nfsd: don't halt scanning the DRC LRU list when there's an RC_INPROG entry
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / nfsd / nfscache.c
1 /*
2  * Request reply cache. This is currently a global cache, but this may
3  * change in the future and be a per-client cache.
4  *
5  * This code is heavily inspired by the 44BSD implementation, although
6  * it does things a bit differently.
7  *
8  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9  */
10
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
17
18 #include "nfsd.h"
19 #include "cache.h"
20
21 #define NFSDDBG_FACILITY        NFSDDBG_REPCACHE
22
23 /*
24  * We use this value to determine the number of hash buckets from the max
25  * cache size, the idea being that when the cache is at its maximum number
26  * of entries, then this should be the average number of entries per bucket.
27  */
28 #define TARGET_BUCKET_SIZE      64
29
30 static struct hlist_head *      cache_hash;
31 static struct list_head         lru_head;
32 static struct kmem_cache        *drc_slab;
33
34 /* max number of entries allowed in the cache */
35 static unsigned int             max_drc_entries;
36
37 /* number of significant bits in the hash value */
38 static unsigned int             maskbits;
39
40 /*
41  * Stats and other tracking of on the duplicate reply cache. All of these and
42  * the "rc" fields in nfsdstats are protected by the cache_lock
43  */
44
45 /* total number of entries */
46 static unsigned int             num_drc_entries;
47
48 /* cache misses due only to checksum comparison failures */
49 static unsigned int             payload_misses;
50
51 /* amount of memory (in bytes) currently consumed by the DRC */
52 static unsigned int             drc_mem_usage;
53
54 /* longest hash chain seen */
55 static unsigned int             longest_chain;
56
57 /* size of cache when we saw the longest hash chain */
58 static unsigned int             longest_chain_cachesize;
59
60 static int      nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
61 static void     cache_cleaner_func(struct work_struct *unused);
62 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
63                                             struct shrink_control *sc);
64 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
65                                            struct shrink_control *sc);
66
67 static struct shrinker nfsd_reply_cache_shrinker = {
68         .scan_objects = nfsd_reply_cache_scan,
69         .count_objects = nfsd_reply_cache_count,
70         .seeks  = 1,
71 };
72
73 /*
74  * locking for the reply cache:
75  * A cache entry is "single use" if c_state == RC_INPROG
76  * Otherwise, it when accessing _prev or _next, the lock must be held.
77  */
78 static DEFINE_SPINLOCK(cache_lock);
79 static DECLARE_DELAYED_WORK(cache_cleaner, cache_cleaner_func);
80
81 /*
82  * Put a cap on the size of the DRC based on the amount of available
83  * low memory in the machine.
84  *
85  *  64MB:    8192
86  * 128MB:   11585
87  * 256MB:   16384
88  * 512MB:   23170
89  *   1GB:   32768
90  *   2GB:   46340
91  *   4GB:   65536
92  *   8GB:   92681
93  *  16GB:  131072
94  *
95  * ...with a hard cap of 256k entries. In the worst case, each entry will be
96  * ~1k, so the above numbers should give a rough max of the amount of memory
97  * used in k.
98  */
99 static unsigned int
100 nfsd_cache_size_limit(void)
101 {
102         unsigned int limit;
103         unsigned long low_pages = totalram_pages - totalhigh_pages;
104
105         limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
106         return min_t(unsigned int, limit, 256*1024);
107 }
108
109 /*
110  * Compute the number of hash buckets we need. Divide the max cachesize by
111  * the "target" max bucket size, and round up to next power of two.
112  */
113 static unsigned int
114 nfsd_hashsize(unsigned int limit)
115 {
116         return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
117 }
118
119 static struct svc_cacherep *
120 nfsd_reply_cache_alloc(void)
121 {
122         struct svc_cacherep     *rp;
123
124         rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
125         if (rp) {
126                 rp->c_state = RC_UNUSED;
127                 rp->c_type = RC_NOCACHE;
128                 INIT_LIST_HEAD(&rp->c_lru);
129                 INIT_HLIST_NODE(&rp->c_hash);
130         }
131         return rp;
132 }
133
134 static void
135 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
136 {
137         if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
138                 drc_mem_usage -= rp->c_replvec.iov_len;
139                 kfree(rp->c_replvec.iov_base);
140         }
141         if (!hlist_unhashed(&rp->c_hash))
142                 hlist_del(&rp->c_hash);
143         list_del(&rp->c_lru);
144         --num_drc_entries;
145         drc_mem_usage -= sizeof(*rp);
146         kmem_cache_free(drc_slab, rp);
147 }
148
149 static void
150 nfsd_reply_cache_free(struct svc_cacherep *rp)
151 {
152         spin_lock(&cache_lock);
153         nfsd_reply_cache_free_locked(rp);
154         spin_unlock(&cache_lock);
155 }
156
157 int nfsd_reply_cache_init(void)
158 {
159         unsigned int hashsize;
160
161         INIT_LIST_HEAD(&lru_head);
162         max_drc_entries = nfsd_cache_size_limit();
163         num_drc_entries = 0;
164         hashsize = nfsd_hashsize(max_drc_entries);
165         maskbits = ilog2(hashsize);
166
167         register_shrinker(&nfsd_reply_cache_shrinker);
168         drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
169                                         0, 0, NULL);
170         if (!drc_slab)
171                 goto out_nomem;
172
173         cache_hash = kcalloc(hashsize, sizeof(struct hlist_head), GFP_KERNEL);
174         if (!cache_hash)
175                 goto out_nomem;
176
177         return 0;
178 out_nomem:
179         printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
180         nfsd_reply_cache_shutdown();
181         return -ENOMEM;
182 }
183
184 void nfsd_reply_cache_shutdown(void)
185 {
186         struct svc_cacherep     *rp;
187
188         unregister_shrinker(&nfsd_reply_cache_shrinker);
189         cancel_delayed_work_sync(&cache_cleaner);
190
191         while (!list_empty(&lru_head)) {
192                 rp = list_entry(lru_head.next, struct svc_cacherep, c_lru);
193                 nfsd_reply_cache_free_locked(rp);
194         }
195
196         kfree (cache_hash);
197         cache_hash = NULL;
198
199         if (drc_slab) {
200                 kmem_cache_destroy(drc_slab);
201                 drc_slab = NULL;
202         }
203 }
204
205 /*
206  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
207  * not already scheduled.
208  */
209 static void
210 lru_put_end(struct svc_cacherep *rp)
211 {
212         rp->c_timestamp = jiffies;
213         list_move_tail(&rp->c_lru, &lru_head);
214         schedule_delayed_work(&cache_cleaner, RC_EXPIRE);
215 }
216
217 /*
218  * Move a cache entry from one hash list to another
219  */
220 static void
221 hash_refile(struct svc_cacherep *rp)
222 {
223         hlist_del_init(&rp->c_hash);
224         hlist_add_head(&rp->c_hash, cache_hash + hash_32(rp->c_xid, maskbits));
225 }
226
227 /*
228  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
229  * Also prune the oldest ones when the total exceeds the max number of entries.
230  */
231 static long
232 prune_cache_entries(void)
233 {
234         struct svc_cacherep *rp, *tmp;
235         long freed = 0;
236
237         list_for_each_entry_safe(rp, tmp, &lru_head, c_lru) {
238                 /*
239                  * Don't free entries attached to calls that are still
240                  * in-progress, but do keep scanning the list.
241                  */
242                 if (rp->c_state == RC_INPROG)
243                         continue;
244                 if (num_drc_entries <= max_drc_entries &&
245                     time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
246                         break;
247                 nfsd_reply_cache_free_locked(rp);
248                 freed++;
249         }
250
251         /*
252          * Conditionally rearm the job. If we cleaned out the list, then
253          * cancel any pending run (since there won't be any work to do).
254          * Otherwise, we rearm the job or modify the existing one to run in
255          * RC_EXPIRE since we just ran the pruner.
256          */
257         if (list_empty(&lru_head))
258                 cancel_delayed_work(&cache_cleaner);
259         else
260                 mod_delayed_work(system_wq, &cache_cleaner, RC_EXPIRE);
261         return freed;
262 }
263
264 static void
265 cache_cleaner_func(struct work_struct *unused)
266 {
267         spin_lock(&cache_lock);
268         prune_cache_entries();
269         spin_unlock(&cache_lock);
270 }
271
272 static unsigned long
273 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
274 {
275         unsigned long num;
276
277         spin_lock(&cache_lock);
278         num = num_drc_entries;
279         spin_unlock(&cache_lock);
280
281         return num;
282 }
283
284 static unsigned long
285 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
286 {
287         unsigned long freed;
288
289         spin_lock(&cache_lock);
290         freed = prune_cache_entries();
291         spin_unlock(&cache_lock);
292         return freed;
293 }
294 /*
295  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
296  */
297 static __wsum
298 nfsd_cache_csum(struct svc_rqst *rqstp)
299 {
300         int idx;
301         unsigned int base;
302         __wsum csum;
303         struct xdr_buf *buf = &rqstp->rq_arg;
304         const unsigned char *p = buf->head[0].iov_base;
305         size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
306                                 RC_CSUMLEN);
307         size_t len = min(buf->head[0].iov_len, csum_len);
308
309         /* rq_arg.head first */
310         csum = csum_partial(p, len, 0);
311         csum_len -= len;
312
313         /* Continue into page array */
314         idx = buf->page_base / PAGE_SIZE;
315         base = buf->page_base & ~PAGE_MASK;
316         while (csum_len) {
317                 p = page_address(buf->pages[idx]) + base;
318                 len = min_t(size_t, PAGE_SIZE - base, csum_len);
319                 csum = csum_partial(p, len, csum);
320                 csum_len -= len;
321                 base = 0;
322                 ++idx;
323         }
324         return csum;
325 }
326
327 static bool
328 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
329 {
330         /* Check RPC header info first */
331         if (rqstp->rq_xid != rp->c_xid || rqstp->rq_proc != rp->c_proc ||
332             rqstp->rq_prot != rp->c_prot || rqstp->rq_vers != rp->c_vers ||
333             rqstp->rq_arg.len != rp->c_len ||
334             !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
335             rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
336                 return false;
337
338         /* compare checksum of NFS data */
339         if (csum != rp->c_csum) {
340                 ++payload_misses;
341                 return false;
342         }
343
344         return true;
345 }
346
347 /*
348  * Search the request hash for an entry that matches the given rqstp.
349  * Must be called with cache_lock held. Returns the found entry or
350  * NULL on failure.
351  */
352 static struct svc_cacherep *
353 nfsd_cache_search(struct svc_rqst *rqstp, __wsum csum)
354 {
355         struct svc_cacherep     *rp, *ret = NULL;
356         struct hlist_head       *rh;
357         unsigned int            entries = 0;
358
359         rh = &cache_hash[hash_32(rqstp->rq_xid, maskbits)];
360         hlist_for_each_entry(rp, rh, c_hash) {
361                 ++entries;
362                 if (nfsd_cache_match(rqstp, csum, rp)) {
363                         ret = rp;
364                         break;
365                 }
366         }
367
368         /* tally hash chain length stats */
369         if (entries > longest_chain) {
370                 longest_chain = entries;
371                 longest_chain_cachesize = num_drc_entries;
372         } else if (entries == longest_chain) {
373                 /* prefer to keep the smallest cachesize possible here */
374                 longest_chain_cachesize = min(longest_chain_cachesize,
375                                                 num_drc_entries);
376         }
377
378         return ret;
379 }
380
381 /*
382  * Try to find an entry matching the current call in the cache. When none
383  * is found, we try to grab the oldest expired entry off the LRU list. If
384  * a suitable one isn't there, then drop the cache_lock and allocate a
385  * new one, then search again in case one got inserted while this thread
386  * didn't hold the lock.
387  */
388 int
389 nfsd_cache_lookup(struct svc_rqst *rqstp)
390 {
391         struct svc_cacherep     *rp, *found;
392         __be32                  xid = rqstp->rq_xid;
393         u32                     proto =  rqstp->rq_prot,
394                                 vers = rqstp->rq_vers,
395                                 proc = rqstp->rq_proc;
396         __wsum                  csum;
397         unsigned long           age;
398         int type = rqstp->rq_cachetype;
399         int rtn = RC_DOIT;
400
401         rqstp->rq_cacherep = NULL;
402         if (type == RC_NOCACHE) {
403                 nfsdstats.rcnocache++;
404                 return rtn;
405         }
406
407         csum = nfsd_cache_csum(rqstp);
408
409         /*
410          * Since the common case is a cache miss followed by an insert,
411          * preallocate an entry.
412          */
413         rp = nfsd_reply_cache_alloc();
414         spin_lock(&cache_lock);
415         if (likely(rp)) {
416                 ++num_drc_entries;
417                 drc_mem_usage += sizeof(*rp);
418         }
419
420         /* go ahead and prune the cache */
421         prune_cache_entries();
422
423         found = nfsd_cache_search(rqstp, csum);
424         if (found) {
425                 if (likely(rp))
426                         nfsd_reply_cache_free_locked(rp);
427                 rp = found;
428                 goto found_entry;
429         }
430
431         if (!rp) {
432                 dprintk("nfsd: unable to allocate DRC entry!\n");
433                 goto out;
434         }
435
436         nfsdstats.rcmisses++;
437         rqstp->rq_cacherep = rp;
438         rp->c_state = RC_INPROG;
439         rp->c_xid = xid;
440         rp->c_proc = proc;
441         rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
442         rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
443         rp->c_prot = proto;
444         rp->c_vers = vers;
445         rp->c_len = rqstp->rq_arg.len;
446         rp->c_csum = csum;
447
448         hash_refile(rp);
449         lru_put_end(rp);
450
451         /* release any buffer */
452         if (rp->c_type == RC_REPLBUFF) {
453                 drc_mem_usage -= rp->c_replvec.iov_len;
454                 kfree(rp->c_replvec.iov_base);
455                 rp->c_replvec.iov_base = NULL;
456         }
457         rp->c_type = RC_NOCACHE;
458  out:
459         spin_unlock(&cache_lock);
460         return rtn;
461
462 found_entry:
463         nfsdstats.rchits++;
464         /* We found a matching entry which is either in progress or done. */
465         age = jiffies - rp->c_timestamp;
466         lru_put_end(rp);
467
468         rtn = RC_DROPIT;
469         /* Request being processed or excessive rexmits */
470         if (rp->c_state == RC_INPROG || age < RC_DELAY)
471                 goto out;
472
473         /* From the hall of fame of impractical attacks:
474          * Is this a user who tries to snoop on the cache? */
475         rtn = RC_DOIT;
476         if (!rqstp->rq_secure && rp->c_secure)
477                 goto out;
478
479         /* Compose RPC reply header */
480         switch (rp->c_type) {
481         case RC_NOCACHE:
482                 break;
483         case RC_REPLSTAT:
484                 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
485                 rtn = RC_REPLY;
486                 break;
487         case RC_REPLBUFF:
488                 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
489                         goto out;       /* should not happen */
490                 rtn = RC_REPLY;
491                 break;
492         default:
493                 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
494                 nfsd_reply_cache_free_locked(rp);
495         }
496
497         goto out;
498 }
499
500 /*
501  * Update a cache entry. This is called from nfsd_dispatch when
502  * the procedure has been executed and the complete reply is in
503  * rqstp->rq_res.
504  *
505  * We're copying around data here rather than swapping buffers because
506  * the toplevel loop requires max-sized buffers, which would be a waste
507  * of memory for a cache with a max reply size of 100 bytes (diropokres).
508  *
509  * If we should start to use different types of cache entries tailored
510  * specifically for attrstat and fh's, we may save even more space.
511  *
512  * Also note that a cachetype of RC_NOCACHE can legally be passed when
513  * nfsd failed to encode a reply that otherwise would have been cached.
514  * In this case, nfsd_cache_update is called with statp == NULL.
515  */
516 void
517 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
518 {
519         struct svc_cacherep *rp = rqstp->rq_cacherep;
520         struct kvec     *resv = &rqstp->rq_res.head[0], *cachv;
521         int             len;
522         size_t          bufsize = 0;
523
524         if (!rp)
525                 return;
526
527         len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
528         len >>= 2;
529
530         /* Don't cache excessive amounts of data and XDR failures */
531         if (!statp || len > (256 >> 2)) {
532                 nfsd_reply_cache_free(rp);
533                 return;
534         }
535
536         switch (cachetype) {
537         case RC_REPLSTAT:
538                 if (len != 1)
539                         printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
540                 rp->c_replstat = *statp;
541                 break;
542         case RC_REPLBUFF:
543                 cachv = &rp->c_replvec;
544                 bufsize = len << 2;
545                 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
546                 if (!cachv->iov_base) {
547                         nfsd_reply_cache_free(rp);
548                         return;
549                 }
550                 cachv->iov_len = bufsize;
551                 memcpy(cachv->iov_base, statp, bufsize);
552                 break;
553         case RC_NOCACHE:
554                 nfsd_reply_cache_free(rp);
555                 return;
556         }
557         spin_lock(&cache_lock);
558         drc_mem_usage += bufsize;
559         lru_put_end(rp);
560         rp->c_secure = rqstp->rq_secure;
561         rp->c_type = cachetype;
562         rp->c_state = RC_DONE;
563         spin_unlock(&cache_lock);
564         return;
565 }
566
567 /*
568  * Copy cached reply to current reply buffer. Should always fit.
569  * FIXME as reply is in a page, we should just attach the page, and
570  * keep a refcount....
571  */
572 static int
573 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
574 {
575         struct kvec     *vec = &rqstp->rq_res.head[0];
576
577         if (vec->iov_len + data->iov_len > PAGE_SIZE) {
578                 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
579                                 data->iov_len);
580                 return 0;
581         }
582         memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
583         vec->iov_len += data->iov_len;
584         return 1;
585 }
586
587 /*
588  * Note that fields may be added, removed or reordered in the future. Programs
589  * scraping this file for info should test the labels to ensure they're
590  * getting the correct field.
591  */
592 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
593 {
594         spin_lock(&cache_lock);
595         seq_printf(m, "max entries:           %u\n", max_drc_entries);
596         seq_printf(m, "num entries:           %u\n", num_drc_entries);
597         seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
598         seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
599         seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
600         seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
601         seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
602         seq_printf(m, "payload misses:        %u\n", payload_misses);
603         seq_printf(m, "longest chain len:     %u\n", longest_chain);
604         seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
605         spin_unlock(&cache_lock);
606         return 0;
607 }
608
609 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
610 {
611         return single_open(file, nfsd_reply_cache_stats_show, NULL);
612 }