restart)
2248 {
2249         u32 __user *uaddr = restart->futex.uaddr;
2250         ktime_t t, *tp = NULL;
2251
2252         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2253                 t.tv64 = restart->futex.time;
2254                 tp = &t;
2255         }
2256         restart->fn = do_no_restart_syscall;
2257
2258         return (long)futex_wait(uaddr, restart->futex.flags,
2259                                 restart->futex.val, tp, restart->futex.bitset);
2260 }
2261
2262
2263 /*
2264  * Userspace tried a 0 -> TID atomic transition of the futex value
2265  * and failed. The kernel side here does the whole locking operation:
2266  * if there are waiters then it will block, it does PI, etc. (Due to
2267  * races the kernel might see a 0 value of the futex too.)
2268  */
2269 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2270                          ktime_t *time, int trylock)
2271 {
2272         struct hrtimer_sleeper timeout, *to = NULL;
2273         struct futex_hash_bucket *hb;
2274         struct futex_q q = futex_q_init;
2275         int res, ret;
2276
2277         if (refill_pi_state_cache())
2278                 return -ENOMEM;
2279
2280         if (time) {
2281                 to = &timeout;
2282                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2283                                       HRTIMER_MODE_ABS);
2284                 hrtimer_init_sleeper(to, current);
2285                 hrtimer_set_expires(&to->timer, *time);
2286         }
2287
2288 retry:
2289         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2290         if (unlikely(ret != 0))
2291                 goto out;
2292
2293 retry_private:
2294         hb = queue_lock(&q);
2295
2296         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2297         if (unlikely(ret)) {
2298                 switch (ret) {
2299                 case 1:
2300                         /* We got the lock. */
2301                         ret = 0;
2302                         goto out_unlock_put_key;
2303                 case -EFAULT:
2304                         goto uaddr_faulted;
2305                 case -EAGAIN:
2306                         /*
2307                          * Task is exiting and we just wait for the
2308                          * exit to complete.
2309                          */
2310                         queue_unlock(hb);
2311                         put_futex_key(&q.key);
2312                         cond_resched();
2313                         goto retry;
2314                 default:
2315                         goto out_unlock_put_key;
2316                 }
2317         }
2318
2319         /*
2320          * Only actually queue now that the atomic ops are done:
2321          */
2322         queue_me(&q, hb);
2323
2324         WARN_ON(!q.pi_state);
2325         /*
2326          * Block on the PI mutex:
2327          */
2328         if (!trylock)
2329                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2330         else {
2331                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2332                 /* Fixup the trylock return value: */
2333                 ret = ret ? 0 : -EWOULDBLOCK;
2334         }
2335
2336         spin_lock(q.lock_ptr);
2337         /*
2338          * Fixup the pi_state owner and possibly acquire the lock if we
2339          * haven't already.
2340          */
2341         res = fixup_owner(uaddr, &q, !ret);
2342         /*
2343          * If fixup_owner() returned an error, proprogate that.  If it acquired
2344          * the lock, clear our -ETIMEDOUT or -EINTR.
2345          */
2346         if (res)
2347                 ret = (res < 0) ? res : 0;
2348
2349         /*
2350          * If fixup_owner() faulted and was unable to handle the fault, unlock
2351          * it and return the fault to userspace.
2352          */
2353         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2354                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2355
2356         /* Unqueue and drop the lock */
2357         unqueue_me_pi(&q);
2358
2359         goto out_put_key;
2360
2361 out_unlock_put_key:
2362         queue_unlock(hb);
2363
2364 out_put_key:
2365         put_futex_key(&q.key);
2366 out:
2367         if (to)
2368                 destroy_hrtimer_on_stack(&to->timer);
2369         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2370
2371 uaddr_faulted:
2372         queue_unlock(hb);
2373
2374         ret = fault_in_user_writeable(uaddr);
2375         if (ret)
2376                 goto out_put_key;
2377
2378         if (!(flags & FLAGS_SHARED))
2379                 goto retry_private;
2380
2381         put_futex_key(&q.key);
2382         goto retry;
2383 }
2384
2385 /*
2386  * Userspace attempted a TID -> 0 atomic transition, and failed.
2387  * This is the in-kernel slowpath: we look up the PI state (if any),
2388  * and do the rt-mutex unlock.
2389  */
2390 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2391 {
2392         struct futex_hash_bucket *hb;
2393         struct futex_q *this, *next;
2394         union futex_key key = FUTEX_KEY_INIT;
2395         u32 uval, vpid = task_pid_vnr(current);
2396         int ret;
2397
2398 retry:
2399         if (get_user(uval, uaddr))
2400                 return -EFAULT;
2401         /*
2402          * We release only a lock we actually own:
2403          */
2404         if ((uval & FUTEX_TID_MASK) != vpid)
2405                 return -EPERM;
2406
2407         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2408         if (unlikely(ret != 0))
2409                 goto out;
2410
2411         hb = hash_futex(&key);
2412         spin_lock(&hb->lock);
2413
2414         /*
2415          * To avoid races, try to do the TID -> 0 atomic transition
2416          * again. If it succeeds then we can return without waking
2417          * anyone else up. We only try this if neither the waiters nor
2418          * the owner died bit are set.
2419          */
2420         if (!(uval & ~FUTEX_TID_MASK) &&
2421             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2422                 goto pi_faulted;
2423         /*
2424          * Rare case: we managed to release the lock atomically,
2425          * no need to wake anyone else up:
2426          */
2427         if (unlikely(uval == vpid))
2428                 goto out_unlock;
2429
2430         /*
2431          * Ok, other tasks may need to be woken up - check waiters
2432          * and do the wakeup if necessary:
2433          */
2434         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2435                 if (!match_futex (&this->key, &key))
2436                         continue;
2437                 ret = wake_futex_pi(uaddr, uval, this);
2438                 /*
2439                  * The atomic access to the futex value
2440                  * generated a pagefault, so retry the
2441                  * user-access and the wakeup:
2442                  */
2443                 if (ret == -EFAULT)
2444                         goto pi_faulted;
2445                 goto out_unlock;
2446         }
2447         /*
2448          * No waiters - kernel unlocks the futex:
2449          */
2450         ret = unlock_futex_pi(uaddr, uval);
2451         if (ret == -EFAULT)
2452                 goto pi_faulted;
2453
2454 out_unlock:
2455         spin_unlock(&hb->lock);
2456         put_futex_key(&key);
2457
2458 out:
2459         return ret;
2460
2461 pi_faulted:
2462         spin_unlock(&hb->lock);
2463         put_futex_key(&key);
2464
2465         ret = fault_in_user_writeable(uaddr);
2466         if (!ret)
2467                 goto retry;
2468
2469         return ret;
2470 }
2471
2472 /**
2473  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2474  * @hb:         the hash_bucket futex_q was original enqueued on
2475  * @q:          the futex_q woken while waiting to be requeued
2476  * @key2:       the futex_key of the requeue target futex
2477  * @timeout:    the timeout associated with the wait (NULL if none)
2478  *
2479  * Detect if the task was woken on the initial futex as opposed to the requeue
2480  * target futex.  If so, determine if it was a timeout or a signal that caused
2481  * the wakeup and return the appropriate error code to the caller.  Must be
2482  * called with the hb lock held.
2483  *
2484  * Return:
2485  *  0 = no early wakeup detected;
2486  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2487  */
2488 static inline
2489 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2490                                    struct futex_q *q, union futex_key *key2,
2491                                    struct hrtimer_sleeper *timeout)
2492 {
2493         int ret = 0;
2494
2495         /*
2496          * With the hb lock held, we avoid races while we process the wakeup.
2497          * We only need to hold hb (and not hb2) to ensure atomicity as the
2498          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2499          * It can't be requeued from uaddr2 to something else since we don't
2500          * support a PI aware source futex for requeue.
2501          */
2502         if (!match_futex(&q->key, key2)) {
2503                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2504                 /*
2505                  * We were woken prior to requeue by a timeout or a signal.
2506                  * Unqueue the futex_q and determine which it was.
2507                  */
2508                 plist_del(&q->list, &hb->chain);
2509                 hb_waiters_dec(hb);
2510
2511                 /* Handle spurious wakeups gracefully */
2512                 ret = -EWOULDBLOCK;
2513                 if (timeout && !timeout->task)
2514                         ret = -ETIMEDOUT;
2515                 else if (signal_pending(current))
2516                         ret = -ERESTARTNOINTR;
2517         }
2518         return ret;
2519 }
2520
2521 /**
2522  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2523  * @uaddr:      the futex we initially wait on (non-pi)
2524  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2525  *              the same type, no requeueing from private to shared, etc.
2526  * @val:        the expected value of uaddr
2527  * @abs_time:   absolute timeout
2528  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2529  * @uaddr2:     the pi futex we will take prior to returning to user-space
2530  *
2531  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2532  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2533  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2534  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2535  * without one, the pi logic would not know which task to boost/deboost, if
2536  * there was a need to.
2537  *
2538  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2539  * via the following--
2540  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2541  * 2) wakeup on uaddr2 after a requeue
2542  * 3) signal
2543  * 4) timeout
2544  *
2545  * If 3, cleanup and return -ERESTARTNOINTR.
2546  *
2547  * If 2, we may then block on trying to take the rt_mutex and return via:
2548  * 5) successful lock
2549  * 6) signal
2550  * 7) timeout
2551  * 8) other lock acquisition failure
2552  *
2553  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2554  *
2555  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2556  *
2557  * Return:
2558  *  0 - On success;
2559  * <0 - On error
2560  */
2561 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2562                                  u32 val, ktime_t *abs_time, u32 bitset,
2563                                  u32 __user *uaddr2)
2564 {
2565         struct hrtimer_sleeper timeout, *to = NULL;
2566         struct rt_mutex_waiter rt_waiter;
2567         struct rt_mutex *pi_mutex = NULL;
2568         struct futex_hash_bucket *hb;
2569         union futex_key key2 = FUTEX_KEY_INIT;
2570         struct futex_q q = futex_q_init;
2571         int res, ret;
2572
2573         if (uaddr == uaddr2)
2574                 return -EINVAL;
2575
2576         if (!bitset)
2577                 return -EINVAL;
2578
2579         if (abs_time) {
2580                 to = &timeout;
2581                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2582                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2583                                       HRTIMER_MODE_ABS);
2584                 hrtimer_init_sleeper(to, current);
2585                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2586                                              current->timer_slack_ns);
2587         }
2588
2589         /*
2590          * The waiter is allocated on our stack, manipulated by the requeue
2591          * code while we sleep on uaddr.
2592          */
2593         debug_rt_mutex_init_waiter(&rt_waiter);
2594         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2595         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2596         rt_waiter.task = NULL;
2597
2598         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2599         if (unlikely(ret != 0))
2600                 goto out;
2601
2602         q.bitset = bitset;
2603         q.rt_waiter = &rt_waiter;
2604         q.requeue_pi_key = &key2;
2605
2606         /*
2607          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2608          * count.
2609          */
2610         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2611         if (ret)
2612                 goto out_key2;
2613
2614         /*
2615          * The check above which compares uaddrs is not sufficient for
2616          * shared futexes. We need to compare the keys:
2617          */
2618         if (match_futex(&q.key, &key2)) {
2619                 queue_unlock(hb);
2620                 ret = -EINVAL;
2621                 goto out_put_keys;
2622         }
2623
2624         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2625         futex_wait_queue_me(hb, &q, to);
2626
2627         spin_lock(&hb->lock);
2628         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2629         spin_unlock(&hb->lock);
2630         if (ret)
2631                 goto out_put_keys;
2632
2633         /*
2634          * In order for us to be here, we know our q.key == key2, and since
2635          * we took the hb->lock above, we also know that futex_requeue() has
2636          * completed and we no longer have to concern ourselves with a wakeup
2637          * race with the atomic proxy lock acquisition by the requeue code. The
2638          * futex_requeue dropped our key1 reference and incremented our key2
2639          * reference count.
2640          */
2641
2642         /* Check if the requeue code acquired the second futex for us. */
2643         if (!q.rt_waiter) {
2644                 /*
2645                  * Got the lock. We might not be the anticipated owner if we
2646                  * did a lock-steal - fix up the PI-state in that case.
2647                  */
2648                 if (q.pi_state && (q.pi_state->owner != current)) {
2649                         spin_lock(q.lock_ptr);
2650                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2651                         spin_unlock(q.lock_ptr);
2652                 }
2653         } else {
2654                 /*
2655                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2656                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2657                  * the pi_state.
2658                  */
2659                 WARN_ON(!q.pi_state);
2660                 pi_mutex = &q.pi_state->pi_mutex;
2661                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2662                 debug_rt_mutex_free_waiter(&rt_waiter);
2663
2664                 spin_lock(q.lock_ptr);
2665                 /*
2666                  * Fixup the pi_state owner and possibly acquire the lock if we
2667                  * haven't already.
2668                  */
2669                 res = fixup_owner(uaddr2, &q, !ret);
2670                 /*
2671                  * If fixup_owner() returned an error, proprogate that.  If it
2672                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2673                  */
2674                 if (res)
2675                         ret = (res < 0) ? res : 0;
2676
2677                 /* Unqueue and drop the lock. */
2678                 unqueue_me_pi(&q);
2679         }
2680
2681         /*
2682          * If fixup_pi_state_owner() faulted and was unable to handle the
2683          * fault, unlock the rt_mutex and return the fault to userspace.
2684          */
2685         if (ret == -EFAULT) {
2686                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2687                         rt_mutex_unlock(pi_mutex);
2688         } else if (ret == -EINTR) {
2689                 /*
2690                  * We've already been requeued, but cannot restart by calling
2691                  * futex_lock_pi() directly. We could restart this syscall, but
2692                  * it would detect that the user space "val" changed and return
2693                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2694                  * -EWOULDBLOCK directly.
2695                  */
2696                 ret = -EWOULDBLOCK;
2697         }
2698
2699 out_put_keys:
2700         put_futex_key(&q.key);
2701 out_key2:
2702         put_futex_key(&key2);
2703
2704 out:
2705         if (to) {
2706                 hrtimer_cancel(&to->timer);
2707                 destroy_hrtimer_on_stack(&to->timer);
2708         }
2709         return ret;
2710 }
2711
2712 /*
2713  * Support for robust futexes: the kernel cleans up held futexes at
2714  * thread exit time.
2715  *
2716  * Implementation: user-space maintains a per-thread list of locks it
2717  * is holding. Upon do_exit(), the kernel carefully walks this list,
2718  * and marks all locks that are owned by this thread with the
2719  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2720  * always manipulated with the lock held, so the list is private and
2721  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2722  * field, to allow the kernel to clean up if the thread dies after
2723  * acquiring the lock, but just before it could have added itself to
2724  * the list. There can only be one such pending lock.
2725  */
2726
2727 /**
2728  * sys_set_robust_list() - Set the robust-futex list head of a task
2729  * @head:       pointer to the list-head
2730  * @len:        length of the list-head, as userspace expects
2731  */
2732 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2733                 size_t, len)
2734 {
2735         if (!futex_cmpxchg_enabled)
2736                 return -ENOSYS;
2737         /*
2738          * The kernel knows only one size for now:
2739          */
2740         if (unlikely(len != sizeof(*head)))
2741                 return -EINVAL;
2742
2743         current->robust_list = head;
2744
2745         return 0;
2746 }
2747
2748 /**
2749  * sys_get_robust_list() - Get the robust-futex list head of a task
2750  * @pid:        pid of the process [zero for current task]
2751  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2752  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2753  */
2754 SYSCALL_DEFINE3(get_robust_list, int, pid,
2755                 struct robust_list_head __user * __user *, head_ptr,
2756                 size_t __user *, len_ptr)
2757 {
2758         struct robust_list_head __user *head;
2759         unsigned long ret;
2760         struct task_struct *p;
2761
2762         if (!futex_cmpxchg_enabled)
2763                 return -ENOSYS;
2764
2765         rcu_read_lock();
2766
2767         ret = -ESRCH;
2768         if (!pid)
2769                 p = current;
2770         else {
2771                 p = find_task_by_vpid(pid);
2772                 if (!p)
2773                         goto err_unlock;
2774         }
2775
2776         ret = -EPERM;
2777         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2778                 goto err_unlock;
2779
2780         head = p->robust_list;
2781         rcu_read_unlock();
2782
2783         if (put_user(sizeof(*head), len_ptr))
2784                 return -EFAULT;
2785         return put_user(head, head_ptr);
2786
2787 err_unlock:
2788         rcu_read_unlock();
2789
2790         return ret;
2791 }
2792
2793 /*
2794  * Process a futex-list entry, check whether it's owned by the
2795  * dying task, and do notification if so:
2796  */
2797 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2798 {
2799         u32 uval, uninitialized_var(nval), mval;
2800
2801 retry:
2802         if (get_user(uval, uaddr))
2803                 return -1;
2804
2805         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2806                 /*
2807                  * Ok, this dying thread is truly holding a futex
2808                  * of interest. Set the OWNER_DIED bit atomically
2809                  * via cmpxchg, and if the value had FUTEX_WAITERS
2810                  * set, wake up a waiter (if any). (We have to do a
2811                  * futex_wake() even if OWNER_DIED is already set -
2812                  * to handle the rare but possible case of recursive
2813                  * thread-death.) The rest of the cleanup is done in
2814                  * userspace.
2815                  */
2816                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2817                 /*
2818                  * We are not holding a lock here, but we want to have
2819                  * the pagefault_disable/enable() protection because
2820                  * we want to handle the fault gracefully. If the
2821                  * access fails we try to fault in the futex with R/W
2822                  * verification via get_user_pages. get_user() above
2823                  * does not guarantee R/W access. If that fails we
2824                  * give up and leave the futex locked.
2825                  */
2826                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2827                         if (fault_in_user_writeable(uaddr))
2828                                 return -1;
2829                         goto retry;
2830                 }
2831                 if (nval != uval)
2832                         goto retry;
2833
2834                 /*
2835                  * Wake robust non-PI futexes here. The wakeup of
2836                  * PI futexes happens in exit_pi_state():
2837                  */
2838                 if (!pi && (uval & FUTEX_WAITERS))
2839                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2840         }
2841         return 0;
2842 }
2843
2844 /*
2845  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2846  */
2847 static inline int fetch_robust_entry(struct robust_list __user **entry,
2848                                      struct robust_list __user * __user *head,
2849                                      unsigned int *pi)
2850 {
2851         unsigned long uentry;
2852
2853         if (get_user(uentry, (unsigned long __user *)head))
2854                 return -EFAULT;
2855
2856         *entry = (void __user *)(uentry & ~1UL);
2857         *pi = uentry & 1;
2858
2859         return 0;
2860 }
2861
2862 /*
2863  * Walk curr->robust_list (very carefully, it's a userspace list!)
2864  * and mark any locks found there dead, and notify any waiters.
2865  *
2866  * We silently return on any sign of list-walking problem.
2867  */
2868 void exit_robust_list(struct task_struct *curr)
2869 {
2870         struct robust_list_head __user *head = curr->robust_list;
2871         struct robust_list __user *entry, *next_entry, *pending;
2872         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2873         unsigned int uninitialized_var(next_pi);
2874         unsigned long futex_offset;
2875         int rc;
2876
2877         if (!futex_cmpxchg_enabled)
2878                 return;
2879
2880         /*
2881          * Fetch the list head (which was registered earlier, via
2882          * sys_set_robust_list()):
2883          */
2884         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2885                 return;
2886         /*
2887          * Fetch the relative futex offset:
2888          */
2889         if (get_user(futex_offset, &head->futex_offset))
2890                 return;
2891         /*
2892          * Fetch any possibly pending lock-add first, and handle it
2893          * if it exists:
2894          */
2895         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2896                 return;
2897
2898         next_entry = NULL;      /* avoid warning with gcc */
2899         while (entry != &head->list) {
2900                 /*
2901                  * Fetch the next entry in the list before calling
2902                  * handle_futex_death:
2903                  */
2904                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2905                 /*
2906                  * A pending lock might already be on the list, so
2907                  * don't process it twice:
2908                  */
2909                 if (entry != pending)
2910                         if (handle_futex_death((void __user *)entry + futex_offset,
2911                                                 curr, pi))
2912                                 return;
2913                 if (rc)
2914                         return;
2915                 entry = next_entry;
2916                 pi = next_pi;
2917                 /*
2918                  * Avoid excessively long or circular lists:
2919                  */
2920                 if (!--limit)
2921                         break;
2922
2923                 cond_resched();
2924         }
2925
2926         if (pending)
2927                 handle_futex_death((void __user *)pending + futex_offset,
2928                                    curr, pip);
2929 }
2930
2931 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2932                 u32 __user *uaddr2, u32 val2, u32 val3)
2933 {
2934         int cmd = op & FUTEX_CMD_MASK;
2935         unsigned int flags = 0;
2936
2937         if (!(op & FUTEX_PRIVATE_FLAG))
2938                 flags |= FLAGS_SHARED;
2939
2940         if (op & FUTEX_CLOCK_REALTIME) {
2941                 flags |= FLAGS_CLOCKRT;
2942                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2943                         return -ENOSYS;
2944         }
2945
2946         switch (cmd) {
2947         case FUTEX_LOCK_PI:
2948         case FUTEX_UNLOCK_PI:
2949         case FUTEX_TRYLOCK_PI:
2950         case FUTEX_WAIT_REQUEUE_PI:
2951         case FUTEX_CMP_REQUEUE_PI:
2952                 if (!futex_cmpxchg_enabled)
2953                         return -ENOSYS;
2954         }
2955
2956         switch (cmd) {
2957         case FUTEX_WAIT:
2958                 val3 = FUTEX_BITSET_MATCH_ANY;
2959         case FUTEX_WAIT_BITSET:
2960                 return futex_wait(uaddr, flags, val, timeout, val3);
2961         case FUTEX_WAKE:
2962                 val3 = FUTEX_BITSET_MATCH_ANY;
2963         case FUTEX_WAKE_BITSET:
2964                 return futex_wake(uaddr, flags, val, val3);
2965         case FUTEX_REQUEUE:
2966                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2967         case FUTEX_CMP_REQUEUE:
2968                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2969         case FUTEX_WAKE_OP:
2970                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2971         case FUTEX_LOCK_PI:
2972                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2973         case FUTEX_UNLOCK_PI:
2974                 return futex_unlock_pi(uaddr, flags);
2975         case FUTEX_TRYLOCK_PI:
2976                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2977         case FUTEX_WAIT_REQUEUE_PI:
2978                 val3 = FUTEX_BITSET_MATCH_ANY;
2979                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2980                                              uaddr2);
2981         case FUTEX_CMP_REQUEUE_PI:
2982                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2983         }
2984         return -ENOSYS;
2985 }
2986
2987
2988 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2989                 struct timespec __user *, utime, u32 __user *, uaddr2,
2990                 u32, val3)
2991 {
2992         struct timespec ts;
2993         ktime_t t, *tp = NULL;
2994         u32 val2 = 0;
2995         int cmd = op & FUTEX_CMD_MASK;
2996
2997         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2998                       cmd == FUTEX_WAIT_BITSET ||
2999                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3000                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3001                         return -EFAULT;
3002                 if (!timespec_valid(&ts))
3003                         return -EINVAL;
3004
3005                 t = timespec_to_ktime(ts);
3006                 if (cmd == FUTEX_WAIT)
3007                         t = ktime_add_safe(ktime_get(), t);
3008                 tp = &t;
3009         }
3010         /*
3011          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3012          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3013          */
3014         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3015             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3016                 val2 = (u32) (unsigned long) utime;
3017
3018         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3019 }
3020
3021 static void __init futex_detect_cmpxchg(void)
3022 {
3023 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3024         u32 curval;
3025
3026         /*
3027          * This will fail and we want it. Some arch implementations do
3028          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3029          * functionality. We want to know that before we call in any
3030          * of the complex code paths. Also we want to prevent
3031          * registration of robust lists in that case. NULL is
3032          * guaranteed to fault and we get -EFAULT on functional
3033          * implementation, the non-functional ones will return
3034          * -ENOSYS.
3035          */
3036         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3037                 futex_cmpxchg_enabled = 1;
3038 #endif
3039 }
3040
3041 static int __init futex_init(void)
3042 {
3043         unsigned int futex_shift;
3044         unsigned long i;
3045
3046 #if CONFIG_BASE_SMALL
3047         futex_hashsize = 16;
3048 #else
3049         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3050 #endif
3051
3052         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3053                                                futex_hashsize, 0,
3054                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3055                                                &futex_shift, NULL,
3056                                                futex_hashsize, futex_hashsize);
3057         futex_hashsize = 1UL << futex_shift;
3058
3059         futex_detect_cmpxchg();
3060
3061         for (i = 0; i < futex_hashsize; i++) {
3062                 atomic_set(&futex_queues[i].waiters, 0);
3063                 plist_head_init(&futex_queues[i].chain);
3064                 spin_lock_init(&futex_queues[i].lock);
3065         }
3066
3067         return 0;
3068 }
3069 __initcall(futex_init);