Merge tag 'backport/v3.14.24-ltsi-rc1/rcar-snd-to-next-20141121' into backport/v3...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76
77 #include <asm/pgtable.h>
78 #include <asm/pgalloc.h>
79 #include <asm/uaccess.h>
80 #include <asm/mmu_context.h>
81 #include <asm/cacheflush.h>
82 #include <asm/tlbflush.h>
83
84 #include <trace/events/sched.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/task.h>
88
89 /*
90  * Protected counters by write_lock_irq(&tasklist_lock)
91  */
92 unsigned long total_forks;      /* Handle normal Linux uptimes. */
93 int nr_threads;                 /* The idle threads do not count.. */
94
95 int max_threads;                /* tunable limit on nr_threads */
96
97 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
98
99 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
100
101 #ifdef CONFIG_PROVE_RCU
102 int lockdep_tasklist_lock_is_held(void)
103 {
104         return lockdep_is_held(&tasklist_lock);
105 }
106 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
107 #endif /* #ifdef CONFIG_PROVE_RCU */
108
109 int nr_processes(void)
110 {
111         int cpu;
112         int total = 0;
113
114         for_each_possible_cpu(cpu)
115                 total += per_cpu(process_counts, cpu);
116
117         return total;
118 }
119
120 void __weak arch_release_task_struct(struct task_struct *tsk)
121 {
122 }
123
124 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
125 static struct kmem_cache *task_struct_cachep;
126
127 static inline struct task_struct *alloc_task_struct_node(int node)
128 {
129         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
130 }
131
132 static inline void free_task_struct(struct task_struct *tsk)
133 {
134         kmem_cache_free(task_struct_cachep, tsk);
135 }
136 #endif
137
138 void __weak arch_release_thread_info(struct thread_info *ti)
139 {
140 }
141
142 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
143
144 /*
145  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
146  * kmemcache based allocator.
147  */
148 # if THREAD_SIZE >= PAGE_SIZE
149 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
150                                                   int node)
151 {
152         struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
153                                              THREAD_SIZE_ORDER);
154
155         return page ? page_address(page) : NULL;
156 }
157
158 static inline void free_thread_info(struct thread_info *ti)
159 {
160         free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
161 }
162 # else
163 static struct kmem_cache *thread_info_cache;
164
165 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
166                                                   int node)
167 {
168         return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
169 }
170
171 static void free_thread_info(struct thread_info *ti)
172 {
173         kmem_cache_free(thread_info_cache, ti);
174 }
175
176 void thread_info_cache_init(void)
177 {
178         thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
179                                               THREAD_SIZE, 0, NULL);
180         BUG_ON(thread_info_cache == NULL);
181 }
182 # endif
183 #endif
184
185 /* SLAB cache for signal_struct structures (tsk->signal) */
186 static struct kmem_cache *signal_cachep;
187
188 /* SLAB cache for sighand_struct structures (tsk->sighand) */
189 struct kmem_cache *sighand_cachep;
190
191 /* SLAB cache for files_struct structures (tsk->files) */
192 struct kmem_cache *files_cachep;
193
194 /* SLAB cache for fs_struct structures (tsk->fs) */
195 struct kmem_cache *fs_cachep;
196
197 /* SLAB cache for vm_area_struct structures */
198 struct kmem_cache *vm_area_cachep;
199
200 /* SLAB cache for mm_struct structures (tsk->mm) */
201 static struct kmem_cache *mm_cachep;
202
203 static void account_kernel_stack(struct thread_info *ti, int account)
204 {
205         struct zone *zone = page_zone(virt_to_page(ti));
206
207         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
208 }
209
210 void free_task(struct task_struct *tsk)
211 {
212         account_kernel_stack(tsk->stack, -1);
213         arch_release_thread_info(tsk->stack);
214         free_thread_info(tsk->stack);
215         rt_mutex_debug_task_free(tsk);
216         ftrace_graph_exit_task(tsk);
217         put_seccomp_filter(tsk);
218         arch_release_task_struct(tsk);
219         free_task_struct(tsk);
220 }
221 EXPORT_SYMBOL(free_task);
222
223 static inline void free_signal_struct(struct signal_struct *sig)
224 {
225         taskstats_tgid_free(sig);
226         sched_autogroup_exit(sig);
227         kmem_cache_free(signal_cachep, sig);
228 }
229
230 static inline void put_signal_struct(struct signal_struct *sig)
231 {
232         if (atomic_dec_and_test(&sig->sigcnt))
233                 free_signal_struct(sig);
234 }
235
236 void __put_task_struct(struct task_struct *tsk)
237 {
238         WARN_ON(!tsk->exit_state);
239         WARN_ON(atomic_read(&tsk->usage));
240         WARN_ON(tsk == current);
241
242         security_task_free(tsk);
243         exit_creds(tsk);
244         delayacct_tsk_free(tsk);
245         put_signal_struct(tsk->signal);
246
247         if (!profile_handoff_task(tsk))
248                 free_task(tsk);
249 }
250 EXPORT_SYMBOL_GPL(__put_task_struct);
251
252 void __init __weak arch_task_cache_init(void) { }
253
254 void __init fork_init(unsigned long mempages)
255 {
256 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
257 #ifndef ARCH_MIN_TASKALIGN
258 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
259 #endif
260         /* create a slab on which task_structs can be allocated */
261         task_struct_cachep =
262                 kmem_cache_create("task_struct", sizeof(struct task_struct),
263                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
264 #endif
265
266         /* do the arch specific task caches init */
267         arch_task_cache_init();
268
269         /*
270          * The default maximum number of threads is set to a safe
271          * value: the thread structures can take up at most half
272          * of memory.
273          */
274         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
275
276         /*
277          * we need to allow at least 20 threads to boot a system
278          */
279         if (max_threads < 20)
280                 max_threads = 20;
281
282         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
283         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
284         init_task.signal->rlim[RLIMIT_SIGPENDING] =
285                 init_task.signal->rlim[RLIMIT_NPROC];
286 }
287
288 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
289                                                struct task_struct *src)
290 {
291         *dst = *src;
292         return 0;
293 }
294
295 static struct task_struct *dup_task_struct(struct task_struct *orig)
296 {
297         struct task_struct *tsk;
298         struct thread_info *ti;
299         unsigned long *stackend;
300         int node = tsk_fork_get_node(orig);
301         int err;
302
303         tsk = alloc_task_struct_node(node);
304         if (!tsk)
305                 return NULL;
306
307         ti = alloc_thread_info_node(tsk, node);
308         if (!ti)
309                 goto free_tsk;
310
311         err = arch_dup_task_struct(tsk, orig);
312         if (err)
313                 goto free_ti;
314
315         tsk->stack = ti;
316
317         setup_thread_stack(tsk, orig);
318         clear_user_return_notifier(tsk);
319         clear_tsk_need_resched(tsk);
320         stackend = end_of_stack(tsk);
321         *stackend = STACK_END_MAGIC;    /* for overflow detection */
322
323 #ifdef CONFIG_CC_STACKPROTECTOR
324         tsk->stack_canary = get_random_int();
325 #endif
326
327         /*
328          * One for us, one for whoever does the "release_task()" (usually
329          * parent)
330          */
331         atomic_set(&tsk->usage, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
333         tsk->btrace_seq = 0;
334 #endif
335         tsk->splice_pipe = NULL;
336         tsk->task_frag.page = NULL;
337
338         account_kernel_stack(ti, 1);
339
340         return tsk;
341
342 free_ti:
343         free_thread_info(ti);
344 free_tsk:
345         free_task_struct(tsk);
346         return NULL;
347 }
348
349 #ifdef CONFIG_MMU
350 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
351 {
352         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
353         struct rb_node **rb_link, *rb_parent;
354         int retval;
355         unsigned long charge;
356
357         uprobe_start_dup_mmap();
358         down_write(&oldmm->mmap_sem);
359         flush_cache_dup_mm(oldmm);
360         uprobe_dup_mmap(oldmm, mm);
361         /*
362          * Not linked in yet - no deadlock potential:
363          */
364         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
365
366         mm->locked_vm = 0;
367         mm->mmap = NULL;
368         mm->vmacache_seqnum = 0;
369         mm->map_count = 0;
370         cpumask_clear(mm_cpumask(mm));
371         mm->mm_rb = RB_ROOT;
372         rb_link = &mm->mm_rb.rb_node;
373         rb_parent = NULL;
374         pprev = &mm->mmap;
375         retval = ksm_fork(mm, oldmm);
376         if (retval)
377                 goto out;
378         retval = khugepaged_fork(mm, oldmm);
379         if (retval)
380                 goto out;
381
382         prev = NULL;
383         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
384                 struct file *file;
385
386                 if (mpnt->vm_flags & VM_DONTCOPY) {
387                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
388                                                         -vma_pages(mpnt));
389                         continue;
390                 }
391                 charge = 0;
392                 if (mpnt->vm_flags & VM_ACCOUNT) {
393                         unsigned long len = vma_pages(mpnt);
394
395                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
396                                 goto fail_nomem;
397                         charge = len;
398                 }
399                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
400                 if (!tmp)
401                         goto fail_nomem;
402                 *tmp = *mpnt;
403                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
404                 retval = vma_dup_policy(mpnt, tmp);
405                 if (retval)
406                         goto fail_nomem_policy;
407                 tmp->vm_mm = mm;
408                 if (anon_vma_fork(tmp, mpnt))
409                         goto fail_nomem_anon_vma_fork;
410                 tmp->vm_flags &= ~VM_LOCKED;
411                 tmp->vm_next = tmp->vm_prev = NULL;
412                 file = tmp->vm_file;
413                 if (file) {
414                         struct inode *inode = file_inode(file);
415                         struct address_space *mapping = file->f_mapping;
416
417                         get_file(file);
418                         if (tmp->vm_flags & VM_DENYWRITE)
419                                 atomic_dec(&inode->i_writecount);
420                         mutex_lock(&mapping->i_mmap_mutex);
421                         if (tmp->vm_flags & VM_SHARED)
422                                 mapping->i_mmap_writable++;
423                         flush_dcache_mmap_lock(mapping);
424                         /* insert tmp into the share list, just after mpnt */
425                         if (unlikely(tmp->vm_flags & VM_NONLINEAR))
426                                 vma_nonlinear_insert(tmp,
427                                                 &mapping->i_mmap_nonlinear);
428                         else
429                                 vma_interval_tree_insert_after(tmp, mpnt,
430                                                         &mapping->i_mmap);
431                         flush_dcache_mmap_unlock(mapping);
432                         mutex_unlock(&mapping->i_mmap_mutex);
433                 }
434
435                 /*
436                  * Clear hugetlb-related page reserves for children. This only
437                  * affects MAP_PRIVATE mappings. Faults generated by the child
438                  * are not guaranteed to succeed, even if read-only
439                  */
440                 if (is_vm_hugetlb_page(tmp))
441                         reset_vma_resv_huge_pages(tmp);
442
443                 /*
444                  * Link in the new vma and copy the page table entries.
445                  */
446                 *pprev = tmp;
447                 pprev = &tmp->vm_next;
448                 tmp->vm_prev = prev;
449                 prev = tmp;
450
451                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
452                 rb_link = &tmp->vm_rb.rb_right;
453                 rb_parent = &tmp->vm_rb;
454
455                 mm->map_count++;
456                 retval = copy_page_range(mm, oldmm, mpnt);
457
458                 if (tmp->vm_ops && tmp->vm_ops->open)
459                         tmp->vm_ops->open(tmp);
460
461                 if (retval)
462                         goto out;
463         }
464         /* a new mm has just been created */
465         arch_dup_mmap(oldmm, mm);
466         retval = 0;
467 out:
468         up_write(&mm->mmap_sem);
469         flush_tlb_mm(oldmm);
470         up_write(&oldmm->mmap_sem);
471         uprobe_end_dup_mmap();
472         return retval;
473 fail_nomem_anon_vma_fork:
474         mpol_put(vma_policy(tmp));
475 fail_nomem_policy:
476         kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478         retval = -ENOMEM;
479         vm_unacct_memory(charge);
480         goto out;
481 }
482
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485         mm->pgd = pgd_alloc(mm);
486         if (unlikely(!mm->pgd))
487                 return -ENOMEM;
488         return 0;
489 }
490
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493         pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm)     (0)
497 #define mm_alloc_pgd(mm)        (0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
502
503 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
505
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507
508 static int __init coredump_filter_setup(char *s)
509 {
510         default_dump_filter =
511                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512                 MMF_DUMP_FILTER_MASK;
513         return 1;
514 }
515
516 __setup("coredump_filter=", coredump_filter_setup);
517
518 #include <linux/init_task.h>
519
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523         spin_lock_init(&mm->ioctx_lock);
524         mm->ioctx_table = NULL;
525 #endif
526 }
527
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530         atomic_set(&mm->mm_users, 1);
531         atomic_set(&mm->mm_count, 1);
532         init_rwsem(&mm->mmap_sem);
533         INIT_LIST_HEAD(&mm->mmlist);
534         mm->flags = (current->mm) ?
535                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536         mm->core_state = NULL;
537         atomic_long_set(&mm->nr_ptes, 0);
538         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539         spin_lock_init(&mm->page_table_lock);
540         mm_init_aio(mm);
541         mm_init_owner(mm, p);
542         clear_tlb_flush_pending(mm);
543
544         if (likely(!mm_alloc_pgd(mm))) {
545                 mm->def_flags = 0;
546                 mmu_notifier_mm_init(mm);
547                 return mm;
548         }
549
550         free_mm(mm);
551         return NULL;
552 }
553
554 static void check_mm(struct mm_struct *mm)
555 {
556         int i;
557
558         for (i = 0; i < NR_MM_COUNTERS; i++) {
559                 long x = atomic_long_read(&mm->rss_stat.count[i]);
560
561                 if (unlikely(x))
562                         printk(KERN_ALERT "BUG: Bad rss-counter state "
563                                           "mm:%p idx:%d val:%ld\n", mm, i, x);
564         }
565
566 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
567         VM_BUG_ON(mm->pmd_huge_pte);
568 #endif
569 }
570
571 /*
572  * Allocate and initialize an mm_struct.
573  */
574 struct mm_struct *mm_alloc(void)
575 {
576         struct mm_struct *mm;
577
578         mm = allocate_mm();
579         if (!mm)
580                 return NULL;
581
582         memset(mm, 0, sizeof(*mm));
583         mm_init_cpumask(mm);
584         return mm_init(mm, current);
585 }
586
587 /*
588  * Called when the last reference to the mm
589  * is dropped: either by a lazy thread or by
590  * mmput. Free the page directory and the mm.
591  */
592 void __mmdrop(struct mm_struct *mm)
593 {
594         BUG_ON(mm == &init_mm);
595         mm_free_pgd(mm);
596         destroy_context(mm);
597         mmu_notifier_mm_destroy(mm);
598         check_mm(mm);
599         free_mm(mm);
600 }
601 EXPORT_SYMBOL_GPL(__mmdrop);
602
603 /*
604  * Decrement the use count and release all resources for an mm.
605  */
606 void mmput(struct mm_struct *mm)
607 {
608         might_sleep();
609
610         if (atomic_dec_and_test(&mm->mm_users)) {
611                 uprobe_clear_state(mm);
612                 exit_aio(mm);
613                 ksm_exit(mm);
614                 khugepaged_exit(mm); /* must run before exit_mmap */
615                 exit_mmap(mm);
616                 set_mm_exe_file(mm, NULL);
617                 if (!list_empty(&mm->mmlist)) {
618                         spin_lock(&mmlist_lock);
619                         list_del(&mm->mmlist);
620                         spin_unlock(&mmlist_lock);
621                 }
622                 if (mm->binfmt)
623                         module_put(mm->binfmt->module);
624                 mmdrop(mm);
625         }
626 }
627 EXPORT_SYMBOL_GPL(mmput);
628
629 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
630 {
631         if (new_exe_file)
632                 get_file(new_exe_file);
633         if (mm->exe_file)
634                 fput(mm->exe_file);
635         mm->exe_file = new_exe_file;
636 }
637
638 struct file *get_mm_exe_file(struct mm_struct *mm)
639 {
640         struct file *exe_file;
641
642         /* We need mmap_sem to protect against races with removal of exe_file */
643         down_read(&mm->mmap_sem);
644         exe_file = mm->exe_file;
645         if (exe_file)
646                 get_file(exe_file);
647         up_read(&mm->mmap_sem);
648         return exe_file;
649 }
650
651 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
652 {
653         /* It's safe to write the exe_file pointer without exe_file_lock because
654          * this is called during fork when the task is not yet in /proc */
655         newmm->exe_file = get_mm_exe_file(oldmm);
656 }
657
658 /**
659  * get_task_mm - acquire a reference to the task's mm
660  *
661  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
662  * this kernel workthread has transiently adopted a user mm with use_mm,
663  * to do its AIO) is not set and if so returns a reference to it, after
664  * bumping up the use count.  User must release the mm via mmput()
665  * after use.  Typically used by /proc and ptrace.
666  */
667 struct mm_struct *get_task_mm(struct task_struct *task)
668 {
669         struct mm_struct *mm;
670
671         task_lock(task);
672         mm = task->mm;
673         if (mm) {
674                 if (task->flags & PF_KTHREAD)
675                         mm = NULL;
676                 else
677                         atomic_inc(&mm->mm_users);
678         }
679         task_unlock(task);
680         return mm;
681 }
682 EXPORT_SYMBOL_GPL(get_task_mm);
683
684 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
685 {
686         struct mm_struct *mm;
687         int err;
688
689         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
690         if (err)
691                 return ERR_PTR(err);
692
693         mm = get_task_mm(task);
694         if (mm && mm != current->mm &&
695                         !ptrace_may_access(task, mode)) {
696                 mmput(mm);
697                 mm = ERR_PTR(-EACCES);
698         }
699         mutex_unlock(&task->signal->cred_guard_mutex);
700
701         return mm;
702 }
703
704 static void complete_vfork_done(struct task_struct *tsk)
705 {
706         struct completion *vfork;
707
708         task_lock(tsk);
709         vfork = tsk->vfork_done;
710         if (likely(vfork)) {
711                 tsk->vfork_done = NULL;
712                 complete(vfork);
713         }
714         task_unlock(tsk);
715 }
716
717 static int wait_for_vfork_done(struct task_struct *child,
718                                 struct completion *vfork)
719 {
720         int killed;
721
722         freezer_do_not_count();
723         killed = wait_for_completion_killable(vfork);
724         freezer_count();
725
726         if (killed) {
727                 task_lock(child);
728                 child->vfork_done = NULL;
729                 task_unlock(child);
730         }
731
732         put_task_struct(child);
733         return killed;
734 }
735
736 /* Please note the differences between mmput and mm_release.
737  * mmput is called whenever we stop holding onto a mm_struct,
738  * error success whatever.
739  *
740  * mm_release is called after a mm_struct has been removed
741  * from the current process.
742  *
743  * This difference is important for error handling, when we
744  * only half set up a mm_struct for a new process and need to restore
745  * the old one.  Because we mmput the new mm_struct before
746  * restoring the old one. . .
747  * Eric Biederman 10 January 1998
748  */
749 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
750 {
751         /* Get rid of any futexes when releasing the mm */
752 #ifdef CONFIG_FUTEX
753         if (unlikely(tsk->robust_list)) {
754                 exit_robust_list(tsk);
755                 tsk->robust_list = NULL;
756         }
757 #ifdef CONFIG_COMPAT
758         if (unlikely(tsk->compat_robust_list)) {
759                 compat_exit_robust_list(tsk);
760                 tsk->compat_robust_list = NULL;
761         }
762 #endif
763         if (unlikely(!list_empty(&tsk->pi_state_list)))
764                 exit_pi_state_list(tsk);
765 #endif
766
767         uprobe_free_utask(tsk);
768
769         /* Get rid of any cached register state */
770         deactivate_mm(tsk, mm);
771
772         /*
773          * If we're exiting normally, clear a user-space tid field if
774          * requested.  We leave this alone when dying by signal, to leave
775          * the value intact in a core dump, and to save the unnecessary
776          * trouble, say, a killed vfork parent shouldn't touch this mm.
777          * Userland only wants this done for a sys_exit.
778          */
779         if (tsk->clear_child_tid) {
780                 if (!(tsk->flags & PF_SIGNALED) &&
781                     atomic_read(&mm->mm_users) > 1) {
782                         /*
783                          * We don't check the error code - if userspace has
784                          * not set up a proper pointer then tough luck.
785                          */
786                         put_user(0, tsk->clear_child_tid);
787                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
788                                         1, NULL, NULL, 0);
789                 }
790                 tsk->clear_child_tid = NULL;
791         }
792
793         /*
794          * All done, finally we can wake up parent and return this mm to him.
795          * Also kthread_stop() uses this completion for synchronization.
796          */
797         if (tsk->vfork_done)
798                 complete_vfork_done(tsk);
799 }
800
801 /*
802  * Allocate a new mm structure and copy contents from the
803  * mm structure of the passed in task structure.
804  */
805 static struct mm_struct *dup_mm(struct task_struct *tsk)
806 {
807         struct mm_struct *mm, *oldmm = current->mm;
808         int err;
809
810         mm = allocate_mm();
811         if (!mm)
812                 goto fail_nomem;
813
814         memcpy(mm, oldmm, sizeof(*mm));
815         mm_init_cpumask(mm);
816
817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
818         mm->pmd_huge_pte = NULL;
819 #endif
820         if (!mm_init(mm, tsk))
821                 goto fail_nomem;
822
823         if (init_new_context(tsk, mm))
824                 goto fail_nocontext;
825
826         dup_mm_exe_file(oldmm, mm);
827
828         err = dup_mmap(mm, oldmm);
829         if (err)
830                 goto free_pt;
831
832         mm->hiwater_rss = get_mm_rss(mm);
833         mm->hiwater_vm = mm->total_vm;
834
835         if (mm->binfmt && !try_module_get(mm->binfmt->module))
836                 goto free_pt;
837
838         return mm;
839
840 free_pt:
841         /* don't put binfmt in mmput, we haven't got module yet */
842         mm->binfmt = NULL;
843         mmput(mm);
844
845 fail_nomem:
846         return NULL;
847
848 fail_nocontext:
849         /*
850          * If init_new_context() failed, we cannot use mmput() to free the mm
851          * because it calls destroy_context()
852          */
853         mm_free_pgd(mm);
854         free_mm(mm);
855         return NULL;
856 }
857
858 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
859 {
860         struct mm_struct *mm, *oldmm;
861         int retval;
862
863         tsk->min_flt = tsk->maj_flt = 0;
864         tsk->nvcsw = tsk->nivcsw = 0;
865 #ifdef CONFIG_DETECT_HUNG_TASK
866         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
867 #endif
868
869         tsk->mm = NULL;
870         tsk->active_mm = NULL;
871
872         /*
873          * Are we cloning a kernel thread?
874          *
875          * We need to steal a active VM for that..
876          */
877         oldmm = current->mm;
878         if (!oldmm)
879                 return 0;
880
881         /* initialize the new vmacache entries */
882         vmacache_flush(tsk);
883
884         if (clone_flags & CLONE_VM) {
885                 atomic_inc(&oldmm->mm_users);
886                 mm = oldmm;
887                 goto good_mm;
888         }
889
890         retval = -ENOMEM;
891         mm = dup_mm(tsk);
892         if (!mm)
893                 goto fail_nomem;
894
895 good_mm:
896         tsk->mm = mm;
897         tsk->active_mm = mm;
898         return 0;
899
900 fail_nomem:
901         return retval;
902 }
903
904 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
905 {
906         struct fs_struct *fs = current->fs;
907         if (clone_flags & CLONE_FS) {
908                 /* tsk->fs is already what we want */
909                 spin_lock(&fs->lock);
910                 if (fs->in_exec) {
911                         spin_unlock(&fs->lock);
912                         return -EAGAIN;
913                 }
914                 fs->users++;
915                 spin_unlock(&fs->lock);
916                 return 0;
917         }
918         tsk->fs = copy_fs_struct(fs);
919         if (!tsk->fs)
920                 return -ENOMEM;
921         return 0;
922 }
923
924 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
925 {
926         struct files_struct *oldf, *newf;
927         int error = 0;
928
929         /*
930          * A background process may not have any files ...
931          */
932         oldf = current->files;
933         if (!oldf)
934                 goto out;
935
936         if (clone_flags & CLONE_FILES) {
937                 atomic_inc(&oldf->count);
938                 goto out;
939         }
940
941         newf = dup_fd(oldf, &error);
942         if (!newf)
943                 goto out;
944
945         tsk->files = newf;
946         error = 0;
947 out:
948         return error;
949 }
950
951 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
952 {
953 #ifdef CONFIG_BLOCK
954         struct io_context *ioc = current->io_context;
955         struct io_context *new_ioc;
956
957         if (!ioc)
958                 return 0;
959         /*
960          * Share io context with parent, if CLONE_IO is set
961          */
962         if (clone_flags & CLONE_IO) {
963                 ioc_task_link(ioc);
964                 tsk->io_context = ioc;
965         } else if (ioprio_valid(ioc->ioprio)) {
966                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
967                 if (unlikely(!new_ioc))
968                         return -ENOMEM;
969
970                 new_ioc->ioprio = ioc->ioprio;
971                 put_io_context(new_ioc);
972         }
973 #endif
974         return 0;
975 }
976
977 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
978 {
979         struct sighand_struct *sig;
980
981         if (clone_flags & CLONE_SIGHAND) {
982                 atomic_inc(&current->sighand->count);
983                 return 0;
984         }
985         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
986         rcu_assign_pointer(tsk->sighand, sig);
987         if (!sig)
988                 return -ENOMEM;
989         atomic_set(&sig->count, 1);
990         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
991         return 0;
992 }
993
994 void __cleanup_sighand(struct sighand_struct *sighand)
995 {
996         if (atomic_dec_and_test(&sighand->count)) {
997                 signalfd_cleanup(sighand);
998                 kmem_cache_free(sighand_cachep, sighand);
999         }
1000 }
1001
1002
1003 /*
1004  * Initialize POSIX timer handling for a thread group.
1005  */
1006 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1007 {
1008         unsigned long cpu_limit;
1009
1010         /* Thread group counters. */
1011         thread_group_cputime_init(sig);
1012
1013         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1014         if (cpu_limit != RLIM_INFINITY) {
1015                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1016                 sig->cputimer.running = 1;
1017         }
1018
1019         /* The timer lists. */
1020         INIT_LIST_HEAD(&sig->cpu_timers[0]);
1021         INIT_LIST_HEAD(&sig->cpu_timers[1]);
1022         INIT_LIST_HEAD(&sig->cpu_timers[2]);
1023 }
1024
1025 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1026 {
1027         struct signal_struct *sig;
1028
1029         if (clone_flags & CLONE_THREAD)
1030                 return 0;
1031
1032         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1033         tsk->signal = sig;
1034         if (!sig)
1035                 return -ENOMEM;
1036
1037         sig->nr_threads = 1;
1038         atomic_set(&sig->live, 1);
1039         atomic_set(&sig->sigcnt, 1);
1040
1041         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1042         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1043         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1044
1045         init_waitqueue_head(&sig->wait_chldexit);
1046         sig->curr_target = tsk;
1047         init_sigpending(&sig->shared_pending);
1048         INIT_LIST_HEAD(&sig->posix_timers);
1049
1050         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1051         sig->real_timer.function = it_real_fn;
1052
1053         task_lock(current->group_leader);
1054         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1055         task_unlock(current->group_leader);
1056
1057         posix_cpu_timers_init_group(sig);
1058
1059         tty_audit_fork(sig);
1060         sched_autogroup_fork(sig);
1061
1062 #ifdef CONFIG_CGROUPS
1063         init_rwsem(&sig->group_rwsem);
1064 #endif
1065
1066         sig->oom_score_adj = current->signal->oom_score_adj;
1067         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1068
1069         sig->has_child_subreaper = current->signal->has_child_subreaper ||
1070                                    current->signal->is_child_subreaper;
1071
1072         mutex_init(&sig->cred_guard_mutex);
1073
1074         return 0;
1075 }
1076
1077 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1078 {
1079         unsigned long new_flags = p->flags;
1080
1081         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1082         new_flags |= PF_FORKNOEXEC;
1083         p->flags = new_flags;
1084 }
1085
1086 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1087 {
1088         current->clear_child_tid = tidptr;
1089
1090         return task_pid_vnr(current);
1091 }
1092
1093 static void rt_mutex_init_task(struct task_struct *p)
1094 {
1095         raw_spin_lock_init(&p->pi_lock);
1096 #ifdef CONFIG_RT_MUTEXES
1097         p->pi_waiters = RB_ROOT;
1098         p->pi_waiters_leftmost = NULL;
1099         p->pi_blocked_on = NULL;
1100         p->pi_top_task = NULL;
1101 #endif
1102 }
1103
1104 #ifdef CONFIG_MM_OWNER
1105 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106 {
1107         mm->owner = p;
1108 }
1109 #endif /* CONFIG_MM_OWNER */
1110
1111 /*
1112  * Initialize POSIX timer handling for a single task.
1113  */
1114 static void posix_cpu_timers_init(struct task_struct *tsk)
1115 {
1116         tsk->cputime_expires.prof_exp = 0;
1117         tsk->cputime_expires.virt_exp = 0;
1118         tsk->cputime_expires.sched_exp = 0;
1119         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1120         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1121         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1122 }
1123
1124 static inline void
1125 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1126 {
1127          task->pids[type].pid = pid;
1128 }
1129
1130 /*
1131  * This creates a new process as a copy of the old one,
1132  * but does not actually start it yet.
1133  *
1134  * It copies the registers, and all the appropriate
1135  * parts of the process environment (as per the clone
1136  * flags). The actual kick-off is left to the caller.
1137  */
1138 static struct task_struct *copy_process(unsigned long clone_flags,
1139                                         unsigned long stack_start,
1140                                         unsigned long stack_size,
1141                                         int __user *child_tidptr,
1142                                         struct pid *pid,
1143                                         int trace)
1144 {
1145         int retval;
1146         struct task_struct *p;
1147
1148         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1149                 return ERR_PTR(-EINVAL);
1150
1151         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1152                 return ERR_PTR(-EINVAL);
1153
1154         /*
1155          * Thread groups must share signals as well, and detached threads
1156          * can only be started up within the thread group.
1157          */
1158         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1159                 return ERR_PTR(-EINVAL);
1160
1161         /*
1162          * Shared signal handlers imply shared VM. By way of the above,
1163          * thread groups also imply shared VM. Blocking this case allows
1164          * for various simplifications in other code.
1165          */
1166         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1167                 return ERR_PTR(-EINVAL);
1168
1169         /*
1170          * Siblings of global init remain as zombies on exit since they are
1171          * not reaped by their parent (swapper). To solve this and to avoid
1172          * multi-rooted process trees, prevent global and container-inits
1173          * from creating siblings.
1174          */
1175         if ((clone_flags & CLONE_PARENT) &&
1176                                 current->signal->flags & SIGNAL_UNKILLABLE)
1177                 return ERR_PTR(-EINVAL);
1178
1179         /*
1180          * If the new process will be in a different pid or user namespace
1181          * do not allow it to share a thread group or signal handlers or
1182          * parent with the forking task.
1183          */
1184         if (clone_flags & CLONE_SIGHAND) {
1185                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1186                     (task_active_pid_ns(current) !=
1187                                 current->nsproxy->pid_ns_for_children))
1188                         return ERR_PTR(-EINVAL);
1189         }
1190
1191         retval = security_task_create(clone_flags);
1192         if (retval)
1193                 goto fork_out;
1194
1195         retval = -ENOMEM;
1196         p = dup_task_struct(current);
1197         if (!p)
1198                 goto fork_out;
1199
1200         ftrace_graph_init_task(p);
1201         get_seccomp_filter(p);
1202
1203         rt_mutex_init_task(p);
1204
1205 #ifdef CONFIG_PROVE_LOCKING
1206         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1207         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1208 #endif
1209         retval = -EAGAIN;
1210         if (atomic_read(&p->real_cred->user->processes) >=
1211                         task_rlimit(p, RLIMIT_NPROC)) {
1212                 if (p->real_cred->user != INIT_USER &&
1213                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1214                         goto bad_fork_free;
1215         }
1216         current->flags &= ~PF_NPROC_EXCEEDED;
1217
1218         retval = copy_creds(p, clone_flags);
1219         if (retval < 0)
1220                 goto bad_fork_free;
1221
1222         /*
1223          * If multiple threads are within copy_process(), then this check
1224          * triggers too late. This doesn't hurt, the check is only there
1225          * to stop root fork bombs.
1226          */
1227         retval = -EAGAIN;
1228         if (nr_threads >= max_threads)
1229                 goto bad_fork_cleanup_count;
1230
1231         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1232                 goto bad_fork_cleanup_count;
1233
1234         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1235         copy_flags(clone_flags, p);
1236         INIT_LIST_HEAD(&p->children);
1237         INIT_LIST_HEAD(&p->sibling);
1238         rcu_copy_process(p);
1239         p->vfork_done = NULL;
1240         spin_lock_init(&p->alloc_lock);
1241
1242         init_sigpending(&p->pending);
1243
1244         p->utime = p->stime = p->gtime = 0;
1245         p->utimescaled = p->stimescaled = 0;
1246 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1247         p->prev_cputime.utime = p->prev_cputime.stime = 0;
1248 #endif
1249 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1250         seqlock_init(&p->vtime_seqlock);
1251         p->vtime_snap = 0;
1252         p->vtime_snap_whence = VTIME_SLEEPING;
1253 #endif
1254
1255 #if defined(SPLIT_RSS_COUNTING)
1256         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1257 #endif
1258
1259         p->default_timer_slack_ns = current->timer_slack_ns;
1260
1261         task_io_accounting_init(&p->ioac);
1262         acct_clear_integrals(p);
1263
1264         posix_cpu_timers_init(p);
1265
1266         do_posix_clock_monotonic_gettime(&p->start_time);
1267         p->real_start_time = p->start_time;
1268         monotonic_to_bootbased(&p->real_start_time);
1269         p->io_context = NULL;
1270         p->audit_context = NULL;
1271         if (clone_flags & CLONE_THREAD)
1272                 threadgroup_change_begin(current);
1273         cgroup_fork(p);
1274 #ifdef CONFIG_NUMA
1275         p->mempolicy = mpol_dup(p->mempolicy);
1276         if (IS_ERR(p->mempolicy)) {
1277                 retval = PTR_ERR(p->mempolicy);
1278                 p->mempolicy = NULL;
1279                 goto bad_fork_cleanup_cgroup;
1280         }
1281         mpol_fix_fork_child_flag(p);
1282 #endif
1283 #ifdef CONFIG_CPUSETS
1284         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1285         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1286         seqcount_init(&p->mems_allowed_seq);
1287 #endif
1288 #ifdef CONFIG_TRACE_IRQFLAGS
1289         p->irq_events = 0;
1290         p->hardirqs_enabled = 0;
1291         p->hardirq_enable_ip = 0;
1292         p->hardirq_enable_event = 0;
1293         p->hardirq_disable_ip = _THIS_IP_;
1294         p->hardirq_disable_event = 0;
1295         p->softirqs_enabled = 1;
1296         p->softirq_enable_ip = _THIS_IP_;
1297         p->softirq_enable_event = 0;
1298         p->softirq_disable_ip = 0;
1299         p->softirq_disable_event = 0;
1300         p->hardirq_context = 0;
1301         p->softirq_context = 0;
1302 #endif
1303 #ifdef CONFIG_LOCKDEP
1304         p->lockdep_depth = 0; /* no locks held yet */
1305         p->curr_chain_key = 0;
1306         p->lockdep_recursion = 0;
1307 #endif
1308
1309 #ifdef CONFIG_DEBUG_MUTEXES
1310         p->blocked_on = NULL; /* not blocked yet */
1311 #endif
1312 #ifdef CONFIG_MEMCG
1313         p->memcg_batch.do_batch = 0;
1314         p->memcg_batch.memcg = NULL;
1315 #endif
1316 #ifdef CONFIG_BCACHE
1317         p->sequential_io        = 0;
1318         p->sequential_io_avg    = 0;
1319 #endif
1320
1321         /* Perform scheduler related setup. Assign this task to a CPU. */
1322         retval = sched_fork(clone_flags, p);
1323         if (retval)
1324                 goto bad_fork_cleanup_policy;
1325
1326         retval = perf_event_init_task(p);
1327         if (retval)
1328                 goto bad_fork_cleanup_policy;
1329         retval = audit_alloc(p);
1330         if (retval)
1331                 goto bad_fork_cleanup_perf;
1332         /* copy all the process information */
1333         retval = copy_semundo(clone_flags, p);
1334         if (retval)
1335                 goto bad_fork_cleanup_audit;
1336         retval = copy_files(clone_flags, p);
1337         if (retval)
1338                 goto bad_fork_cleanup_semundo;
1339         retval = copy_fs(clone_flags, p);
1340         if (retval)
1341                 goto bad_fork_cleanup_files;
1342         retval = copy_sighand(clone_flags, p);
1343         if (retval)
1344                 goto bad_fork_cleanup_fs;
1345         retval = copy_signal(clone_flags, p);
1346         if (retval)
1347                 goto bad_fork_cleanup_sighand;
1348         retval = copy_mm(clone_flags, p);
1349         if (retval)
1350                 goto bad_fork_cleanup_signal;
1351         retval = copy_namespaces(clone_flags, p);
1352         if (retval)
1353                 goto bad_fork_cleanup_mm;
1354         retval = copy_io(clone_flags, p);
1355         if (retval)
1356                 goto bad_fork_cleanup_namespaces;
1357         retval = copy_thread(clone_flags, stack_start, stack_size, p);
1358         if (retval)
1359                 goto bad_fork_cleanup_io;
1360
1361         if (pid != &init_struct_pid) {
1362                 retval = -ENOMEM;
1363                 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1364                 if (!pid)
1365                         goto bad_fork_cleanup_io;
1366         }
1367
1368         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1369         /*
1370          * Clear TID on mm_release()?
1371          */
1372         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1373 #ifdef CONFIG_BLOCK
1374         p->plug = NULL;
1375 #endif
1376 #ifdef CONFIG_FUTEX
1377         p->robust_list = NULL;
1378 #ifdef CONFIG_COMPAT
1379         p->compat_robust_list = NULL;
1380 #endif
1381         INIT_LIST_HEAD(&p->pi_state_list);
1382         p->pi_state_cache = NULL;
1383 #endif
1384         /*
1385          * sigaltstack should be cleared when sharing the same VM
1386          */
1387         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1388                 p->sas_ss_sp = p->sas_ss_size = 0;
1389
1390         /*
1391          * Syscall tracing and stepping should be turned off in the
1392          * child regardless of CLONE_PTRACE.
1393          */
1394         user_disable_single_step(p);
1395         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1396 #ifdef TIF_SYSCALL_EMU
1397         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1398 #endif
1399         clear_all_latency_tracing(p);
1400
1401         /* ok, now we should be set up.. */
1402         p->pid = pid_nr(pid);
1403         if (clone_flags & CLONE_THREAD) {
1404                 p->exit_signal = -1;
1405                 p->group_leader = current->group_leader;
1406                 p->tgid = current->tgid;
1407         } else {
1408                 if (clone_flags & CLONE_PARENT)
1409                         p->exit_signal = current->group_leader->exit_signal;
1410                 else
1411                         p->exit_signal = (clone_flags & CSIGNAL);
1412                 p->group_leader = p;
1413                 p->tgid = p->pid;
1414         }
1415
1416         p->nr_dirtied = 0;
1417         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1418         p->dirty_paused_when = 0;
1419
1420         p->pdeath_signal = 0;
1421         INIT_LIST_HEAD(&p->thread_group);
1422         p->task_works = NULL;
1423
1424         /*
1425          * Make it visible to the rest of the system, but dont wake it up yet.
1426          * Need tasklist lock for parent etc handling!
1427          */
1428         write_lock_irq(&tasklist_lock);
1429
1430         /* CLONE_PARENT re-uses the old parent */
1431         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1432                 p->real_parent = current->real_parent;
1433                 p->parent_exec_id = current->parent_exec_id;
1434         } else {
1435                 p->real_parent = current;
1436                 p->parent_exec_id = current->self_exec_id;
1437         }
1438
1439         spin_lock(&current->sighand->siglock);
1440
1441         /*
1442          * Process group and session signals need to be delivered to just the
1443          * parent before the fork or both the parent and the child after the
1444          * fork. Restart if a signal comes in before we add the new process to
1445          * it's process group.
1446          * A fatal signal pending means that current will exit, so the new
1447          * thread can't slip out of an OOM kill (or normal SIGKILL).
1448         */
1449         recalc_sigpending();
1450         if (signal_pending(current)) {
1451                 spin_unlock(&current->sighand->siglock);
1452                 write_unlock_irq(&tasklist_lock);
1453                 retval = -ERESTARTNOINTR;
1454                 goto bad_fork_free_pid;
1455         }
1456
1457         if (likely(p->pid)) {
1458                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1459
1460                 init_task_pid(p, PIDTYPE_PID, pid);
1461                 if (thread_group_leader(p)) {
1462                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1463                         init_task_pid(p, PIDTYPE_SID, task_session(current));
1464
1465                         if (is_child_reaper(pid)) {
1466                                 ns_of_pid(pid)->child_reaper = p;
1467                                 p->signal->flags |= SIGNAL_UNKILLABLE;
1468                         }
1469
1470                         p->signal->leader_pid = pid;
1471                         p->signal->tty = tty_kref_get(current->signal->tty);
1472                         list_add_tail(&p->sibling, &p->real_parent->children);
1473                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1474                         attach_pid(p, PIDTYPE_PGID);
1475                         attach_pid(p, PIDTYPE_SID);
1476                         __this_cpu_inc(process_counts);
1477                 } else {
1478                         current->signal->nr_threads++;
1479                         atomic_inc(&current->signal->live);
1480                         atomic_inc(&current->signal->sigcnt);
1481                         list_add_tail_rcu(&p->thread_group,
1482                                           &p->group_leader->thread_group);
1483                         list_add_tail_rcu(&p->thread_node,
1484                                           &p->signal->thread_head);
1485                 }
1486                 attach_pid(p, PIDTYPE_PID);
1487                 nr_threads++;
1488         }
1489
1490         total_forks++;
1491         spin_unlock(&current->sighand->siglock);
1492         syscall_tracepoint_update(p);
1493         write_unlock_irq(&tasklist_lock);
1494
1495         proc_fork_connector(p);
1496         cgroup_post_fork(p);
1497         if (clone_flags & CLONE_THREAD)
1498                 threadgroup_change_end(current);
1499         perf_event_fork(p);
1500
1501         trace_task_newtask(p, clone_flags);
1502         uprobe_copy_process(p, clone_flags);
1503
1504         return p;
1505
1506 bad_fork_free_pid:
1507         if (pid != &init_struct_pid)
1508                 free_pid(pid);
1509 bad_fork_cleanup_io:
1510         if (p->io_context)
1511                 exit_io_context(p);
1512 bad_fork_cleanup_namespaces:
1513         exit_task_namespaces(p);
1514 bad_fork_cleanup_mm:
1515         if (p->mm)
1516                 mmput(p->mm);
1517 bad_fork_cleanup_signal:
1518         if (!(clone_flags & CLONE_THREAD))
1519                 free_signal_struct(p->signal);
1520 bad_fork_cleanup_sighand:
1521         __cleanup_sighand(p->sighand);
1522 bad_fork_cleanup_fs:
1523         exit_fs(p); /* blocking */
1524 bad_fork_cleanup_files:
1525         exit_files(p); /* blocking */
1526 bad_fork_cleanup_semundo:
1527         exit_sem(p);
1528 bad_fork_cleanup_audit:
1529         audit_free(p);
1530 bad_fork_cleanup_perf:
1531         perf_event_free_task(p);
1532 bad_fork_cleanup_policy:
1533 #ifdef CONFIG_NUMA
1534         mpol_put(p->mempolicy);
1535 bad_fork_cleanup_cgroup:
1536 #endif
1537         if (clone_flags & CLONE_THREAD)
1538                 threadgroup_change_end(current);
1539         cgroup_exit(p, 0);
1540         delayacct_tsk_free(p);
1541         module_put(task_thread_info(p)->exec_domain->module);
1542 bad_fork_cleanup_count:
1543         atomic_dec(&p->cred->user->processes);
1544         exit_creds(p);
1545 bad_fork_free:
1546         free_task(p);
1547 fork_out:
1548         return ERR_PTR(retval);
1549 }
1550
1551 static inline void init_idle_pids(struct pid_link *links)
1552 {
1553         enum pid_type type;
1554
1555         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1556                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1557                 links[type].pid = &init_struct_pid;
1558         }
1559 }
1560
1561 struct task_struct *fork_idle(int cpu)
1562 {
1563         struct task_struct *task;
1564         task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1565         if (!IS_ERR(task)) {
1566                 init_idle_pids(task->pids);
1567                 init_idle(task, cpu);
1568         }
1569
1570         return task;
1571 }
1572
1573 /*
1574  *  Ok, this is the main fork-routine.
1575  *
1576  * It copies the process, and if successful kick-starts
1577  * it and waits for it to finish using the VM if required.
1578  */
1579 long do_fork(unsigned long clone_flags,
1580               unsigned long stack_start,
1581               unsigned long stack_size,
1582               int __user *parent_tidptr,
1583               int __user *child_tidptr)
1584 {
1585         struct task_struct *p;
1586         int trace = 0;
1587         long nr;
1588
1589         /*
1590          * Determine whether and which event to report to ptracer.  When
1591          * called from kernel_thread or CLONE_UNTRACED is explicitly
1592          * requested, no event is reported; otherwise, report if the event
1593          * for the type of forking is enabled.
1594          */
1595         if (!(clone_flags & CLONE_UNTRACED)) {
1596                 if (clone_flags & CLONE_VFORK)
1597                         trace = PTRACE_EVENT_VFORK;
1598                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1599                         trace = PTRACE_EVENT_CLONE;
1600                 else
1601                         trace = PTRACE_EVENT_FORK;
1602
1603                 if (likely(!ptrace_event_enabled(current, trace)))
1604                         trace = 0;
1605         }
1606
1607         p = copy_process(clone_flags, stack_start, stack_size,
1608                          child_tidptr, NULL, trace);
1609         /*
1610          * Do this prior waking up the new thread - the thread pointer
1611          * might get invalid after that point, if the thread exits quickly.
1612          */
1613         if (!IS_ERR(p)) {
1614                 struct completion vfork;
1615                 struct pid *pid;
1616
1617                 trace_sched_process_fork(current, p);
1618
1619                 pid = get_task_pid(p, PIDTYPE_PID);
1620                 nr = pid_vnr(pid);
1621
1622                 if (clone_flags & CLONE_PARENT_SETTID)
1623                         put_user(nr, parent_tidptr);
1624
1625                 if (clone_flags & CLONE_VFORK) {
1626                         p->vfork_done = &vfork;
1627                         init_completion(&vfork);
1628                         get_task_struct(p);
1629                 }
1630
1631                 wake_up_new_task(p);
1632
1633                 /* forking complete and child started to run, tell ptracer */
1634                 if (unlikely(trace))
1635                         ptrace_event_pid(trace, pid);
1636
1637                 if (clone_flags & CLONE_VFORK) {
1638                         if (!wait_for_vfork_done(p, &vfork))
1639                                 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1640                 }
1641
1642                 put_pid(pid);
1643         } else {
1644                 nr = PTR_ERR(p);
1645         }
1646         return nr;
1647 }
1648
1649 /*
1650  * Create a kernel thread.
1651  */
1652 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1653 {
1654         return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1655                 (unsigned long)arg, NULL, NULL);
1656 }
1657
1658 #ifdef __ARCH_WANT_SYS_FORK
1659 SYSCALL_DEFINE0(fork)
1660 {
1661 #ifdef CONFIG_MMU
1662         return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1663 #else
1664         /* can not support in nommu mode */
1665         return -EINVAL;
1666 #endif
1667 }
1668 #endif
1669
1670 #ifdef __ARCH_WANT_SYS_VFORK
1671 SYSCALL_DEFINE0(vfork)
1672 {
1673         return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1674                         0, NULL, NULL);
1675 }
1676 #endif
1677
1678 #ifdef __ARCH_WANT_SYS_CLONE
1679 #ifdef CONFIG_CLONE_BACKWARDS
1680 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1681                  int __user *, parent_tidptr,
1682                  int, tls_val,
1683                  int __user *, child_tidptr)
1684 #elif defined(CONFIG_CLONE_BACKWARDS2)
1685 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1686                  int __user *, parent_tidptr,
1687                  int __user *, child_tidptr,
1688                  int, tls_val)
1689 #elif defined(CONFIG_CLONE_BACKWARDS3)
1690 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1691                 int, stack_size,
1692                 int __user *, parent_tidptr,
1693                 int __user *, child_tidptr,
1694                 int, tls_val)
1695 #else
1696 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1697                  int __user *, parent_tidptr,
1698                  int __user *, child_tidptr,
1699                  int, tls_val)
1700 #endif
1701 {
1702         return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1703 }
1704 #endif
1705
1706 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1707 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1708 #endif
1709
1710 static void sighand_ctor(void *data)
1711 {
1712         struct sighand_struct *sighand = data;
1713
1714         spin_lock_init(&sighand->siglock);
1715         init_waitqueue_head(&sighand->signalfd_wqh);
1716 }
1717
1718 void __init proc_caches_init(void)
1719 {
1720         sighand_cachep = kmem_cache_create("sighand_cache",
1721                         sizeof(struct sighand_struct), 0,
1722                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1723                         SLAB_NOTRACK, sighand_ctor);
1724         signal_cachep = kmem_cache_create("signal_cache",
1725                         sizeof(struct signal_struct), 0,
1726                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1727         files_cachep = kmem_cache_create("files_cache",
1728                         sizeof(struct files_struct), 0,
1729                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1730         fs_cachep = kmem_cache_create("fs_cache",
1731                         sizeof(struct fs_struct), 0,
1732                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1733         /*
1734          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1735          * whole struct cpumask for the OFFSTACK case. We could change
1736          * this to *only* allocate as much of it as required by the
1737          * maximum number of CPU's we can ever have.  The cpumask_allocation
1738          * is at the end of the structure, exactly for that reason.
1739          */
1740         mm_cachep = kmem_cache_create("mm_struct",
1741                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1742                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1743         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1744         mmap_init();
1745         nsproxy_cache_init();
1746 }
1747
1748 /*
1749  * Check constraints on flags passed to the unshare system call.
1750  */
1751 static int check_unshare_flags(unsigned long unshare_flags)
1752 {
1753         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1754                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1755                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1756                                 CLONE_NEWUSER|CLONE_NEWPID))
1757                 return -EINVAL;
1758         /*
1759          * Not implemented, but pretend it works if there is nothing to
1760          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1761          * needs to unshare vm.
1762          */
1763         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1764                 /* FIXME: get_task_mm() increments ->mm_users */
1765                 if (atomic_read(&current->mm->mm_users) > 1)
1766                         return -EINVAL;
1767         }
1768
1769         return 0;
1770 }
1771
1772 /*
1773  * Unshare the filesystem structure if it is being shared
1774  */
1775 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1776 {
1777         struct fs_struct *fs = current->fs;
1778
1779         if (!(unshare_flags & CLONE_FS) || !fs)
1780                 return 0;
1781
1782         /* don't need lock here; in the worst case we'll do useless copy */
1783         if (fs->users == 1)
1784                 return 0;
1785
1786         *new_fsp = copy_fs_struct(fs);
1787         if (!*new_fsp)
1788                 return -ENOMEM;
1789
1790         return 0;
1791 }
1792
1793 /*
1794  * Unshare file descriptor table if it is being shared
1795  */
1796 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1797 {
1798         struct files_struct *fd = current->files;
1799         int error = 0;
1800
1801         if ((unshare_flags & CLONE_FILES) &&
1802             (fd && atomic_read(&fd->count) > 1)) {
1803                 *new_fdp = dup_fd(fd, &error);
1804                 if (!*new_fdp)
1805                         return error;
1806         }
1807
1808         return 0;
1809 }
1810
1811 /*
1812  * unshare allows a process to 'unshare' part of the process
1813  * context which was originally shared using clone.  copy_*
1814  * functions used by do_fork() cannot be used here directly
1815  * because they modify an inactive task_struct that is being
1816  * constructed. Here we are modifying the current, active,
1817  * task_struct.
1818  */
1819 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1820 {
1821         struct fs_struct *fs, *new_fs = NULL;
1822         struct files_struct *fd, *new_fd = NULL;
1823         struct cred *new_cred = NULL;
1824         struct nsproxy *new_nsproxy = NULL;
1825         int do_sysvsem = 0;
1826         int err;
1827
1828         /*
1829          * If unsharing a user namespace must also unshare the thread.
1830          */
1831         if (unshare_flags & CLONE_NEWUSER)
1832                 unshare_flags |= CLONE_THREAD | CLONE_FS;
1833         /*
1834          * If unsharing a thread from a thread group, must also unshare vm.
1835          */
1836         if (unshare_flags & CLONE_THREAD)
1837                 unshare_flags |= CLONE_VM;
1838         /*
1839          * If unsharing vm, must also unshare signal handlers.
1840          */
1841         if (unshare_flags & CLONE_VM)
1842                 unshare_flags |= CLONE_SIGHAND;
1843         /*
1844          * If unsharing namespace, must also unshare filesystem information.
1845          */
1846         if (unshare_flags & CLONE_NEWNS)
1847                 unshare_flags |= CLONE_FS;
1848
1849         err = check_unshare_flags(unshare_flags);
1850         if (err)
1851                 goto bad_unshare_out;
1852         /*
1853          * CLONE_NEWIPC must also detach from the undolist: after switching
1854          * to a new ipc namespace, the semaphore arrays from the old
1855          * namespace are unreachable.
1856          */
1857         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1858                 do_sysvsem = 1;
1859         err = unshare_fs(unshare_flags, &new_fs);
1860         if (err)
1861                 goto bad_unshare_out;
1862         err = unshare_fd(unshare_flags, &new_fd);
1863         if (err)
1864                 goto bad_unshare_cleanup_fs;
1865         err = unshare_userns(unshare_flags, &new_cred);
1866         if (err)
1867                 goto bad_unshare_cleanup_fd;
1868         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1869                                          new_cred, new_fs);
1870         if (err)
1871                 goto bad_unshare_cleanup_cred;
1872
1873         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1874                 if (do_sysvsem) {
1875                         /*
1876                          * CLONE_SYSVSEM is equivalent to sys_exit().
1877                          */
1878                         exit_sem(current);
1879                 }
1880
1881                 if (new_nsproxy)
1882                         switch_task_namespaces(current, new_nsproxy);
1883
1884                 task_lock(current);
1885
1886                 if (new_fs) {
1887                         fs = current->fs;
1888                         spin_lock(&fs->lock);
1889                         current->fs = new_fs;
1890                         if (--fs->users)
1891                                 new_fs = NULL;
1892                         else
1893                                 new_fs = fs;
1894                         spin_unlock(&fs->lock);
1895                 }
1896
1897                 if (new_fd) {
1898                         fd = current->files;
1899                         current->files = new_fd;
1900                         new_fd = fd;
1901                 }
1902
1903                 task_unlock(current);
1904
1905                 if (new_cred) {
1906                         /* Install the new user namespace */
1907                         commit_creds(new_cred);
1908                         new_cred = NULL;
1909                 }
1910         }
1911
1912 bad_unshare_cleanup_cred:
1913         if (new_cred)
1914                 put_cred(new_cred);
1915 bad_unshare_cleanup_fd:
1916         if (new_fd)
1917                 put_files_struct(new_fd);
1918
1919 bad_unshare_cleanup_fs:
1920         if (new_fs)
1921                 free_fs_struct(new_fs);
1922
1923 bad_unshare_out:
1924         return err;
1925 }
1926
1927 /*
1928  *      Helper to unshare the files of the current task.
1929  *      We don't want to expose copy_files internals to
1930  *      the exec layer of the kernel.
1931  */
1932
1933 int unshare_files(struct files_struct **displaced)
1934 {
1935         struct task_struct *task = current;
1936         struct files_struct *copy = NULL;
1937         int error;
1938
1939         error = unshare_fd(CLONE_FILES, &copy);
1940         if (error || !copy) {
1941                 *displaced = NULL;
1942                 return error;
1943         }
1944         *displaced = task->files;
1945         task_lock(task);
1946         task->files = copy;
1947         task_unlock(task);
1948         return 0;
1949 }