uprobes, x86: Fix _TIF_UPROBE vs _TIF_NOTIFY_RESUME
[platform/adaptation/renesas_rcar/renesas_kernel.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39
40 #include <linux/uprobes.h>
41
42 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
43 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
44
45 static struct rb_root uprobes_tree = RB_ROOT;
46 /*
47  * allows us to skip the uprobe_mmap if there are no uprobe events active
48  * at this time.  Probably a fine grained per inode count is better?
49  */
50 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
51
52 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
53
54 #define UPROBES_HASH_SZ 13
55 /* serialize uprobe->pending_list */
56 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
57 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
58
59 static struct percpu_rw_semaphore dup_mmap_sem;
60
61 /* Have a copy of original instruction */
62 #define UPROBE_COPY_INSN        0
63 /* Can skip singlestep */
64 #define UPROBE_SKIP_SSTEP       1
65
66 struct uprobe {
67         struct rb_node          rb_node;        /* node in the rb tree */
68         atomic_t                ref;
69         struct rw_semaphore     register_rwsem;
70         struct rw_semaphore     consumer_rwsem;
71         struct list_head        pending_list;
72         struct uprobe_consumer  *consumers;
73         struct inode            *inode;         /* Also hold a ref to inode */
74         loff_t                  offset;
75         unsigned long           flags;
76
77         /*
78          * The generic code assumes that it has two members of unknown type
79          * owned by the arch-specific code:
80          *
81          *      insn -  copy_insn() saves the original instruction here for
82          *              arch_uprobe_analyze_insn().
83          *
84          *      ixol -  potentially modified instruction to execute out of
85          *              line, copied to xol_area by xol_get_insn_slot().
86          */
87         struct arch_uprobe      arch;
88 };
89
90 struct return_instance {
91         struct uprobe           *uprobe;
92         unsigned long           func;
93         unsigned long           orig_ret_vaddr; /* original return address */
94         bool                    chained;        /* true, if instance is nested */
95
96         struct return_instance  *next;          /* keep as stack */
97 };
98
99 /*
100  * Execute out of line area: anonymous executable mapping installed
101  * by the probed task to execute the copy of the original instruction
102  * mangled by set_swbp().
103  *
104  * On a breakpoint hit, thread contests for a slot.  It frees the
105  * slot after singlestep. Currently a fixed number of slots are
106  * allocated.
107  */
108 struct xol_area {
109         wait_queue_head_t       wq;             /* if all slots are busy */
110         atomic_t                slot_count;     /* number of in-use slots */
111         unsigned long           *bitmap;        /* 0 = free slot */
112         struct page             *page;
113
114         /*
115          * We keep the vma's vm_start rather than a pointer to the vma
116          * itself.  The probed process or a naughty kernel module could make
117          * the vma go away, and we must handle that reasonably gracefully.
118          */
119         unsigned long           vaddr;          /* Page(s) of instruction slots */
120 };
121
122 /*
123  * valid_vma: Verify if the specified vma is an executable vma
124  * Relax restrictions while unregistering: vm_flags might have
125  * changed after breakpoint was inserted.
126  *      - is_register: indicates if we are in register context.
127  *      - Return 1 if the specified virtual address is in an
128  *        executable vma.
129  */
130 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
131 {
132         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
133
134         if (is_register)
135                 flags |= VM_WRITE;
136
137         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
138 }
139
140 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
141 {
142         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
143 }
144
145 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
146 {
147         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
148 }
149
150 /**
151  * __replace_page - replace page in vma by new page.
152  * based on replace_page in mm/ksm.c
153  *
154  * @vma:      vma that holds the pte pointing to page
155  * @addr:     address the old @page is mapped at
156  * @page:     the cowed page we are replacing by kpage
157  * @kpage:    the modified page we replace page by
158  *
159  * Returns 0 on success, -EFAULT on failure.
160  */
161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
162                                 struct page *page, struct page *kpage)
163 {
164         struct mm_struct *mm = vma->vm_mm;
165         spinlock_t *ptl;
166         pte_t *ptep;
167         int err;
168         /* For mmu_notifiers */
169         const unsigned long mmun_start = addr;
170         const unsigned long mmun_end   = addr + PAGE_SIZE;
171
172         /* For try_to_free_swap() and munlock_vma_page() below */
173         lock_page(page);
174
175         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
176         err = -EAGAIN;
177         ptep = page_check_address(page, mm, addr, &ptl, 0);
178         if (!ptep)
179                 goto unlock;
180
181         get_page(kpage);
182         page_add_new_anon_rmap(kpage, vma, addr);
183
184         if (!PageAnon(page)) {
185                 dec_mm_counter(mm, MM_FILEPAGES);
186                 inc_mm_counter(mm, MM_ANONPAGES);
187         }
188
189         flush_cache_page(vma, addr, pte_pfn(*ptep));
190         ptep_clear_flush(vma, addr, ptep);
191         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
192
193         page_remove_rmap(page);
194         if (!page_mapped(page))
195                 try_to_free_swap(page);
196         pte_unmap_unlock(ptep, ptl);
197
198         if (vma->vm_flags & VM_LOCKED)
199                 munlock_vma_page(page);
200         put_page(page);
201
202         err = 0;
203  unlock:
204         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205         unlock_page(page);
206         return err;
207 }
208
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217         return *insn == UPROBE_SWBP_INSN;
218 }
219
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231         return is_swbp_insn(insn);
232 }
233
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236         void *kaddr = kmap_atomic(page);
237         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238         kunmap_atomic(kaddr);
239 }
240
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243         void *kaddr = kmap_atomic(page);
244         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245         kunmap_atomic(kaddr);
246 }
247
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250         uprobe_opcode_t old_opcode;
251         bool is_swbp;
252
253         /*
254          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255          * We do not check if it is any other 'trap variant' which could
256          * be conditional trap instruction such as the one powerpc supports.
257          *
258          * The logic is that we do not care if the underlying instruction
259          * is a trap variant; uprobes always wins over any other (gdb)
260          * breakpoint.
261          */
262         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263         is_swbp = is_swbp_insn(&old_opcode);
264
265         if (is_swbp_insn(new_opcode)) {
266                 if (is_swbp)            /* register: already installed? */
267                         return 0;
268         } else {
269                 if (!is_swbp)           /* unregister: was it changed by us? */
270                         return 0;
271         }
272
273         return 1;
274 }
275
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  */
285
286 /*
287  * uprobe_write_opcode - write the opcode at a given virtual address.
288  * @mm: the probed process address space.
289  * @vaddr: the virtual address to store the opcode.
290  * @opcode: opcode to be written at @vaddr.
291  *
292  * Called with mm->mmap_sem held (for read and with a reference to
293  * mm).
294  *
295  * For mm @mm, write the opcode at @vaddr.
296  * Return 0 (success) or a negative errno.
297  */
298 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
299                         uprobe_opcode_t opcode)
300 {
301         struct page *old_page, *new_page;
302         struct vm_area_struct *vma;
303         int ret;
304
305 retry:
306         /* Read the page with vaddr into memory */
307         ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
308         if (ret <= 0)
309                 return ret;
310
311         ret = verify_opcode(old_page, vaddr, &opcode);
312         if (ret <= 0)
313                 goto put_old;
314
315         ret = -ENOMEM;
316         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
317         if (!new_page)
318                 goto put_old;
319
320         __SetPageUptodate(new_page);
321
322         copy_highpage(new_page, old_page);
323         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325         ret = anon_vma_prepare(vma);
326         if (ret)
327                 goto put_new;
328
329         ret = __replace_page(vma, vaddr, old_page, new_page);
330
331 put_new:
332         page_cache_release(new_page);
333 put_old:
334         put_page(old_page);
335
336         if (unlikely(ret == -EAGAIN))
337                 goto retry;
338         return ret;
339 }
340
341 /**
342  * set_swbp - store breakpoint at a given address.
343  * @auprobe: arch specific probepoint information.
344  * @mm: the probed process address space.
345  * @vaddr: the virtual address to insert the opcode.
346  *
347  * For mm @mm, store the breakpoint instruction at @vaddr.
348  * Return 0 (success) or a negative errno.
349  */
350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
351 {
352         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
353 }
354
355 /**
356  * set_orig_insn - Restore the original instruction.
357  * @mm: the probed process address space.
358  * @auprobe: arch specific probepoint information.
359  * @vaddr: the virtual address to insert the opcode.
360  *
361  * For mm @mm, restore the original opcode (opcode) at @vaddr.
362  * Return 0 (success) or a negative errno.
363  */
364 int __weak
365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
366 {
367         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
368 }
369
370 static int match_uprobe(struct uprobe *l, struct uprobe *r)
371 {
372         if (l->inode < r->inode)
373                 return -1;
374
375         if (l->inode > r->inode)
376                 return 1;
377
378         if (l->offset < r->offset)
379                 return -1;
380
381         if (l->offset > r->offset)
382                 return 1;
383
384         return 0;
385 }
386
387 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
388 {
389         struct uprobe u = { .inode = inode, .offset = offset };
390         struct rb_node *n = uprobes_tree.rb_node;
391         struct uprobe *uprobe;
392         int match;
393
394         while (n) {
395                 uprobe = rb_entry(n, struct uprobe, rb_node);
396                 match = match_uprobe(&u, uprobe);
397                 if (!match) {
398                         atomic_inc(&uprobe->ref);
399                         return uprobe;
400                 }
401
402                 if (match < 0)
403                         n = n->rb_left;
404                 else
405                         n = n->rb_right;
406         }
407         return NULL;
408 }
409
410 /*
411  * Find a uprobe corresponding to a given inode:offset
412  * Acquires uprobes_treelock
413  */
414 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
415 {
416         struct uprobe *uprobe;
417
418         spin_lock(&uprobes_treelock);
419         uprobe = __find_uprobe(inode, offset);
420         spin_unlock(&uprobes_treelock);
421
422         return uprobe;
423 }
424
425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426 {
427         struct rb_node **p = &uprobes_tree.rb_node;
428         struct rb_node *parent = NULL;
429         struct uprobe *u;
430         int match;
431
432         while (*p) {
433                 parent = *p;
434                 u = rb_entry(parent, struct uprobe, rb_node);
435                 match = match_uprobe(uprobe, u);
436                 if (!match) {
437                         atomic_inc(&u->ref);
438                         return u;
439                 }
440
441                 if (match < 0)
442                         p = &parent->rb_left;
443                 else
444                         p = &parent->rb_right;
445
446         }
447
448         u = NULL;
449         rb_link_node(&uprobe->rb_node, parent, p);
450         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451         /* get access + creation ref */
452         atomic_set(&uprobe->ref, 2);
453
454         return u;
455 }
456
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *      increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *      get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467         struct uprobe *u;
468
469         spin_lock(&uprobes_treelock);
470         u = __insert_uprobe(uprobe);
471         spin_unlock(&uprobes_treelock);
472
473         return u;
474 }
475
476 static void put_uprobe(struct uprobe *uprobe)
477 {
478         if (atomic_dec_and_test(&uprobe->ref))
479                 kfree(uprobe);
480 }
481
482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 {
484         struct uprobe *uprobe, *cur_uprobe;
485
486         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487         if (!uprobe)
488                 return NULL;
489
490         uprobe->inode = igrab(inode);
491         uprobe->offset = offset;
492         init_rwsem(&uprobe->register_rwsem);
493         init_rwsem(&uprobe->consumer_rwsem);
494         /* For now assume that the instruction need not be single-stepped */
495         __set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
496
497         /* add to uprobes_tree, sorted on inode:offset */
498         cur_uprobe = insert_uprobe(uprobe);
499
500         /* a uprobe exists for this inode:offset combination */
501         if (cur_uprobe) {
502                 kfree(uprobe);
503                 uprobe = cur_uprobe;
504                 iput(inode);
505         }
506
507         return uprobe;
508 }
509
510 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
511 {
512         down_write(&uprobe->consumer_rwsem);
513         uc->next = uprobe->consumers;
514         uprobe->consumers = uc;
515         up_write(&uprobe->consumer_rwsem);
516 }
517
518 /*
519  * For uprobe @uprobe, delete the consumer @uc.
520  * Return true if the @uc is deleted successfully
521  * or return false.
522  */
523 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
524 {
525         struct uprobe_consumer **con;
526         bool ret = false;
527
528         down_write(&uprobe->consumer_rwsem);
529         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
530                 if (*con == uc) {
531                         *con = uc->next;
532                         ret = true;
533                         break;
534                 }
535         }
536         up_write(&uprobe->consumer_rwsem);
537
538         return ret;
539 }
540
541 static int __copy_insn(struct address_space *mapping, struct file *filp,
542                         void *insn, int nbytes, loff_t offset)
543 {
544         struct page *page;
545
546         if (!mapping->a_ops->readpage)
547                 return -EIO;
548         /*
549          * Ensure that the page that has the original instruction is
550          * populated and in page-cache.
551          */
552         page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
553         if (IS_ERR(page))
554                 return PTR_ERR(page);
555
556         copy_from_page(page, offset, insn, nbytes);
557         page_cache_release(page);
558
559         return 0;
560 }
561
562 static int copy_insn(struct uprobe *uprobe, struct file *filp)
563 {
564         struct address_space *mapping = uprobe->inode->i_mapping;
565         loff_t offs = uprobe->offset;
566         void *insn = &uprobe->arch.insn;
567         int size = sizeof(uprobe->arch.insn);
568         int len, err = -EIO;
569
570         /* Copy only available bytes, -EIO if nothing was read */
571         do {
572                 if (offs >= i_size_read(uprobe->inode))
573                         break;
574
575                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
576                 err = __copy_insn(mapping, filp, insn, len, offs);
577                 if (err)
578                         break;
579
580                 insn += len;
581                 offs += len;
582                 size -= len;
583         } while (size);
584
585         return err;
586 }
587
588 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
589                                 struct mm_struct *mm, unsigned long vaddr)
590 {
591         int ret = 0;
592
593         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
594                 return ret;
595
596         /* TODO: move this into _register, until then we abuse this sem. */
597         down_write(&uprobe->consumer_rwsem);
598         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
599                 goto out;
600
601         ret = copy_insn(uprobe, file);
602         if (ret)
603                 goto out;
604
605         ret = -ENOTSUPP;
606         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
607                 goto out;
608
609         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
610         if (ret)
611                 goto out;
612
613         /* uprobe_write_opcode() assumes we don't cross page boundary */
614         BUG_ON((uprobe->offset & ~PAGE_MASK) +
615                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
616
617         smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
618         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
619
620  out:
621         up_write(&uprobe->consumer_rwsem);
622
623         return ret;
624 }
625
626 static inline bool consumer_filter(struct uprobe_consumer *uc,
627                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629         return !uc->filter || uc->filter(uc, ctx, mm);
630 }
631
632 static bool filter_chain(struct uprobe *uprobe,
633                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
634 {
635         struct uprobe_consumer *uc;
636         bool ret = false;
637
638         down_read(&uprobe->consumer_rwsem);
639         for (uc = uprobe->consumers; uc; uc = uc->next) {
640                 ret = consumer_filter(uc, ctx, mm);
641                 if (ret)
642                         break;
643         }
644         up_read(&uprobe->consumer_rwsem);
645
646         return ret;
647 }
648
649 static int
650 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
651                         struct vm_area_struct *vma, unsigned long vaddr)
652 {
653         bool first_uprobe;
654         int ret;
655
656         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
657         if (ret)
658                 return ret;
659
660         /*
661          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
662          * the task can hit this breakpoint right after __replace_page().
663          */
664         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
665         if (first_uprobe)
666                 set_bit(MMF_HAS_UPROBES, &mm->flags);
667
668         ret = set_swbp(&uprobe->arch, mm, vaddr);
669         if (!ret)
670                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
671         else if (first_uprobe)
672                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
673
674         return ret;
675 }
676
677 static int
678 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
679 {
680         set_bit(MMF_RECALC_UPROBES, &mm->flags);
681         return set_orig_insn(&uprobe->arch, mm, vaddr);
682 }
683
684 static inline bool uprobe_is_active(struct uprobe *uprobe)
685 {
686         return !RB_EMPTY_NODE(&uprobe->rb_node);
687 }
688 /*
689  * There could be threads that have already hit the breakpoint. They
690  * will recheck the current insn and restart if find_uprobe() fails.
691  * See find_active_uprobe().
692  */
693 static void delete_uprobe(struct uprobe *uprobe)
694 {
695         if (WARN_ON(!uprobe_is_active(uprobe)))
696                 return;
697
698         spin_lock(&uprobes_treelock);
699         rb_erase(&uprobe->rb_node, &uprobes_tree);
700         spin_unlock(&uprobes_treelock);
701         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
702         iput(uprobe->inode);
703         put_uprobe(uprobe);
704 }
705
706 struct map_info {
707         struct map_info *next;
708         struct mm_struct *mm;
709         unsigned long vaddr;
710 };
711
712 static inline struct map_info *free_map_info(struct map_info *info)
713 {
714         struct map_info *next = info->next;
715         kfree(info);
716         return next;
717 }
718
719 static struct map_info *
720 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
721 {
722         unsigned long pgoff = offset >> PAGE_SHIFT;
723         struct vm_area_struct *vma;
724         struct map_info *curr = NULL;
725         struct map_info *prev = NULL;
726         struct map_info *info;
727         int more = 0;
728
729  again:
730         mutex_lock(&mapping->i_mmap_mutex);
731         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
732                 if (!valid_vma(vma, is_register))
733                         continue;
734
735                 if (!prev && !more) {
736                         /*
737                          * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
738                          * reclaim. This is optimistic, no harm done if it fails.
739                          */
740                         prev = kmalloc(sizeof(struct map_info),
741                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
742                         if (prev)
743                                 prev->next = NULL;
744                 }
745                 if (!prev) {
746                         more++;
747                         continue;
748                 }
749
750                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
751                         continue;
752
753                 info = prev;
754                 prev = prev->next;
755                 info->next = curr;
756                 curr = info;
757
758                 info->mm = vma->vm_mm;
759                 info->vaddr = offset_to_vaddr(vma, offset);
760         }
761         mutex_unlock(&mapping->i_mmap_mutex);
762
763         if (!more)
764                 goto out;
765
766         prev = curr;
767         while (curr) {
768                 mmput(curr->mm);
769                 curr = curr->next;
770         }
771
772         do {
773                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
774                 if (!info) {
775                         curr = ERR_PTR(-ENOMEM);
776                         goto out;
777                 }
778                 info->next = prev;
779                 prev = info;
780         } while (--more);
781
782         goto again;
783  out:
784         while (prev)
785                 prev = free_map_info(prev);
786         return curr;
787 }
788
789 static int
790 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
791 {
792         bool is_register = !!new;
793         struct map_info *info;
794         int err = 0;
795
796         percpu_down_write(&dup_mmap_sem);
797         info = build_map_info(uprobe->inode->i_mapping,
798                                         uprobe->offset, is_register);
799         if (IS_ERR(info)) {
800                 err = PTR_ERR(info);
801                 goto out;
802         }
803
804         while (info) {
805                 struct mm_struct *mm = info->mm;
806                 struct vm_area_struct *vma;
807
808                 if (err && is_register)
809                         goto free;
810
811                 down_write(&mm->mmap_sem);
812                 vma = find_vma(mm, info->vaddr);
813                 if (!vma || !valid_vma(vma, is_register) ||
814                     file_inode(vma->vm_file) != uprobe->inode)
815                         goto unlock;
816
817                 if (vma->vm_start > info->vaddr ||
818                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
819                         goto unlock;
820
821                 if (is_register) {
822                         /* consult only the "caller", new consumer. */
823                         if (consumer_filter(new,
824                                         UPROBE_FILTER_REGISTER, mm))
825                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
826                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
827                         if (!filter_chain(uprobe,
828                                         UPROBE_FILTER_UNREGISTER, mm))
829                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
830                 }
831
832  unlock:
833                 up_write(&mm->mmap_sem);
834  free:
835                 mmput(mm);
836                 info = free_map_info(info);
837         }
838  out:
839         percpu_up_write(&dup_mmap_sem);
840         return err;
841 }
842
843 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845         consumer_add(uprobe, uc);
846         return register_for_each_vma(uprobe, uc);
847 }
848
849 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
850 {
851         int err;
852
853         if (!consumer_del(uprobe, uc))  /* WARN? */
854                 return;
855
856         err = register_for_each_vma(uprobe, NULL);
857         /* TODO : cant unregister? schedule a worker thread */
858         if (!uprobe->consumers && !err)
859                 delete_uprobe(uprobe);
860 }
861
862 /*
863  * uprobe_register - register a probe
864  * @inode: the file in which the probe has to be placed.
865  * @offset: offset from the start of the file.
866  * @uc: information on howto handle the probe..
867  *
868  * Apart from the access refcount, uprobe_register() takes a creation
869  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
870  * inserted into the rbtree (i.e first consumer for a @inode:@offset
871  * tuple).  Creation refcount stops uprobe_unregister from freeing the
872  * @uprobe even before the register operation is complete. Creation
873  * refcount is released when the last @uc for the @uprobe
874  * unregisters.
875  *
876  * Return errno if it cannot successully install probes
877  * else return 0 (success)
878  */
879 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
880 {
881         struct uprobe *uprobe;
882         int ret;
883
884         /* Uprobe must have at least one set consumer */
885         if (!uc->handler && !uc->ret_handler)
886                 return -EINVAL;
887
888         /* Racy, just to catch the obvious mistakes */
889         if (offset > i_size_read(inode))
890                 return -EINVAL;
891
892  retry:
893         uprobe = alloc_uprobe(inode, offset);
894         if (!uprobe)
895                 return -ENOMEM;
896         /*
897          * We can race with uprobe_unregister()->delete_uprobe().
898          * Check uprobe_is_active() and retry if it is false.
899          */
900         down_write(&uprobe->register_rwsem);
901         ret = -EAGAIN;
902         if (likely(uprobe_is_active(uprobe))) {
903                 ret = __uprobe_register(uprobe, uc);
904                 if (ret)
905                         __uprobe_unregister(uprobe, uc);
906         }
907         up_write(&uprobe->register_rwsem);
908         put_uprobe(uprobe);
909
910         if (unlikely(ret == -EAGAIN))
911                 goto retry;
912         return ret;
913 }
914 EXPORT_SYMBOL_GPL(uprobe_register);
915
916 /*
917  * uprobe_apply - unregister a already registered probe.
918  * @inode: the file in which the probe has to be removed.
919  * @offset: offset from the start of the file.
920  * @uc: consumer which wants to add more or remove some breakpoints
921  * @add: add or remove the breakpoints
922  */
923 int uprobe_apply(struct inode *inode, loff_t offset,
924                         struct uprobe_consumer *uc, bool add)
925 {
926         struct uprobe *uprobe;
927         struct uprobe_consumer *con;
928         int ret = -ENOENT;
929
930         uprobe = find_uprobe(inode, offset);
931         if (!uprobe)
932                 return ret;
933
934         down_write(&uprobe->register_rwsem);
935         for (con = uprobe->consumers; con && con != uc ; con = con->next)
936                 ;
937         if (con)
938                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
939         up_write(&uprobe->register_rwsem);
940         put_uprobe(uprobe);
941
942         return ret;
943 }
944
945 /*
946  * uprobe_unregister - unregister a already registered probe.
947  * @inode: the file in which the probe has to be removed.
948  * @offset: offset from the start of the file.
949  * @uc: identify which probe if multiple probes are colocated.
950  */
951 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
952 {
953         struct uprobe *uprobe;
954
955         uprobe = find_uprobe(inode, offset);
956         if (!uprobe)
957                 return;
958
959         down_write(&uprobe->register_rwsem);
960         __uprobe_unregister(uprobe, uc);
961         up_write(&uprobe->register_rwsem);
962         put_uprobe(uprobe);
963 }
964 EXPORT_SYMBOL_GPL(uprobe_unregister);
965
966 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
967 {
968         struct vm_area_struct *vma;
969         int err = 0;
970
971         down_read(&mm->mmap_sem);
972         for (vma = mm->mmap; vma; vma = vma->vm_next) {
973                 unsigned long vaddr;
974                 loff_t offset;
975
976                 if (!valid_vma(vma, false) ||
977                     file_inode(vma->vm_file) != uprobe->inode)
978                         continue;
979
980                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
981                 if (uprobe->offset <  offset ||
982                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
983                         continue;
984
985                 vaddr = offset_to_vaddr(vma, uprobe->offset);
986                 err |= remove_breakpoint(uprobe, mm, vaddr);
987         }
988         up_read(&mm->mmap_sem);
989
990         return err;
991 }
992
993 static struct rb_node *
994 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
995 {
996         struct rb_node *n = uprobes_tree.rb_node;
997
998         while (n) {
999                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1000
1001                 if (inode < u->inode) {
1002                         n = n->rb_left;
1003                 } else if (inode > u->inode) {
1004                         n = n->rb_right;
1005                 } else {
1006                         if (max < u->offset)
1007                                 n = n->rb_left;
1008                         else if (min > u->offset)
1009                                 n = n->rb_right;
1010                         else
1011                                 break;
1012                 }
1013         }
1014
1015         return n;
1016 }
1017
1018 /*
1019  * For a given range in vma, build a list of probes that need to be inserted.
1020  */
1021 static void build_probe_list(struct inode *inode,
1022                                 struct vm_area_struct *vma,
1023                                 unsigned long start, unsigned long end,
1024                                 struct list_head *head)
1025 {
1026         loff_t min, max;
1027         struct rb_node *n, *t;
1028         struct uprobe *u;
1029
1030         INIT_LIST_HEAD(head);
1031         min = vaddr_to_offset(vma, start);
1032         max = min + (end - start) - 1;
1033
1034         spin_lock(&uprobes_treelock);
1035         n = find_node_in_range(inode, min, max);
1036         if (n) {
1037                 for (t = n; t; t = rb_prev(t)) {
1038                         u = rb_entry(t, struct uprobe, rb_node);
1039                         if (u->inode != inode || u->offset < min)
1040                                 break;
1041                         list_add(&u->pending_list, head);
1042                         atomic_inc(&u->ref);
1043                 }
1044                 for (t = n; (t = rb_next(t)); ) {
1045                         u = rb_entry(t, struct uprobe, rb_node);
1046                         if (u->inode != inode || u->offset > max)
1047                                 break;
1048                         list_add(&u->pending_list, head);
1049                         atomic_inc(&u->ref);
1050                 }
1051         }
1052         spin_unlock(&uprobes_treelock);
1053 }
1054
1055 /*
1056  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1057  *
1058  * Currently we ignore all errors and always return 0, the callers
1059  * can't handle the failure anyway.
1060  */
1061 int uprobe_mmap(struct vm_area_struct *vma)
1062 {
1063         struct list_head tmp_list;
1064         struct uprobe *uprobe, *u;
1065         struct inode *inode;
1066
1067         if (no_uprobe_events() || !valid_vma(vma, true))
1068                 return 0;
1069
1070         inode = file_inode(vma->vm_file);
1071         if (!inode)
1072                 return 0;
1073
1074         mutex_lock(uprobes_mmap_hash(inode));
1075         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1076         /*
1077          * We can race with uprobe_unregister(), this uprobe can be already
1078          * removed. But in this case filter_chain() must return false, all
1079          * consumers have gone away.
1080          */
1081         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1082                 if (!fatal_signal_pending(current) &&
1083                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1084                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1085                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1086                 }
1087                 put_uprobe(uprobe);
1088         }
1089         mutex_unlock(uprobes_mmap_hash(inode));
1090
1091         return 0;
1092 }
1093
1094 static bool
1095 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1096 {
1097         loff_t min, max;
1098         struct inode *inode;
1099         struct rb_node *n;
1100
1101         inode = file_inode(vma->vm_file);
1102
1103         min = vaddr_to_offset(vma, start);
1104         max = min + (end - start) - 1;
1105
1106         spin_lock(&uprobes_treelock);
1107         n = find_node_in_range(inode, min, max);
1108         spin_unlock(&uprobes_treelock);
1109
1110         return !!n;
1111 }
1112
1113 /*
1114  * Called in context of a munmap of a vma.
1115  */
1116 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1117 {
1118         if (no_uprobe_events() || !valid_vma(vma, false))
1119                 return;
1120
1121         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1122                 return;
1123
1124         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1125              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1126                 return;
1127
1128         if (vma_has_uprobes(vma, start, end))
1129                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1130 }
1131
1132 /* Slot allocation for XOL */
1133 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1134 {
1135         int ret = -EALREADY;
1136
1137         down_write(&mm->mmap_sem);
1138         if (mm->uprobes_state.xol_area)
1139                 goto fail;
1140
1141         if (!area->vaddr) {
1142                 /* Try to map as high as possible, this is only a hint. */
1143                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1144                                                 PAGE_SIZE, 0, 0);
1145                 if (area->vaddr & ~PAGE_MASK) {
1146                         ret = area->vaddr;
1147                         goto fail;
1148                 }
1149         }
1150
1151         ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1152                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1153         if (ret)
1154                 goto fail;
1155
1156         smp_wmb();      /* pairs with get_xol_area() */
1157         mm->uprobes_state.xol_area = area;
1158  fail:
1159         up_write(&mm->mmap_sem);
1160
1161         return ret;
1162 }
1163
1164 static struct xol_area *__create_xol_area(unsigned long vaddr)
1165 {
1166         struct mm_struct *mm = current->mm;
1167         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1168         struct xol_area *area;
1169
1170         area = kmalloc(sizeof(*area), GFP_KERNEL);
1171         if (unlikely(!area))
1172                 goto out;
1173
1174         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1175         if (!area->bitmap)
1176                 goto free_area;
1177
1178         area->page = alloc_page(GFP_HIGHUSER);
1179         if (!area->page)
1180                 goto free_bitmap;
1181
1182         area->vaddr = vaddr;
1183         init_waitqueue_head(&area->wq);
1184         /* Reserve the 1st slot for get_trampoline_vaddr() */
1185         set_bit(0, area->bitmap);
1186         atomic_set(&area->slot_count, 1);
1187         copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1188
1189         if (!xol_add_vma(mm, area))
1190                 return area;
1191
1192         __free_page(area->page);
1193  free_bitmap:
1194         kfree(area->bitmap);
1195  free_area:
1196         kfree(area);
1197  out:
1198         return NULL;
1199 }
1200
1201 /*
1202  * get_xol_area - Allocate process's xol_area if necessary.
1203  * This area will be used for storing instructions for execution out of line.
1204  *
1205  * Returns the allocated area or NULL.
1206  */
1207 static struct xol_area *get_xol_area(void)
1208 {
1209         struct mm_struct *mm = current->mm;
1210         struct xol_area *area;
1211
1212         if (!mm->uprobes_state.xol_area)
1213                 __create_xol_area(0);
1214
1215         area = mm->uprobes_state.xol_area;
1216         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1217         return area;
1218 }
1219
1220 /*
1221  * uprobe_clear_state - Free the area allocated for slots.
1222  */
1223 void uprobe_clear_state(struct mm_struct *mm)
1224 {
1225         struct xol_area *area = mm->uprobes_state.xol_area;
1226
1227         if (!area)
1228                 return;
1229
1230         put_page(area->page);
1231         kfree(area->bitmap);
1232         kfree(area);
1233 }
1234
1235 void uprobe_start_dup_mmap(void)
1236 {
1237         percpu_down_read(&dup_mmap_sem);
1238 }
1239
1240 void uprobe_end_dup_mmap(void)
1241 {
1242         percpu_up_read(&dup_mmap_sem);
1243 }
1244
1245 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1246 {
1247         newmm->uprobes_state.xol_area = NULL;
1248
1249         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1250                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1251                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1252                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1253         }
1254 }
1255
1256 /*
1257  *  - search for a free slot.
1258  */
1259 static unsigned long xol_take_insn_slot(struct xol_area *area)
1260 {
1261         unsigned long slot_addr;
1262         int slot_nr;
1263
1264         do {
1265                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1266                 if (slot_nr < UINSNS_PER_PAGE) {
1267                         if (!test_and_set_bit(slot_nr, area->bitmap))
1268                                 break;
1269
1270                         slot_nr = UINSNS_PER_PAGE;
1271                         continue;
1272                 }
1273                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1274         } while (slot_nr >= UINSNS_PER_PAGE);
1275
1276         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1277         atomic_inc(&area->slot_count);
1278
1279         return slot_addr;
1280 }
1281
1282 /*
1283  * xol_get_insn_slot - allocate a slot for xol.
1284  * Returns the allocated slot address or 0.
1285  */
1286 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1287 {
1288         struct xol_area *area;
1289         unsigned long xol_vaddr;
1290
1291         area = get_xol_area();
1292         if (!area)
1293                 return 0;
1294
1295         xol_vaddr = xol_take_insn_slot(area);
1296         if (unlikely(!xol_vaddr))
1297                 return 0;
1298
1299         /* Initialize the slot */
1300         copy_to_page(area->page, xol_vaddr,
1301                         &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1302         /*
1303          * We probably need flush_icache_user_range() but it needs vma.
1304          * This should work on supported architectures too.
1305          */
1306         flush_dcache_page(area->page);
1307
1308         return xol_vaddr;
1309 }
1310
1311 /*
1312  * xol_free_insn_slot - If slot was earlier allocated by
1313  * @xol_get_insn_slot(), make the slot available for
1314  * subsequent requests.
1315  */
1316 static void xol_free_insn_slot(struct task_struct *tsk)
1317 {
1318         struct xol_area *area;
1319         unsigned long vma_end;
1320         unsigned long slot_addr;
1321
1322         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1323                 return;
1324
1325         slot_addr = tsk->utask->xol_vaddr;
1326         if (unlikely(!slot_addr))
1327                 return;
1328
1329         area = tsk->mm->uprobes_state.xol_area;
1330         vma_end = area->vaddr + PAGE_SIZE;
1331         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1332                 unsigned long offset;
1333                 int slot_nr;
1334
1335                 offset = slot_addr - area->vaddr;
1336                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1337                 if (slot_nr >= UINSNS_PER_PAGE)
1338                         return;
1339
1340                 clear_bit(slot_nr, area->bitmap);
1341                 atomic_dec(&area->slot_count);
1342                 if (waitqueue_active(&area->wq))
1343                         wake_up(&area->wq);
1344
1345                 tsk->utask->xol_vaddr = 0;
1346         }
1347 }
1348
1349 /**
1350  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1351  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1352  * instruction.
1353  * Return the address of the breakpoint instruction.
1354  */
1355 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1356 {
1357         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1358 }
1359
1360 /*
1361  * Called with no locks held.
1362  * Called in context of a exiting or a exec-ing thread.
1363  */
1364 void uprobe_free_utask(struct task_struct *t)
1365 {
1366         struct uprobe_task *utask = t->utask;
1367         struct return_instance *ri, *tmp;
1368
1369         if (!utask)
1370                 return;
1371
1372         if (utask->active_uprobe)
1373                 put_uprobe(utask->active_uprobe);
1374
1375         ri = utask->return_instances;
1376         while (ri) {
1377                 tmp = ri;
1378                 ri = ri->next;
1379
1380                 put_uprobe(tmp->uprobe);
1381                 kfree(tmp);
1382         }
1383
1384         xol_free_insn_slot(t);
1385         kfree(utask);
1386         t->utask = NULL;
1387 }
1388
1389 /*
1390  * Allocate a uprobe_task object for the task if if necessary.
1391  * Called when the thread hits a breakpoint.
1392  *
1393  * Returns:
1394  * - pointer to new uprobe_task on success
1395  * - NULL otherwise
1396  */
1397 static struct uprobe_task *get_utask(void)
1398 {
1399         if (!current->utask)
1400                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1401         return current->utask;
1402 }
1403
1404 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1405 {
1406         struct uprobe_task *n_utask;
1407         struct return_instance **p, *o, *n;
1408
1409         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1410         if (!n_utask)
1411                 return -ENOMEM;
1412         t->utask = n_utask;
1413
1414         p = &n_utask->return_instances;
1415         for (o = o_utask->return_instances; o; o = o->next) {
1416                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1417                 if (!n)
1418                         return -ENOMEM;
1419
1420                 *n = *o;
1421                 atomic_inc(&n->uprobe->ref);
1422                 n->next = NULL;
1423
1424                 *p = n;
1425                 p = &n->next;
1426                 n_utask->depth++;
1427         }
1428
1429         return 0;
1430 }
1431
1432 static void uprobe_warn(struct task_struct *t, const char *msg)
1433 {
1434         pr_warn("uprobe: %s:%d failed to %s\n",
1435                         current->comm, current->pid, msg);
1436 }
1437
1438 static void dup_xol_work(struct callback_head *work)
1439 {
1440         if (current->flags & PF_EXITING)
1441                 return;
1442
1443         if (!__create_xol_area(current->utask->dup_xol_addr))
1444                 uprobe_warn(current, "dup xol area");
1445 }
1446
1447 /*
1448  * Called in context of a new clone/fork from copy_process.
1449  */
1450 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1451 {
1452         struct uprobe_task *utask = current->utask;
1453         struct mm_struct *mm = current->mm;
1454         struct xol_area *area;
1455
1456         t->utask = NULL;
1457
1458         if (!utask || !utask->return_instances)
1459                 return;
1460
1461         if (mm == t->mm && !(flags & CLONE_VFORK))
1462                 return;
1463
1464         if (dup_utask(t, utask))
1465                 return uprobe_warn(t, "dup ret instances");
1466
1467         /* The task can fork() after dup_xol_work() fails */
1468         area = mm->uprobes_state.xol_area;
1469         if (!area)
1470                 return uprobe_warn(t, "dup xol area");
1471
1472         if (mm == t->mm)
1473                 return;
1474
1475         t->utask->dup_xol_addr = area->vaddr;
1476         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1477         task_work_add(t, &t->utask->dup_xol_work, true);
1478 }
1479
1480 /*
1481  * Current area->vaddr notion assume the trampoline address is always
1482  * equal area->vaddr.
1483  *
1484  * Returns -1 in case the xol_area is not allocated.
1485  */
1486 static unsigned long get_trampoline_vaddr(void)
1487 {
1488         struct xol_area *area;
1489         unsigned long trampoline_vaddr = -1;
1490
1491         area = current->mm->uprobes_state.xol_area;
1492         smp_read_barrier_depends();
1493         if (area)
1494                 trampoline_vaddr = area->vaddr;
1495
1496         return trampoline_vaddr;
1497 }
1498
1499 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1500 {
1501         struct return_instance *ri;
1502         struct uprobe_task *utask;
1503         unsigned long orig_ret_vaddr, trampoline_vaddr;
1504         bool chained = false;
1505
1506         if (!get_xol_area())
1507                 return;
1508
1509         utask = get_utask();
1510         if (!utask)
1511                 return;
1512
1513         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1514                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1515                                 " nestedness limit pid/tgid=%d/%d\n",
1516                                 current->pid, current->tgid);
1517                 return;
1518         }
1519
1520         ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1521         if (!ri)
1522                 goto fail;
1523
1524         trampoline_vaddr = get_trampoline_vaddr();
1525         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1526         if (orig_ret_vaddr == -1)
1527                 goto fail;
1528
1529         /*
1530          * We don't want to keep trampoline address in stack, rather keep the
1531          * original return address of first caller thru all the consequent
1532          * instances. This also makes breakpoint unwrapping easier.
1533          */
1534         if (orig_ret_vaddr == trampoline_vaddr) {
1535                 if (!utask->return_instances) {
1536                         /*
1537                          * This situation is not possible. Likely we have an
1538                          * attack from user-space.
1539                          */
1540                         pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1541                                                 current->pid, current->tgid);
1542                         goto fail;
1543                 }
1544
1545                 chained = true;
1546                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1547         }
1548
1549         atomic_inc(&uprobe->ref);
1550         ri->uprobe = uprobe;
1551         ri->func = instruction_pointer(regs);
1552         ri->orig_ret_vaddr = orig_ret_vaddr;
1553         ri->chained = chained;
1554
1555         utask->depth++;
1556
1557         /* add instance to the stack */
1558         ri->next = utask->return_instances;
1559         utask->return_instances = ri;
1560
1561         return;
1562
1563  fail:
1564         kfree(ri);
1565 }
1566
1567 /* Prepare to single-step probed instruction out of line. */
1568 static int
1569 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1570 {
1571         struct uprobe_task *utask;
1572         unsigned long xol_vaddr;
1573         int err;
1574
1575         utask = get_utask();
1576         if (!utask)
1577                 return -ENOMEM;
1578
1579         xol_vaddr = xol_get_insn_slot(uprobe);
1580         if (!xol_vaddr)
1581                 return -ENOMEM;
1582
1583         utask->xol_vaddr = xol_vaddr;
1584         utask->vaddr = bp_vaddr;
1585
1586         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1587         if (unlikely(err)) {
1588                 xol_free_insn_slot(current);
1589                 return err;
1590         }
1591
1592         utask->active_uprobe = uprobe;
1593         utask->state = UTASK_SSTEP;
1594         return 0;
1595 }
1596
1597 /*
1598  * If we are singlestepping, then ensure this thread is not connected to
1599  * non-fatal signals until completion of singlestep.  When xol insn itself
1600  * triggers the signal,  restart the original insn even if the task is
1601  * already SIGKILL'ed (since coredump should report the correct ip).  This
1602  * is even more important if the task has a handler for SIGSEGV/etc, The
1603  * _same_ instruction should be repeated again after return from the signal
1604  * handler, and SSTEP can never finish in this case.
1605  */
1606 bool uprobe_deny_signal(void)
1607 {
1608         struct task_struct *t = current;
1609         struct uprobe_task *utask = t->utask;
1610
1611         if (likely(!utask || !utask->active_uprobe))
1612                 return false;
1613
1614         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1615
1616         if (signal_pending(t)) {
1617                 spin_lock_irq(&t->sighand->siglock);
1618                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1619                 spin_unlock_irq(&t->sighand->siglock);
1620
1621                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1622                         utask->state = UTASK_SSTEP_TRAPPED;
1623                         set_tsk_thread_flag(t, TIF_UPROBE);
1624                 }
1625         }
1626
1627         return true;
1628 }
1629
1630 /*
1631  * Avoid singlestepping the original instruction if the original instruction
1632  * is a NOP or can be emulated.
1633  */
1634 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1635 {
1636         if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1637                 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1638                         return true;
1639                 clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1640         }
1641         return false;
1642 }
1643
1644 static void mmf_recalc_uprobes(struct mm_struct *mm)
1645 {
1646         struct vm_area_struct *vma;
1647
1648         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1649                 if (!valid_vma(vma, false))
1650                         continue;
1651                 /*
1652                  * This is not strictly accurate, we can race with
1653                  * uprobe_unregister() and see the already removed
1654                  * uprobe if delete_uprobe() was not yet called.
1655                  * Or this uprobe can be filtered out.
1656                  */
1657                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1658                         return;
1659         }
1660
1661         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1662 }
1663
1664 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1665 {
1666         struct page *page;
1667         uprobe_opcode_t opcode;
1668         int result;
1669
1670         pagefault_disable();
1671         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1672                                                         sizeof(opcode));
1673         pagefault_enable();
1674
1675         if (likely(result == 0))
1676                 goto out;
1677
1678         result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1679         if (result < 0)
1680                 return result;
1681
1682         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1683         put_page(page);
1684  out:
1685         /* This needs to return true for any variant of the trap insn */
1686         return is_trap_insn(&opcode);
1687 }
1688
1689 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1690 {
1691         struct mm_struct *mm = current->mm;
1692         struct uprobe *uprobe = NULL;
1693         struct vm_area_struct *vma;
1694
1695         down_read(&mm->mmap_sem);
1696         vma = find_vma(mm, bp_vaddr);
1697         if (vma && vma->vm_start <= bp_vaddr) {
1698                 if (valid_vma(vma, false)) {
1699                         struct inode *inode = file_inode(vma->vm_file);
1700                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1701
1702                         uprobe = find_uprobe(inode, offset);
1703                 }
1704
1705                 if (!uprobe)
1706                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1707         } else {
1708                 *is_swbp = -EFAULT;
1709         }
1710
1711         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1712                 mmf_recalc_uprobes(mm);
1713         up_read(&mm->mmap_sem);
1714
1715         return uprobe;
1716 }
1717
1718 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1719 {
1720         struct uprobe_consumer *uc;
1721         int remove = UPROBE_HANDLER_REMOVE;
1722         bool need_prep = false; /* prepare return uprobe, when needed */
1723
1724         down_read(&uprobe->register_rwsem);
1725         for (uc = uprobe->consumers; uc; uc = uc->next) {
1726                 int rc = 0;
1727
1728                 if (uc->handler) {
1729                         rc = uc->handler(uc, regs);
1730                         WARN(rc & ~UPROBE_HANDLER_MASK,
1731                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1732                 }
1733
1734                 if (uc->ret_handler)
1735                         need_prep = true;
1736
1737                 remove &= rc;
1738         }
1739
1740         if (need_prep && !remove)
1741                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1742
1743         if (remove && uprobe->consumers) {
1744                 WARN_ON(!uprobe_is_active(uprobe));
1745                 unapply_uprobe(uprobe, current->mm);
1746         }
1747         up_read(&uprobe->register_rwsem);
1748 }
1749
1750 static void
1751 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1752 {
1753         struct uprobe *uprobe = ri->uprobe;
1754         struct uprobe_consumer *uc;
1755
1756         down_read(&uprobe->register_rwsem);
1757         for (uc = uprobe->consumers; uc; uc = uc->next) {
1758                 if (uc->ret_handler)
1759                         uc->ret_handler(uc, ri->func, regs);
1760         }
1761         up_read(&uprobe->register_rwsem);
1762 }
1763
1764 static bool handle_trampoline(struct pt_regs *regs)
1765 {
1766         struct uprobe_task *utask;
1767         struct return_instance *ri, *tmp;
1768         bool chained;
1769
1770         utask = current->utask;
1771         if (!utask)
1772                 return false;
1773
1774         ri = utask->return_instances;
1775         if (!ri)
1776                 return false;
1777
1778         /*
1779          * TODO: we should throw out return_instance's invalidated by
1780          * longjmp(), currently we assume that the probed function always
1781          * returns.
1782          */
1783         instruction_pointer_set(regs, ri->orig_ret_vaddr);
1784
1785         for (;;) {
1786                 handle_uretprobe_chain(ri, regs);
1787
1788                 chained = ri->chained;
1789                 put_uprobe(ri->uprobe);
1790
1791                 tmp = ri;
1792                 ri = ri->next;
1793                 kfree(tmp);
1794                 utask->depth--;
1795
1796                 if (!chained)
1797                         break;
1798                 BUG_ON(!ri);
1799         }
1800
1801         utask->return_instances = ri;
1802
1803         return true;
1804 }
1805
1806 /*
1807  * Run handler and ask thread to singlestep.
1808  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1809  */
1810 static void handle_swbp(struct pt_regs *regs)
1811 {
1812         struct uprobe *uprobe;
1813         unsigned long bp_vaddr;
1814         int uninitialized_var(is_swbp);
1815
1816         bp_vaddr = uprobe_get_swbp_addr(regs);
1817         if (bp_vaddr == get_trampoline_vaddr()) {
1818                 if (handle_trampoline(regs))
1819                         return;
1820
1821                 pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1822                                                 current->pid, current->tgid);
1823         }
1824
1825         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1826         if (!uprobe) {
1827                 if (is_swbp > 0) {
1828                         /* No matching uprobe; signal SIGTRAP. */
1829                         send_sig(SIGTRAP, current, 0);
1830                 } else {
1831                         /*
1832                          * Either we raced with uprobe_unregister() or we can't
1833                          * access this memory. The latter is only possible if
1834                          * another thread plays with our ->mm. In both cases
1835                          * we can simply restart. If this vma was unmapped we
1836                          * can pretend this insn was not executed yet and get
1837                          * the (correct) SIGSEGV after restart.
1838                          */
1839                         instruction_pointer_set(regs, bp_vaddr);
1840                 }
1841                 return;
1842         }
1843
1844         /* change it in advance for ->handler() and restart */
1845         instruction_pointer_set(regs, bp_vaddr);
1846
1847         /*
1848          * TODO: move copy_insn/etc into _register and remove this hack.
1849          * After we hit the bp, _unregister + _register can install the
1850          * new and not-yet-analyzed uprobe at the same address, restart.
1851          */
1852         smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1853         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1854                 goto out;
1855
1856         /* Tracing handlers use ->utask to communicate with fetch methods */
1857         if (!get_utask())
1858                 goto out;
1859
1860         handler_chain(uprobe, regs);
1861         if (can_skip_sstep(uprobe, regs))
1862                 goto out;
1863
1864         if (!pre_ssout(uprobe, regs, bp_vaddr))
1865                 return;
1866
1867         /* can_skip_sstep() succeeded, or restart if can't singlestep */
1868 out:
1869         put_uprobe(uprobe);
1870 }
1871
1872 /*
1873  * Perform required fix-ups and disable singlestep.
1874  * Allow pending signals to take effect.
1875  */
1876 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1877 {
1878         struct uprobe *uprobe;
1879
1880         uprobe = utask->active_uprobe;
1881         if (utask->state == UTASK_SSTEP_ACK)
1882                 arch_uprobe_post_xol(&uprobe->arch, regs);
1883         else if (utask->state == UTASK_SSTEP_TRAPPED)
1884                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1885         else
1886                 WARN_ON_ONCE(1);
1887
1888         put_uprobe(uprobe);
1889         utask->active_uprobe = NULL;
1890         utask->state = UTASK_RUNNING;
1891         xol_free_insn_slot(current);
1892
1893         spin_lock_irq(&current->sighand->siglock);
1894         recalc_sigpending(); /* see uprobe_deny_signal() */
1895         spin_unlock_irq(&current->sighand->siglock);
1896 }
1897
1898 /*
1899  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1900  * allows the thread to return from interrupt. After that handle_swbp()
1901  * sets utask->active_uprobe.
1902  *
1903  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1904  * and allows the thread to return from interrupt.
1905  *
1906  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1907  * uprobe_notify_resume().
1908  */
1909 void uprobe_notify_resume(struct pt_regs *regs)
1910 {
1911         struct uprobe_task *utask;
1912
1913         clear_thread_flag(TIF_UPROBE);
1914
1915         utask = current->utask;
1916         if (utask && utask->active_uprobe)
1917                 handle_singlestep(utask, regs);
1918         else
1919                 handle_swbp(regs);
1920 }
1921
1922 /*
1923  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1924  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1925  */
1926 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1927 {
1928         if (!current->mm)
1929                 return 0;
1930
1931         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1932             (!current->utask || !current->utask->return_instances))
1933                 return 0;
1934
1935         set_thread_flag(TIF_UPROBE);
1936         return 1;
1937 }
1938
1939 /*
1940  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1941  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1942  */
1943 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1944 {
1945         struct uprobe_task *utask = current->utask;
1946
1947         if (!current->mm || !utask || !utask->active_uprobe)
1948                 /* task is currently not uprobed */
1949                 return 0;
1950
1951         utask->state = UTASK_SSTEP_ACK;
1952         set_thread_flag(TIF_UPROBE);
1953         return 1;
1954 }
1955
1956 static struct notifier_block uprobe_exception_nb = {
1957         .notifier_call          = arch_uprobe_exception_notify,
1958         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
1959 };
1960
1961 static int __init init_uprobes(void)
1962 {
1963         int i;
1964
1965         for (i = 0; i < UPROBES_HASH_SZ; i++)
1966                 mutex_init(&uprobes_mmap_mutex[i]);
1967
1968         if (percpu_init_rwsem(&dup_mmap_sem))
1969                 return -ENOMEM;
1970
1971         return register_die_notifier(&uprobe_exception_nb);
1972 }
1973 __initcall(init_uprobes);