Merge tag 'v3.14.26' into backport/v3.14.24-ltsi-rc1+v3.14.26/snapshot-merge.wip
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
39
40 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
41 static int link_quirk;
42 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
43 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
44
45 static unsigned int quirks;
46 module_param(quirks, uint, S_IRUGO);
47 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
48
49 /* TODO: copied from ehci-hcd.c - can this be refactored? */
50 /*
51  * xhci_handshake - spin reading hc until handshake completes or fails
52  * @ptr: address of hc register to be read
53  * @mask: bits to look at in result of read
54  * @done: value of those bits when handshake succeeds
55  * @usec: timeout in microseconds
56  *
57  * Returns negative errno, or zero on success
58  *
59  * Success happens when the "mask" bits have the specified value (hardware
60  * handshake done).  There are two failure modes:  "usec" have passed (major
61  * hardware flakeout), or the register reads as all-ones (hardware removed).
62  */
63 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
64                       u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(xhci, &xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(xhci, &xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         ret = xhci_handshake(xhci, &xhci->op_regs->command,
179                         CMD_RESET, 0, 10 * 1000 * 1000);
180         if (ret)
181                 return ret;
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
184                          "Wait for controller to be ready for doorbell rings");
185         /*
186          * xHCI cannot write to any doorbells or operational registers other
187          * than status until the "Controller Not Ready" flag is cleared.
188          */
189         ret = xhci_handshake(xhci, &xhci->op_regs->status,
190                         STS_CNR, 0, 10 * 1000 * 1000);
191
192         for (i = 0; i < 2; ++i) {
193                 xhci->bus_state[i].port_c_suspend = 0;
194                 xhci->bus_state[i].suspended_ports = 0;
195                 xhci->bus_state[i].resuming_ports = 0;
196         }
197
198         return ret;
199 }
200
201 #ifdef CONFIG_PCI
202 static int xhci_free_msi(struct xhci_hcd *xhci)
203 {
204         int i;
205
206         if (!xhci->msix_entries)
207                 return -EINVAL;
208
209         for (i = 0; i < xhci->msix_count; i++)
210                 if (xhci->msix_entries[i].vector)
211                         free_irq(xhci->msix_entries[i].vector,
212                                         xhci_to_hcd(xhci));
213         return 0;
214 }
215
216 /*
217  * Set up MSI
218  */
219 static int xhci_setup_msi(struct xhci_hcd *xhci)
220 {
221         int ret;
222         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
223
224         ret = pci_enable_msi(pdev);
225         if (ret) {
226                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
227                                 "failed to allocate MSI entry");
228                 return ret;
229         }
230
231         ret = request_irq(pdev->irq, xhci_msi_irq,
232                                 0, "xhci_hcd", xhci_to_hcd(xhci));
233         if (ret) {
234                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
235                                 "disable MSI interrupt");
236                 pci_disable_msi(pdev);
237         }
238
239         return ret;
240 }
241
242 /*
243  * Free IRQs
244  * free all IRQs request
245  */
246 static void xhci_free_irq(struct xhci_hcd *xhci)
247 {
248         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
249         int ret;
250
251         /* return if using legacy interrupt */
252         if (xhci_to_hcd(xhci)->irq > 0)
253                 return;
254
255         ret = xhci_free_msi(xhci);
256         if (!ret)
257                 return;
258         if (pdev->irq > 0)
259                 free_irq(pdev->irq, xhci_to_hcd(xhci));
260
261         return;
262 }
263
264 /*
265  * Set up MSI-X
266  */
267 static int xhci_setup_msix(struct xhci_hcd *xhci)
268 {
269         int i, ret = 0;
270         struct usb_hcd *hcd = xhci_to_hcd(xhci);
271         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
272
273         /*
274          * calculate number of msi-x vectors supported.
275          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
276          *   with max number of interrupters based on the xhci HCSPARAMS1.
277          * - num_online_cpus: maximum msi-x vectors per CPUs core.
278          *   Add additional 1 vector to ensure always available interrupt.
279          */
280         xhci->msix_count = min(num_online_cpus() + 1,
281                                 HCS_MAX_INTRS(xhci->hcs_params1));
282
283         xhci->msix_entries =
284                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
285                                 GFP_KERNEL);
286         if (!xhci->msix_entries) {
287                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
288                 return -ENOMEM;
289         }
290
291         for (i = 0; i < xhci->msix_count; i++) {
292                 xhci->msix_entries[i].entry = i;
293                 xhci->msix_entries[i].vector = 0;
294         }
295
296         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
297         if (ret) {
298                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
299                                 "Failed to enable MSI-X");
300                 goto free_entries;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 ret = request_irq(xhci->msix_entries[i].vector,
305                                 xhci_msi_irq,
306                                 0, "xhci_hcd", xhci_to_hcd(xhci));
307                 if (ret)
308                         goto disable_msix;
309         }
310
311         hcd->msix_enabled = 1;
312         return ret;
313
314 disable_msix:
315         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
316         xhci_free_irq(xhci);
317         pci_disable_msix(pdev);
318 free_entries:
319         kfree(xhci->msix_entries);
320         xhci->msix_entries = NULL;
321         return ret;
322 }
323
324 /* Free any IRQs and disable MSI-X */
325 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
326 {
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
329
330         if (xhci->quirks & XHCI_PLAT)
331                 return;
332
333         xhci_free_irq(xhci);
334
335         if (xhci->msix_entries) {
336                 pci_disable_msix(pdev);
337                 kfree(xhci->msix_entries);
338                 xhci->msix_entries = NULL;
339         } else {
340                 pci_disable_msi(pdev);
341         }
342
343         hcd->msix_enabled = 0;
344         return;
345 }
346
347 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
348 {
349         int i;
350
351         if (xhci->msix_entries) {
352                 for (i = 0; i < xhci->msix_count; i++)
353                         synchronize_irq(xhci->msix_entries[i].vector);
354         }
355 }
356
357 static int xhci_try_enable_msi(struct usb_hcd *hcd)
358 {
359         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
360         struct pci_dev  *pdev;
361         int ret;
362
363         /* The xhci platform device has set up IRQs through usb_add_hcd. */
364         if (xhci->quirks & XHCI_PLAT)
365                 return 0;
366
367         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
368         /*
369          * Some Fresco Logic host controllers advertise MSI, but fail to
370          * generate interrupts.  Don't even try to enable MSI.
371          */
372         if (xhci->quirks & XHCI_BROKEN_MSI)
373                 goto legacy_irq;
374
375         /* unregister the legacy interrupt */
376         if (hcd->irq)
377                 free_irq(hcd->irq, hcd);
378         hcd->irq = 0;
379
380         ret = xhci_setup_msix(xhci);
381         if (ret)
382                 /* fall back to msi*/
383                 ret = xhci_setup_msi(xhci);
384
385         if (!ret)
386                 /* hcd->irq is 0, we have MSI */
387                 return 0;
388
389         if (!pdev->irq) {
390                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
391                 return -EINVAL;
392         }
393
394  legacy_irq:
395         /* fall back to legacy interrupt*/
396         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
397                         hcd->irq_descr, hcd);
398         if (ret) {
399                 xhci_err(xhci, "request interrupt %d failed\n",
400                                 pdev->irq);
401                 return ret;
402         }
403         hcd->irq = pdev->irq;
404         return 0;
405 }
406
407 #else
408
409 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
410 {
411         return 0;
412 }
413
414 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
415 {
416 }
417
418 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
419 {
420 }
421
422 #endif
423
424 static void compliance_mode_recovery(unsigned long arg)
425 {
426         struct xhci_hcd *xhci;
427         struct usb_hcd *hcd;
428         u32 temp;
429         int i;
430
431         xhci = (struct xhci_hcd *)arg;
432
433         for (i = 0; i < xhci->num_usb3_ports; i++) {
434                 temp = readl(xhci->usb3_ports[i]);
435                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
436                         /*
437                          * Compliance Mode Detected. Letting USB Core
438                          * handle the Warm Reset
439                          */
440                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
441                                         "Compliance mode detected->port %d",
442                                         i + 1);
443                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
444                                         "Attempting compliance mode recovery");
445                         hcd = xhci->shared_hcd;
446
447                         if (hcd->state == HC_STATE_SUSPENDED)
448                                 usb_hcd_resume_root_hub(hcd);
449
450                         usb_hcd_poll_rh_status(hcd);
451                 }
452         }
453
454         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
455                 mod_timer(&xhci->comp_mode_recovery_timer,
456                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
457 }
458
459 /*
460  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
461  * that causes ports behind that hardware to enter compliance mode sometimes.
462  * The quirk creates a timer that polls every 2 seconds the link state of
463  * each host controller's port and recovers it by issuing a Warm reset
464  * if Compliance mode is detected, otherwise the port will become "dead" (no
465  * device connections or disconnections will be detected anymore). Becasue no
466  * status event is generated when entering compliance mode (per xhci spec),
467  * this quirk is needed on systems that have the failing hardware installed.
468  */
469 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
470 {
471         xhci->port_status_u0 = 0;
472         init_timer(&xhci->comp_mode_recovery_timer);
473
474         xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
475         xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
476         xhci->comp_mode_recovery_timer.expires = jiffies +
477                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
478
479         set_timer_slack(&xhci->comp_mode_recovery_timer,
480                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
481         add_timer(&xhci->comp_mode_recovery_timer);
482         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
483                         "Compliance mode recovery timer initialized");
484 }
485
486 /*
487  * This function identifies the systems that have installed the SN65LVPE502CP
488  * USB3.0 re-driver and that need the Compliance Mode Quirk.
489  * Systems:
490  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
491  */
492 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
493 {
494         const char *dmi_product_name, *dmi_sys_vendor;
495
496         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
497         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
498         if (!dmi_product_name || !dmi_sys_vendor)
499                 return false;
500
501         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
502                 return false;
503
504         if (strstr(dmi_product_name, "Z420") ||
505                         strstr(dmi_product_name, "Z620") ||
506                         strstr(dmi_product_name, "Z820") ||
507                         strstr(dmi_product_name, "Z1 Workstation"))
508                 return true;
509
510         return false;
511 }
512
513 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
514 {
515         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
516 }
517
518
519 /*
520  * Initialize memory for HCD and xHC (one-time init).
521  *
522  * Program the PAGESIZE register, initialize the device context array, create
523  * device contexts (?), set up a command ring segment (or two?), create event
524  * ring (one for now).
525  */
526 int xhci_init(struct usb_hcd *hcd)
527 {
528         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
529         int retval = 0;
530
531         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
532         spin_lock_init(&xhci->lock);
533         if (xhci->hci_version == 0x95 && link_quirk) {
534                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                                 "QUIRK: Not clearing Link TRB chain bits.");
536                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
537         } else {
538                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
539                                 "xHCI doesn't need link TRB QUIRK");
540         }
541         retval = xhci_mem_init(xhci, GFP_KERNEL);
542         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
543
544         /* Initializing Compliance Mode Recovery Data If Needed */
545         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
546                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
547                 compliance_mode_recovery_timer_init(xhci);
548         }
549
550         return retval;
551 }
552
553 /*-------------------------------------------------------------------------*/
554
555
556 static int xhci_run_finished(struct xhci_hcd *xhci)
557 {
558         if (xhci_start(xhci)) {
559                 xhci_halt(xhci);
560                 return -ENODEV;
561         }
562         xhci->shared_hcd->state = HC_STATE_RUNNING;
563         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
564
565         if (xhci->quirks & XHCI_NEC_HOST)
566                 xhci_ring_cmd_db(xhci);
567
568         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
569                         "Finished xhci_run for USB3 roothub");
570         return 0;
571 }
572
573 /*
574  * Start the HC after it was halted.
575  *
576  * This function is called by the USB core when the HC driver is added.
577  * Its opposite is xhci_stop().
578  *
579  * xhci_init() must be called once before this function can be called.
580  * Reset the HC, enable device slot contexts, program DCBAAP, and
581  * set command ring pointer and event ring pointer.
582  *
583  * Setup MSI-X vectors and enable interrupts.
584  */
585 int xhci_run(struct usb_hcd *hcd)
586 {
587         u32 temp;
588         u64 temp_64;
589         int ret;
590         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
591
592         /* Start the xHCI host controller running only after the USB 2.0 roothub
593          * is setup.
594          */
595
596         hcd->uses_new_polling = 1;
597         if (!usb_hcd_is_primary_hcd(hcd))
598                 return xhci_run_finished(xhci);
599
600         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
601
602         ret = xhci_try_enable_msi(hcd);
603         if (ret)
604                 return ret;
605
606         xhci_dbg(xhci, "Command ring memory map follows:\n");
607         xhci_debug_ring(xhci, xhci->cmd_ring);
608         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
609         xhci_dbg_cmd_ptrs(xhci);
610
611         xhci_dbg(xhci, "ERST memory map follows:\n");
612         xhci_dbg_erst(xhci, &xhci->erst);
613         xhci_dbg(xhci, "Event ring:\n");
614         xhci_debug_ring(xhci, xhci->event_ring);
615         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
616         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
617         temp_64 &= ~ERST_PTR_MASK;
618         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
620
621         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
622                         "// Set the interrupt modulation register");
623         temp = readl(&xhci->ir_set->irq_control);
624         temp &= ~ER_IRQ_INTERVAL_MASK;
625         temp |= (u32) 160;
626         writel(temp, &xhci->ir_set->irq_control);
627
628         /* Set the HCD state before we enable the irqs */
629         temp = readl(&xhci->op_regs->command);
630         temp |= (CMD_EIE);
631         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632                         "// Enable interrupts, cmd = 0x%x.", temp);
633         writel(temp, &xhci->op_regs->command);
634
635         temp = readl(&xhci->ir_set->irq_pending);
636         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
637                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
638                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
639         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
640         xhci_print_ir_set(xhci, 0);
641
642         if (xhci->quirks & XHCI_NEC_HOST)
643                 xhci_queue_vendor_command(xhci, 0, 0, 0,
644                                 TRB_TYPE(TRB_NEC_GET_FW));
645
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "Finished xhci_run for USB2 roothub");
648         return 0;
649 }
650
651 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
652 {
653         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
654
655         spin_lock_irq(&xhci->lock);
656         xhci_halt(xhci);
657
658         /* The shared_hcd is going to be deallocated shortly (the USB core only
659          * calls this function when allocation fails in usb_add_hcd(), or
660          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
661          */
662         xhci->shared_hcd = NULL;
663         spin_unlock_irq(&xhci->lock);
664 }
665
666 /*
667  * Stop xHCI driver.
668  *
669  * This function is called by the USB core when the HC driver is removed.
670  * Its opposite is xhci_run().
671  *
672  * Disable device contexts, disable IRQs, and quiesce the HC.
673  * Reset the HC, finish any completed transactions, and cleanup memory.
674  */
675 void xhci_stop(struct usb_hcd *hcd)
676 {
677         u32 temp;
678         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
679
680         if (!usb_hcd_is_primary_hcd(hcd)) {
681                 xhci_only_stop_hcd(xhci->shared_hcd);
682                 return;
683         }
684
685         spin_lock_irq(&xhci->lock);
686         /* Make sure the xHC is halted for a USB3 roothub
687          * (xhci_stop() could be called as part of failed init).
688          */
689         xhci_halt(xhci);
690         xhci_reset(xhci);
691         spin_unlock_irq(&xhci->lock);
692
693         xhci_cleanup_msix(xhci);
694
695         /* Deleting Compliance Mode Recovery Timer */
696         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
697                         (!(xhci_all_ports_seen_u0(xhci)))) {
698                 del_timer_sync(&xhci->comp_mode_recovery_timer);
699                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
700                                 "%s: compliance mode recovery timer deleted",
701                                 __func__);
702         }
703
704         if (xhci->quirks & XHCI_AMD_PLL_FIX)
705                 usb_amd_dev_put();
706
707         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
708                         "// Disabling event ring interrupts");
709         temp = readl(&xhci->op_regs->status);
710         writel(temp & ~STS_EINT, &xhci->op_regs->status);
711         temp = readl(&xhci->ir_set->irq_pending);
712         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
713         xhci_print_ir_set(xhci, 0);
714
715         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
716         xhci_mem_cleanup(xhci);
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "xhci_stop completed - status = %x",
719                         readl(&xhci->op_regs->status));
720 }
721
722 /*
723  * Shutdown HC (not bus-specific)
724  *
725  * This is called when the machine is rebooting or halting.  We assume that the
726  * machine will be powered off, and the HC's internal state will be reset.
727  * Don't bother to free memory.
728  *
729  * This will only ever be called with the main usb_hcd (the USB3 roothub).
730  */
731 void xhci_shutdown(struct usb_hcd *hcd)
732 {
733         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
734
735         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
736                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
737
738         spin_lock_irq(&xhci->lock);
739         xhci_halt(xhci);
740         /* Workaround for spurious wakeups at shutdown with HSW */
741         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
742                 xhci_reset(xhci);
743         spin_unlock_irq(&xhci->lock);
744
745         xhci_cleanup_msix(xhci);
746
747         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
748                         "xhci_shutdown completed - status = %x",
749                         readl(&xhci->op_regs->status));
750
751         /* Yet another workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
754 }
755
756 #ifdef CONFIG_PM
757 static void xhci_save_registers(struct xhci_hcd *xhci)
758 {
759         xhci->s3.command = readl(&xhci->op_regs->command);
760         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
761         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
762         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
763         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
764         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
765         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
766         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
767         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
768 }
769
770 static void xhci_restore_registers(struct xhci_hcd *xhci)
771 {
772         writel(xhci->s3.command, &xhci->op_regs->command);
773         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
774         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
775         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
776         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
777         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
778         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
779         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
780         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
781 }
782
783 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
784 {
785         u64     val_64;
786
787         /* step 2: initialize command ring buffer */
788         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
789         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
790                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
791                                       xhci->cmd_ring->dequeue) &
792                  (u64) ~CMD_RING_RSVD_BITS) |
793                 xhci->cmd_ring->cycle_state;
794         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
795                         "// Setting command ring address to 0x%llx",
796                         (long unsigned long) val_64);
797         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
798 }
799
800 /*
801  * The whole command ring must be cleared to zero when we suspend the host.
802  *
803  * The host doesn't save the command ring pointer in the suspend well, so we
804  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
805  * aligned, because of the reserved bits in the command ring dequeue pointer
806  * register.  Therefore, we can't just set the dequeue pointer back in the
807  * middle of the ring (TRBs are 16-byte aligned).
808  */
809 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
810 {
811         struct xhci_ring *ring;
812         struct xhci_segment *seg;
813
814         ring = xhci->cmd_ring;
815         seg = ring->deq_seg;
816         do {
817                 memset(seg->trbs, 0,
818                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
819                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
820                         cpu_to_le32(~TRB_CYCLE);
821                 seg = seg->next;
822         } while (seg != ring->deq_seg);
823
824         /* Reset the software enqueue and dequeue pointers */
825         ring->deq_seg = ring->first_seg;
826         ring->dequeue = ring->first_seg->trbs;
827         ring->enq_seg = ring->deq_seg;
828         ring->enqueue = ring->dequeue;
829
830         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
831         /*
832          * Ring is now zeroed, so the HW should look for change of ownership
833          * when the cycle bit is set to 1.
834          */
835         ring->cycle_state = 1;
836
837         /*
838          * Reset the hardware dequeue pointer.
839          * Yes, this will need to be re-written after resume, but we're paranoid
840          * and want to make sure the hardware doesn't access bogus memory
841          * because, say, the BIOS or an SMI started the host without changing
842          * the command ring pointers.
843          */
844         xhci_set_cmd_ring_deq(xhci);
845 }
846
847 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
848 {
849         int port_index;
850         __le32 __iomem **port_array;
851         unsigned long flags;
852         u32 t1, t2;
853
854         spin_lock_irqsave(&xhci->lock, flags);
855
856         /* disble usb3 ports Wake bits*/
857         port_index = xhci->num_usb3_ports;
858         port_array = xhci->usb3_ports;
859         while (port_index--) {
860                 t1 = readl(port_array[port_index]);
861                 t1 = xhci_port_state_to_neutral(t1);
862                 t2 = t1 & ~PORT_WAKE_BITS;
863                 if (t1 != t2)
864                         writel(t2, port_array[port_index]);
865         }
866
867         /* disble usb2 ports Wake bits*/
868         port_index = xhci->num_usb2_ports;
869         port_array = xhci->usb2_ports;
870         while (port_index--) {
871                 t1 = readl(port_array[port_index]);
872                 t1 = xhci_port_state_to_neutral(t1);
873                 t2 = t1 & ~PORT_WAKE_BITS;
874                 if (t1 != t2)
875                         writel(t2, port_array[port_index]);
876         }
877
878         spin_unlock_irqrestore(&xhci->lock, flags);
879 }
880
881 /*
882  * Stop HC (not bus-specific)
883  *
884  * This is called when the machine transition into S3/S4 mode.
885  *
886  */
887 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
888 {
889         int                     rc = 0;
890         unsigned int            delay = XHCI_MAX_HALT_USEC;
891         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
892         u32                     command;
893
894         if (hcd->state != HC_STATE_SUSPENDED ||
895                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
896                 return -EINVAL;
897
898         /* Clear root port wake on bits if wakeup not allowed. */
899         if (!do_wakeup)
900                 xhci_disable_port_wake_on_bits(xhci);
901
902         /* Don't poll the roothubs on bus suspend. */
903         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
904         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
905         del_timer_sync(&hcd->rh_timer);
906
907         spin_lock_irq(&xhci->lock);
908         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
909         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
910         /* step 1: stop endpoint */
911         /* skipped assuming that port suspend has done */
912
913         /* step 2: clear Run/Stop bit */
914         command = readl(&xhci->op_regs->command);
915         command &= ~CMD_RUN;
916         writel(command, &xhci->op_regs->command);
917
918         /* Some chips from Fresco Logic need an extraordinary delay */
919         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
920
921         if (xhci_handshake(xhci, &xhci->op_regs->status,
922                       STS_HALT, STS_HALT, delay)) {
923                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
924                 spin_unlock_irq(&xhci->lock);
925                 return -ETIMEDOUT;
926         }
927         xhci_clear_command_ring(xhci);
928
929         /* step 3: save registers */
930         xhci_save_registers(xhci);
931
932         /* step 4: set CSS flag */
933         command = readl(&xhci->op_regs->command);
934         command |= CMD_CSS;
935         writel(command, &xhci->op_regs->command);
936         if (xhci_handshake(xhci, &xhci->op_regs->status,
937                                 STS_SAVE, 0, 10 * 1000)) {
938                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
939                 spin_unlock_irq(&xhci->lock);
940                 return -ETIMEDOUT;
941         }
942         spin_unlock_irq(&xhci->lock);
943
944         /*
945          * Deleting Compliance Mode Recovery Timer because the xHCI Host
946          * is about to be suspended.
947          */
948         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
949                         (!(xhci_all_ports_seen_u0(xhci)))) {
950                 del_timer_sync(&xhci->comp_mode_recovery_timer);
951                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
952                                 "%s: compliance mode recovery timer deleted",
953                                 __func__);
954         }
955
956         /* step 5: remove core well power */
957         /* synchronize irq when using MSI-X */
958         xhci_msix_sync_irqs(xhci);
959
960         return rc;
961 }
962
963 /*
964  * start xHC (not bus-specific)
965  *
966  * This is called when the machine transition from S3/S4 mode.
967  *
968  */
969 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
970 {
971         u32                     command, temp = 0, status;
972         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
973         struct usb_hcd          *secondary_hcd;
974         int                     retval = 0;
975         bool                    comp_timer_running = false;
976
977         /* Wait a bit if either of the roothubs need to settle from the
978          * transition into bus suspend.
979          */
980         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
981                         time_before(jiffies,
982                                 xhci->bus_state[1].next_statechange))
983                 msleep(100);
984
985         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
986         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
987
988         spin_lock_irq(&xhci->lock);
989         if (xhci->quirks & XHCI_RESET_ON_RESUME)
990                 hibernated = true;
991
992         if (!hibernated) {
993                 /* step 1: restore register */
994                 xhci_restore_registers(xhci);
995                 /* step 2: initialize command ring buffer */
996                 xhci_set_cmd_ring_deq(xhci);
997                 /* step 3: restore state and start state*/
998                 /* step 3: set CRS flag */
999                 command = readl(&xhci->op_regs->command);
1000                 command |= CMD_CRS;
1001                 writel(command, &xhci->op_regs->command);
1002                 if (xhci_handshake(xhci, &xhci->op_regs->status,
1003                               STS_RESTORE, 0, 10 * 1000)) {
1004                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1005                         spin_unlock_irq(&xhci->lock);
1006                         return -ETIMEDOUT;
1007                 }
1008                 temp = readl(&xhci->op_regs->status);
1009         }
1010
1011         /* If restore operation fails, re-initialize the HC during resume */
1012         if ((temp & STS_SRE) || hibernated) {
1013
1014                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1015                                 !(xhci_all_ports_seen_u0(xhci))) {
1016                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1017                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1018                                 "Compliance Mode Recovery Timer deleted!");
1019                 }
1020
1021                 /* Let the USB core know _both_ roothubs lost power. */
1022                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1023                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1024
1025                 xhci_dbg(xhci, "Stop HCD\n");
1026                 xhci_halt(xhci);
1027                 xhci_reset(xhci);
1028                 spin_unlock_irq(&xhci->lock);
1029                 xhci_cleanup_msix(xhci);
1030
1031                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1032                 temp = readl(&xhci->op_regs->status);
1033                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1034                 temp = readl(&xhci->ir_set->irq_pending);
1035                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1036                 xhci_print_ir_set(xhci, 0);
1037
1038                 xhci_dbg(xhci, "cleaning up memory\n");
1039                 xhci_mem_cleanup(xhci);
1040                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1041                             readl(&xhci->op_regs->status));
1042
1043                 /* USB core calls the PCI reinit and start functions twice:
1044                  * first with the primary HCD, and then with the secondary HCD.
1045                  * If we don't do the same, the host will never be started.
1046                  */
1047                 if (!usb_hcd_is_primary_hcd(hcd))
1048                         secondary_hcd = hcd;
1049                 else
1050                         secondary_hcd = xhci->shared_hcd;
1051
1052                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1053                 retval = xhci_init(hcd->primary_hcd);
1054                 if (retval)
1055                         return retval;
1056                 comp_timer_running = true;
1057
1058                 xhci_dbg(xhci, "Start the primary HCD\n");
1059                 retval = xhci_run(hcd->primary_hcd);
1060                 if (!retval) {
1061                         xhci_dbg(xhci, "Start the secondary HCD\n");
1062                         retval = xhci_run(secondary_hcd);
1063                 }
1064                 hcd->state = HC_STATE_SUSPENDED;
1065                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1066                 goto done;
1067         }
1068
1069         /* step 4: set Run/Stop bit */
1070         command = readl(&xhci->op_regs->command);
1071         command |= CMD_RUN;
1072         writel(command, &xhci->op_regs->command);
1073         xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1074                   0, 250 * 1000);
1075
1076         /* step 5: walk topology and initialize portsc,
1077          * portpmsc and portli
1078          */
1079         /* this is done in bus_resume */
1080
1081         /* step 6: restart each of the previously
1082          * Running endpoints by ringing their doorbells
1083          */
1084
1085         spin_unlock_irq(&xhci->lock);
1086
1087  done:
1088         if (retval == 0) {
1089                 /* Resume root hubs only when have pending events. */
1090                 status = readl(&xhci->op_regs->status);
1091                 if (status & STS_EINT) {
1092                         usb_hcd_resume_root_hub(hcd);
1093                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1094                 }
1095         }
1096
1097         /*
1098          * If system is subject to the Quirk, Compliance Mode Timer needs to
1099          * be re-initialized Always after a system resume. Ports are subject
1100          * to suffer the Compliance Mode issue again. It doesn't matter if
1101          * ports have entered previously to U0 before system's suspension.
1102          */
1103         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1104                 compliance_mode_recovery_timer_init(xhci);
1105
1106         /* Re-enable port polling. */
1107         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1108         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1109         usb_hcd_poll_rh_status(hcd);
1110
1111         return retval;
1112 }
1113 #endif  /* CONFIG_PM */
1114
1115 /*-------------------------------------------------------------------------*/
1116
1117 /**
1118  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1119  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1120  * value to right shift 1 for the bitmask.
1121  *
1122  * Index  = (epnum * 2) + direction - 1,
1123  * where direction = 0 for OUT, 1 for IN.
1124  * For control endpoints, the IN index is used (OUT index is unused), so
1125  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1126  */
1127 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1128 {
1129         unsigned int index;
1130         if (usb_endpoint_xfer_control(desc))
1131                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1132         else
1133                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1134                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1135         return index;
1136 }
1137
1138 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1139  * address from the XHCI endpoint index.
1140  */
1141 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1142 {
1143         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1144         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1145         return direction | number;
1146 }
1147
1148 /* Find the flag for this endpoint (for use in the control context).  Use the
1149  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1150  * bit 1, etc.
1151  */
1152 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1153 {
1154         return 1 << (xhci_get_endpoint_index(desc) + 1);
1155 }
1156
1157 /* Find the flag for this endpoint (for use in the control context).  Use the
1158  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1159  * bit 1, etc.
1160  */
1161 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1162 {
1163         return 1 << (ep_index + 1);
1164 }
1165
1166 /* Compute the last valid endpoint context index.  Basically, this is the
1167  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1168  * we find the most significant bit set in the added contexts flags.
1169  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1170  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1171  */
1172 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1173 {
1174         return fls(added_ctxs) - 1;
1175 }
1176
1177 /* Returns 1 if the arguments are OK;
1178  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1179  */
1180 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1181                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1182                 const char *func) {
1183         struct xhci_hcd *xhci;
1184         struct xhci_virt_device *virt_dev;
1185
1186         if (!hcd || (check_ep && !ep) || !udev) {
1187                 pr_debug("xHCI %s called with invalid args\n", func);
1188                 return -EINVAL;
1189         }
1190         if (!udev->parent) {
1191                 pr_debug("xHCI %s called for root hub\n", func);
1192                 return 0;
1193         }
1194
1195         xhci = hcd_to_xhci(hcd);
1196         if (check_virt_dev) {
1197                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1198                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1199                                         func);
1200                         return -EINVAL;
1201                 }
1202
1203                 virt_dev = xhci->devs[udev->slot_id];
1204                 if (virt_dev->udev != udev) {
1205                         xhci_dbg(xhci, "xHCI %s called with udev and "
1206                                           "virt_dev does not match\n", func);
1207                         return -EINVAL;
1208                 }
1209         }
1210
1211         if (xhci->xhc_state & XHCI_STATE_HALTED)
1212                 return -ENODEV;
1213
1214         return 1;
1215 }
1216
1217 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1218                 struct usb_device *udev, struct xhci_command *command,
1219                 bool ctx_change, bool must_succeed);
1220
1221 /*
1222  * Full speed devices may have a max packet size greater than 8 bytes, but the
1223  * USB core doesn't know that until it reads the first 8 bytes of the
1224  * descriptor.  If the usb_device's max packet size changes after that point,
1225  * we need to issue an evaluate context command and wait on it.
1226  */
1227 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1228                 unsigned int ep_index, struct urb *urb)
1229 {
1230         struct xhci_container_ctx *in_ctx;
1231         struct xhci_container_ctx *out_ctx;
1232         struct xhci_input_control_ctx *ctrl_ctx;
1233         struct xhci_ep_ctx *ep_ctx;
1234         int max_packet_size;
1235         int hw_max_packet_size;
1236         int ret = 0;
1237
1238         out_ctx = xhci->devs[slot_id]->out_ctx;
1239         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1240         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1241         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1242         if (hw_max_packet_size != max_packet_size) {
1243                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1244                                 "Max Packet Size for ep 0 changed.");
1245                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1246                                 "Max packet size in usb_device = %d",
1247                                 max_packet_size);
1248                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1249                                 "Max packet size in xHCI HW = %d",
1250                                 hw_max_packet_size);
1251                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1252                                 "Issuing evaluate context command.");
1253
1254                 /* Set up the input context flags for the command */
1255                 /* FIXME: This won't work if a non-default control endpoint
1256                  * changes max packet sizes.
1257                  */
1258                 in_ctx = xhci->devs[slot_id]->in_ctx;
1259                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1260                 if (!ctrl_ctx) {
1261                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1262                                         __func__);
1263                         return -ENOMEM;
1264                 }
1265                 /* Set up the modified control endpoint 0 */
1266                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1267                                 xhci->devs[slot_id]->out_ctx, ep_index);
1268
1269                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1270                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1271                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1272
1273                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1274                 ctrl_ctx->drop_flags = 0;
1275
1276                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1277                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1278                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1279                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1280
1281                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1282                                 true, false);
1283
1284                 /* Clean up the input context for later use by bandwidth
1285                  * functions.
1286                  */
1287                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1288         }
1289         return ret;
1290 }
1291
1292 /*
1293  * non-error returns are a promise to giveback() the urb later
1294  * we drop ownership so next owner (or urb unlink) can get it
1295  */
1296 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1297 {
1298         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1299         struct xhci_td *buffer;
1300         unsigned long flags;
1301         int ret = 0;
1302         unsigned int slot_id, ep_index;
1303         struct urb_priv *urb_priv;
1304         int size, i;
1305
1306         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1307                                         true, true, __func__) <= 0)
1308                 return -EINVAL;
1309
1310         slot_id = urb->dev->slot_id;
1311         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1312
1313         if (!HCD_HW_ACCESSIBLE(hcd)) {
1314                 if (!in_interrupt())
1315                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1316                 ret = -ESHUTDOWN;
1317                 goto exit;
1318         }
1319
1320         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1321                 size = urb->number_of_packets;
1322         else
1323                 size = 1;
1324
1325         urb_priv = kzalloc(sizeof(struct urb_priv) +
1326                                   size * sizeof(struct xhci_td *), mem_flags);
1327         if (!urb_priv)
1328                 return -ENOMEM;
1329
1330         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1331         if (!buffer) {
1332                 kfree(urb_priv);
1333                 return -ENOMEM;
1334         }
1335
1336         for (i = 0; i < size; i++) {
1337                 urb_priv->td[i] = buffer;
1338                 buffer++;
1339         }
1340
1341         urb_priv->length = size;
1342         urb_priv->td_cnt = 0;
1343         urb->hcpriv = urb_priv;
1344
1345         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1346                 /* Check to see if the max packet size for the default control
1347                  * endpoint changed during FS device enumeration
1348                  */
1349                 if (urb->dev->speed == USB_SPEED_FULL) {
1350                         ret = xhci_check_maxpacket(xhci, slot_id,
1351                                         ep_index, urb);
1352                         if (ret < 0) {
1353                                 xhci_urb_free_priv(xhci, urb_priv);
1354                                 urb->hcpriv = NULL;
1355                                 return ret;
1356                         }
1357                 }
1358
1359                 /* We have a spinlock and interrupts disabled, so we must pass
1360                  * atomic context to this function, which may allocate memory.
1361                  */
1362                 spin_lock_irqsave(&xhci->lock, flags);
1363                 if (xhci->xhc_state & XHCI_STATE_DYING)
1364                         goto dying;
1365                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1366                                 slot_id, ep_index);
1367                 if (ret)
1368                         goto free_priv;
1369                 spin_unlock_irqrestore(&xhci->lock, flags);
1370         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1371                 spin_lock_irqsave(&xhci->lock, flags);
1372                 if (xhci->xhc_state & XHCI_STATE_DYING)
1373                         goto dying;
1374                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1375                                 EP_GETTING_STREAMS) {
1376                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1377                                         "is transitioning to using streams.\n");
1378                         ret = -EINVAL;
1379                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1380                                 EP_GETTING_NO_STREAMS) {
1381                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1382                                         "is transitioning to "
1383                                         "not having streams.\n");
1384                         ret = -EINVAL;
1385                 } else {
1386                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1387                                         slot_id, ep_index);
1388                 }
1389                 if (ret)
1390                         goto free_priv;
1391                 spin_unlock_irqrestore(&xhci->lock, flags);
1392         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1393                 spin_lock_irqsave(&xhci->lock, flags);
1394                 if (xhci->xhc_state & XHCI_STATE_DYING)
1395                         goto dying;
1396                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1397                                 slot_id, ep_index);
1398                 if (ret)
1399                         goto free_priv;
1400                 spin_unlock_irqrestore(&xhci->lock, flags);
1401         } else {
1402                 spin_lock_irqsave(&xhci->lock, flags);
1403                 if (xhci->xhc_state & XHCI_STATE_DYING)
1404                         goto dying;
1405                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1406                                 slot_id, ep_index);
1407                 if (ret)
1408                         goto free_priv;
1409                 spin_unlock_irqrestore(&xhci->lock, flags);
1410         }
1411 exit:
1412         return ret;
1413 dying:
1414         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1415                         "non-responsive xHCI host.\n",
1416                         urb->ep->desc.bEndpointAddress, urb);
1417         ret = -ESHUTDOWN;
1418 free_priv:
1419         xhci_urb_free_priv(xhci, urb_priv);
1420         urb->hcpriv = NULL;
1421         spin_unlock_irqrestore(&xhci->lock, flags);
1422         return ret;
1423 }
1424
1425 /* Get the right ring for the given URB.
1426  * If the endpoint supports streams, boundary check the URB's stream ID.
1427  * If the endpoint doesn't support streams, return the singular endpoint ring.
1428  */
1429 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1430                 struct urb *urb)
1431 {
1432         unsigned int slot_id;
1433         unsigned int ep_index;
1434         unsigned int stream_id;
1435         struct xhci_virt_ep *ep;
1436
1437         slot_id = urb->dev->slot_id;
1438         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1439         stream_id = urb->stream_id;
1440         ep = &xhci->devs[slot_id]->eps[ep_index];
1441         /* Common case: no streams */
1442         if (!(ep->ep_state & EP_HAS_STREAMS))
1443                 return ep->ring;
1444
1445         if (stream_id == 0) {
1446                 xhci_warn(xhci,
1447                                 "WARN: Slot ID %u, ep index %u has streams, "
1448                                 "but URB has no stream ID.\n",
1449                                 slot_id, ep_index);
1450                 return NULL;
1451         }
1452
1453         if (stream_id < ep->stream_info->num_streams)
1454                 return ep->stream_info->stream_rings[stream_id];
1455
1456         xhci_warn(xhci,
1457                         "WARN: Slot ID %u, ep index %u has "
1458                         "stream IDs 1 to %u allocated, "
1459                         "but stream ID %u is requested.\n",
1460                         slot_id, ep_index,
1461                         ep->stream_info->num_streams - 1,
1462                         stream_id);
1463         return NULL;
1464 }
1465
1466 /*
1467  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1468  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1469  * should pick up where it left off in the TD, unless a Set Transfer Ring
1470  * Dequeue Pointer is issued.
1471  *
1472  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1473  * the ring.  Since the ring is a contiguous structure, they can't be physically
1474  * removed.  Instead, there are two options:
1475  *
1476  *  1) If the HC is in the middle of processing the URB to be canceled, we
1477  *     simply move the ring's dequeue pointer past those TRBs using the Set
1478  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1479  *     when drivers timeout on the last submitted URB and attempt to cancel.
1480  *
1481  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1482  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1483  *     HC will need to invalidate the any TRBs it has cached after the stop
1484  *     endpoint command, as noted in the xHCI 0.95 errata.
1485  *
1486  *  3) The TD may have completed by the time the Stop Endpoint Command
1487  *     completes, so software needs to handle that case too.
1488  *
1489  * This function should protect against the TD enqueueing code ringing the
1490  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1491  * It also needs to account for multiple cancellations on happening at the same
1492  * time for the same endpoint.
1493  *
1494  * Note that this function can be called in any context, or so says
1495  * usb_hcd_unlink_urb()
1496  */
1497 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1498 {
1499         unsigned long flags;
1500         int ret, i;
1501         u32 temp;
1502         struct xhci_hcd *xhci;
1503         struct urb_priv *urb_priv;
1504         struct xhci_td *td;
1505         unsigned int ep_index;
1506         struct xhci_ring *ep_ring;
1507         struct xhci_virt_ep *ep;
1508
1509         xhci = hcd_to_xhci(hcd);
1510         spin_lock_irqsave(&xhci->lock, flags);
1511         /* Make sure the URB hasn't completed or been unlinked already */
1512         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1513         if (ret || !urb->hcpriv)
1514                 goto done;
1515         temp = readl(&xhci->op_regs->status);
1516         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1517                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1518                                 "HW died, freeing TD.");
1519                 urb_priv = urb->hcpriv;
1520                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1521                         td = urb_priv->td[i];
1522                         if (!list_empty(&td->td_list))
1523                                 list_del_init(&td->td_list);
1524                         if (!list_empty(&td->cancelled_td_list))
1525                                 list_del_init(&td->cancelled_td_list);
1526                 }
1527
1528                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1529                 spin_unlock_irqrestore(&xhci->lock, flags);
1530                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1531                 xhci_urb_free_priv(xhci, urb_priv);
1532                 return ret;
1533         }
1534         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1535                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1536                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1537                                 "Ep 0x%x: URB %p to be canceled on "
1538                                 "non-responsive xHCI host.",
1539                                 urb->ep->desc.bEndpointAddress, urb);
1540                 /* Let the stop endpoint command watchdog timer (which set this
1541                  * state) finish cleaning up the endpoint TD lists.  We must
1542                  * have caught it in the middle of dropping a lock and giving
1543                  * back an URB.
1544                  */
1545                 goto done;
1546         }
1547
1548         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1549         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1550         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1551         if (!ep_ring) {
1552                 ret = -EINVAL;
1553                 goto done;
1554         }
1555
1556         urb_priv = urb->hcpriv;
1557         i = urb_priv->td_cnt;
1558         if (i < urb_priv->length)
1559                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1560                                 "Cancel URB %p, dev %s, ep 0x%x, "
1561                                 "starting at offset 0x%llx",
1562                                 urb, urb->dev->devpath,
1563                                 urb->ep->desc.bEndpointAddress,
1564                                 (unsigned long long) xhci_trb_virt_to_dma(
1565                                         urb_priv->td[i]->start_seg,
1566                                         urb_priv->td[i]->first_trb));
1567
1568         for (; i < urb_priv->length; i++) {
1569                 td = urb_priv->td[i];
1570                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1571         }
1572
1573         /* Queue a stop endpoint command, but only if this is
1574          * the first cancellation to be handled.
1575          */
1576         if (!(ep->ep_state & EP_HALT_PENDING)) {
1577                 ep->ep_state |= EP_HALT_PENDING;
1578                 ep->stop_cmds_pending++;
1579                 ep->stop_cmd_timer.expires = jiffies +
1580                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1581                 add_timer(&ep->stop_cmd_timer);
1582                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1583                 xhci_ring_cmd_db(xhci);
1584         }
1585 done:
1586         spin_unlock_irqrestore(&xhci->lock, flags);
1587         return ret;
1588 }
1589
1590 /* Drop an endpoint from a new bandwidth configuration for this device.
1591  * Only one call to this function is allowed per endpoint before
1592  * check_bandwidth() or reset_bandwidth() must be called.
1593  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1594  * add the endpoint to the schedule with possibly new parameters denoted by a
1595  * different endpoint descriptor in usb_host_endpoint.
1596  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1597  * not allowed.
1598  *
1599  * The USB core will not allow URBs to be queued to an endpoint that is being
1600  * disabled, so there's no need for mutual exclusion to protect
1601  * the xhci->devs[slot_id] structure.
1602  */
1603 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1604                 struct usb_host_endpoint *ep)
1605 {
1606         struct xhci_hcd *xhci;
1607         struct xhci_container_ctx *in_ctx, *out_ctx;
1608         struct xhci_input_control_ctx *ctrl_ctx;
1609         struct xhci_slot_ctx *slot_ctx;
1610         unsigned int last_ctx;
1611         unsigned int ep_index;
1612         struct xhci_ep_ctx *ep_ctx;
1613         u32 drop_flag;
1614         u32 new_add_flags, new_drop_flags, new_slot_info;
1615         int ret;
1616
1617         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1618         if (ret <= 0)
1619                 return ret;
1620         xhci = hcd_to_xhci(hcd);
1621         if (xhci->xhc_state & XHCI_STATE_DYING)
1622                 return -ENODEV;
1623
1624         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1625         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1626         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1627                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1628                                 __func__, drop_flag);
1629                 return 0;
1630         }
1631
1632         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1633         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1634         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1635         if (!ctrl_ctx) {
1636                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1637                                 __func__);
1638                 return 0;
1639         }
1640
1641         ep_index = xhci_get_endpoint_index(&ep->desc);
1642         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1643         /* If the HC already knows the endpoint is disabled,
1644          * or the HCD has noted it is disabled, ignore this request
1645          */
1646         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1647              cpu_to_le32(EP_STATE_DISABLED)) ||
1648             le32_to_cpu(ctrl_ctx->drop_flags) &
1649             xhci_get_endpoint_flag(&ep->desc)) {
1650                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1651                                 __func__, ep);
1652                 return 0;
1653         }
1654
1655         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1656         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1657
1658         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1659         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1660
1661         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1662         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1663         /* Update the last valid endpoint context, if we deleted the last one */
1664         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1665             LAST_CTX(last_ctx)) {
1666                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1667                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1668         }
1669         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1670
1671         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1672
1673         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1674                         (unsigned int) ep->desc.bEndpointAddress,
1675                         udev->slot_id,
1676                         (unsigned int) new_drop_flags,
1677                         (unsigned int) new_add_flags,
1678                         (unsigned int) new_slot_info);
1679         return 0;
1680 }
1681
1682 /* Add an endpoint to a new possible bandwidth configuration for this device.
1683  * Only one call to this function is allowed per endpoint before
1684  * check_bandwidth() or reset_bandwidth() must be called.
1685  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686  * add the endpoint to the schedule with possibly new parameters denoted by a
1687  * different endpoint descriptor in usb_host_endpoint.
1688  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689  * not allowed.
1690  *
1691  * The USB core will not allow URBs to be queued to an endpoint until the
1692  * configuration or alt setting is installed in the device, so there's no need
1693  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1694  */
1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696                 struct usb_host_endpoint *ep)
1697 {
1698         struct xhci_hcd *xhci;
1699         struct xhci_container_ctx *in_ctx, *out_ctx;
1700         unsigned int ep_index;
1701         struct xhci_slot_ctx *slot_ctx;
1702         struct xhci_input_control_ctx *ctrl_ctx;
1703         u32 added_ctxs;
1704         unsigned int last_ctx;
1705         u32 new_add_flags, new_drop_flags, new_slot_info;
1706         struct xhci_virt_device *virt_dev;
1707         int ret = 0;
1708
1709         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1710         if (ret <= 0) {
1711                 /* So we won't queue a reset ep command for a root hub */
1712                 ep->hcpriv = NULL;
1713                 return ret;
1714         }
1715         xhci = hcd_to_xhci(hcd);
1716         if (xhci->xhc_state & XHCI_STATE_DYING)
1717                 return -ENODEV;
1718
1719         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1720         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1721         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1722                 /* FIXME when we have to issue an evaluate endpoint command to
1723                  * deal with ep0 max packet size changing once we get the
1724                  * descriptors
1725                  */
1726                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1727                                 __func__, added_ctxs);
1728                 return 0;
1729         }
1730
1731         virt_dev = xhci->devs[udev->slot_id];
1732         in_ctx = virt_dev->in_ctx;
1733         out_ctx = virt_dev->out_ctx;
1734         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1735         if (!ctrl_ctx) {
1736                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1737                                 __func__);
1738                 return 0;
1739         }
1740
1741         ep_index = xhci_get_endpoint_index(&ep->desc);
1742         /* If this endpoint is already in use, and the upper layers are trying
1743          * to add it again without dropping it, reject the addition.
1744          */
1745         if (virt_dev->eps[ep_index].ring &&
1746                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1747                                 xhci_get_endpoint_flag(&ep->desc))) {
1748                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1749                                 "without dropping it.\n",
1750                                 (unsigned int) ep->desc.bEndpointAddress);
1751                 return -EINVAL;
1752         }
1753
1754         /* If the HCD has already noted the endpoint is enabled,
1755          * ignore this request.
1756          */
1757         if (le32_to_cpu(ctrl_ctx->add_flags) &
1758             xhci_get_endpoint_flag(&ep->desc)) {
1759                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1760                                 __func__, ep);
1761                 return 0;
1762         }
1763
1764         /*
1765          * Configuration and alternate setting changes must be done in
1766          * process context, not interrupt context (or so documenation
1767          * for usb_set_interface() and usb_set_configuration() claim).
1768          */
1769         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1770                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1771                                 __func__, ep->desc.bEndpointAddress);
1772                 return -ENOMEM;
1773         }
1774
1775         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1776         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1777
1778         /* If xhci_endpoint_disable() was called for this endpoint, but the
1779          * xHC hasn't been notified yet through the check_bandwidth() call,
1780          * this re-adds a new state for the endpoint from the new endpoint
1781          * descriptors.  We must drop and re-add this endpoint, so we leave the
1782          * drop flags alone.
1783          */
1784         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1787         /* Update the last valid endpoint context, if we just added one past */
1788         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1789             LAST_CTX(last_ctx)) {
1790                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1791                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1792         }
1793         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1794
1795         /* Store the usb_device pointer for later use */
1796         ep->hcpriv = udev;
1797
1798         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1799                         (unsigned int) ep->desc.bEndpointAddress,
1800                         udev->slot_id,
1801                         (unsigned int) new_drop_flags,
1802                         (unsigned int) new_add_flags,
1803                         (unsigned int) new_slot_info);
1804         return 0;
1805 }
1806
1807 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1808 {
1809         struct xhci_input_control_ctx *ctrl_ctx;
1810         struct xhci_ep_ctx *ep_ctx;
1811         struct xhci_slot_ctx *slot_ctx;
1812         int i;
1813
1814         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1815         if (!ctrl_ctx) {
1816                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1817                                 __func__);
1818                 return;
1819         }
1820
1821         /* When a device's add flag and drop flag are zero, any subsequent
1822          * configure endpoint command will leave that endpoint's state
1823          * untouched.  Make sure we don't leave any old state in the input
1824          * endpoint contexts.
1825          */
1826         ctrl_ctx->drop_flags = 0;
1827         ctrl_ctx->add_flags = 0;
1828         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1829         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1830         /* Endpoint 0 is always valid */
1831         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1832         for (i = 1; i < 31; ++i) {
1833                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1834                 ep_ctx->ep_info = 0;
1835                 ep_ctx->ep_info2 = 0;
1836                 ep_ctx->deq = 0;
1837                 ep_ctx->tx_info = 0;
1838         }
1839 }
1840
1841 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1842                 struct usb_device *udev, u32 *cmd_status)
1843 {
1844         int ret;
1845
1846         switch (*cmd_status) {
1847         case COMP_ENOMEM:
1848                 dev_warn(&udev->dev, "Not enough host controller resources "
1849                                 "for new device state.\n");
1850                 ret = -ENOMEM;
1851                 /* FIXME: can we allocate more resources for the HC? */
1852                 break;
1853         case COMP_BW_ERR:
1854         case COMP_2ND_BW_ERR:
1855                 dev_warn(&udev->dev, "Not enough bandwidth "
1856                                 "for new device state.\n");
1857                 ret = -ENOSPC;
1858                 /* FIXME: can we go back to the old state? */
1859                 break;
1860         case COMP_TRB_ERR:
1861                 /* the HCD set up something wrong */
1862                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1863                                 "add flag = 1, "
1864                                 "and endpoint is not disabled.\n");
1865                 ret = -EINVAL;
1866                 break;
1867         case COMP_DEV_ERR:
1868                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1869                                 "configure command.\n");
1870                 ret = -ENODEV;
1871                 break;
1872         case COMP_SUCCESS:
1873                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1874                                 "Successful Endpoint Configure command");
1875                 ret = 0;
1876                 break;
1877         default:
1878                 xhci_err(xhci, "ERROR: unexpected command completion "
1879                                 "code 0x%x.\n", *cmd_status);
1880                 ret = -EINVAL;
1881                 break;
1882         }
1883         return ret;
1884 }
1885
1886 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1887                 struct usb_device *udev, u32 *cmd_status)
1888 {
1889         int ret;
1890         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1891
1892         switch (*cmd_status) {
1893         case COMP_EINVAL:
1894                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1895                                 "context command.\n");
1896                 ret = -EINVAL;
1897                 break;
1898         case COMP_EBADSLT:
1899                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1900                                 "evaluate context command.\n");
1901                 ret = -EINVAL;
1902                 break;
1903         case COMP_CTX_STATE:
1904                 dev_warn(&udev->dev, "WARN: invalid context state for "
1905                                 "evaluate context command.\n");
1906                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1907                 ret = -EINVAL;
1908                 break;
1909         case COMP_DEV_ERR:
1910                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1911                                 "context command.\n");
1912                 ret = -ENODEV;
1913                 break;
1914         case COMP_MEL_ERR:
1915                 /* Max Exit Latency too large error */
1916                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1917                 ret = -EINVAL;
1918                 break;
1919         case COMP_SUCCESS:
1920                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1921                                 "Successful evaluate context command");
1922                 ret = 0;
1923                 break;
1924         default:
1925                 xhci_err(xhci, "ERROR: unexpected command completion "
1926                                 "code 0x%x.\n", *cmd_status);
1927                 ret = -EINVAL;
1928                 break;
1929         }
1930         return ret;
1931 }
1932
1933 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1934                 struct xhci_input_control_ctx *ctrl_ctx)
1935 {
1936         u32 valid_add_flags;
1937         u32 valid_drop_flags;
1938
1939         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1940          * (bit 1).  The default control endpoint is added during the Address
1941          * Device command and is never removed until the slot is disabled.
1942          */
1943         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1944         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1945
1946         /* Use hweight32 to count the number of ones in the add flags, or
1947          * number of endpoints added.  Don't count endpoints that are changed
1948          * (both added and dropped).
1949          */
1950         return hweight32(valid_add_flags) -
1951                 hweight32(valid_add_flags & valid_drop_flags);
1952 }
1953
1954 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1955                 struct xhci_input_control_ctx *ctrl_ctx)
1956 {
1957         u32 valid_add_flags;
1958         u32 valid_drop_flags;
1959
1960         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1961         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1962
1963         return hweight32(valid_drop_flags) -
1964                 hweight32(valid_add_flags & valid_drop_flags);
1965 }
1966
1967 /*
1968  * We need to reserve the new number of endpoints before the configure endpoint
1969  * command completes.  We can't subtract the dropped endpoints from the number
1970  * of active endpoints until the command completes because we can oversubscribe
1971  * the host in this case:
1972  *
1973  *  - the first configure endpoint command drops more endpoints than it adds
1974  *  - a second configure endpoint command that adds more endpoints is queued
1975  *  - the first configure endpoint command fails, so the config is unchanged
1976  *  - the second command may succeed, even though there isn't enough resources
1977  *
1978  * Must be called with xhci->lock held.
1979  */
1980 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1981                 struct xhci_input_control_ctx *ctrl_ctx)
1982 {
1983         u32 added_eps;
1984
1985         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1986         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1987                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1988                                 "Not enough ep ctxs: "
1989                                 "%u active, need to add %u, limit is %u.",
1990                                 xhci->num_active_eps, added_eps,
1991                                 xhci->limit_active_eps);
1992                 return -ENOMEM;
1993         }
1994         xhci->num_active_eps += added_eps;
1995         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1996                         "Adding %u ep ctxs, %u now active.", added_eps,
1997                         xhci->num_active_eps);
1998         return 0;
1999 }
2000
2001 /*
2002  * The configure endpoint was failed by the xHC for some other reason, so we
2003  * need to revert the resources that failed configuration would have used.
2004  *
2005  * Must be called with xhci->lock held.
2006  */
2007 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2008                 struct xhci_input_control_ctx *ctrl_ctx)
2009 {
2010         u32 num_failed_eps;
2011
2012         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2013         xhci->num_active_eps -= num_failed_eps;
2014         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2015                         "Removing %u failed ep ctxs, %u now active.",
2016                         num_failed_eps,
2017                         xhci->num_active_eps);
2018 }
2019
2020 /*
2021  * Now that the command has completed, clean up the active endpoint count by
2022  * subtracting out the endpoints that were dropped (but not changed).
2023  *
2024  * Must be called with xhci->lock held.
2025  */
2026 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2027                 struct xhci_input_control_ctx *ctrl_ctx)
2028 {
2029         u32 num_dropped_eps;
2030
2031         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2032         xhci->num_active_eps -= num_dropped_eps;
2033         if (num_dropped_eps)
2034                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2035                                 "Removing %u dropped ep ctxs, %u now active.",
2036                                 num_dropped_eps,
2037                                 xhci->num_active_eps);
2038 }
2039
2040 static unsigned int xhci_get_block_size(struct usb_device *udev)
2041 {
2042         switch (udev->speed) {
2043         case USB_SPEED_LOW:
2044         case USB_SPEED_FULL:
2045                 return FS_BLOCK;
2046         case USB_SPEED_HIGH:
2047                 return HS_BLOCK;
2048         case USB_SPEED_SUPER:
2049                 return SS_BLOCK;
2050         case USB_SPEED_UNKNOWN:
2051         case USB_SPEED_WIRELESS:
2052         default:
2053                 /* Should never happen */
2054                 return 1;
2055         }
2056 }
2057
2058 static unsigned int
2059 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2060 {
2061         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2062                 return LS_OVERHEAD;
2063         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2064                 return FS_OVERHEAD;
2065         return HS_OVERHEAD;
2066 }
2067
2068 /* If we are changing a LS/FS device under a HS hub,
2069  * make sure (if we are activating a new TT) that the HS bus has enough
2070  * bandwidth for this new TT.
2071  */
2072 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2073                 struct xhci_virt_device *virt_dev,
2074                 int old_active_eps)
2075 {
2076         struct xhci_interval_bw_table *bw_table;
2077         struct xhci_tt_bw_info *tt_info;
2078
2079         /* Find the bandwidth table for the root port this TT is attached to. */
2080         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2081         tt_info = virt_dev->tt_info;
2082         /* If this TT already had active endpoints, the bandwidth for this TT
2083          * has already been added.  Removing all periodic endpoints (and thus
2084          * making the TT enactive) will only decrease the bandwidth used.
2085          */
2086         if (old_active_eps)
2087                 return 0;
2088         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2089                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2090                         return -ENOMEM;
2091                 return 0;
2092         }
2093         /* Not sure why we would have no new active endpoints...
2094          *
2095          * Maybe because of an Evaluate Context change for a hub update or a
2096          * control endpoint 0 max packet size change?
2097          * FIXME: skip the bandwidth calculation in that case.
2098          */
2099         return 0;
2100 }
2101
2102 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2103                 struct xhci_virt_device *virt_dev)
2104 {
2105         unsigned int bw_reserved;
2106
2107         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2108         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2109                 return -ENOMEM;
2110
2111         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2112         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2113                 return -ENOMEM;
2114
2115         return 0;
2116 }
2117
2118 /*
2119  * This algorithm is a very conservative estimate of the worst-case scheduling
2120  * scenario for any one interval.  The hardware dynamically schedules the
2121  * packets, so we can't tell which microframe could be the limiting factor in
2122  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2123  *
2124  * Obviously, we can't solve an NP complete problem to find the minimum worst
2125  * case scenario.  Instead, we come up with an estimate that is no less than
2126  * the worst case bandwidth used for any one microframe, but may be an
2127  * over-estimate.
2128  *
2129  * We walk the requirements for each endpoint by interval, starting with the
2130  * smallest interval, and place packets in the schedule where there is only one
2131  * possible way to schedule packets for that interval.  In order to simplify
2132  * this algorithm, we record the largest max packet size for each interval, and
2133  * assume all packets will be that size.
2134  *
2135  * For interval 0, we obviously must schedule all packets for each interval.
2136  * The bandwidth for interval 0 is just the amount of data to be transmitted
2137  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2138  * the number of packets).
2139  *
2140  * For interval 1, we have two possible microframes to schedule those packets
2141  * in.  For this algorithm, if we can schedule the same number of packets for
2142  * each possible scheduling opportunity (each microframe), we will do so.  The
2143  * remaining number of packets will be saved to be transmitted in the gaps in
2144  * the next interval's scheduling sequence.
2145  *
2146  * As we move those remaining packets to be scheduled with interval 2 packets,
2147  * we have to double the number of remaining packets to transmit.  This is
2148  * because the intervals are actually powers of 2, and we would be transmitting
2149  * the previous interval's packets twice in this interval.  We also have to be
2150  * sure that when we look at the largest max packet size for this interval, we
2151  * also look at the largest max packet size for the remaining packets and take
2152  * the greater of the two.
2153  *
2154  * The algorithm continues to evenly distribute packets in each scheduling
2155  * opportunity, and push the remaining packets out, until we get to the last
2156  * interval.  Then those packets and their associated overhead are just added
2157  * to the bandwidth used.
2158  */
2159 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2160                 struct xhci_virt_device *virt_dev,
2161                 int old_active_eps)
2162 {
2163         unsigned int bw_reserved;
2164         unsigned int max_bandwidth;
2165         unsigned int bw_used;
2166         unsigned int block_size;
2167         struct xhci_interval_bw_table *bw_table;
2168         unsigned int packet_size = 0;
2169         unsigned int overhead = 0;
2170         unsigned int packets_transmitted = 0;
2171         unsigned int packets_remaining = 0;
2172         unsigned int i;
2173
2174         if (virt_dev->udev->speed == USB_SPEED_SUPER)
2175                 return xhci_check_ss_bw(xhci, virt_dev);
2176
2177         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2178                 max_bandwidth = HS_BW_LIMIT;
2179                 /* Convert percent of bus BW reserved to blocks reserved */
2180                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2181         } else {
2182                 max_bandwidth = FS_BW_LIMIT;
2183                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2184         }
2185
2186         bw_table = virt_dev->bw_table;
2187         /* We need to translate the max packet size and max ESIT payloads into
2188          * the units the hardware uses.
2189          */
2190         block_size = xhci_get_block_size(virt_dev->udev);
2191
2192         /* If we are manipulating a LS/FS device under a HS hub, double check
2193          * that the HS bus has enough bandwidth if we are activing a new TT.
2194          */
2195         if (virt_dev->tt_info) {
2196                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197                                 "Recalculating BW for rootport %u",
2198                                 virt_dev->real_port);
2199                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2200                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2201                                         "newly activated TT.\n");
2202                         return -ENOMEM;
2203                 }
2204                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2205                                 "Recalculating BW for TT slot %u port %u",
2206                                 virt_dev->tt_info->slot_id,
2207                                 virt_dev->tt_info->ttport);
2208         } else {
2209                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2210                                 "Recalculating BW for rootport %u",
2211                                 virt_dev->real_port);
2212         }
2213
2214         /* Add in how much bandwidth will be used for interval zero, or the
2215          * rounded max ESIT payload + number of packets * largest overhead.
2216          */
2217         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2218                 bw_table->interval_bw[0].num_packets *
2219                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2220
2221         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2222                 unsigned int bw_added;
2223                 unsigned int largest_mps;
2224                 unsigned int interval_overhead;
2225
2226                 /*
2227                  * How many packets could we transmit in this interval?
2228                  * If packets didn't fit in the previous interval, we will need
2229                  * to transmit that many packets twice within this interval.
2230                  */
2231                 packets_remaining = 2 * packets_remaining +
2232                         bw_table->interval_bw[i].num_packets;
2233
2234                 /* Find the largest max packet size of this or the previous
2235                  * interval.
2236                  */
2237                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2238                         largest_mps = 0;
2239                 else {
2240                         struct xhci_virt_ep *virt_ep;
2241                         struct list_head *ep_entry;
2242
2243                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2244                         virt_ep = list_entry(ep_entry,
2245                                         struct xhci_virt_ep, bw_endpoint_list);
2246                         /* Convert to blocks, rounding up */
2247                         largest_mps = DIV_ROUND_UP(
2248                                         virt_ep->bw_info.max_packet_size,
2249                                         block_size);
2250                 }
2251                 if (largest_mps > packet_size)
2252                         packet_size = largest_mps;
2253
2254                 /* Use the larger overhead of this or the previous interval. */
2255                 interval_overhead = xhci_get_largest_overhead(
2256                                 &bw_table->interval_bw[i]);
2257                 if (interval_overhead > overhead)
2258                         overhead = interval_overhead;
2259
2260                 /* How many packets can we evenly distribute across
2261                  * (1 << (i + 1)) possible scheduling opportunities?
2262                  */
2263                 packets_transmitted = packets_remaining >> (i + 1);
2264
2265                 /* Add in the bandwidth used for those scheduled packets */
2266                 bw_added = packets_transmitted * (overhead + packet_size);
2267
2268                 /* How many packets do we have remaining to transmit? */
2269                 packets_remaining = packets_remaining % (1 << (i + 1));
2270
2271                 /* What largest max packet size should those packets have? */
2272                 /* If we've transmitted all packets, don't carry over the
2273                  * largest packet size.
2274                  */
2275                 if (packets_remaining == 0) {
2276                         packet_size = 0;
2277                         overhead = 0;
2278                 } else if (packets_transmitted > 0) {
2279                         /* Otherwise if we do have remaining packets, and we've
2280                          * scheduled some packets in this interval, take the
2281                          * largest max packet size from endpoints with this
2282                          * interval.
2283                          */
2284                         packet_size = largest_mps;
2285                         overhead = interval_overhead;
2286                 }
2287                 /* Otherwise carry over packet_size and overhead from the last
2288                  * time we had a remainder.
2289                  */
2290                 bw_used += bw_added;
2291                 if (bw_used > max_bandwidth) {
2292                         xhci_warn(xhci, "Not enough bandwidth. "
2293                                         "Proposed: %u, Max: %u\n",
2294                                 bw_used, max_bandwidth);
2295                         return -ENOMEM;
2296                 }
2297         }
2298         /*
2299          * Ok, we know we have some packets left over after even-handedly
2300          * scheduling interval 15.  We don't know which microframes they will
2301          * fit into, so we over-schedule and say they will be scheduled every
2302          * microframe.
2303          */
2304         if (packets_remaining > 0)
2305                 bw_used += overhead + packet_size;
2306
2307         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2308                 unsigned int port_index = virt_dev->real_port - 1;
2309
2310                 /* OK, we're manipulating a HS device attached to a
2311                  * root port bandwidth domain.  Include the number of active TTs
2312                  * in the bandwidth used.
2313                  */
2314                 bw_used += TT_HS_OVERHEAD *
2315                         xhci->rh_bw[port_index].num_active_tts;
2316         }
2317
2318         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2319                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2320                 "Available: %u " "percent",
2321                 bw_used, max_bandwidth, bw_reserved,
2322                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2323                 max_bandwidth);
2324
2325         bw_used += bw_reserved;
2326         if (bw_used > max_bandwidth) {
2327                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2328                                 bw_used, max_bandwidth);
2329                 return -ENOMEM;
2330         }
2331
2332         bw_table->bw_used = bw_used;
2333         return 0;
2334 }
2335
2336 static bool xhci_is_async_ep(unsigned int ep_type)
2337 {
2338         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2339                                         ep_type != ISOC_IN_EP &&
2340                                         ep_type != INT_IN_EP);
2341 }
2342
2343 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2344 {
2345         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2346 }
2347
2348 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2349 {
2350         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2351
2352         if (ep_bw->ep_interval == 0)
2353                 return SS_OVERHEAD_BURST +
2354                         (ep_bw->mult * ep_bw->num_packets *
2355                                         (SS_OVERHEAD + mps));
2356         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2357                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2358                                 1 << ep_bw->ep_interval);
2359
2360 }
2361
2362 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2363                 struct xhci_bw_info *ep_bw,
2364                 struct xhci_interval_bw_table *bw_table,
2365                 struct usb_device *udev,
2366                 struct xhci_virt_ep *virt_ep,
2367                 struct xhci_tt_bw_info *tt_info)
2368 {
2369         struct xhci_interval_bw *interval_bw;
2370         int normalized_interval;
2371
2372         if (xhci_is_async_ep(ep_bw->type))
2373                 return;
2374
2375         if (udev->speed == USB_SPEED_SUPER) {
2376                 if (xhci_is_sync_in_ep(ep_bw->type))
2377                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2378                                 xhci_get_ss_bw_consumed(ep_bw);
2379                 else
2380                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2381                                 xhci_get_ss_bw_consumed(ep_bw);
2382                 return;
2383         }
2384
2385         /* SuperSpeed endpoints never get added to intervals in the table, so
2386          * this check is only valid for HS/FS/LS devices.
2387          */
2388         if (list_empty(&virt_ep->bw_endpoint_list))
2389                 return;
2390         /* For LS/FS devices, we need to translate the interval expressed in
2391          * microframes to frames.
2392          */
2393         if (udev->speed == USB_SPEED_HIGH)
2394                 normalized_interval = ep_bw->ep_interval;
2395         else
2396                 normalized_interval = ep_bw->ep_interval - 3;
2397
2398         if (normalized_interval == 0)
2399                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2400         interval_bw = &bw_table->interval_bw[normalized_interval];
2401         interval_bw->num_packets -= ep_bw->num_packets;
2402         switch (udev->speed) {
2403         case USB_SPEED_LOW:
2404                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2405                 break;
2406         case USB_SPEED_FULL:
2407                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2408                 break;
2409         case USB_SPEED_HIGH:
2410                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2411                 break;
2412         case USB_SPEED_SUPER:
2413         case USB_SPEED_UNKNOWN:
2414         case USB_SPEED_WIRELESS:
2415                 /* Should never happen because only LS/FS/HS endpoints will get
2416                  * added to the endpoint list.
2417                  */
2418                 return;
2419         }
2420         if (tt_info)
2421                 tt_info->active_eps -= 1;
2422         list_del_init(&virt_ep->bw_endpoint_list);
2423 }
2424
2425 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2426                 struct xhci_bw_info *ep_bw,
2427                 struct xhci_interval_bw_table *bw_table,
2428                 struct usb_device *udev,
2429                 struct xhci_virt_ep *virt_ep,
2430                 struct xhci_tt_bw_info *tt_info)
2431 {
2432         struct xhci_interval_bw *interval_bw;
2433         struct xhci_virt_ep *smaller_ep;
2434         int normalized_interval;
2435
2436         if (xhci_is_async_ep(ep_bw->type))
2437                 return;
2438
2439         if (udev->speed == USB_SPEED_SUPER) {
2440                 if (xhci_is_sync_in_ep(ep_bw->type))
2441                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2442                                 xhci_get_ss_bw_consumed(ep_bw);
2443                 else
2444                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2445                                 xhci_get_ss_bw_consumed(ep_bw);
2446                 return;
2447         }
2448
2449         /* For LS/FS devices, we need to translate the interval expressed in
2450          * microframes to frames.
2451          */
2452         if (udev->speed == USB_SPEED_HIGH)
2453                 normalized_interval = ep_bw->ep_interval;
2454         else
2455                 normalized_interval = ep_bw->ep_interval - 3;
2456
2457         if (normalized_interval == 0)
2458                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2459         interval_bw = &bw_table->interval_bw[normalized_interval];
2460         interval_bw->num_packets += ep_bw->num_packets;
2461         switch (udev->speed) {
2462         case USB_SPEED_LOW:
2463                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2464                 break;
2465         case USB_SPEED_FULL:
2466                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2467                 break;
2468         case USB_SPEED_HIGH:
2469                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2470                 break;
2471         case USB_SPEED_SUPER:
2472         case USB_SPEED_UNKNOWN:
2473         case USB_SPEED_WIRELESS:
2474                 /* Should never happen because only LS/FS/HS endpoints will get
2475                  * added to the endpoint list.
2476                  */
2477                 return;
2478         }
2479
2480         if (tt_info)
2481                 tt_info->active_eps += 1;
2482         /* Insert the endpoint into the list, largest max packet size first. */
2483         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2484                         bw_endpoint_list) {
2485                 if (ep_bw->max_packet_size >=
2486                                 smaller_ep->bw_info.max_packet_size) {
2487                         /* Add the new ep before the smaller endpoint */
2488                         list_add_tail(&virt_ep->bw_endpoint_list,
2489                                         &smaller_ep->bw_endpoint_list);
2490                         return;
2491                 }
2492         }
2493         /* Add the new endpoint at the end of the list. */
2494         list_add_tail(&virt_ep->bw_endpoint_list,
2495                         &interval_bw->endpoints);
2496 }
2497
2498 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2499                 struct xhci_virt_device *virt_dev,
2500                 int old_active_eps)
2501 {
2502         struct xhci_root_port_bw_info *rh_bw_info;
2503         if (!virt_dev->tt_info)
2504                 return;
2505
2506         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2507         if (old_active_eps == 0 &&
2508                                 virt_dev->tt_info->active_eps != 0) {
2509                 rh_bw_info->num_active_tts += 1;
2510                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2511         } else if (old_active_eps != 0 &&
2512                                 virt_dev->tt_info->active_eps == 0) {
2513                 rh_bw_info->num_active_tts -= 1;
2514                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2515         }
2516 }
2517
2518 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2519                 struct xhci_virt_device *virt_dev,
2520                 struct xhci_container_ctx *in_ctx)
2521 {
2522         struct xhci_bw_info ep_bw_info[31];
2523         int i;
2524         struct xhci_input_control_ctx *ctrl_ctx;
2525         int old_active_eps = 0;
2526
2527         if (virt_dev->tt_info)
2528                 old_active_eps = virt_dev->tt_info->active_eps;
2529
2530         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2531         if (!ctrl_ctx) {
2532                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2533                                 __func__);
2534                 return -ENOMEM;
2535         }
2536
2537         for (i = 0; i < 31; i++) {
2538                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539                         continue;
2540
2541                 /* Make a copy of the BW info in case we need to revert this */
2542                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2543                                 sizeof(ep_bw_info[i]));
2544                 /* Drop the endpoint from the interval table if the endpoint is
2545                  * being dropped or changed.
2546                  */
2547                 if (EP_IS_DROPPED(ctrl_ctx, i))
2548                         xhci_drop_ep_from_interval_table(xhci,
2549                                         &virt_dev->eps[i].bw_info,
2550                                         virt_dev->bw_table,
2551                                         virt_dev->udev,
2552                                         &virt_dev->eps[i],
2553                                         virt_dev->tt_info);
2554         }
2555         /* Overwrite the information stored in the endpoints' bw_info */
2556         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2557         for (i = 0; i < 31; i++) {
2558                 /* Add any changed or added endpoints to the interval table */
2559                 if (EP_IS_ADDED(ctrl_ctx, i))
2560                         xhci_add_ep_to_interval_table(xhci,
2561                                         &virt_dev->eps[i].bw_info,
2562                                         virt_dev->bw_table,
2563                                         virt_dev->udev,
2564                                         &virt_dev->eps[i],
2565                                         virt_dev->tt_info);
2566         }
2567
2568         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2569                 /* Ok, this fits in the bandwidth we have.
2570                  * Update the number of active TTs.
2571                  */
2572                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2573                 return 0;
2574         }
2575
2576         /* We don't have enough bandwidth for this, revert the stored info. */
2577         for (i = 0; i < 31; i++) {
2578                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2579                         continue;
2580
2581                 /* Drop the new copies of any added or changed endpoints from
2582                  * the interval table.
2583                  */
2584                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2585                         xhci_drop_ep_from_interval_table(xhci,
2586                                         &virt_dev->eps[i].bw_info,
2587                                         virt_dev->bw_table,
2588                                         virt_dev->udev,
2589                                         &virt_dev->eps[i],
2590                                         virt_dev->tt_info);
2591                 }
2592                 /* Revert the endpoint back to its old information */
2593                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2594                                 sizeof(ep_bw_info[i]));
2595                 /* Add any changed or dropped endpoints back into the table */
2596                 if (EP_IS_DROPPED(ctrl_ctx, i))
2597                         xhci_add_ep_to_interval_table(xhci,
2598                                         &virt_dev->eps[i].bw_info,
2599                                         virt_dev->bw_table,
2600                                         virt_dev->udev,
2601                                         &virt_dev->eps[i],
2602                                         virt_dev->tt_info);
2603         }
2604         return -ENOMEM;
2605 }
2606
2607
2608 /* Issue a configure endpoint command or evaluate context command
2609  * and wait for it to finish.
2610  */
2611 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2612                 struct usb_device *udev,
2613                 struct xhci_command *command,
2614                 bool ctx_change, bool must_succeed)
2615 {
2616         int ret;
2617         int timeleft;
2618         unsigned long flags;
2619         struct xhci_container_ctx *in_ctx;
2620         struct xhci_input_control_ctx *ctrl_ctx;
2621         struct completion *cmd_completion;
2622         u32 *cmd_status;
2623         struct xhci_virt_device *virt_dev;
2624         union xhci_trb *cmd_trb;
2625
2626         spin_lock_irqsave(&xhci->lock, flags);
2627         virt_dev = xhci->devs[udev->slot_id];
2628
2629         if (command)
2630                 in_ctx = command->in_ctx;
2631         else
2632                 in_ctx = virt_dev->in_ctx;
2633         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2634         if (!ctrl_ctx) {
2635                 spin_unlock_irqrestore(&xhci->lock, flags);
2636                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2637                                 __func__);
2638                 return -ENOMEM;
2639         }
2640
2641         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2642                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2643                 spin_unlock_irqrestore(&xhci->lock, flags);
2644                 xhci_warn(xhci, "Not enough host resources, "
2645                                 "active endpoint contexts = %u\n",
2646                                 xhci->num_active_eps);
2647                 return -ENOMEM;
2648         }
2649         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2650                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2651                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652                         xhci_free_host_resources(xhci, ctrl_ctx);
2653                 spin_unlock_irqrestore(&xhci->lock, flags);
2654                 xhci_warn(xhci, "Not enough bandwidth\n");
2655                 return -ENOMEM;
2656         }
2657
2658         if (command) {
2659                 cmd_completion = command->completion;
2660                 cmd_status = &command->status;
2661                 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2662                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2663         } else {
2664                 cmd_completion = &virt_dev->cmd_completion;
2665                 cmd_status = &virt_dev->cmd_status;
2666         }
2667         init_completion(cmd_completion);
2668
2669         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2670         if (!ctx_change)
2671                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2672                                 udev->slot_id, must_succeed);
2673         else
2674                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2675                                 udev->slot_id, must_succeed);
2676         if (ret < 0) {
2677                 if (command)
2678                         list_del(&command->cmd_list);
2679                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2680                         xhci_free_host_resources(xhci, ctrl_ctx);
2681                 spin_unlock_irqrestore(&xhci->lock, flags);
2682                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2683                                 "FIXME allocate a new ring segment");
2684                 return -ENOMEM;
2685         }
2686         xhci_ring_cmd_db(xhci);
2687         spin_unlock_irqrestore(&xhci->lock, flags);
2688
2689         /* Wait for the configure endpoint command to complete */
2690         timeleft = wait_for_completion_interruptible_timeout(
2691                         cmd_completion,
2692                         XHCI_CMD_DEFAULT_TIMEOUT);
2693         if (timeleft <= 0) {
2694                 xhci_warn(xhci, "%s while waiting for %s command\n",
2695                                 timeleft == 0 ? "Timeout" : "Signal",
2696                                 ctx_change == 0 ?
2697                                         "configure endpoint" :
2698                                         "evaluate context");
2699                 /* cancel the configure endpoint command */
2700                 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2701                 if (ret < 0)
2702                         return ret;
2703                 return -ETIME;
2704         }
2705
2706         if (!ctx_change)
2707                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2708         else
2709                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2710
2711         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2712                 spin_lock_irqsave(&xhci->lock, flags);
2713                 /* If the command failed, remove the reserved resources.
2714                  * Otherwise, clean up the estimate to include dropped eps.
2715                  */
2716                 if (ret)
2717                         xhci_free_host_resources(xhci, ctrl_ctx);
2718                 else
2719                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2720                 spin_unlock_irqrestore(&xhci->lock, flags);
2721         }
2722         return ret;
2723 }
2724
2725 /* Called after one or more calls to xhci_add_endpoint() or
2726  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2727  * to call xhci_reset_bandwidth().
2728  *
2729  * Since we are in the middle of changing either configuration or
2730  * installing a new alt setting, the USB core won't allow URBs to be
2731  * enqueued for any endpoint on the old config or interface.  Nothing
2732  * else should be touching the xhci->devs[slot_id] structure, so we
2733  * don't need to take the xhci->lock for manipulating that.
2734  */
2735 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2736 {
2737         int i;
2738         int ret = 0;
2739         struct xhci_hcd *xhci;
2740         struct xhci_virt_device *virt_dev;
2741         struct xhci_input_control_ctx *ctrl_ctx;
2742         struct xhci_slot_ctx *slot_ctx;
2743
2744         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2745         if (ret <= 0)
2746                 return ret;
2747         xhci = hcd_to_xhci(hcd);
2748         if (xhci->xhc_state & XHCI_STATE_DYING)
2749                 return -ENODEV;
2750
2751         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2752         virt_dev = xhci->devs[udev->slot_id];
2753
2754         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2755         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2756         if (!ctrl_ctx) {
2757                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2758                                 __func__);
2759                 return -ENOMEM;
2760         }
2761         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2762         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2763         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2764
2765         /* Don't issue the command if there's no endpoints to update. */
2766         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2767                         ctrl_ctx->drop_flags == 0)
2768                 return 0;
2769
2770         xhci_dbg(xhci, "New Input Control Context:\n");
2771         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2772         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2773                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2774
2775         ret = xhci_configure_endpoint(xhci, udev, NULL,
2776                         false, false);
2777         if (ret) {
2778                 /* Callee should call reset_bandwidth() */
2779                 return ret;
2780         }
2781
2782         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2783         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2784                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2785
2786         /* Free any rings that were dropped, but not changed. */
2787         for (i = 1; i < 31; ++i) {
2788                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2789                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2790                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2791         }
2792         xhci_zero_in_ctx(xhci, virt_dev);
2793         /*
2794          * Install any rings for completely new endpoints or changed endpoints,
2795          * and free or cache any old rings from changed endpoints.
2796          */
2797         for (i = 1; i < 31; ++i) {
2798                 if (!virt_dev->eps[i].new_ring)
2799                         continue;
2800                 /* Only cache or free the old ring if it exists.
2801                  * It may not if this is the first add of an endpoint.
2802                  */
2803                 if (virt_dev->eps[i].ring) {
2804                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2805                 }
2806                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2807                 virt_dev->eps[i].new_ring = NULL;
2808         }
2809
2810         return ret;
2811 }
2812
2813 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2814 {
2815         struct xhci_hcd *xhci;
2816         struct xhci_virt_device *virt_dev;
2817         int i, ret;
2818
2819         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2820         if (ret <= 0)
2821                 return;
2822         xhci = hcd_to_xhci(hcd);
2823
2824         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2825         virt_dev = xhci->devs[udev->slot_id];
2826         /* Free any rings allocated for added endpoints */
2827         for (i = 0; i < 31; ++i) {
2828                 if (virt_dev->eps[i].new_ring) {
2829                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2830                         virt_dev->eps[i].new_ring = NULL;
2831                 }
2832         }
2833         xhci_zero_in_ctx(xhci, virt_dev);
2834 }
2835
2836 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2837                 struct xhci_container_ctx *in_ctx,
2838                 struct xhci_container_ctx *out_ctx,
2839                 struct xhci_input_control_ctx *ctrl_ctx,
2840                 u32 add_flags, u32 drop_flags)
2841 {
2842         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2843         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2844         xhci_slot_copy(xhci, in_ctx, out_ctx);
2845         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2846
2847         xhci_dbg(xhci, "Input Context:\n");
2848         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2849 }
2850
2851 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2852                 unsigned int slot_id, unsigned int ep_index,
2853                 struct xhci_dequeue_state *deq_state)
2854 {
2855         struct xhci_input_control_ctx *ctrl_ctx;
2856         struct xhci_container_ctx *in_ctx;
2857         struct xhci_ep_ctx *ep_ctx;
2858         u32 added_ctxs;
2859         dma_addr_t addr;
2860
2861         in_ctx = xhci->devs[slot_id]->in_ctx;
2862         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2863         if (!ctrl_ctx) {
2864                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2865                                 __func__);
2866                 return;
2867         }
2868
2869         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2870                         xhci->devs[slot_id]->out_ctx, ep_index);
2871         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2872         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2873                         deq_state->new_deq_ptr);
2874         if (addr == 0) {
2875                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2876                                 "reset ep command\n");
2877                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2878                                 deq_state->new_deq_seg,
2879                                 deq_state->new_deq_ptr);
2880                 return;
2881         }
2882         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2883
2884         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2885         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2886                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2887                         added_ctxs, added_ctxs);
2888 }
2889
2890 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2891                 struct usb_device *udev, unsigned int ep_index)
2892 {
2893         struct xhci_dequeue_state deq_state;
2894         struct xhci_virt_ep *ep;
2895
2896         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2897                         "Cleaning up stalled endpoint ring");
2898         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2899         /* We need to move the HW's dequeue pointer past this TD,
2900          * or it will attempt to resend it on the next doorbell ring.
2901          */
2902         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2903                         ep_index, ep->stopped_stream, ep->stopped_td,
2904                         &deq_state);
2905
2906         /* HW with the reset endpoint quirk will use the saved dequeue state to
2907          * issue a configure endpoint command later.
2908          */
2909         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2910                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2911                                 "Queueing new dequeue state");
2912                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2913                                 ep_index, ep->stopped_stream, &deq_state);
2914         } else {
2915                 /* Better hope no one uses the input context between now and the
2916                  * reset endpoint completion!
2917                  * XXX: No idea how this hardware will react when stream rings
2918                  * are enabled.
2919                  */
2920                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2921                                 "Setting up input context for "
2922                                 "configure endpoint command");
2923                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2924                                 ep_index, &deq_state);
2925         }
2926 }
2927
2928 /* Deal with stalled endpoints.  The core should have sent the control message
2929  * to clear the halt condition.  However, we need to make the xHCI hardware
2930  * reset its sequence number, since a device will expect a sequence number of
2931  * zero after the halt condition is cleared.
2932  * Context: in_interrupt
2933  */
2934 void xhci_endpoint_reset(struct usb_hcd *hcd,
2935                 struct usb_host_endpoint *ep)
2936 {
2937         struct xhci_hcd *xhci;
2938         struct usb_device *udev;
2939         unsigned int ep_index;
2940         unsigned long flags;
2941         int ret;
2942         struct xhci_virt_ep *virt_ep;
2943
2944         xhci = hcd_to_xhci(hcd);
2945         udev = (struct usb_device *) ep->hcpriv;
2946         /* Called with a root hub endpoint (or an endpoint that wasn't added
2947          * with xhci_add_endpoint()
2948          */
2949         if (!ep->hcpriv)
2950                 return;
2951         ep_index = xhci_get_endpoint_index(&ep->desc);
2952         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2953         if (!virt_ep->stopped_td) {
2954                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2955                         "Endpoint 0x%x not halted, refusing to reset.",
2956                         ep->desc.bEndpointAddress);
2957                 return;
2958         }
2959         if (usb_endpoint_xfer_control(&ep->desc)) {
2960                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2961                                 "Control endpoint stall already handled.");
2962                 return;
2963         }
2964
2965         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2966                         "Queueing reset endpoint command");
2967         spin_lock_irqsave(&xhci->lock, flags);
2968         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2969         /*
2970          * Can't change the ring dequeue pointer until it's transitioned to the
2971          * stopped state, which is only upon a successful reset endpoint
2972          * command.  Better hope that last command worked!
2973          */
2974         if (!ret) {
2975                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2976                 kfree(virt_ep->stopped_td);
2977                 xhci_ring_cmd_db(xhci);
2978         }
2979         virt_ep->stopped_td = NULL;
2980         virt_ep->stopped_stream = 0;
2981         spin_unlock_irqrestore(&xhci->lock, flags);
2982
2983         if (ret)
2984                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2985 }
2986
2987 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2988                 struct usb_device *udev, struct usb_host_endpoint *ep,
2989                 unsigned int slot_id)
2990 {
2991         int ret;
2992         unsigned int ep_index;
2993         unsigned int ep_state;
2994
2995         if (!ep)
2996                 return -EINVAL;
2997         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2998         if (ret <= 0)
2999                 return -EINVAL;
3000         if (ep->ss_ep_comp.bmAttributes == 0) {
3001                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3002                                 " descriptor for ep 0x%x does not support streams\n",
3003                                 ep->desc.bEndpointAddress);
3004                 return -EINVAL;
3005         }
3006
3007         ep_index = xhci_get_endpoint_index(&ep->desc);
3008         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3009         if (ep_state & EP_HAS_STREAMS ||
3010                         ep_state & EP_GETTING_STREAMS) {
3011                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3012                                 "already has streams set up.\n",
3013                                 ep->desc.bEndpointAddress);
3014                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3015                                 "dynamic stream context array reallocation.\n");
3016                 return -EINVAL;
3017         }
3018         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3019                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3020                                 "endpoint 0x%x; URBs are pending.\n",
3021                                 ep->desc.bEndpointAddress);
3022                 return -EINVAL;
3023         }
3024         return 0;
3025 }
3026
3027 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3028                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3029 {
3030         unsigned int max_streams;
3031
3032         /* The stream context array size must be a power of two */
3033         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3034         /*
3035          * Find out how many primary stream array entries the host controller
3036          * supports.  Later we may use secondary stream arrays (similar to 2nd
3037          * level page entries), but that's an optional feature for xHCI host
3038          * controllers. xHCs must support at least 4 stream IDs.
3039          */
3040         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3041         if (*num_stream_ctxs > max_streams) {
3042                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3043                                 max_streams);
3044                 *num_stream_ctxs = max_streams;
3045                 *num_streams = max_streams;
3046         }
3047 }
3048
3049 /* Returns an error code if one of the endpoint already has streams.
3050  * This does not change any data structures, it only checks and gathers
3051  * information.
3052  */
3053 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3054                 struct usb_device *udev,
3055                 struct usb_host_endpoint **eps, unsigned int num_eps,
3056                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3057 {
3058         unsigned int max_streams;
3059         unsigned int endpoint_flag;
3060         int i;
3061         int ret;
3062
3063         for (i = 0; i < num_eps; i++) {
3064                 ret = xhci_check_streams_endpoint(xhci, udev,
3065                                 eps[i], udev->slot_id);
3066                 if (ret < 0)
3067                         return ret;
3068
3069                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3070                 if (max_streams < (*num_streams - 1)) {
3071                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3072                                         eps[i]->desc.bEndpointAddress,
3073                                         max_streams);
3074                         *num_streams = max_streams+1;
3075                 }
3076
3077                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3078                 if (*changed_ep_bitmask & endpoint_flag)
3079                         return -EINVAL;
3080                 *changed_ep_bitmask |= endpoint_flag;
3081         }
3082         return 0;
3083 }
3084
3085 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3086                 struct usb_device *udev,
3087                 struct usb_host_endpoint **eps, unsigned int num_eps)
3088 {
3089         u32 changed_ep_bitmask = 0;
3090         unsigned int slot_id;
3091         unsigned int ep_index;
3092         unsigned int ep_state;
3093         int i;
3094
3095         slot_id = udev->slot_id;
3096         if (!xhci->devs[slot_id])
3097                 return 0;
3098
3099         for (i = 0; i < num_eps; i++) {
3100                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3101                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3102                 /* Are streams already being freed for the endpoint? */
3103                 if (ep_state & EP_GETTING_NO_STREAMS) {
3104                         xhci_warn(xhci, "WARN Can't disable streams for "
3105                                         "endpoint 0x%x, "
3106                                         "streams are being disabled already\n",
3107                                         eps[i]->desc.bEndpointAddress);
3108                         return 0;
3109                 }
3110                 /* Are there actually any streams to free? */
3111                 if (!(ep_state & EP_HAS_STREAMS) &&
3112                                 !(ep_state & EP_GETTING_STREAMS)) {
3113                         xhci_warn(xhci, "WARN Can't disable streams for "
3114                                         "endpoint 0x%x, "
3115                                         "streams are already disabled!\n",
3116                                         eps[i]->desc.bEndpointAddress);
3117                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3118                                         "with non-streams endpoint\n");
3119                         return 0;
3120                 }
3121                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3122         }
3123         return changed_ep_bitmask;
3124 }
3125
3126 /*
3127  * The USB device drivers use this function (though the HCD interface in USB
3128  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3129  * coordinate mass storage command queueing across multiple endpoints (basically
3130  * a stream ID == a task ID).
3131  *
3132  * Setting up streams involves allocating the same size stream context array
3133  * for each endpoint and issuing a configure endpoint command for all endpoints.
3134  *
3135  * Don't allow the call to succeed if one endpoint only supports one stream
3136  * (which means it doesn't support streams at all).
3137  *
3138  * Drivers may get less stream IDs than they asked for, if the host controller
3139  * hardware or endpoints claim they can't support the number of requested
3140  * stream IDs.
3141  */
3142 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3143                 struct usb_host_endpoint **eps, unsigned int num_eps,
3144                 unsigned int num_streams, gfp_t mem_flags)
3145 {
3146         int i, ret;
3147         struct xhci_hcd *xhci;
3148         struct xhci_virt_device *vdev;
3149         struct xhci_command *config_cmd;
3150         struct xhci_input_control_ctx *ctrl_ctx;
3151         unsigned int ep_index;
3152         unsigned int num_stream_ctxs;
3153         unsigned long flags;
3154         u32 changed_ep_bitmask = 0;
3155
3156         if (!eps)
3157                 return -EINVAL;
3158
3159         /* Add one to the number of streams requested to account for
3160          * stream 0 that is reserved for xHCI usage.
3161          */
3162         num_streams += 1;
3163         xhci = hcd_to_xhci(hcd);
3164         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3165                         num_streams);
3166
3167         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3168         if (!config_cmd) {
3169                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3170                 return -ENOMEM;
3171         }
3172         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3173         if (!ctrl_ctx) {
3174                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3175                                 __func__);
3176                 xhci_free_command(xhci, config_cmd);
3177                 return -ENOMEM;
3178         }
3179
3180         /* Check to make sure all endpoints are not already configured for
3181          * streams.  While we're at it, find the maximum number of streams that
3182          * all the endpoints will support and check for duplicate endpoints.
3183          */
3184         spin_lock_irqsave(&xhci->lock, flags);
3185         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3186                         num_eps, &num_streams, &changed_ep_bitmask);
3187         if (ret < 0) {
3188                 xhci_free_command(xhci, config_cmd);
3189                 spin_unlock_irqrestore(&xhci->lock, flags);
3190                 return ret;
3191         }
3192         if (num_streams <= 1) {
3193                 xhci_warn(xhci, "WARN: endpoints can't handle "
3194                                 "more than one stream.\n");
3195                 xhci_free_command(xhci, config_cmd);
3196                 spin_unlock_irqrestore(&xhci->lock, flags);
3197                 return -EINVAL;
3198         }
3199         vdev = xhci->devs[udev->slot_id];
3200         /* Mark each endpoint as being in transition, so
3201          * xhci_urb_enqueue() will reject all URBs.
3202          */
3203         for (i = 0; i < num_eps; i++) {
3204                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3205                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3206         }
3207         spin_unlock_irqrestore(&xhci->lock, flags);
3208
3209         /* Setup internal data structures and allocate HW data structures for
3210          * streams (but don't install the HW structures in the input context
3211          * until we're sure all memory allocation succeeded).
3212          */
3213         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3214         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3215                         num_stream_ctxs, num_streams);
3216
3217         for (i = 0; i < num_eps; i++) {
3218                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3219                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220                                 num_stream_ctxs,
3221                                 num_streams, mem_flags);
3222                 if (!vdev->eps[ep_index].stream_info)
3223                         goto cleanup;
3224                 /* Set maxPstreams in endpoint context and update deq ptr to
3225                  * point to stream context array. FIXME
3226                  */
3227         }
3228
3229         /* Set up the input context for a configure endpoint command. */
3230         for (i = 0; i < num_eps; i++) {
3231                 struct xhci_ep_ctx *ep_ctx;
3232
3233                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3234                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3235
3236                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3237                                 vdev->out_ctx, ep_index);
3238                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3239                                 vdev->eps[ep_index].stream_info);
3240         }
3241         /* Tell the HW to drop its old copy of the endpoint context info
3242          * and add the updated copy from the input context.
3243          */
3244         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3245                         vdev->out_ctx, ctrl_ctx,
3246                         changed_ep_bitmask, changed_ep_bitmask);
3247
3248         /* Issue and wait for the configure endpoint command */
3249         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3250                         false, false);
3251
3252         /* xHC rejected the configure endpoint command for some reason, so we
3253          * leave the old ring intact and free our internal streams data
3254          * structure.
3255          */
3256         if (ret < 0)
3257                 goto cleanup;
3258
3259         spin_lock_irqsave(&xhci->lock, flags);
3260         for (i = 0; i < num_eps; i++) {
3261                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3262                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3263                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3264                          udev->slot_id, ep_index);
3265                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3266         }
3267         xhci_free_command(xhci, config_cmd);
3268         spin_unlock_irqrestore(&xhci->lock, flags);
3269
3270         /* Subtract 1 for stream 0, which drivers can't use */
3271         return num_streams - 1;
3272
3273 cleanup:
3274         /* If it didn't work, free the streams! */
3275         for (i = 0; i < num_eps; i++) {
3276                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3277                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3278                 vdev->eps[ep_index].stream_info = NULL;
3279                 /* FIXME Unset maxPstreams in endpoint context and
3280                  * update deq ptr to point to normal string ring.
3281                  */
3282                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3283                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3284                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3285         }
3286         xhci_free_command(xhci, config_cmd);
3287         return -ENOMEM;
3288 }
3289
3290 /* Transition the endpoint from using streams to being a "normal" endpoint
3291  * without streams.
3292  *
3293  * Modify the endpoint context state, submit a configure endpoint command,
3294  * and free all endpoint rings for streams if that completes successfully.
3295  */
3296 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3297                 struct usb_host_endpoint **eps, unsigned int num_eps,
3298                 gfp_t mem_flags)
3299 {
3300         int i, ret;
3301         struct xhci_hcd *xhci;
3302         struct xhci_virt_device *vdev;
3303         struct xhci_command *command;
3304         struct xhci_input_control_ctx *ctrl_ctx;
3305         unsigned int ep_index;
3306         unsigned long flags;
3307         u32 changed_ep_bitmask;
3308
3309         xhci = hcd_to_xhci(hcd);
3310         vdev = xhci->devs[udev->slot_id];
3311
3312         /* Set up a configure endpoint command to remove the streams rings */
3313         spin_lock_irqsave(&xhci->lock, flags);
3314         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3315                         udev, eps, num_eps);
3316         if (changed_ep_bitmask == 0) {
3317                 spin_unlock_irqrestore(&xhci->lock, flags);
3318                 return -EINVAL;
3319         }
3320
3321         /* Use the xhci_command structure from the first endpoint.  We may have
3322          * allocated too many, but the driver may call xhci_free_streams() for
3323          * each endpoint it grouped into one call to xhci_alloc_streams().
3324          */
3325         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3326         command = vdev->eps[ep_index].stream_info->free_streams_command;
3327         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3328         if (!ctrl_ctx) {
3329                 spin_unlock_irqrestore(&xhci->lock, flags);
3330                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3331                                 __func__);
3332                 return -EINVAL;
3333         }
3334
3335         for (i = 0; i < num_eps; i++) {
3336                 struct xhci_ep_ctx *ep_ctx;
3337
3338                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3339                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3340                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3341                         EP_GETTING_NO_STREAMS;
3342
3343                 xhci_endpoint_copy(xhci, command->in_ctx,
3344                                 vdev->out_ctx, ep_index);
3345                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3346                                 &vdev->eps[ep_index]);
3347         }
3348         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3349                         vdev->out_ctx, ctrl_ctx,
3350                         changed_ep_bitmask, changed_ep_bitmask);
3351         spin_unlock_irqrestore(&xhci->lock, flags);
3352
3353         /* Issue and wait for the configure endpoint command,
3354          * which must succeed.
3355          */
3356         ret = xhci_configure_endpoint(xhci, udev, command,
3357                         false, true);
3358
3359         /* xHC rejected the configure endpoint command for some reason, so we
3360          * leave the streams rings intact.
3361          */
3362         if (ret < 0)
3363                 return ret;
3364
3365         spin_lock_irqsave(&xhci->lock, flags);
3366         for (i = 0; i < num_eps; i++) {
3367                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3368                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3369                 vdev->eps[ep_index].stream_info = NULL;
3370                 /* FIXME Unset maxPstreams in endpoint context and
3371                  * update deq ptr to point to normal string ring.
3372                  */
3373                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3374                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3375         }
3376         spin_unlock_irqrestore(&xhci->lock, flags);
3377
3378         return 0;
3379 }
3380
3381 /*
3382  * Deletes endpoint resources for endpoints that were active before a Reset
3383  * Device command, or a Disable Slot command.  The Reset Device command leaves
3384  * the control endpoint intact, whereas the Disable Slot command deletes it.
3385  *
3386  * Must be called with xhci->lock held.
3387  */
3388 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3389         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3390 {
3391         int i;
3392         unsigned int num_dropped_eps = 0;
3393         unsigned int drop_flags = 0;
3394
3395         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3396                 if (virt_dev->eps[i].ring) {
3397                         drop_flags |= 1 << i;
3398                         num_dropped_eps++;
3399                 }
3400         }
3401         xhci->num_active_eps -= num_dropped_eps;
3402         if (num_dropped_eps)
3403                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3404                                 "Dropped %u ep ctxs, flags = 0x%x, "
3405                                 "%u now active.",
3406                                 num_dropped_eps, drop_flags,
3407                                 xhci->num_active_eps);
3408 }
3409
3410 /*
3411  * This submits a Reset Device Command, which will set the device state to 0,
3412  * set the device address to 0, and disable all the endpoints except the default
3413  * control endpoint.  The USB core should come back and call
3414  * xhci_address_device(), and then re-set up the configuration.  If this is
3415  * called because of a usb_reset_and_verify_device(), then the old alternate
3416  * settings will be re-installed through the normal bandwidth allocation
3417  * functions.
3418  *
3419  * Wait for the Reset Device command to finish.  Remove all structures
3420  * associated with the endpoints that were disabled.  Clear the input device
3421  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3422  *
3423  * If the virt_dev to be reset does not exist or does not match the udev,
3424  * it means the device is lost, possibly due to the xHC restore error and
3425  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3426  * re-allocate the device.
3427  */
3428 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3429 {
3430         int ret, i;
3431         unsigned long flags;
3432         struct xhci_hcd *xhci;
3433         unsigned int slot_id;
3434         struct xhci_virt_device *virt_dev;
3435         struct xhci_command *reset_device_cmd;
3436         int timeleft;
3437         int last_freed_endpoint;
3438         struct xhci_slot_ctx *slot_ctx;
3439         int old_active_eps = 0;
3440
3441         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442         if (ret <= 0)
3443                 return ret;
3444         xhci = hcd_to_xhci(hcd);
3445         slot_id = udev->slot_id;
3446         virt_dev = xhci->devs[slot_id];
3447         if (!virt_dev) {
3448                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449                                 "not exist. Re-allocate the device\n", slot_id);
3450                 ret = xhci_alloc_dev(hcd, udev);
3451                 if (ret == 1)
3452                         return 0;
3453                 else
3454                         return -EINVAL;
3455         }
3456
3457         if (virt_dev->udev != udev) {
3458                 /* If the virt_dev and the udev does not match, this virt_dev
3459                  * may belong to another udev.
3460                  * Re-allocate the device.
3461                  */
3462                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3463                                 "not match the udev. Re-allocate the device\n",
3464                                 slot_id);
3465                 ret = xhci_alloc_dev(hcd, udev);
3466                 if (ret == 1)
3467                         return 0;
3468                 else
3469                         return -EINVAL;
3470         }
3471
3472         /* If device is not setup, there is no point in resetting it */
3473         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3474         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3475                                                 SLOT_STATE_DISABLED)
3476                 return 0;
3477
3478         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3479         /* Allocate the command structure that holds the struct completion.
3480          * Assume we're in process context, since the normal device reset
3481          * process has to wait for the device anyway.  Storage devices are
3482          * reset as part of error handling, so use GFP_NOIO instead of
3483          * GFP_KERNEL.
3484          */
3485         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3486         if (!reset_device_cmd) {
3487                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3488                 return -ENOMEM;
3489         }
3490
3491         /* Attempt to submit the Reset Device command to the command ring */
3492         spin_lock_irqsave(&xhci->lock, flags);
3493         reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3494
3495         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3496         ret = xhci_queue_reset_device(xhci, slot_id);
3497         if (ret) {
3498                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3499                 list_del(&reset_device_cmd->cmd_list);
3500                 spin_unlock_irqrestore(&xhci->lock, flags);
3501                 goto command_cleanup;
3502         }
3503         xhci_ring_cmd_db(xhci);
3504         spin_unlock_irqrestore(&xhci->lock, flags);
3505
3506         /* Wait for the Reset Device command to finish */
3507         timeleft = wait_for_completion_interruptible_timeout(
3508                         reset_device_cmd->completion,
3509                         XHCI_CMD_DEFAULT_TIMEOUT);
3510         if (timeleft <= 0) {
3511                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3512                                 timeleft == 0 ? "Timeout" : "Signal");
3513                 spin_lock_irqsave(&xhci->lock, flags);
3514                 /* The timeout might have raced with the event ring handler, so
3515                  * only delete from the list if the item isn't poisoned.
3516                  */
3517                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3518                         list_del(&reset_device_cmd->cmd_list);
3519                 spin_unlock_irqrestore(&xhci->lock, flags);
3520                 ret = -ETIME;
3521                 goto command_cleanup;
3522         }
3523
3524         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3525          * unless we tried to reset a slot ID that wasn't enabled,
3526          * or the device wasn't in the addressed or configured state.
3527          */
3528         ret = reset_device_cmd->status;
3529         switch (ret) {
3530         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3531         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3532                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3533                                 slot_id,
3534                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3535                 xhci_dbg(xhci, "Not freeing device rings.\n");
3536                 /* Don't treat this as an error.  May change my mind later. */
3537                 ret = 0;
3538                 goto command_cleanup;
3539         case COMP_SUCCESS:
3540                 xhci_dbg(xhci, "Successful reset device command.\n");
3541                 break;
3542         default:
3543                 if (xhci_is_vendor_info_code(xhci, ret))
3544                         break;
3545                 xhci_warn(xhci, "Unknown completion code %u for "
3546                                 "reset device command.\n", ret);
3547                 ret = -EINVAL;
3548                 goto command_cleanup;
3549         }
3550
3551         /* Free up host controller endpoint resources */
3552         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3553                 spin_lock_irqsave(&xhci->lock, flags);
3554                 /* Don't delete the default control endpoint resources */
3555                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3556                 spin_unlock_irqrestore(&xhci->lock, flags);
3557         }
3558
3559         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3560         last_freed_endpoint = 1;
3561         for (i = 1; i < 31; ++i) {
3562                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3563
3564                 if (ep->ep_state & EP_HAS_STREAMS) {
3565                         xhci_free_stream_info(xhci, ep->stream_info);
3566                         ep->stream_info = NULL;
3567                         ep->ep_state &= ~EP_HAS_STREAMS;
3568                 }
3569
3570                 if (ep->ring) {
3571                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3572                         last_freed_endpoint = i;
3573                 }
3574                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3575                         xhci_drop_ep_from_interval_table(xhci,
3576                                         &virt_dev->eps[i].bw_info,
3577                                         virt_dev->bw_table,
3578                                         udev,
3579                                         &virt_dev->eps[i],
3580                                         virt_dev->tt_info);
3581                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3582         }
3583         /* If necessary, update the number of active TTs on this root port */
3584         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3585
3586         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3587         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3588         ret = 0;
3589
3590 command_cleanup:
3591         xhci_free_command(xhci, reset_device_cmd);
3592         return ret;
3593 }
3594
3595 /*
3596  * At this point, the struct usb_device is about to go away, the device has
3597  * disconnected, and all traffic has been stopped and the endpoints have been
3598  * disabled.  Free any HC data structures associated with that device.
3599  */
3600 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3601 {
3602         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3603         struct xhci_virt_device *virt_dev;
3604         unsigned long flags;
3605         u32 state;
3606         int i, ret;
3607
3608 #ifndef CONFIG_USB_DEFAULT_PERSIST
3609         /*
3610          * We called pm_runtime_get_noresume when the device was attached.
3611          * Decrement the counter here to allow controller to runtime suspend
3612          * if no devices remain.
3613          */
3614         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3615                 pm_runtime_put_noidle(hcd->self.controller);
3616 #endif
3617
3618         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3619         /* If the host is halted due to driver unload, we still need to free the
3620          * device.
3621          */
3622         if (ret <= 0 && ret != -ENODEV)
3623                 return;
3624
3625         virt_dev = xhci->devs[udev->slot_id];
3626
3627         /* Stop any wayward timer functions (which may grab the lock) */
3628         for (i = 0; i < 31; ++i) {
3629                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3630                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3631         }
3632
3633         spin_lock_irqsave(&xhci->lock, flags);
3634         /* Don't disable the slot if the host controller is dead. */
3635         state = readl(&xhci->op_regs->status);
3636         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3637                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3638                 xhci_free_virt_device(xhci, udev->slot_id);
3639                 spin_unlock_irqrestore(&xhci->lock, flags);
3640                 return;
3641         }
3642
3643         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3644                 spin_unlock_irqrestore(&xhci->lock, flags);
3645                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3646                 return;
3647         }
3648         xhci_ring_cmd_db(xhci);
3649         spin_unlock_irqrestore(&xhci->lock, flags);
3650         /*
3651          * Event command completion handler will free any data structures
3652          * associated with the slot.  XXX Can free sleep?
3653          */
3654 }
3655
3656 /*
3657  * Checks if we have enough host controller resources for the default control
3658  * endpoint.
3659  *
3660  * Must be called with xhci->lock held.
3661  */
3662 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3663 {
3664         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3665                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3666                                 "Not enough ep ctxs: "
3667                                 "%u active, need to add 1, limit is %u.",
3668                                 xhci->num_active_eps, xhci->limit_active_eps);
3669                 return -ENOMEM;
3670         }
3671         xhci->num_active_eps += 1;
3672         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673                         "Adding 1 ep ctx, %u now active.",
3674                         xhci->num_active_eps);
3675         return 0;
3676 }
3677
3678
3679 /*
3680  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3681  * timed out, or allocating memory failed.  Returns 1 on success.
3682  */
3683 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3684 {
3685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686         unsigned long flags;
3687         int timeleft;
3688         int ret;
3689         union xhci_trb *cmd_trb;
3690
3691         spin_lock_irqsave(&xhci->lock, flags);
3692         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3693         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3694         if (ret) {
3695                 spin_unlock_irqrestore(&xhci->lock, flags);
3696                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697                 return 0;
3698         }
3699         xhci_ring_cmd_db(xhci);
3700         spin_unlock_irqrestore(&xhci->lock, flags);
3701
3702         /* XXX: how much time for xHC slot assignment? */
3703         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3704                         XHCI_CMD_DEFAULT_TIMEOUT);
3705         if (timeleft <= 0) {
3706                 xhci_warn(xhci, "%s while waiting for a slot\n",
3707                                 timeleft == 0 ? "Timeout" : "Signal");
3708                 /* cancel the enable slot request */
3709                 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3710         }
3711
3712         if (!xhci->slot_id) {
3713                 xhci_err(xhci, "Error while assigning device slot ID\n");
3714                 return 0;
3715         }
3716
3717         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3718                 spin_lock_irqsave(&xhci->lock, flags);
3719                 ret = xhci_reserve_host_control_ep_resources(xhci);
3720                 if (ret) {
3721                         spin_unlock_irqrestore(&xhci->lock, flags);
3722                         xhci_warn(xhci, "Not enough host resources, "
3723                                         "active endpoint contexts = %u\n",
3724                                         xhci->num_active_eps);
3725                         goto disable_slot;
3726                 }
3727                 spin_unlock_irqrestore(&xhci->lock, flags);
3728         }
3729         /* Use GFP_NOIO, since this function can be called from
3730          * xhci_discover_or_reset_device(), which may be called as part of
3731          * mass storage driver error handling.
3732          */
3733         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3734                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3735                 goto disable_slot;
3736         }
3737         udev->slot_id = xhci->slot_id;
3738
3739 #ifndef CONFIG_USB_DEFAULT_PERSIST
3740         /*
3741          * If resetting upon resume, we can't put the controller into runtime
3742          * suspend if there is a device attached.
3743          */
3744         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3745                 pm_runtime_get_noresume(hcd->self.controller);
3746 #endif
3747
3748         /* Is this a LS or FS device under a HS hub? */
3749         /* Hub or peripherial? */
3750         return 1;
3751
3752 disable_slot:
3753         /* Disable slot, if we can do it without mem alloc */
3754         spin_lock_irqsave(&xhci->lock, flags);
3755         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3756                 xhci_ring_cmd_db(xhci);
3757         spin_unlock_irqrestore(&xhci->lock, flags);
3758         return 0;
3759 }
3760
3761 /*
3762  * Issue an Address Device command and optionally send a corresponding
3763  * SetAddress request to the device.
3764  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3765  * we should only issue and wait on one address command at the same time.
3766  */
3767 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3768                              enum xhci_setup_dev setup)
3769 {
3770         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3771         unsigned long flags;
3772         int timeleft;
3773         struct xhci_virt_device *virt_dev;
3774         int ret = 0;
3775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3776         struct xhci_slot_ctx *slot_ctx;
3777         struct xhci_input_control_ctx *ctrl_ctx;
3778         u64 temp_64;
3779         union xhci_trb *cmd_trb;
3780
3781         if (!udev->slot_id) {
3782                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3783                                 "Bad Slot ID %d", udev->slot_id);
3784                 return -EINVAL;
3785         }
3786
3787         virt_dev = xhci->devs[udev->slot_id];
3788
3789         if (WARN_ON(!virt_dev)) {
3790                 /*
3791                  * In plug/unplug torture test with an NEC controller,
3792                  * a zero-dereference was observed once due to virt_dev = 0.
3793                  * Print useful debug rather than crash if it is observed again!
3794                  */
3795                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3796                         udev->slot_id);
3797                 return -EINVAL;
3798         }
3799
3800         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3801         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3802         if (!ctrl_ctx) {
3803                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3804                                 __func__);
3805                 return -EINVAL;
3806         }
3807         /*
3808          * If this is the first Set Address since device plug-in or
3809          * virt_device realloaction after a resume with an xHCI power loss,
3810          * then set up the slot context.
3811          */
3812         if (!slot_ctx->dev_info)
3813                 xhci_setup_addressable_virt_dev(xhci, udev);
3814         /* Otherwise, update the control endpoint ring enqueue pointer. */
3815         else
3816                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3817         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3818         ctrl_ctx->drop_flags = 0;
3819
3820         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3821         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3822         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3823                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3824
3825         spin_lock_irqsave(&xhci->lock, flags);
3826         cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3827         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3828                                         udev->slot_id, setup);
3829         if (ret) {
3830                 spin_unlock_irqrestore(&xhci->lock, flags);
3831                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3832                                 "FIXME: allocate a command ring segment");
3833                 return ret;
3834         }
3835         xhci_ring_cmd_db(xhci);
3836         spin_unlock_irqrestore(&xhci->lock, flags);
3837
3838         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3839         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3840                         XHCI_CMD_DEFAULT_TIMEOUT);
3841         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3842          * the SetAddress() "recovery interval" required by USB and aborting the
3843          * command on a timeout.
3844          */
3845         if (timeleft <= 0) {
3846                 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3847                           timeleft == 0 ? "Timeout" : "Signal", act);
3848                 /* cancel the address device command */
3849                 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3850                 if (ret < 0)
3851                         return ret;
3852                 return -ETIME;
3853         }
3854
3855         switch (virt_dev->cmd_status) {
3856         case COMP_CTX_STATE:
3857         case COMP_EBADSLT:
3858                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3859                          act, udev->slot_id);
3860                 ret = -EINVAL;
3861                 break;
3862         case COMP_TX_ERR:
3863                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3864                 ret = -EPROTO;
3865                 break;
3866         case COMP_DEV_ERR:
3867                 dev_warn(&udev->dev,
3868                          "ERROR: Incompatible device for setup %s command\n", act);
3869                 ret = -ENODEV;
3870                 break;
3871         case COMP_SUCCESS:
3872                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3873                                "Successful setup %s command", act);
3874                 break;
3875         default:
3876                 xhci_err(xhci,
3877                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3878                          act, virt_dev->cmd_status);
3879                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3880                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3881                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3882                 ret = -EINVAL;
3883                 break;
3884         }
3885         if (ret) {
3886                 return ret;
3887         }
3888         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3889         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3890                         "Op regs DCBAA ptr = %#016llx", temp_64);
3891         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3892                 "Slot ID %d dcbaa entry @%p = %#016llx",
3893                 udev->slot_id,
3894                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3895                 (unsigned long long)
3896                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3897         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3898                         "Output Context DMA address = %#08llx",
3899                         (unsigned long long)virt_dev->out_ctx->dma);
3900         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3901         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3902         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3903                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3904         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3905         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3906         /*
3907          * USB core uses address 1 for the roothubs, so we add one to the
3908          * address given back to us by the HC.
3909          */
3910         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3911         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3912                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3913         /* Zero the input context control for later use */
3914         ctrl_ctx->add_flags = 0;
3915         ctrl_ctx->drop_flags = 0;
3916
3917         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                        "Internal device address = %d",
3919                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3920
3921         return 0;
3922 }
3923
3924 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3925 {
3926         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3927 }
3928
3929 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3930 {
3931         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3932 }
3933
3934 /*
3935  * Transfer the port index into real index in the HW port status
3936  * registers. Caculate offset between the port's PORTSC register
3937  * and port status base. Divide the number of per port register
3938  * to get the real index. The raw port number bases 1.
3939  */
3940 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3941 {
3942         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3943         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3944         __le32 __iomem *addr;
3945         int raw_port;
3946
3947         if (hcd->speed != HCD_USB3)
3948                 addr = xhci->usb2_ports[port1 - 1];
3949         else
3950                 addr = xhci->usb3_ports[port1 - 1];
3951
3952         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3953         return raw_port;
3954 }
3955
3956 /*
3957  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3958  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3959  */
3960 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3961                         struct usb_device *udev, u16 max_exit_latency)
3962 {
3963         struct xhci_virt_device *virt_dev;
3964         struct xhci_command *command;
3965         struct xhci_input_control_ctx *ctrl_ctx;
3966         struct xhci_slot_ctx *slot_ctx;
3967         unsigned long flags;
3968         int ret;
3969
3970         spin_lock_irqsave(&xhci->lock, flags);
3971
3972         virt_dev = xhci->devs[udev->slot_id];
3973
3974         /*
3975          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3976          * xHC was re-initialized. Exit latency will be set later after
3977          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3978          */
3979
3980         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3981                 spin_unlock_irqrestore(&xhci->lock, flags);
3982                 return 0;
3983         }
3984
3985         /* Attempt to issue an Evaluate Context command to change the MEL. */
3986         command = xhci->lpm_command;
3987         ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3988         if (!ctrl_ctx) {
3989                 spin_unlock_irqrestore(&xhci->lock, flags);
3990                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3991                                 __func__);
3992                 return -ENOMEM;
3993         }
3994
3995         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3996         spin_unlock_irqrestore(&xhci->lock, flags);
3997
3998         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3999         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4000         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4001         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4002
4003         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4004                         "Set up evaluate context for LPM MEL change.");
4005         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4006         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4007
4008         /* Issue and wait for the evaluate context command. */
4009         ret = xhci_configure_endpoint(xhci, udev, command,
4010                         true, true);
4011         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4012         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4013
4014         if (!ret) {
4015                 spin_lock_irqsave(&xhci->lock, flags);
4016                 virt_dev->current_mel = max_exit_latency;
4017                 spin_unlock_irqrestore(&xhci->lock, flags);
4018         }
4019         return ret;
4020 }
4021
4022 #ifdef CONFIG_PM_RUNTIME
4023
4024 /* BESL to HIRD Encoding array for USB2 LPM */
4025 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4026         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4027
4028 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4029 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4030                                         struct usb_device *udev)
4031 {
4032         int u2del, besl, besl_host;
4033         int besl_device = 0;
4034         u32 field;
4035
4036         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4037         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4038
4039         if (field & USB_BESL_SUPPORT) {
4040                 for (besl_host = 0; besl_host < 16; besl_host++) {
4041                         if (xhci_besl_encoding[besl_host] >= u2del)
4042                                 break;
4043                 }
4044                 /* Use baseline BESL value as default */
4045                 if (field & USB_BESL_BASELINE_VALID)
4046                         besl_device = USB_GET_BESL_BASELINE(field);
4047                 else if (field & USB_BESL_DEEP_VALID)
4048                         besl_device = USB_GET_BESL_DEEP(field);
4049         } else {
4050                 if (u2del <= 50)
4051                         besl_host = 0;
4052                 else
4053                         besl_host = (u2del - 51) / 75 + 1;
4054         }
4055
4056         besl = besl_host + besl_device;
4057         if (besl > 15)
4058                 besl = 15;
4059
4060         return besl;
4061 }
4062
4063 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4064 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4065 {
4066         u32 field;
4067         int l1;
4068         int besld = 0;
4069         int hirdm = 0;
4070
4071         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072
4073         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4074         l1 = udev->l1_params.timeout / 256;
4075
4076         /* device has preferred BESLD */
4077         if (field & USB_BESL_DEEP_VALID) {
4078                 besld = USB_GET_BESL_DEEP(field);
4079                 hirdm = 1;
4080         }
4081
4082         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4083 }
4084
4085 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4086                         struct usb_device *udev, int enable)
4087 {
4088         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4089         __le32 __iomem  **port_array;
4090         __le32 __iomem  *pm_addr, *hlpm_addr;
4091         u32             pm_val, hlpm_val, field;
4092         unsigned int    port_num;
4093         unsigned long   flags;
4094         int             hird, exit_latency;
4095         int             ret;
4096
4097         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4098                         !udev->lpm_capable)
4099                 return -EPERM;
4100
4101         if (!udev->parent || udev->parent->parent ||
4102                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4103                 return -EPERM;
4104
4105         if (udev->usb2_hw_lpm_capable != 1)
4106                 return -EPERM;
4107
4108         spin_lock_irqsave(&xhci->lock, flags);
4109
4110         port_array = xhci->usb2_ports;
4111         port_num = udev->portnum - 1;
4112         pm_addr = port_array[port_num] + PORTPMSC;
4113         pm_val = readl(pm_addr);
4114         hlpm_addr = port_array[port_num] + PORTHLPMC;
4115         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4116
4117         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4118                         enable ? "enable" : "disable", port_num);
4119
4120         if (enable) {
4121                 /* Host supports BESL timeout instead of HIRD */
4122                 if (udev->usb2_hw_lpm_besl_capable) {
4123                         /* if device doesn't have a preferred BESL value use a
4124                          * default one which works with mixed HIRD and BESL
4125                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4126                          */
4127                         if ((field & USB_BESL_SUPPORT) &&
4128                             (field & USB_BESL_BASELINE_VALID))
4129                                 hird = USB_GET_BESL_BASELINE(field);
4130                         else
4131                                 hird = udev->l1_params.besl;
4132
4133                         exit_latency = xhci_besl_encoding[hird];
4134                         spin_unlock_irqrestore(&xhci->lock, flags);
4135
4136                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4137                          * input context for link powermanagement evaluate
4138                          * context commands. It is protected by hcd->bandwidth
4139                          * mutex and is shared by all devices. We need to set
4140                          * the max ext latency in USB 2 BESL LPM as well, so
4141                          * use the same mutex and xhci_change_max_exit_latency()
4142                          */
4143                         mutex_lock(hcd->bandwidth_mutex);
4144                         ret = xhci_change_max_exit_latency(xhci, udev,
4145                                                            exit_latency);
4146                         mutex_unlock(hcd->bandwidth_mutex);
4147
4148                         if (ret < 0)
4149                                 return ret;
4150                         spin_lock_irqsave(&xhci->lock, flags);
4151
4152                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4153                         writel(hlpm_val, hlpm_addr);
4154                         /* flush write */
4155                         readl(hlpm_addr);
4156                 } else {
4157                         hird = xhci_calculate_hird_besl(xhci, udev);
4158                 }
4159
4160                 pm_val &= ~PORT_HIRD_MASK;
4161                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4162                 writel(pm_val, pm_addr);
4163                 pm_val = readl(pm_addr);
4164                 pm_val |= PORT_HLE;
4165                 writel(pm_val, pm_addr);
4166                 /* flush write */
4167                 readl(pm_addr);
4168         } else {
4169                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4170                 writel(pm_val, pm_addr);
4171                 /* flush write */
4172                 readl(pm_addr);
4173                 if (udev->usb2_hw_lpm_besl_capable) {
4174                         spin_unlock_irqrestore(&xhci->lock, flags);
4175                         mutex_lock(hcd->bandwidth_mutex);
4176                         xhci_change_max_exit_latency(xhci, udev, 0);
4177                         mutex_unlock(hcd->bandwidth_mutex);
4178                         return 0;
4179                 }
4180         }
4181
4182         spin_unlock_irqrestore(&xhci->lock, flags);
4183         return 0;
4184 }
4185
4186 /* check if a usb2 port supports a given extened capability protocol
4187  * only USB2 ports extended protocol capability values are cached.
4188  * Return 1 if capability is supported
4189  */
4190 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4191                                            unsigned capability)
4192 {
4193         u32 port_offset, port_count;
4194         int i;
4195
4196         for (i = 0; i < xhci->num_ext_caps; i++) {
4197                 if (xhci->ext_caps[i] & capability) {
4198                         /* port offsets starts at 1 */
4199                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4200                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4201                         if (port >= port_offset &&
4202                             port < port_offset + port_count)
4203                                 return 1;
4204                 }
4205         }
4206         return 0;
4207 }
4208
4209 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4210 {
4211         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4212         int             portnum = udev->portnum - 1;
4213
4214         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4215                         !udev->lpm_capable)
4216                 return 0;
4217
4218         /* we only support lpm for non-hub device connected to root hub yet */
4219         if (!udev->parent || udev->parent->parent ||
4220                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4221                 return 0;
4222
4223         if (xhci->hw_lpm_support == 1 &&
4224                         xhci_check_usb2_port_capability(
4225                                 xhci, portnum, XHCI_HLC)) {
4226                 udev->usb2_hw_lpm_capable = 1;
4227                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4228                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4229                 if (xhci_check_usb2_port_capability(xhci, portnum,
4230                                         XHCI_BLC))
4231                         udev->usb2_hw_lpm_besl_capable = 1;
4232         }
4233
4234         return 0;
4235 }
4236
4237 #else
4238
4239 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4240                                 struct usb_device *udev, int enable)
4241 {
4242         return 0;
4243 }
4244
4245 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4246 {
4247         return 0;
4248 }
4249
4250 #endif /* CONFIG_PM_RUNTIME */
4251
4252 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4253
4254 #ifdef CONFIG_PM
4255 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4256 static unsigned long long xhci_service_interval_to_ns(
4257                 struct usb_endpoint_descriptor *desc)
4258 {
4259         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4260 }
4261
4262 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4263                 enum usb3_link_state state)
4264 {
4265         unsigned long long sel;
4266         unsigned long long pel;
4267         unsigned int max_sel_pel;
4268         char *state_name;
4269
4270         switch (state) {
4271         case USB3_LPM_U1:
4272                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4273                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4274                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4275                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4276                 state_name = "U1";
4277                 break;
4278         case USB3_LPM_U2:
4279                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4280                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4281                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4282                 state_name = "U2";
4283                 break;
4284         default:
4285                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4286                                 __func__);
4287                 return USB3_LPM_DISABLED;
4288         }
4289
4290         if (sel <= max_sel_pel && pel <= max_sel_pel)
4291                 return USB3_LPM_DEVICE_INITIATED;
4292
4293         if (sel > max_sel_pel)
4294                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4295                                 "due to long SEL %llu ms\n",
4296                                 state_name, sel);
4297         else
4298                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4299                                 "due to long PEL %llu ms\n",
4300                                 state_name, pel);
4301         return USB3_LPM_DISABLED;
4302 }
4303
4304 /* Returns the hub-encoded U1 timeout value.
4305  * The U1 timeout should be the maximum of the following values:
4306  *  - For control endpoints, U1 system exit latency (SEL) * 3
4307  *  - For bulk endpoints, U1 SEL * 5
4308  *  - For interrupt endpoints:
4309  *    - Notification EPs, U1 SEL * 3
4310  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4311  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4312  */
4313 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4314                 struct usb_endpoint_descriptor *desc)
4315 {
4316         unsigned long long timeout_ns;
4317         int ep_type;
4318         int intr_type;
4319
4320         ep_type = usb_endpoint_type(desc);
4321         switch (ep_type) {
4322         case USB_ENDPOINT_XFER_CONTROL:
4323                 timeout_ns = udev->u1_params.sel * 3;
4324                 break;
4325         case USB_ENDPOINT_XFER_BULK:
4326                 timeout_ns = udev->u1_params.sel * 5;
4327                 break;
4328         case USB_ENDPOINT_XFER_INT:
4329                 intr_type = usb_endpoint_interrupt_type(desc);
4330                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4331                         timeout_ns = udev->u1_params.sel * 3;
4332                         break;
4333                 }
4334                 /* Otherwise the calculation is the same as isoc eps */
4335         case USB_ENDPOINT_XFER_ISOC:
4336                 timeout_ns = xhci_service_interval_to_ns(desc);
4337                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4338                 if (timeout_ns < udev->u1_params.sel * 2)
4339                         timeout_ns = udev->u1_params.sel * 2;
4340                 break;
4341         default:
4342                 return 0;
4343         }
4344
4345         /* The U1 timeout is encoded in 1us intervals. */
4346         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4347         /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4348         if (timeout_ns == USB3_LPM_DISABLED)
4349                 timeout_ns++;
4350
4351         /* If the necessary timeout value is bigger than what we can set in the
4352          * USB 3.0 hub, we have to disable hub-initiated U1.
4353          */
4354         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4355                 return timeout_ns;
4356         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4357                         "due to long timeout %llu ms\n", timeout_ns);
4358         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4359 }
4360
4361 /* Returns the hub-encoded U2 timeout value.
4362  * The U2 timeout should be the maximum of:
4363  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4364  *  - largest bInterval of any active periodic endpoint (to avoid going
4365  *    into lower power link states between intervals).
4366  *  - the U2 Exit Latency of the device
4367  */
4368 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4369                 struct usb_endpoint_descriptor *desc)
4370 {
4371         unsigned long long timeout_ns;
4372         unsigned long long u2_del_ns;
4373
4374         timeout_ns = 10 * 1000 * 1000;
4375
4376         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4377                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4378                 timeout_ns = xhci_service_interval_to_ns(desc);
4379
4380         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4381         if (u2_del_ns > timeout_ns)
4382                 timeout_ns = u2_del_ns;
4383
4384         /* The U2 timeout is encoded in 256us intervals */
4385         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4386         /* If the necessary timeout value is bigger than what we can set in the
4387          * USB 3.0 hub, we have to disable hub-initiated U2.
4388          */
4389         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4390                 return timeout_ns;
4391         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4392                         "due to long timeout %llu ms\n", timeout_ns);
4393         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4394 }
4395
4396 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4397                 struct usb_device *udev,
4398                 struct usb_endpoint_descriptor *desc,
4399                 enum usb3_link_state state,
4400                 u16 *timeout)
4401 {
4402         if (state == USB3_LPM_U1) {
4403                 if (xhci->quirks & XHCI_INTEL_HOST)
4404                         return xhci_calculate_intel_u1_timeout(udev, desc);
4405         } else {
4406                 if (xhci->quirks & XHCI_INTEL_HOST)
4407                         return xhci_calculate_intel_u2_timeout(udev, desc);
4408         }
4409
4410         return USB3_LPM_DISABLED;
4411 }
4412
4413 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4414                 struct usb_device *udev,
4415                 struct usb_endpoint_descriptor *desc,
4416                 enum usb3_link_state state,
4417                 u16 *timeout)
4418 {
4419         u16 alt_timeout;
4420
4421         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4422                 desc, state, timeout);
4423
4424         /* If we found we can't enable hub-initiated LPM, or
4425          * the U1 or U2 exit latency was too high to allow
4426          * device-initiated LPM as well, just stop searching.
4427          */
4428         if (alt_timeout == USB3_LPM_DISABLED ||
4429                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4430                 *timeout = alt_timeout;
4431                 return -E2BIG;
4432         }
4433         if (alt_timeout > *timeout)
4434                 *timeout = alt_timeout;
4435         return 0;
4436 }
4437
4438 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4439                 struct usb_device *udev,
4440                 struct usb_host_interface *alt,
4441                 enum usb3_link_state state,
4442                 u16 *timeout)
4443 {
4444         int j;
4445
4446         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4447                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4448                                         &alt->endpoint[j].desc, state, timeout))
4449                         return -E2BIG;
4450                 continue;
4451         }
4452         return 0;
4453 }
4454
4455 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4456                 enum usb3_link_state state)
4457 {
4458         struct usb_device *parent;
4459         unsigned int num_hubs;
4460
4461         if (state == USB3_LPM_U2)
4462                 return 0;
4463
4464         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4465         for (parent = udev->parent, num_hubs = 0; parent->parent;
4466                         parent = parent->parent)
4467                 num_hubs++;
4468
4469         if (num_hubs < 2)
4470                 return 0;
4471
4472         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4473                         " below second-tier hub.\n");
4474         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4475                         "to decrease power consumption.\n");
4476         return -E2BIG;
4477 }
4478
4479 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4480                 struct usb_device *udev,
4481                 enum usb3_link_state state)
4482 {
4483         if (xhci->quirks & XHCI_INTEL_HOST)
4484                 return xhci_check_intel_tier_policy(udev, state);
4485         return -EINVAL;
4486 }
4487
4488 /* Returns the U1 or U2 timeout that should be enabled.
4489  * If the tier check or timeout setting functions return with a non-zero exit
4490  * code, that means the timeout value has been finalized and we shouldn't look
4491  * at any more endpoints.
4492  */
4493 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4494                         struct usb_device *udev, enum usb3_link_state state)
4495 {
4496         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4497         struct usb_host_config *config;
4498         char *state_name;
4499         int i;
4500         u16 timeout = USB3_LPM_DISABLED;
4501
4502         if (state == USB3_LPM_U1)
4503                 state_name = "U1";
4504         else if (state == USB3_LPM_U2)
4505                 state_name = "U2";
4506         else {
4507                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4508                                 state);
4509                 return timeout;
4510         }
4511
4512         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4513                 return timeout;
4514
4515         /* Gather some information about the currently installed configuration
4516          * and alternate interface settings.
4517          */
4518         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4519                         state, &timeout))
4520                 return timeout;
4521
4522         config = udev->actconfig;
4523         if (!config)
4524                 return timeout;
4525
4526         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4527                 struct usb_driver *driver;
4528                 struct usb_interface *intf = config->interface[i];
4529
4530                 if (!intf)
4531                         continue;
4532
4533                 /* Check if any currently bound drivers want hub-initiated LPM
4534                  * disabled.
4535                  */
4536                 if (intf->dev.driver) {
4537                         driver = to_usb_driver(intf->dev.driver);
4538                         if (driver && driver->disable_hub_initiated_lpm) {
4539                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4540                                                 "at request of driver %s\n",
4541                                                 state_name, driver->name);
4542                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4543                         }
4544                 }
4545
4546                 /* Not sure how this could happen... */
4547                 if (!intf->cur_altsetting)
4548                         continue;
4549
4550                 if (xhci_update_timeout_for_interface(xhci, udev,
4551                                         intf->cur_altsetting,
4552                                         state, &timeout))
4553                         return timeout;
4554         }
4555         return timeout;
4556 }
4557
4558 static int calculate_max_exit_latency(struct usb_device *udev,
4559                 enum usb3_link_state state_changed,
4560                 u16 hub_encoded_timeout)
4561 {
4562         unsigned long long u1_mel_us = 0;
4563         unsigned long long u2_mel_us = 0;
4564         unsigned long long mel_us = 0;
4565         bool disabling_u1;
4566         bool disabling_u2;
4567         bool enabling_u1;
4568         bool enabling_u2;
4569
4570         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4571                         hub_encoded_timeout == USB3_LPM_DISABLED);
4572         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4573                         hub_encoded_timeout == USB3_LPM_DISABLED);
4574
4575         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4576                         hub_encoded_timeout != USB3_LPM_DISABLED);
4577         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4578                         hub_encoded_timeout != USB3_LPM_DISABLED);
4579
4580         /* If U1 was already enabled and we're not disabling it,
4581          * or we're going to enable U1, account for the U1 max exit latency.
4582          */
4583         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4584                         enabling_u1)
4585                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4586         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4587                         enabling_u2)
4588                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4589
4590         if (u1_mel_us > u2_mel_us)
4591                 mel_us = u1_mel_us;
4592         else
4593                 mel_us = u2_mel_us;
4594         /* xHCI host controller max exit latency field is only 16 bits wide. */
4595         if (mel_us > MAX_EXIT) {
4596                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4597                                 "is too big.\n", mel_us);
4598                 return -E2BIG;
4599         }
4600         return mel_us;
4601 }
4602
4603 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4604 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4605                         struct usb_device *udev, enum usb3_link_state state)
4606 {
4607         struct xhci_hcd *xhci;
4608         u16 hub_encoded_timeout;
4609         int mel;
4610         int ret;
4611
4612         xhci = hcd_to_xhci(hcd);
4613         /* The LPM timeout values are pretty host-controller specific, so don't
4614          * enable hub-initiated timeouts unless the vendor has provided
4615          * information about their timeout algorithm.
4616          */
4617         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4618                         !xhci->devs[udev->slot_id])
4619                 return USB3_LPM_DISABLED;
4620
4621         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4622         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4623         if (mel < 0) {
4624                 /* Max Exit Latency is too big, disable LPM. */
4625                 hub_encoded_timeout = USB3_LPM_DISABLED;
4626                 mel = 0;
4627         }
4628
4629         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4630         if (ret)
4631                 return ret;
4632         return hub_encoded_timeout;
4633 }
4634
4635 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4636                         struct usb_device *udev, enum usb3_link_state state)
4637 {
4638         struct xhci_hcd *xhci;
4639         u16 mel;
4640         int ret;
4641
4642         xhci = hcd_to_xhci(hcd);
4643         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4644                         !xhci->devs[udev->slot_id])
4645                 return 0;
4646
4647         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4648         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4649         if (ret)
4650                 return ret;
4651         return 0;
4652 }
4653 #else /* CONFIG_PM */
4654
4655 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4656                         struct usb_device *udev, enum usb3_link_state state)
4657 {
4658         return USB3_LPM_DISABLED;
4659 }
4660
4661 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4662                         struct usb_device *udev, enum usb3_link_state state)
4663 {
4664         return 0;
4665 }
4666 #endif  /* CONFIG_PM */
4667
4668 /*-------------------------------------------------------------------------*/
4669
4670 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4671  * internal data structures for the device.
4672  */
4673 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4674                         struct usb_tt *tt, gfp_t mem_flags)
4675 {
4676         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4677         struct xhci_virt_device *vdev;
4678         struct xhci_command *config_cmd;
4679         struct xhci_input_control_ctx *ctrl_ctx;
4680         struct xhci_slot_ctx *slot_ctx;
4681         unsigned long flags;
4682         unsigned think_time;
4683         int ret;
4684
4685         /* Ignore root hubs */
4686         if (!hdev->parent)
4687                 return 0;
4688
4689         vdev = xhci->devs[hdev->slot_id];
4690         if (!vdev) {
4691                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4692                 return -EINVAL;
4693         }
4694         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4695         if (!config_cmd) {
4696                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4697                 return -ENOMEM;
4698         }
4699         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4700         if (!ctrl_ctx) {
4701                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4702                                 __func__);
4703                 xhci_free_command(xhci, config_cmd);
4704                 return -ENOMEM;
4705         }
4706
4707         spin_lock_irqsave(&xhci->lock, flags);
4708         if (hdev->speed == USB_SPEED_HIGH &&
4709                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4710                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4711                 xhci_free_command(xhci, config_cmd);
4712                 spin_unlock_irqrestore(&xhci->lock, flags);
4713                 return -ENOMEM;
4714         }
4715
4716         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4717         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4718         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4719         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4720         if (tt->multi)
4721                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4722         if (xhci->hci_version > 0x95) {
4723                 xhci_dbg(xhci, "xHCI version %x needs hub "
4724                                 "TT think time and number of ports\n",
4725                                 (unsigned int) xhci->hci_version);
4726                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4727                 /* Set TT think time - convert from ns to FS bit times.
4728                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4729                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4730                  *
4731                  * xHCI 1.0: this field shall be 0 if the device is not a
4732                  * High-spped hub.
4733                  */
4734                 think_time = tt->think_time;
4735                 if (think_time != 0)
4736                         think_time = (think_time / 666) - 1;
4737                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4738                         slot_ctx->tt_info |=
4739                                 cpu_to_le32(TT_THINK_TIME(think_time));
4740         } else {
4741                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4742                                 "TT think time or number of ports\n",
4743                                 (unsigned int) xhci->hci_version);
4744         }
4745         slot_ctx->dev_state = 0;
4746         spin_unlock_irqrestore(&xhci->lock, flags);
4747
4748         xhci_dbg(xhci, "Set up %s for hub device.\n",
4749                         (xhci->hci_version > 0x95) ?
4750                         "configure endpoint" : "evaluate context");
4751         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4752         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4753
4754         /* Issue and wait for the configure endpoint or
4755          * evaluate context command.
4756          */
4757         if (xhci->hci_version > 0x95)
4758                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4759                                 false, false);
4760         else
4761                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4762                                 true, false);
4763
4764         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4765         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4766
4767         xhci_free_command(xhci, config_cmd);
4768         return ret;
4769 }
4770
4771 int xhci_get_frame(struct usb_hcd *hcd)
4772 {
4773         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4774         /* EHCI mods by the periodic size.  Why? */
4775         return readl(&xhci->run_regs->microframe_index) >> 3;
4776 }
4777
4778 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4779 {
4780         struct xhci_hcd         *xhci;
4781         struct device           *dev = hcd->self.controller;
4782         int                     retval;
4783
4784         /* Accept arbitrarily long scatter-gather lists */
4785         hcd->self.sg_tablesize = ~0;
4786
4787         /* support to build packet from discontinuous buffers */
4788         hcd->self.no_sg_constraint = 1;
4789
4790         /* XHCI controllers don't stop the ep queue on short packets :| */
4791         hcd->self.no_stop_on_short = 1;
4792
4793         if (usb_hcd_is_primary_hcd(hcd)) {
4794                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4795                 if (!xhci)
4796                         return -ENOMEM;
4797                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4798                 xhci->main_hcd = hcd;
4799                 /* Mark the first roothub as being USB 2.0.
4800                  * The xHCI driver will register the USB 3.0 roothub.
4801                  */
4802                 hcd->speed = HCD_USB2;
4803                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4804                 /*
4805                  * USB 2.0 roothub under xHCI has an integrated TT,
4806                  * (rate matching hub) as opposed to having an OHCI/UHCI
4807                  * companion controller.
4808                  */
4809                 hcd->has_tt = 1;
4810         } else {
4811                 /* xHCI private pointer was set in xhci_pci_probe for the second
4812                  * registered roothub.
4813                  */
4814                 return 0;
4815         }
4816
4817         xhci->cap_regs = hcd->regs;
4818         xhci->op_regs = hcd->regs +
4819                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4820         xhci->run_regs = hcd->regs +
4821                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4822         /* Cache read-only capability registers */
4823         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4824         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4825         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4826         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4827         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4828         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4829         xhci_print_registers(xhci);
4830
4831         xhci->quirks = quirks;
4832
4833         get_quirks(dev, xhci);
4834
4835         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4836          * success event after a short transfer. This quirk will ignore such
4837          * spurious event.
4838          */
4839         if (xhci->hci_version > 0x96)
4840                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4841
4842         /* Make sure the HC is halted. */
4843         retval = xhci_halt(xhci);
4844         if (retval)
4845                 goto error;
4846
4847         xhci_dbg(xhci, "Resetting HCD\n");
4848         /* Reset the internal HC memory state and registers. */
4849         retval = xhci_reset(xhci);
4850         if (retval)
4851                 goto error;
4852         xhci_dbg(xhci, "Reset complete\n");
4853
4854         /* Set dma_mask and coherent_dma_mask to 64-bits,
4855          * if xHC supports 64-bit addressing */
4856         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4857                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4858                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4859                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4860         }
4861
4862         xhci_dbg(xhci, "Calling HCD init\n");
4863         /* Initialize HCD and host controller data structures. */
4864         retval = xhci_init(hcd);
4865         if (retval)
4866                 goto error;
4867         xhci_dbg(xhci, "Called HCD init\n");
4868         return 0;
4869 error:
4870         kfree(xhci);
4871         return retval;
4872 }
4873
4874 static const struct hc_driver xhci_hc_driver = {
4875         .description =          "xhci-hcd",
4876         .product_desc =         "xHCI Host Controller",
4877         .hcd_priv_size =        sizeof(struct xhci_hcd *),
4878
4879         /*
4880          * generic hardware linkage
4881          */
4882         .irq =                  xhci_irq,
4883         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4884
4885         /*
4886          * basic lifecycle operations
4887          */
4888         .reset =                NULL, /* set in xhci_init_driver() */
4889         .start =                xhci_run,
4890         .stop =                 xhci_stop,
4891         .shutdown =             xhci_shutdown,
4892
4893         /*
4894          * managing i/o requests and associated device resources
4895          */
4896         .urb_enqueue =          xhci_urb_enqueue,
4897         .urb_dequeue =          xhci_urb_dequeue,
4898         .alloc_dev =            xhci_alloc_dev,
4899         .free_dev =             xhci_free_dev,
4900         .alloc_streams =        xhci_alloc_streams,
4901         .free_streams =         xhci_free_streams,
4902         .add_endpoint =         xhci_add_endpoint,
4903         .drop_endpoint =        xhci_drop_endpoint,
4904         .endpoint_reset =       xhci_endpoint_reset,
4905         .check_bandwidth =      xhci_check_bandwidth,
4906         .reset_bandwidth =      xhci_reset_bandwidth,
4907         .address_device =       xhci_address_device,
4908         .enable_device =        xhci_enable_device,
4909         .update_hub_device =    xhci_update_hub_device,
4910         .reset_device =         xhci_discover_or_reset_device,
4911
4912         /*
4913          * scheduling support
4914          */
4915         .get_frame_number =     xhci_get_frame,
4916
4917         /*
4918          * root hub support
4919          */
4920         .hub_control =          xhci_hub_control,
4921         .hub_status_data =      xhci_hub_status_data,
4922         .bus_suspend =          xhci_bus_suspend,
4923         .bus_resume =           xhci_bus_resume,
4924
4925         /*
4926          * call back when device connected and addressed
4927          */
4928         .update_device =        xhci_update_device,
4929         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4930         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4931         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4932         .find_raw_port_number = xhci_find_raw_port_number,
4933 };
4934
4935 void xhci_init_driver(struct hc_driver *drv, int (*setup_fn)(struct usb_hcd *))
4936 {
4937         BUG_ON(!setup_fn);
4938         *drv = xhci_hc_driver;
4939         drv->reset = setup_fn;
4940 }
4941 EXPORT_SYMBOL_GPL(xhci_init_driver);
4942
4943 MODULE_DESCRIPTION(DRIVER_DESC);
4944 MODULE_AUTHOR(DRIVER_AUTHOR);
4945 MODULE_LICENSE("GPL");
4946
4947 static int __init xhci_hcd_init(void)
4948 {
4949         int retval;
4950
4951         retval = xhci_register_pci();
4952         if (retval < 0) {
4953                 pr_debug("Problem registering PCI driver.\n");
4954                 return retval;
4955         }
4956         retval = xhci_register_plat();
4957         if (retval < 0) {
4958                 pr_debug("Problem registering platform driver.\n");
4959                 goto unreg_pci;
4960         }
4961         /*
4962          * Check the compiler generated sizes of structures that must be laid
4963          * out in specific ways for hardware access.
4964          */
4965         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4966         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4967         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4968         /* xhci_device_control has eight fields, and also
4969          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4970          */
4971         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4972         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4973         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4974         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4975         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4976         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4977         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4978         return 0;
4979 unreg_pci:
4980         xhci_unregister_pci();
4981         return retval;
4982 }
4983 module_init(xhci_hcd_init);
4984
4985 static void __exit xhci_hcd_cleanup(void)
4986 {
4987         xhci_unregister_pci();
4988         xhci_unregister_plat();
4989 }
4990 module_exit(xhci_hcd_cleanup);