Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88  * Protected counters by write_lock_irq(&tasklist_lock)
89  */
90 unsigned long total_forks;      /* Handle normal Linux uptimes. */
91 int nr_threads;                 /* The idle threads do not count.. */
92
93 int max_threads;                /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102         return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109         int cpu;
110         int total = 0;
111
112         for_each_possible_cpu(cpu)
113                 total += per_cpu(process_counts, cpu);
114
115         return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132         kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144  * kmemcache based allocator.
145  */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148                                                   int node)
149 {
150         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151                                              THREAD_SIZE_ORDER);
152
153         return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164                                                   int node)
165 {
166         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171         kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177                                               THREAD_SIZE, 0, NULL);
178         BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203         struct zone *zone = page_zone(virt_to_page(ti));
204
205         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210         account_kernel_stack(tsk->stack, -1);
211         arch_release_thread_info(tsk->stack);
212         free_thread_info(tsk->stack);
213         rt_mutex_debug_task_free(tsk);
214         ftrace_graph_exit_task(tsk);
215         put_seccomp_filter(tsk);
216         arch_release_task_struct(tsk);
217         free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223         taskstats_tgid_free(sig);
224         sched_autogroup_exit(sig);
225         kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230         if (atomic_dec_and_test(&sig->sigcnt))
231                 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236         WARN_ON(!tsk->exit_state);
237         WARN_ON(atomic_read(&tsk->usage));
238         WARN_ON(tsk == current);
239
240         security_task_free(tsk);
241         exit_creds(tsk);
242         delayacct_tsk_free(tsk);
243         put_signal_struct(tsk->signal);
244
245         if (!profile_handoff_task(tsk))
246                 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
257 #endif
258         /* create a slab on which task_structs can be allocated */
259         task_struct_cachep =
260                 kmem_cache_create("task_struct", sizeof(struct task_struct),
261                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264         /* do the arch specific task caches init */
265         arch_task_cache_init();
266
267         /*
268          * The default maximum number of threads is set to a safe
269          * value: the thread structures can take up at most half
270          * of memory.
271          */
272         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274         /*
275          * we need to allow at least 20 threads to boot a system
276          */
277         if (max_threads < 20)
278                 max_threads = 20;
279
280         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282         init_task.signal->rlim[RLIMIT_SIGPENDING] =
283                 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287                                                struct task_struct *src)
288 {
289         *dst = *src;
290         return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295         struct task_struct *tsk;
296         struct thread_info *ti;
297         unsigned long *stackend;
298         int node = tsk_fork_get_node(orig);
299         int err;
300
301         tsk = alloc_task_struct_node(node);
302         if (!tsk)
303                 return NULL;
304
305         ti = alloc_thread_info_node(tsk, node);
306         if (!ti)
307                 goto free_tsk;
308
309         err = arch_dup_task_struct(tsk, orig);
310         if (err)
311                 goto free_ti;
312
313         tsk->stack = ti;
314
315         setup_thread_stack(tsk, orig);
316         clear_user_return_notifier(tsk);
317         clear_tsk_need_resched(tsk);
318         stackend = end_of_stack(tsk);
319         *stackend = STACK_END_MAGIC;    /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322         tsk->stack_canary = get_random_int();
323 #endif
324
325         /*
326          * One for us, one for whoever does the "release_task()" (usually
327          * parent)
328          */
329         atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331         tsk->btrace_seq = 0;
332 #endif
333         tsk->splice_pipe = NULL;
334         tsk->task_frag.page = NULL;
335
336         account_kernel_stack(ti, 1);
337
338         return tsk;
339
340 free_ti:
341         free_thread_info(ti);
342 free_tsk:
343         free_task_struct(tsk);
344         return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351         struct rb_node **rb_link, *rb_parent;
352         int retval;
353         unsigned long charge;
354
355         uprobe_start_dup_mmap();
356         down_write(&oldmm->mmap_sem);
357         flush_cache_dup_mm(oldmm);
358         uprobe_dup_mmap(oldmm, mm);
359         /*
360          * Not linked in yet - no deadlock potential:
361          */
362         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364         mm->locked_vm = 0;
365         mm->mmap = NULL;
366         mm->mmap_cache = NULL;
367         mm->map_count = 0;
368         cpumask_clear(mm_cpumask(mm));
369         mm->mm_rb = RB_ROOT;
370         rb_link = &mm->mm_rb.rb_node;
371         rb_parent = NULL;
372         pprev = &mm->mmap;
373         retval = ksm_fork(mm, oldmm);
374         if (retval)
375                 goto out;
376         retval = khugepaged_fork(mm, oldmm);
377         if (retval)
378                 goto out;
379
380         prev = NULL;
381         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382                 struct file *file;
383
384                 if (mpnt->vm_flags & VM_DONTCOPY) {
385                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386                                                         -vma_pages(mpnt));
387                         continue;
388                 }
389                 charge = 0;
390                 if (mpnt->vm_flags & VM_ACCOUNT) {
391                         unsigned long len = vma_pages(mpnt);
392
393                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394                                 goto fail_nomem;
395                         charge = len;
396                 }
397                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398                 if (!tmp)
399                         goto fail_nomem;
400                 *tmp = *mpnt;
401                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402                 retval = vma_dup_policy(mpnt, tmp);
403                 if (retval)
404                         goto fail_nomem_policy;
405                 tmp->vm_mm = mm;
406                 if (anon_vma_fork(tmp, mpnt))
407                         goto fail_nomem_anon_vma_fork;
408                 tmp->vm_flags &= ~VM_LOCKED;
409                 tmp->vm_next = tmp->vm_prev = NULL;
410                 file = tmp->vm_file;
411                 if (file) {
412                         struct inode *inode = file_inode(file);
413                         struct address_space *mapping = file->f_mapping;
414
415                         get_file(file);
416                         if (tmp->vm_flags & VM_DENYWRITE)
417                                 atomic_dec(&inode->i_writecount);
418                         mutex_lock(&mapping->i_mmap_mutex);
419                         if (tmp->vm_flags & VM_SHARED)
420                                 mapping->i_mmap_writable++;
421                         flush_dcache_mmap_lock(mapping);
422                         /* insert tmp into the share list, just after mpnt */
423                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424                                 vma_nonlinear_insert(tmp,
425                                                 &mapping->i_mmap_nonlinear);
426                         else
427                                 vma_interval_tree_insert_after(tmp, mpnt,
428                                                         &mapping->i_mmap);
429                         flush_dcache_mmap_unlock(mapping);
430                         mutex_unlock(&mapping->i_mmap_mutex);
431                 }
432
433                 /*
434                  * Clear hugetlb-related page reserves for children. This only
435                  * affects MAP_PRIVATE mappings. Faults generated by the child
436                  * are not guaranteed to succeed, even if read-only
437                  */
438                 if (is_vm_hugetlb_page(tmp))
439                         reset_vma_resv_huge_pages(tmp);
440
441                 /*
442                  * Link in the new vma and copy the page table entries.
443                  */
444                 *pprev = tmp;
445                 pprev = &tmp->vm_next;
446                 tmp->vm_prev = prev;
447                 prev = tmp;
448
449                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450                 rb_link = &tmp->vm_rb.rb_right;
451                 rb_parent = &tmp->vm_rb;
452
453                 mm->map_count++;
454                 retval = copy_page_range(mm, oldmm, mpnt);
455
456                 if (tmp->vm_ops && tmp->vm_ops->open)
457                         tmp->vm_ops->open(tmp);
458
459                 if (retval)
460                         goto out;
461         }
462         /* a new mm has just been created */
463         arch_dup_mmap(oldmm, mm);
464         retval = 0;
465 out:
466         up_write(&mm->mmap_sem);
467         flush_tlb_mm(oldmm);
468         up_write(&oldmm->mmap_sem);
469         uprobe_end_dup_mmap();
470         return retval;
471 fail_nomem_anon_vma_fork:
472         mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474         kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476         retval = -ENOMEM;
477         vm_unacct_memory(charge);
478         goto out;
479 }
480
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483         mm->pgd = pgd_alloc(mm);
484         if (unlikely(!mm->pgd))
485                 return -ENOMEM;
486         return 0;
487 }
488
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491         pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm)     (0)
495 #define mm_alloc_pgd(mm)        (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500
501 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
503
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505
506 static int __init coredump_filter_setup(char *s)
507 {
508         default_dump_filter =
509                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510                 MMF_DUMP_FILTER_MASK;
511         return 1;
512 }
513
514 __setup("coredump_filter=", coredump_filter_setup);
515
516 #include <linux/init_task.h>
517
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521         spin_lock_init(&mm->ioctx_lock);
522         mm->ioctx_table = NULL;
523 #endif
524 }
525
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528         atomic_set(&mm->mm_users, 1);
529         atomic_set(&mm->mm_count, 1);
530         init_rwsem(&mm->mmap_sem);
531         INIT_LIST_HEAD(&mm->mmlist);
532         mm->flags = (current->mm) ?
533                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534         mm->core_state = NULL;
535         atomic_long_set(&mm->nr_ptes, 0);
536         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537         spin_lock_init(&mm->page_table_lock);
538         mm_init_aio(mm);
539         mm_init_owner(mm, p);
540         clear_tlb_flush_pending(mm);
541
542         if (likely(!mm_alloc_pgd(mm))) {
543                 mm->def_flags = 0;
544                 mmu_notifier_mm_init(mm);
545                 return mm;
546         }
547
548         free_mm(mm);
549         return NULL;
550 }
551
552 static void check_mm(struct mm_struct *mm)
553 {
554         int i;
555
556         for (i = 0; i < NR_MM_COUNTERS; i++) {
557                 long x = atomic_long_read(&mm->rss_stat.count[i]);
558
559                 if (unlikely(x))
560                         printk(KERN_ALERT "BUG: Bad rss-counter state "
561                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
562         }
563
564 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
565         VM_BUG_ON(mm->pmd_huge_pte);
566 #endif
567 }
568
569 /*
570  * Allocate and initialize an mm_struct.
571  */
572 struct mm_struct *mm_alloc(void)
573 {
574         struct mm_struct *mm;
575
576         mm = allocate_mm();
577         if (!mm)
578                 return NULL;
579
580         memset(mm, 0, sizeof(*mm));
581         mm_init_cpumask(mm);
582         return mm_init(mm, current);
583 }
584
585 /*
586  * Called when the last reference to the mm
587  * is dropped: either by a lazy thread or by
588  * mmput. Free the page directory and the mm.
589  */
590 void __mmdrop(struct mm_struct *mm)
591 {
592         BUG_ON(mm == &init_mm);
593         mm_free_pgd(mm);
594         destroy_context(mm);
595         mmu_notifier_mm_destroy(mm);
596         check_mm(mm);
597         free_mm(mm);
598 }
599 EXPORT_SYMBOL_GPL(__mmdrop);
600
601 /*
602  * Decrement the use count and release all resources for an mm.
603  */
604 void mmput(struct mm_struct *mm)
605 {
606         might_sleep();
607
608         if (atomic_dec_and_test(&mm->mm_users)) {
609                 uprobe_clear_state(mm);
610                 exit_aio(mm);
611                 ksm_exit(mm);
612                 khugepaged_exit(mm); /* must run before exit_mmap */
613                 exit_mmap(mm);
614                 set_mm_exe_file(mm, NULL);
615                 if (!list_empty(&mm->mmlist)) {
616                         spin_lock(&mmlist_lock);
617                         list_del(&mm->mmlist);
618                         spin_unlock(&mmlist_lock);
619                 }
620                 if (mm->binfmt)
621                         module_put(mm->binfmt->module);
622                 mmdrop(mm);
623         }
624 }
625 EXPORT_SYMBOL_GPL(mmput);
626
627 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
628 {
629         if (new_exe_file)
630                 get_file(new_exe_file);
631         if (mm->exe_file)
632                 fput(mm->exe_file);
633         mm->exe_file = new_exe_file;
634 }
635
636 struct file *get_mm_exe_file(struct mm_struct *mm)
637 {
638         struct file *exe_file;
639
640         /* We need mmap_sem to protect against races with removal of exe_file */
641         down_read(&mm->mmap_sem);
642         exe_file = mm->exe_file;
643         if (exe_file)
644                 get_file(exe_file);
645         up_read(&mm->mmap_sem);
646         return exe_file;
647 }
648
649 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
650 {
651         /* It's safe to write the exe_file pointer without exe_file_lock because
652          * this is called during fork when the task is not yet in /proc */
653         newmm->exe_file = get_mm_exe_file(oldmm);
654 }
655
656 /**
657  * get_task_mm - acquire a reference to the task's mm
658  *
659  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
660  * this kernel workthread has transiently adopted a user mm with use_mm,
661  * to do its AIO) is not set and if so returns a reference to it, after
662  * bumping up the use count.  User must release the mm via mmput()
663  * after use.  Typically used by /proc and ptrace.
664  */
665 struct mm_struct *get_task_mm(struct task_struct *task)
666 {
667         struct mm_struct *mm;
668
669         task_lock(task);
670         mm = task->mm;
671         if (mm) {
672                 if (task->flags & PF_KTHREAD)
673                         mm = NULL;
674                 else
675                         atomic_inc(&mm->mm_users);
676         }
677         task_unlock(task);
678         return mm;
679 }
680 EXPORT_SYMBOL_GPL(get_task_mm);
681
682 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
683 {
684         struct mm_struct *mm;
685         int err;
686
687         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
688         if (err)
689                 return ERR_PTR(err);
690
691         mm = get_task_mm(task);
692         if (mm && mm != current->mm &&
693                         !ptrace_may_access(task, mode)) {
694                 mmput(mm);
695                 mm = ERR_PTR(-EACCES);
696         }
697         mutex_unlock(&task->signal->cred_guard_mutex);
698
699         return mm;
700 }
701
702 static void complete_vfork_done(struct task_struct *tsk)
703 {
704         struct completion *vfork;
705
706         task_lock(tsk);
707         vfork = tsk->vfork_done;
708         if (likely(vfork)) {
709                 tsk->vfork_done = NULL;
710                 complete(vfork);
711         }
712         task_unlock(tsk);
713 }
714
715 static int wait_for_vfork_done(struct task_struct *child,
716                                 struct completion *vfork)
717 {
718         int killed;
719
720         freezer_do_not_count();
721         killed = wait_for_completion_killable(vfork);
722         freezer_count();
723
724         if (killed) {
725                 task_lock(child);
726                 child->vfork_done = NULL;
727                 task_unlock(child);
728         }
729
730         put_task_struct(child);
731         return killed;
732 }
733
734 /* Please note the differences between mmput and mm_release.
735  * mmput is called whenever we stop holding onto a mm_struct,
736  * error success whatever.
737  *
738  * mm_release is called after a mm_struct has been removed
739  * from the current process.
740  *
741  * This difference is important for error handling, when we
742  * only half set up a mm_struct for a new process and need to restore
743  * the old one.  Because we mmput the new mm_struct before
744  * restoring the old one. . .
745  * Eric Biederman 10 January 1998
746  */
747 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
748 {
749         /* Get rid of any futexes when releasing the mm */
750 #ifdef CONFIG_FUTEX
751         if (unlikely(tsk->robust_list)) {
752                 exit_robust_list(tsk);
753                 tsk->robust_list = NULL;
754         }
755 #ifdef CONFIG_COMPAT
756         if (unlikely(tsk->compat_robust_list)) {
757                 compat_exit_robust_list(tsk);
758                 tsk->compat_robust_list = NULL;
759         }
760 #endif
761         if (unlikely(!list_empty(&tsk->pi_state_list)))
762                 exit_pi_state_list(tsk);
763 #endif
764
765         uprobe_free_utask(tsk);
766
767         /* Get rid of any cached register state */
768         deactivate_mm(tsk, mm);
769
770         /*
771          * If we're exiting normally, clear a user-space tid field if
772          * requested.  We leave this alone when dying by signal, to leave
773          * the value intact in a core dump, and to save the unnecessary
774          * trouble, say, a killed vfork parent shouldn't touch this mm.
775          * Userland only wants this done for a sys_exit.
776          */
777         if (tsk->clear_child_tid) {
778                 if (!(tsk->flags & PF_SIGNALED) &&
779                     atomic_read(&mm->mm_users) > 1) {
780                         /*
781                          * We don't check the error code - if userspace has
782                          * not set up a proper pointer then tough luck.
783                          */
784                         put_user(0, tsk->clear_child_tid);
785                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
786                                         1, NULL, NULL, 0);
787                 }
788                 tsk->clear_child_tid = NULL;
789         }
790
791         /*
792          * All done, finally we can wake up parent and return this mm to him.
793          * Also kthread_stop() uses this completion for synchronization.
794          */
795         if (tsk->vfork_done)
796                 complete_vfork_done(tsk);
797 }
798
799 /*
800  * Allocate a new mm structure and copy contents from the
801  * mm structure of the passed in task structure.
802  */
803 struct mm_struct *dup_mm(struct task_struct *tsk)
804 {
805         struct mm_struct *mm, *oldmm = current->mm;
806         int err;
807
808         if (!oldmm)
809                 return NULL;
810
811         mm = allocate_mm();
812         if (!mm)
813                 goto fail_nomem;
814
815         memcpy(mm, oldmm, sizeof(*mm));
816         mm_init_cpumask(mm);
817
818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
819         mm->pmd_huge_pte = NULL;
820 #endif
821         if (!mm_init(mm, tsk))
822                 goto fail_nomem;
823
824         if (init_new_context(tsk, mm))
825                 goto fail_nocontext;
826
827         dup_mm_exe_file(oldmm, mm);
828
829         err = dup_mmap(mm, oldmm);
830         if (err)
831                 goto free_pt;
832
833         mm->hiwater_rss = get_mm_rss(mm);
834         mm->hiwater_vm = mm->total_vm;
835
836         if (mm->binfmt && !try_module_get(mm->binfmt->module))
837                 goto free_pt;
838
839         return mm;
840
841 free_pt:
842         /* don't put binfmt in mmput, we haven't got module yet */
843         mm->binfmt = NULL;
844         mmput(mm);
845
846 fail_nomem:
847         return NULL;
848
849 fail_nocontext:
850         /*
851          * If init_new_context() failed, we cannot use mmput() to free the mm
852          * because it calls destroy_context()
853          */
854         mm_free_pgd(mm);
855         free_mm(mm);
856         return NULL;
857 }
858
859 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
860 {
861         struct mm_struct *mm, *oldmm;
862         int retval;
863
864         tsk->min_flt = tsk->maj_flt = 0;
865         tsk->nvcsw = tsk->nivcsw = 0;
866 #ifdef CONFIG_DETECT_HUNG_TASK
867         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
868 #endif
869
870         tsk->mm = NULL;
871         tsk->active_mm = NULL;
872
873         /*
874          * Are we cloning a kernel thread?
875          *
876          * We need to steal a active VM for that..
877          */
878         oldmm = current->mm;
879         if (!oldmm)
880                 return 0;
881
882         if (clone_flags & CLONE_VM) {
883                 atomic_inc(&oldmm->mm_users);
884                 mm = oldmm;
885                 goto good_mm;
886         }
887
888         retval = -ENOMEM;
889         mm = dup_mm(tsk);
890         if (!mm)
891                 goto fail_nomem;
892
893 good_mm:
894         tsk->mm = mm;
895         tsk->active_mm = mm;
896         return 0;
897
898 fail_nomem:
899         return retval;
900 }
901
902 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
903 {
904         struct fs_struct *fs = current->fs;
905         if (clone_flags & CLONE_FS) {
906                 /* tsk->fs is already what we want */
907                 spin_lock(&fs->lock);
908                 if (fs->in_exec) {
909                         spin_unlock(&fs->lock);
910                         return -EAGAIN;
911                 }
912                 fs->users++;
913                 spin_unlock(&fs->lock);
914                 return 0;
915         }
916         tsk->fs = copy_fs_struct(fs);
917         if (!tsk->fs)
918                 return -ENOMEM;
919         return 0;
920 }
921
922 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
923 {
924         struct files_struct *oldf, *newf;
925         int error = 0;
926
927         /*
928          * A background process may not have any files ...
929          */
930         oldf = current->files;
931         if (!oldf)
932                 goto out;
933
934         if (clone_flags & CLONE_FILES) {
935                 atomic_inc(&oldf->count);
936                 goto out;
937         }
938
939         newf = dup_fd(oldf, &error);
940         if (!newf)
941                 goto out;
942
943         tsk->files = newf;
944         error = 0;
945 out:
946         return error;
947 }
948
949 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 #ifdef CONFIG_BLOCK
952         struct io_context *ioc = current->io_context;
953         struct io_context *new_ioc;
954
955         if (!ioc)
956                 return 0;
957         /*
958          * Share io context with parent, if CLONE_IO is set
959          */
960         if (clone_flags & CLONE_IO) {
961                 ioc_task_link(ioc);
962                 tsk->io_context = ioc;
963         } else if (ioprio_valid(ioc->ioprio)) {
964                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
965                 if (unlikely(!new_ioc))
966                         return -ENOMEM;
967
968                 new_ioc->ioprio = ioc->ioprio;
969                 put_io_context(new_ioc);
970         }
971 #endif
972         return 0;
973 }
974
975 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
976 {
977         struct sighand_struct *sig;
978
979         if (clone_flags & CLONE_SIGHAND) {
980                 atomic_inc(&current->sighand->count);
981                 return 0;
982         }
983         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
984         rcu_assign_pointer(tsk->sighand, sig);
985         if (!sig)
986                 return -ENOMEM;
987         atomic_set(&sig->count, 1);
988         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
989         return 0;
990 }
991
992 void __cleanup_sighand(struct sighand_struct *sighand)
993 {
994         if (atomic_dec_and_test(&sighand->count)) {
995                 signalfd_cleanup(sighand);
996                 kmem_cache_free(sighand_cachep, sighand);
997         }
998 }
999
1000
1001 /*
1002  * Initialize POSIX timer handling for a thread group.
1003  */
1004 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1005 {
1006         unsigned long cpu_limit;
1007
1008         /* Thread group counters. */
1009         thread_group_cputime_init(sig);
1010
1011         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1012         if (cpu_limit != RLIM_INFINITY) {
1013                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1014                 sig->cputimer.running = 1;
1015         }
1016
1017         /* The timer lists. */
1018         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1019         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1020         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1021 }
1022
1023 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1024 {
1025         struct signal_struct *sig;
1026
1027         if (clone_flags & CLONE_THREAD)
1028                 return 0;
1029
1030         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1031         tsk->signal = sig;
1032         if (!sig)
1033                 return -ENOMEM;
1034
1035         sig->nr_threads = 1;
1036         atomic_set(&sig->live, 1);
1037         atomic_set(&sig->sigcnt, 1);
1038
1039         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1040         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1041         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1042
1043         init_waitqueue_head(&sig->wait_chldexit);
1044         sig->curr_target = tsk;
1045         init_sigpending(&sig->shared_pending);
1046         INIT_LIST_HEAD(&sig->posix_timers);
1047
1048         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1049         sig->real_timer.function = it_real_fn;
1050
1051         task_lock(current->group_leader);
1052         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1053         task_unlock(current->group_leader);
1054
1055         posix_cpu_timers_init_group(sig);
1056
1057         tty_audit_fork(sig);
1058         sched_autogroup_fork(sig);
1059
1060 #ifdef CONFIG_CGROUPS
1061         init_rwsem(&sig->group_rwsem);
1062 #endif
1063
1064         sig->oom_score_adj = current->signal->oom_score_adj;
1065         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1066
1067         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1068                                    current->signal->is_child_subreaper;
1069
1070         mutex_init(&sig->cred_guard_mutex);
1071
1072         return 0;
1073 }
1074
1075 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1076 {
1077         unsigned long new_flags = p->flags;
1078
1079         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1080         new_flags |= PF_FORKNOEXEC;
1081         p->flags = new_flags;
1082 }
1083
1084 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1085 {
1086         current->clear_child_tid = tidptr;
1087
1088         return task_pid_vnr(current);
1089 }
1090
1091 static void rt_mutex_init_task(struct task_struct *p)
1092 {
1093         raw_spin_lock_init(&p->pi_lock);
1094 #ifdef CONFIG_RT_MUTEXES
1095         p->pi_waiters = RB_ROOT;
1096         p->pi_waiters_leftmost = NULL;
1097         p->pi_blocked_on = NULL;
1098         p->pi_top_task = NULL;
1099 #endif
1100 }
1101
1102 #ifdef CONFIG_MM_OWNER
1103 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104 {
1105         mm->owner = p;
1106 }
1107 #endif /* CONFIG_MM_OWNER */
1108
1109 /*
1110  * Initialize POSIX timer handling for a single task.
1111  */
1112 static void posix_cpu_timers_init(struct task_struct *tsk)
1113 {
1114         tsk->cputime_expires.prof_exp = 0;
1115         tsk->cputime_expires.virt_exp = 0;
1116         tsk->cputime_expires.sched_exp = 0;
1117         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1118         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1119         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1120 }
1121
1122 static inline void
1123 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1124 {
1125          task->pids[type].pid = pid;
1126 }
1127
1128 /*
1129  * This creates a new process as a copy of the old one,
1130  * but does not actually start it yet.
1131  *
1132  * It copies the registers, and all the appropriate
1133  * parts of the process environment (as per the clone
1134  * flags). The actual kick-off is left to the caller.
1135  */
1136 static struct task_struct *copy_process(unsigned long clone_flags,
1137                                         unsigned long stack_start,
1138                                         unsigned long stack_size,
1139                                         int __user *child_tidptr,
1140                                         struct pid *pid,
1141                                         int trace)
1142 {
1143         int retval;
1144         struct task_struct *p;
1145
1146         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1147                 return ERR_PTR(-EINVAL);
1148
1149         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1150                 return ERR_PTR(-EINVAL);
1151
1152         /*
1153          * Thread groups must share signals as well, and detached threads
1154          * can only be started up within the thread group.
1155          */
1156         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1157                 return ERR_PTR(-EINVAL);
1158
1159         /*
1160          * Shared signal handlers imply shared VM. By way of the above,
1161          * thread groups also imply shared VM. Blocking this case allows
1162          * for various simplifications in other code.
1163          */
1164         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1165                 return ERR_PTR(-EINVAL);
1166
1167         /*
1168          * Siblings of global init remain as zombies on exit since they are
1169          * not reaped by their parent (swapper). To solve this and to avoid
1170          * multi-rooted process trees, prevent global and container-inits
1171          * from creating siblings.
1172          */
1173         if ((clone_flags & CLONE_PARENT) &&
1174                                 current->signal->flags & SIGNAL_UNKILLABLE)
1175                 return ERR_PTR(-EINVAL);
1176
1177         /*
1178          * If the new process will be in a different pid or user namespace
1179          * do not allow it to share a thread group or signal handlers or
1180          * parent with the forking task.
1181          */
1182         if (clone_flags & CLONE_SIGHAND) {
1183                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1184                     (task_active_pid_ns(current) !=
1185                                 current->nsproxy->pid_ns_for_children))
1186                         return ERR_PTR(-EINVAL);
1187         }
1188
1189         retval = security_task_create(clone_flags);
1190         if (retval)
1191                 goto fork_out;
1192
1193         retval = -ENOMEM;
1194         p = dup_task_struct(current);
1195         if (!p)
1196                 goto fork_out;
1197
1198         ftrace_graph_init_task(p);
1199         get_seccomp_filter(p);
1200
1201         rt_mutex_init_task(p);
1202
1203 #ifdef CONFIG_PROVE_LOCKING
1204         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1205         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1206 #endif
1207         retval = -EAGAIN;
1208         if (atomic_read(&p->real_cred->user->processes) >=
1209                         task_rlimit(p, RLIMIT_NPROC)) {
1210                 if (p->real_cred->user != INIT_USER &&
1211                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1212                         goto bad_fork_free;
1213         }
1214         current->flags &= ~PF_NPROC_EXCEEDED;
1215
1216         retval = copy_creds(p, clone_flags);
1217         if (retval < 0)
1218                 goto bad_fork_free;
1219
1220         /*
1221          * If multiple threads are within copy_process(), then this check
1222          * triggers too late. This doesn't hurt, the check is only there
1223          * to stop root fork bombs.
1224          */
1225         retval = -EAGAIN;
1226         if (nr_threads >= max_threads)
1227                 goto bad_fork_cleanup_count;
1228
1229         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1230                 goto bad_fork_cleanup_count;
1231
1232         p->did_exec = 0;
1233         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1234         copy_flags(clone_flags, p);
1235         INIT_LIST_HEAD(&p->children);
1236         INIT_LIST_HEAD(&p->sibling);
1237         rcu_copy_process(p);
1238         p->vfork_done = NULL;
1239         spin_lock_init(&p->alloc_lock);
1240
1241         init_sigpending(&p->pending);
1242
1243         p->utime = p->stime = p->gtime = 0;
1244         p->utimescaled = p->stimescaled = 0;
1245 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1246         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1247 #endif
1248 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1249         seqlock_init(&p->vtime_seqlock);
1250         p->vtime_snap = 0;
1251         p->vtime_snap_whence = VTIME_SLEEPING;
1252 #endif
1253
1254 #if defined(SPLIT_RSS_COUNTING)
1255         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1256 #endif
1257
1258         p->default_timer_slack_ns = current->timer_slack_ns;
1259
1260         task_io_accounting_init(&p->ioac);
1261         acct_clear_integrals(p);
1262
1263         posix_cpu_timers_init(p);
1264
1265         do_posix_clock_monotonic_gettime(&p->start_time);
1266         p->real_start_time = p->start_time;
1267         monotonic_to_bootbased(&p->real_start_time);
1268         p->io_context = NULL;
1269         p->audit_context = NULL;
1270         if (clone_flags & CLONE_THREAD)
1271                 threadgroup_change_begin(current);
1272         cgroup_fork(p);
1273 #ifdef CONFIG_NUMA
1274         p->mempolicy = mpol_dup(p->mempolicy);
1275         if (IS_ERR(p->mempolicy)) {
1276                 retval = PTR_ERR(p->mempolicy);
1277                 p->mempolicy = NULL;
1278                 goto bad_fork_cleanup_cgroup;
1279         }
1280         mpol_fix_fork_child_flag(p);
1281 #endif
1282 #ifdef CONFIG_CPUSETS
1283         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1284         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1285         seqcount_init(&p->mems_allowed_seq);
1286 #endif
1287 #ifdef CONFIG_TRACE_IRQFLAGS
1288         p->irq_events = 0;
1289         p->hardirqs_enabled = 0;
1290         p->hardirq_enable_ip = 0;
1291         p->hardirq_enable_event = 0;
1292         p->hardirq_disable_ip = _THIS_IP_;
1293         p->hardirq_disable_event = 0;
1294         p->softirqs_enabled = 1;
1295         p->softirq_enable_ip = _THIS_IP_;
1296         p->softirq_enable_event = 0;
1297         p->softirq_disable_ip = 0;
1298         p->softirq_disable_event = 0;
1299         p->hardirq_context = 0;
1300         p->softirq_context = 0;
1301 #endif
1302 #ifdef CONFIG_LOCKDEP
1303         p->lockdep_depth = 0; /* no locks held yet */
1304         p->curr_chain_key = 0;
1305         p->lockdep_recursion = 0;
1306 #endif
1307
1308 #ifdef CONFIG_DEBUG_MUTEXES
1309         p->blocked_on = NULL; /* not blocked yet */
1310 #endif
1311 #ifdef CONFIG_MEMCG
1312         p->memcg_batch.do_batch = 0;
1313         p->memcg_batch.memcg = NULL;
1314 #endif
1315 #ifdef CONFIG_BCACHE
1316         p->sequential_io        = 0;
1317         p->sequential_io_avg    = 0;
1318 #endif
1319
1320         /* Perform scheduler related setup. Assign this task to a CPU. */
1321         retval = sched_fork(clone_flags, p);
1322         if (retval)
1323                 goto bad_fork_cleanup_policy;
1324
1325         retval = perf_event_init_task(p);
1326         if (retval)
1327                 goto bad_fork_cleanup_policy;
1328         retval = audit_alloc(p);
1329         if (retval)
1330                 goto bad_fork_cleanup_policy;
1331         /* copy all the process information */
1332         retval = copy_semundo(clone_flags, p);
1333         if (retval)
1334                 goto bad_fork_cleanup_audit;
1335         retval = copy_files(clone_flags, p);
1336         if (retval)
1337                 goto bad_fork_cleanup_semundo;
1338         retval = copy_fs(clone_flags, p);
1339         if (retval)
1340                 goto bad_fork_cleanup_files;
1341         retval = copy_sighand(clone_flags, p);
1342         if (retval)
1343                 goto bad_fork_cleanup_fs;
1344         retval = copy_signal(clone_flags, p);
1345         if (retval)
1346                 goto bad_fork_cleanup_sighand;
1347         retval = copy_mm(clone_flags, p);
1348         if (retval)
1349                 goto bad_fork_cleanup_signal;
1350         retval = copy_namespaces(clone_flags, p);
1351         if (retval)
1352                 goto bad_fork_cleanup_mm;
1353         retval = copy_io(clone_flags, p);
1354         if (retval)
1355                 goto bad_fork_cleanup_namespaces;
1356         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1357         if (retval)
1358                 goto bad_fork_cleanup_io;
1359
1360         if (pid != &init_struct_pid) {
1361                 retval = -ENOMEM;
1362                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1363                 if (!pid)
1364                         goto bad_fork_cleanup_io;
1365         }
1366
1367         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1368         /*
1369          * Clear TID on mm_release()?
1370          */
1371         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1372 #ifdef CONFIG_BLOCK
1373         p->plug = NULL;
1374 #endif
1375 #ifdef CONFIG_FUTEX
1376         p->robust_list = NULL;
1377 #ifdef CONFIG_COMPAT
1378         p->compat_robust_list = NULL;
1379 #endif
1380         INIT_LIST_HEAD(&p->pi_state_list);
1381         p->pi_state_cache = NULL;
1382 #endif
1383         /*
1384          * sigaltstack should be cleared when sharing the same VM
1385          */
1386         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1387                 p->sas_ss_sp = p->sas_ss_size = 0;
1388
1389         /*
1390          * Syscall tracing and stepping should be turned off in the
1391          * child regardless of CLONE_PTRACE.
1392          */
1393         user_disable_single_step(p);
1394         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1395 #ifdef TIF_SYSCALL_EMU
1396         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1397 #endif
1398         clear_all_latency_tracing(p);
1399
1400         /* ok, now we should be set up.. */
1401         p->pid = pid_nr(pid);
1402         if (clone_flags & CLONE_THREAD) {
1403                 p->exit_signal = -1;
1404                 p->group_leader = current->group_leader;
1405                 p->tgid = current->tgid;
1406         } else {
1407                 if (clone_flags & CLONE_PARENT)
1408                         p->exit_signal = current->group_leader->exit_signal;
1409                 else
1410                         p->exit_signal = (clone_flags & CSIGNAL);
1411                 p->group_leader = p;
1412                 p->tgid = p->pid;
1413         }
1414
1415         p->nr_dirtied = 0;
1416         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1417         p->dirty_paused_when = 0;
1418
1419         p->pdeath_signal = 0;
1420         INIT_LIST_HEAD(&p->thread_group);
1421         p->task_works = NULL;
1422
1423         /*
1424          * Make it visible to the rest of the system, but dont wake it up yet.
1425          * Need tasklist lock for parent etc handling!
1426          */
1427         write_lock_irq(&tasklist_lock);
1428
1429         /* CLONE_PARENT re-uses the old parent */
1430         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1431                 p->real_parent = current->real_parent;
1432                 p->parent_exec_id = current->parent_exec_id;
1433         } else {
1434                 p->real_parent = current;
1435                 p->parent_exec_id = current->self_exec_id;
1436         }
1437
1438         spin_lock(&current->sighand->siglock);
1439
1440         /*
1441          * Process group and session signals need to be delivered to just the
1442          * parent before the fork or both the parent and the child after the
1443          * fork. Restart if a signal comes in before we add the new process to
1444          * it's process group.
1445          * A fatal signal pending means that current will exit, so the new
1446          * thread can't slip out of an OOM kill (or normal SIGKILL).
1447         */
1448         recalc_sigpending();
1449         if (signal_pending(current)) {
1450                 spin_unlock(&current->sighand->siglock);
1451                 write_unlock_irq(&tasklist_lock);
1452                 retval = -ERESTARTNOINTR;
1453                 goto bad_fork_free_pid;
1454         }
1455
1456         if (likely(p->pid)) {
1457                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1458
1459                 init_task_pid(p, PIDTYPE_PID, pid);
1460                 if (thread_group_leader(p)) {
1461                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1462                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1463
1464                         if (is_child_reaper(pid)) {
1465                                 ns_of_pid(pid)->child_reaper = p;
1466                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1467                         }
1468
1469                         p->signal->leader_pid = pid;
1470                         p->signal->tty = tty_kref_get(current->signal->tty);
1471                         list_add_tail(&p->sibling, &p->real_parent->children);
1472                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1473                         attach_pid(p, PIDTYPE_PGID);
1474                         attach_pid(p, PIDTYPE_SID);
1475                         __this_cpu_inc(process_counts);
1476                 } else {
1477                         current->signal->nr_threads++;
1478                         atomic_inc(&current->signal->live);
1479                         atomic_inc(&current->signal->sigcnt);
1480                         list_add_tail_rcu(&p->thread_group,
1481                                           &p->group_leader->thread_group);
1482                         list_add_tail_rcu(&p->thread_node,
1483                                           &p->signal->thread_head);
1484                 }
1485                 attach_pid(p, PIDTYPE_PID);
1486                 nr_threads++;
1487         }
1488
1489         total_forks++;
1490         spin_unlock(&current->sighand->siglock);
1491         write_unlock_irq(&tasklist_lock);
1492         proc_fork_connector(p);
1493         cgroup_post_fork(p);
1494         if (clone_flags & CLONE_THREAD)
1495                 threadgroup_change_end(current);
1496         perf_event_fork(p);
1497
1498         trace_task_newtask(p, clone_flags);
1499         uprobe_copy_process(p, clone_flags);
1500
1501         return p;
1502
1503 bad_fork_free_pid:
1504         if (pid != &init_struct_pid)
1505                 free_pid(pid);
1506 bad_fork_cleanup_io:
1507         if (p->io_context)
1508                 exit_io_context(p);
1509 bad_fork_cleanup_namespaces:
1510         exit_task_namespaces(p);
1511 bad_fork_cleanup_mm:
1512         if (p->mm)
1513                 mmput(p->mm);
1514 bad_fork_cleanup_signal:
1515         if (!(clone_flags & CLONE_THREAD))
1516                 free_signal_struct(p->signal);
1517 bad_fork_cleanup_sighand:
1518         __cleanup_sighand(p->sighand);
1519 bad_fork_cleanup_fs:
1520         exit_fs(p); /* blocking */
1521 bad_fork_cleanup_files:
1522         exit_files(p); /* blocking */
1523 bad_fork_cleanup_semundo:
1524         exit_sem(p);
1525 bad_fork_cleanup_audit:
1526         audit_free(p);
1527 bad_fork_cleanup_policy:
1528         perf_event_free_task(p);
1529 #ifdef CONFIG_NUMA
1530         mpol_put(p->mempolicy);
1531 bad_fork_cleanup_cgroup:
1532 #endif
1533         if (clone_flags & CLONE_THREAD)
1534                 threadgroup_change_end(current);
1535         cgroup_exit(p, 0);
1536         delayacct_tsk_free(p);
1537         module_put(task_thread_info(p)->exec_domain->module);
1538 bad_fork_cleanup_count:
1539         atomic_dec(&p->cred->user->processes);
1540         exit_creds(p);
1541 bad_fork_free:
1542         free_task(p);
1543 fork_out:
1544         return ERR_PTR(retval);
1545 }
1546
1547 static inline void init_idle_pids(struct pid_link *links)
1548 {
1549         enum pid_type type;
1550
1551         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1552                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1553                 links[type].pid = &init_struct_pid;
1554         }
1555 }
1556
1557 struct task_struct *fork_idle(int cpu)
1558 {
1559         struct task_struct *task;
1560         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1561         if (!IS_ERR(task)) {
1562                 init_idle_pids(task->pids);
1563                 init_idle(task, cpu);
1564         }
1565
1566         return task;
1567 }
1568
1569 /*
1570  *  Ok, this is the main fork-routine.
1571  *
1572  * It copies the process, and if successful kick-starts
1573  * it and waits for it to finish using the VM if required.
1574  */
1575 long do_fork(unsigned long clone_flags,
1576               unsigned long stack_start,
1577               unsigned long stack_size,
1578               int __user *parent_tidptr,
1579               int __user *child_tidptr)
1580 {
1581         struct task_struct *p;
1582         int trace = 0;
1583         long nr;
1584
1585         /*
1586          * Determine whether and which event to report to ptracer.  When
1587          * called from kernel_thread or CLONE_UNTRACED is explicitly
1588          * requested, no event is reported; otherwise, report if the event
1589          * for the type of forking is enabled.
1590          */
1591         if (!(clone_flags & CLONE_UNTRACED)) {
1592                 if (clone_flags & CLONE_VFORK)
1593                         trace = PTRACE_EVENT_VFORK;
1594                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1595                         trace = PTRACE_EVENT_CLONE;
1596                 else
1597                         trace = PTRACE_EVENT_FORK;
1598
1599                 if (likely(!ptrace_event_enabled(current, trace)))
1600                         trace = 0;
1601         }
1602
1603         p = copy_process(clone_flags, stack_start, stack_size,
1604                          child_tidptr, NULL, trace);
1605         /*
1606          * Do this prior waking up the new thread - the thread pointer
1607          * might get invalid after that point, if the thread exits quickly.
1608          */
1609         if (!IS_ERR(p)) {
1610                 struct completion vfork;
1611
1612                 trace_sched_process_fork(current, p);
1613
1614                 nr = task_pid_vnr(p);
1615
1616                 if (clone_flags & CLONE_PARENT_SETTID)
1617                         put_user(nr, parent_tidptr);
1618
1619                 if (clone_flags & CLONE_VFORK) {
1620                         p->vfork_done = &vfork;
1621                         init_completion(&vfork);
1622                         get_task_struct(p);
1623                 }
1624
1625                 wake_up_new_task(p);
1626
1627                 /* forking complete and child started to run, tell ptracer */
1628                 if (unlikely(trace))
1629                         ptrace_event(trace, nr);
1630
1631                 if (clone_flags & CLONE_VFORK) {
1632                         if (!wait_for_vfork_done(p, &vfork))
1633                                 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1634                 }
1635         } else {
1636                 nr = PTR_ERR(p);
1637         }
1638         return nr;
1639 }
1640
1641 /*
1642  * Create a kernel thread.
1643  */
1644 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1645 {
1646         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1647                 (unsigned long)arg, NULL, NULL);
1648 }
1649
1650 #ifdef __ARCH_WANT_SYS_FORK
1651 SYSCALL_DEFINE0(fork)
1652 {
1653 #ifdef CONFIG_MMU
1654         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1655 #else
1656         /* can not support in nommu mode */
1657         return(-EINVAL);
1658 #endif
1659 }
1660 #endif
1661
1662 #ifdef __ARCH_WANT_SYS_VFORK
1663 SYSCALL_DEFINE0(vfork)
1664 {
1665         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 
1666                         0, NULL, NULL);
1667 }
1668 #endif
1669
1670 #ifdef __ARCH_WANT_SYS_CLONE
1671 #ifdef CONFIG_CLONE_BACKWARDS
1672 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1673                  int __user *, parent_tidptr,
1674                  int, tls_val,
1675                  int __user *, child_tidptr)
1676 #elif defined(CONFIG_CLONE_BACKWARDS2)
1677 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1678                  int __user *, parent_tidptr,
1679                  int __user *, child_tidptr,
1680                  int, tls_val)
1681 #elif defined(CONFIG_CLONE_BACKWARDS3)
1682 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1683                 int, stack_size,
1684                 int __user *, parent_tidptr,
1685                 int __user *, child_tidptr,
1686                 int, tls_val)
1687 #else
1688 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1689                  int __user *, parent_tidptr,
1690                  int __user *, child_tidptr,
1691                  int, tls_val)
1692 #endif
1693 {
1694         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1695 }
1696 #endif
1697
1698 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1699 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1700 #endif
1701
1702 static void sighand_ctor(void *data)
1703 {
1704         struct sighand_struct *sighand = data;
1705
1706         spin_lock_init(&sighand->siglock);
1707         init_waitqueue_head(&sighand->signalfd_wqh);
1708 }
1709
1710 void __init proc_caches_init(void)
1711 {
1712         sighand_cachep = kmem_cache_create("sighand_cache",
1713                         sizeof(struct sighand_struct), 0,
1714                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1715                         SLAB_NOTRACK, sighand_ctor);
1716         signal_cachep = kmem_cache_create("signal_cache",
1717                         sizeof(struct signal_struct), 0,
1718                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1719         files_cachep = kmem_cache_create("files_cache",
1720                         sizeof(struct files_struct), 0,
1721                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1722         fs_cachep = kmem_cache_create("fs_cache",
1723                         sizeof(struct fs_struct), 0,
1724                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1725         /*
1726          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1727          * whole struct cpumask for the OFFSTACK case. We could change
1728          * this to *only* allocate as much of it as required by the
1729          * maximum number of CPU's we can ever have.  The cpumask_allocation
1730          * is at the end of the structure, exactly for that reason.
1731          */
1732         mm_cachep = kmem_cache_create("mm_struct",
1733                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1734                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1735         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1736         mmap_init();
1737         nsproxy_cache_init();
1738 }
1739
1740 /*
1741  * Check constraints on flags passed to the unshare system call.
1742  */
1743 static int check_unshare_flags(unsigned long unshare_flags)
1744 {
1745         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1746                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1747                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1748                                 CLONE_NEWUSER|CLONE_NEWPID))
1749                 return -EINVAL;
1750         /*
1751          * Not implemented, but pretend it works if there is nothing to
1752          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1753          * needs to unshare vm.
1754          */
1755         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1756                 /* FIXME: get_task_mm() increments ->mm_users */
1757                 if (atomic_read(&current->mm->mm_users) > 1)
1758                         return -EINVAL;
1759         }
1760
1761         return 0;
1762 }
1763
1764 /*
1765  * Unshare the filesystem structure if it is being shared
1766  */
1767 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1768 {
1769         struct fs_struct *fs = current->fs;
1770
1771         if (!(unshare_flags & CLONE_FS) || !fs)
1772                 return 0;
1773
1774         /* don't need lock here; in the worst case we'll do useless copy */
1775         if (fs->users == 1)
1776                 return 0;
1777
1778         *new_fsp = copy_fs_struct(fs);
1779         if (!*new_fsp)
1780                 return -ENOMEM;
1781
1782         return 0;
1783 }
1784
1785 /*
1786  * Unshare file descriptor table if it is being shared
1787  */
1788 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1789 {
1790         struct files_struct *fd = current->files;
1791         int error = 0;
1792
1793         if ((unshare_flags & CLONE_FILES) &&
1794             (fd && atomic_read(&fd->count) > 1)) {
1795                 *new_fdp = dup_fd(fd, &error);
1796                 if (!*new_fdp)
1797                         return error;
1798         }
1799
1800         return 0;
1801 }
1802
1803 /*
1804  * unshare allows a process to 'unshare' part of the process
1805  * context which was originally shared using clone.  copy_*
1806  * functions used by do_fork() cannot be used here directly
1807  * because they modify an inactive task_struct that is being
1808  * constructed. Here we are modifying the current, active,
1809  * task_struct.
1810  */
1811 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1812 {
1813         struct fs_struct *fs, *new_fs = NULL;
1814         struct files_struct *fd, *new_fd = NULL;
1815         struct cred *new_cred = NULL;
1816         struct nsproxy *new_nsproxy = NULL;
1817         int do_sysvsem = 0;
1818         int err;
1819
1820         /*
1821          * If unsharing a user namespace must also unshare the thread.
1822          */
1823         if (unshare_flags & CLONE_NEWUSER)
1824                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1825         /*
1826          * If unsharing a thread from a thread group, must also unshare vm.
1827          */
1828         if (unshare_flags & CLONE_THREAD)
1829                 unshare_flags |= CLONE_VM;
1830         /*
1831          * If unsharing vm, must also unshare signal handlers.
1832          */
1833         if (unshare_flags & CLONE_VM)
1834                 unshare_flags |= CLONE_SIGHAND;
1835         /*
1836          * If unsharing namespace, must also unshare filesystem information.
1837          */
1838         if (unshare_flags & CLONE_NEWNS)
1839                 unshare_flags |= CLONE_FS;
1840
1841         err = check_unshare_flags(unshare_flags);
1842         if (err)
1843                 goto bad_unshare_out;
1844         /*
1845          * CLONE_NEWIPC must also detach from the undolist: after switching
1846          * to a new ipc namespace, the semaphore arrays from the old
1847          * namespace are unreachable.
1848          */
1849         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1850                 do_sysvsem = 1;
1851         err = unshare_fs(unshare_flags, &new_fs);
1852         if (err)
1853                 goto bad_unshare_out;
1854         err = unshare_fd(unshare_flags, &new_fd);
1855         if (err)
1856                 goto bad_unshare_cleanup_fs;
1857         err = unshare_userns(unshare_flags, &new_cred);
1858         if (err)
1859                 goto bad_unshare_cleanup_fd;
1860         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1861                                          new_cred, new_fs);
1862         if (err)
1863                 goto bad_unshare_cleanup_cred;
1864
1865         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1866                 if (do_sysvsem) {
1867                         /*
1868                          * CLONE_SYSVSEM is equivalent to sys_exit().
1869                          */
1870                         exit_sem(current);
1871                 }
1872
1873                 if (new_nsproxy)
1874                         switch_task_namespaces(current, new_nsproxy);
1875
1876                 task_lock(current);
1877
1878                 if (new_fs) {
1879                         fs = current->fs;
1880                         spin_lock(&fs->lock);
1881                         current->fs = new_fs;
1882                         if (--fs->users)
1883                                 new_fs = NULL;
1884                         else
1885                                 new_fs = fs;
1886                         spin_unlock(&fs->lock);
1887                 }
1888
1889                 if (new_fd) {
1890                         fd = current->files;
1891                         current->files = new_fd;
1892                         new_fd = fd;
1893                 }
1894
1895                 task_unlock(current);
1896
1897                 if (new_cred) {
1898                         /* Install the new user namespace */
1899                         commit_creds(new_cred);
1900                         new_cred = NULL;
1901                 }
1902         }
1903
1904 bad_unshare_cleanup_cred:
1905         if (new_cred)
1906                 put_cred(new_cred);
1907 bad_unshare_cleanup_fd:
1908         if (new_fd)
1909                 put_files_struct(new_fd);
1910
1911 bad_unshare_cleanup_fs:
1912         if (new_fs)
1913                 free_fs_struct(new_fs);
1914
1915 bad_unshare_out:
1916         return err;
1917 }
1918
1919 /*
1920  *      Helper to unshare the files of the current task.
1921  *      We don't want to expose copy_files internals to
1922  *      the exec layer of the kernel.
1923  */
1924
1925 int unshare_files(struct files_struct **displaced)
1926 {
1927         struct task_struct *task = current;
1928         struct files_struct *copy = NULL;
1929         int error;
1930
1931         error = unshare_fd(CLONE_FILES, &copy);
1932         if (error || !copy) {
1933                 *displaced = NULL;
1934                 return error;
1935         }
1936         *displaced = task->files;
1937         task_lock(task);
1938         task->files = copy;
1939         task_unlock(task);
1940         return 0;
1941 }