9232c7738ed15cc40e5e91fcc101bb329fcb07da
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70                 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73
74 int init_se_kmem_caches(void)
75 {
76         se_sess_cache = kmem_cache_create("se_sess_cache",
77                         sizeof(struct se_session), __alignof__(struct se_session),
78                         0, NULL);
79         if (!se_sess_cache) {
80                 pr_err("kmem_cache_create() for struct se_session"
81                                 " failed\n");
82                 goto out;
83         }
84         se_ua_cache = kmem_cache_create("se_ua_cache",
85                         sizeof(struct se_ua), __alignof__(struct se_ua),
86                         0, NULL);
87         if (!se_ua_cache) {
88                 pr_err("kmem_cache_create() for struct se_ua failed\n");
89                 goto out_free_sess_cache;
90         }
91         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92                         sizeof(struct t10_pr_registration),
93                         __alignof__(struct t10_pr_registration), 0, NULL);
94         if (!t10_pr_reg_cache) {
95                 pr_err("kmem_cache_create() for struct t10_pr_registration"
96                                 " failed\n");
97                 goto out_free_ua_cache;
98         }
99         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101                         0, NULL);
102         if (!t10_alua_lu_gp_cache) {
103                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104                                 " failed\n");
105                 goto out_free_pr_reg_cache;
106         }
107         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108                         sizeof(struct t10_alua_lu_gp_member),
109                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110         if (!t10_alua_lu_gp_mem_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112                                 "cache failed\n");
113                 goto out_free_lu_gp_cache;
114         }
115         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116                         sizeof(struct t10_alua_tg_pt_gp),
117                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118         if (!t10_alua_tg_pt_gp_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_mem_cache;
122         }
123         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124                         "t10_alua_tg_pt_gp_mem_cache",
125                         sizeof(struct t10_alua_tg_pt_gp_member),
126                         __alignof__(struct t10_alua_tg_pt_gp_member),
127                         0, NULL);
128         if (!t10_alua_tg_pt_gp_mem_cache) {
129                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130                                 "mem_t failed\n");
131                 goto out_free_tg_pt_gp_cache;
132         }
133         t10_alua_lba_map_cache = kmem_cache_create(
134                         "t10_alua_lba_map_cache",
135                         sizeof(struct t10_alua_lba_map),
136                         __alignof__(struct t10_alua_lba_map), 0, NULL);
137         if (!t10_alua_lba_map_cache) {
138                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139                                 "cache failed\n");
140                 goto out_free_tg_pt_gp_mem_cache;
141         }
142         t10_alua_lba_map_mem_cache = kmem_cache_create(
143                         "t10_alua_lba_map_mem_cache",
144                         sizeof(struct t10_alua_lba_map_member),
145                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146         if (!t10_alua_lba_map_mem_cache) {
147                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148                                 "cache failed\n");
149                 goto out_free_lba_map_cache;
150         }
151
152         target_completion_wq = alloc_workqueue("target_completion",
153                                                WQ_MEM_RECLAIM, 0);
154         if (!target_completion_wq)
155                 goto out_free_lba_map_mem_cache;
156
157         return 0;
158
159 out_free_lba_map_mem_cache:
160         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162         kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170         kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172         kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174         kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176         kmem_cache_destroy(se_sess_cache);
177 out:
178         return -ENOMEM;
179 }
180
181 void release_se_kmem_caches(void)
182 {
183         destroy_workqueue(target_completion_wq);
184         kmem_cache_destroy(se_sess_cache);
185         kmem_cache_destroy(se_ua_cache);
186         kmem_cache_destroy(t10_pr_reg_cache);
187         kmem_cache_destroy(t10_alua_lu_gp_cache);
188         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191         kmem_cache_destroy(t10_alua_lba_map_cache);
192         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198
199 /*
200  * Allocate a new row index for the entry type specified
201  */
202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204         u32 new_index;
205
206         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207
208         spin_lock(&scsi_mib_index_lock);
209         new_index = ++scsi_mib_index[type];
210         spin_unlock(&scsi_mib_index_lock);
211
212         return new_index;
213 }
214
215 void transport_subsystem_check_init(void)
216 {
217         int ret;
218         static int sub_api_initialized;
219
220         if (sub_api_initialized)
221                 return;
222
223         ret = request_module("target_core_iblock");
224         if (ret != 0)
225                 pr_err("Unable to load target_core_iblock\n");
226
227         ret = request_module("target_core_file");
228         if (ret != 0)
229                 pr_err("Unable to load target_core_file\n");
230
231         ret = request_module("target_core_pscsi");
232         if (ret != 0)
233                 pr_err("Unable to load target_core_pscsi\n");
234
235         sub_api_initialized = 1;
236 }
237
238 struct se_session *transport_init_session(void)
239 {
240         struct se_session *se_sess;
241
242         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243         if (!se_sess) {
244                 pr_err("Unable to allocate struct se_session from"
245                                 " se_sess_cache\n");
246                 return ERR_PTR(-ENOMEM);
247         }
248         INIT_LIST_HEAD(&se_sess->sess_list);
249         INIT_LIST_HEAD(&se_sess->sess_acl_list);
250         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251         INIT_LIST_HEAD(&se_sess->sess_wait_list);
252         spin_lock_init(&se_sess->sess_cmd_lock);
253         kref_init(&se_sess->sess_kref);
254
255         return se_sess;
256 }
257 EXPORT_SYMBOL(transport_init_session);
258
259 int transport_alloc_session_tags(struct se_session *se_sess,
260                                  unsigned int tag_num, unsigned int tag_size)
261 {
262         int rc;
263
264         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
265                                         GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
266         if (!se_sess->sess_cmd_map) {
267                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
268                 if (!se_sess->sess_cmd_map) {
269                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
270                         return -ENOMEM;
271                 }
272         }
273
274         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
275         if (rc < 0) {
276                 pr_err("Unable to init se_sess->sess_tag_pool,"
277                         " tag_num: %u\n", tag_num);
278                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
279                         vfree(se_sess->sess_cmd_map);
280                 else
281                         kfree(se_sess->sess_cmd_map);
282                 se_sess->sess_cmd_map = NULL;
283                 return -ENOMEM;
284         }
285
286         return 0;
287 }
288 EXPORT_SYMBOL(transport_alloc_session_tags);
289
290 struct se_session *transport_init_session_tags(unsigned int tag_num,
291                                                unsigned int tag_size)
292 {
293         struct se_session *se_sess;
294         int rc;
295
296         se_sess = transport_init_session();
297         if (IS_ERR(se_sess))
298                 return se_sess;
299
300         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
301         if (rc < 0) {
302                 transport_free_session(se_sess);
303                 return ERR_PTR(-ENOMEM);
304         }
305
306         return se_sess;
307 }
308 EXPORT_SYMBOL(transport_init_session_tags);
309
310 /*
311  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
312  */
313 void __transport_register_session(
314         struct se_portal_group *se_tpg,
315         struct se_node_acl *se_nacl,
316         struct se_session *se_sess,
317         void *fabric_sess_ptr)
318 {
319         unsigned char buf[PR_REG_ISID_LEN];
320
321         se_sess->se_tpg = se_tpg;
322         se_sess->fabric_sess_ptr = fabric_sess_ptr;
323         /*
324          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
325          *
326          * Only set for struct se_session's that will actually be moving I/O.
327          * eg: *NOT* discovery sessions.
328          */
329         if (se_nacl) {
330                 /*
331                  * If the fabric module supports an ISID based TransportID,
332                  * save this value in binary from the fabric I_T Nexus now.
333                  */
334                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
335                         memset(&buf[0], 0, PR_REG_ISID_LEN);
336                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
337                                         &buf[0], PR_REG_ISID_LEN);
338                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
339                 }
340                 kref_get(&se_nacl->acl_kref);
341
342                 spin_lock_irq(&se_nacl->nacl_sess_lock);
343                 /*
344                  * The se_nacl->nacl_sess pointer will be set to the
345                  * last active I_T Nexus for each struct se_node_acl.
346                  */
347                 se_nacl->nacl_sess = se_sess;
348
349                 list_add_tail(&se_sess->sess_acl_list,
350                               &se_nacl->acl_sess_list);
351                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
352         }
353         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
354
355         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
357 }
358 EXPORT_SYMBOL(__transport_register_session);
359
360 void transport_register_session(
361         struct se_portal_group *se_tpg,
362         struct se_node_acl *se_nacl,
363         struct se_session *se_sess,
364         void *fabric_sess_ptr)
365 {
366         unsigned long flags;
367
368         spin_lock_irqsave(&se_tpg->session_lock, flags);
369         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
370         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
371 }
372 EXPORT_SYMBOL(transport_register_session);
373
374 static void target_release_session(struct kref *kref)
375 {
376         struct se_session *se_sess = container_of(kref,
377                         struct se_session, sess_kref);
378         struct se_portal_group *se_tpg = se_sess->se_tpg;
379
380         se_tpg->se_tpg_tfo->close_session(se_sess);
381 }
382
383 void target_get_session(struct se_session *se_sess)
384 {
385         kref_get(&se_sess->sess_kref);
386 }
387 EXPORT_SYMBOL(target_get_session);
388
389 void target_put_session(struct se_session *se_sess)
390 {
391         struct se_portal_group *tpg = se_sess->se_tpg;
392
393         if (tpg->se_tpg_tfo->put_session != NULL) {
394                 tpg->se_tpg_tfo->put_session(se_sess);
395                 return;
396         }
397         kref_put(&se_sess->sess_kref, target_release_session);
398 }
399 EXPORT_SYMBOL(target_put_session);
400
401 static void target_complete_nacl(struct kref *kref)
402 {
403         struct se_node_acl *nacl = container_of(kref,
404                                 struct se_node_acl, acl_kref);
405
406         complete(&nacl->acl_free_comp);
407 }
408
409 void target_put_nacl(struct se_node_acl *nacl)
410 {
411         kref_put(&nacl->acl_kref, target_complete_nacl);
412 }
413
414 void transport_deregister_session_configfs(struct se_session *se_sess)
415 {
416         struct se_node_acl *se_nacl;
417         unsigned long flags;
418         /*
419          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
420          */
421         se_nacl = se_sess->se_node_acl;
422         if (se_nacl) {
423                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
424                 if (se_nacl->acl_stop == 0)
425                         list_del(&se_sess->sess_acl_list);
426                 /*
427                  * If the session list is empty, then clear the pointer.
428                  * Otherwise, set the struct se_session pointer from the tail
429                  * element of the per struct se_node_acl active session list.
430                  */
431                 if (list_empty(&se_nacl->acl_sess_list))
432                         se_nacl->nacl_sess = NULL;
433                 else {
434                         se_nacl->nacl_sess = container_of(
435                                         se_nacl->acl_sess_list.prev,
436                                         struct se_session, sess_acl_list);
437                 }
438                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
439         }
440 }
441 EXPORT_SYMBOL(transport_deregister_session_configfs);
442
443 void transport_free_session(struct se_session *se_sess)
444 {
445         if (se_sess->sess_cmd_map) {
446                 percpu_ida_destroy(&se_sess->sess_tag_pool);
447                 if (is_vmalloc_addr(se_sess->sess_cmd_map))
448                         vfree(se_sess->sess_cmd_map);
449                 else
450                         kfree(se_sess->sess_cmd_map);
451         }
452         kmem_cache_free(se_sess_cache, se_sess);
453 }
454 EXPORT_SYMBOL(transport_free_session);
455
456 void transport_deregister_session(struct se_session *se_sess)
457 {
458         struct se_portal_group *se_tpg = se_sess->se_tpg;
459         struct target_core_fabric_ops *se_tfo;
460         struct se_node_acl *se_nacl;
461         unsigned long flags;
462         bool comp_nacl = true;
463
464         if (!se_tpg) {
465                 transport_free_session(se_sess);
466                 return;
467         }
468         se_tfo = se_tpg->se_tpg_tfo;
469
470         spin_lock_irqsave(&se_tpg->session_lock, flags);
471         list_del(&se_sess->sess_list);
472         se_sess->se_tpg = NULL;
473         se_sess->fabric_sess_ptr = NULL;
474         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
475
476         /*
477          * Determine if we need to do extra work for this initiator node's
478          * struct se_node_acl if it had been previously dynamically generated.
479          */
480         se_nacl = se_sess->se_node_acl;
481
482         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
483         if (se_nacl && se_nacl->dynamic_node_acl) {
484                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
485                         list_del(&se_nacl->acl_list);
486                         se_tpg->num_node_acls--;
487                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
488                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
489                         core_free_device_list_for_node(se_nacl, se_tpg);
490                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
491
492                         comp_nacl = false;
493                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
494                 }
495         }
496         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
497
498         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499                 se_tpg->se_tpg_tfo->get_fabric_name());
500         /*
501          * If last kref is dropping now for an explicit NodeACL, awake sleeping
502          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
503          * removal context.
504          */
505         if (se_nacl && comp_nacl == true)
506                 target_put_nacl(se_nacl);
507
508         transport_free_session(se_sess);
509 }
510 EXPORT_SYMBOL(transport_deregister_session);
511
512 /*
513  * Called with cmd->t_state_lock held.
514  */
515 static void target_remove_from_state_list(struct se_cmd *cmd)
516 {
517         struct se_device *dev = cmd->se_dev;
518         unsigned long flags;
519
520         if (!dev)
521                 return;
522
523         if (cmd->transport_state & CMD_T_BUSY)
524                 return;
525
526         spin_lock_irqsave(&dev->execute_task_lock, flags);
527         if (cmd->state_active) {
528                 list_del(&cmd->state_list);
529                 cmd->state_active = false;
530         }
531         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
532 }
533
534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
535                                     bool write_pending)
536 {
537         unsigned long flags;
538
539         spin_lock_irqsave(&cmd->t_state_lock, flags);
540         if (write_pending)
541                 cmd->t_state = TRANSPORT_WRITE_PENDING;
542
543         if (remove_from_lists) {
544                 target_remove_from_state_list(cmd);
545
546                 /*
547                  * Clear struct se_cmd->se_lun before the handoff to FE.
548                  */
549                 cmd->se_lun = NULL;
550         }
551
552         /*
553          * Determine if frontend context caller is requesting the stopping of
554          * this command for frontend exceptions.
555          */
556         if (cmd->transport_state & CMD_T_STOP) {
557                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
558                         __func__, __LINE__,
559                         cmd->se_tfo->get_task_tag(cmd));
560
561                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
562
563                 complete_all(&cmd->t_transport_stop_comp);
564                 return 1;
565         }
566
567         cmd->transport_state &= ~CMD_T_ACTIVE;
568         if (remove_from_lists) {
569                 /*
570                  * Some fabric modules like tcm_loop can release
571                  * their internally allocated I/O reference now and
572                  * struct se_cmd now.
573                  *
574                  * Fabric modules are expected to return '1' here if the
575                  * se_cmd being passed is released at this point,
576                  * or zero if not being released.
577                  */
578                 if (cmd->se_tfo->check_stop_free != NULL) {
579                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580                         return cmd->se_tfo->check_stop_free(cmd);
581                 }
582         }
583
584         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
585         return 0;
586 }
587
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
589 {
590         return transport_cmd_check_stop(cmd, true, false);
591 }
592
593 static void transport_lun_remove_cmd(struct se_cmd *cmd)
594 {
595         struct se_lun *lun = cmd->se_lun;
596
597         if (!lun)
598                 return;
599
600         if (cmpxchg(&cmd->lun_ref_active, true, false))
601                 percpu_ref_put(&lun->lun_ref);
602 }
603
604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
605 {
606         if (transport_cmd_check_stop_to_fabric(cmd))
607                 return;
608         if (remove)
609                 transport_put_cmd(cmd);
610 }
611
612 static void target_complete_failure_work(struct work_struct *work)
613 {
614         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
615
616         transport_generic_request_failure(cmd,
617                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
618 }
619
620 /*
621  * Used when asking transport to copy Sense Data from the underlying
622  * Linux/SCSI struct scsi_cmnd
623  */
624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
625 {
626         struct se_device *dev = cmd->se_dev;
627
628         WARN_ON(!cmd->se_lun);
629
630         if (!dev)
631                 return NULL;
632
633         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
634                 return NULL;
635
636         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
637
638         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
639                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
640         return cmd->sense_buffer;
641 }
642
643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
644 {
645         struct se_device *dev = cmd->se_dev;
646         int success = scsi_status == GOOD;
647         unsigned long flags;
648
649         cmd->scsi_status = scsi_status;
650
651
652         spin_lock_irqsave(&cmd->t_state_lock, flags);
653         cmd->transport_state &= ~CMD_T_BUSY;
654
655         if (dev && dev->transport->transport_complete) {
656                 dev->transport->transport_complete(cmd,
657                                 cmd->t_data_sg,
658                                 transport_get_sense_buffer(cmd));
659                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
660                         success = 1;
661         }
662
663         /*
664          * See if we are waiting to complete for an exception condition.
665          */
666         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
667                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
668                 complete(&cmd->task_stop_comp);
669                 return;
670         }
671
672         /*
673          * Check for case where an explicit ABORT_TASK has been received
674          * and transport_wait_for_tasks() will be waiting for completion..
675          */
676         if (cmd->transport_state & CMD_T_ABORTED &&
677             cmd->transport_state & CMD_T_STOP) {
678                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679                 complete_all(&cmd->t_transport_stop_comp);
680                 return;
681         } else if (!success) {
682                 INIT_WORK(&cmd->work, target_complete_failure_work);
683         } else {
684                 INIT_WORK(&cmd->work, target_complete_ok_work);
685         }
686
687         cmd->t_state = TRANSPORT_COMPLETE;
688         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
689         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690
691         queue_work(target_completion_wq, &cmd->work);
692 }
693 EXPORT_SYMBOL(target_complete_cmd);
694
695 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
696 {
697         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
698                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
699                         cmd->residual_count += cmd->data_length - length;
700                 } else {
701                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
702                         cmd->residual_count = cmd->data_length - length;
703                 }
704
705                 cmd->data_length = length;
706         }
707
708         target_complete_cmd(cmd, scsi_status);
709 }
710 EXPORT_SYMBOL(target_complete_cmd_with_length);
711
712 static void target_add_to_state_list(struct se_cmd *cmd)
713 {
714         struct se_device *dev = cmd->se_dev;
715         unsigned long flags;
716
717         spin_lock_irqsave(&dev->execute_task_lock, flags);
718         if (!cmd->state_active) {
719                 list_add_tail(&cmd->state_list, &dev->state_list);
720                 cmd->state_active = true;
721         }
722         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
723 }
724
725 /*
726  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
727  */
728 static void transport_write_pending_qf(struct se_cmd *cmd);
729 static void transport_complete_qf(struct se_cmd *cmd);
730
731 void target_qf_do_work(struct work_struct *work)
732 {
733         struct se_device *dev = container_of(work, struct se_device,
734                                         qf_work_queue);
735         LIST_HEAD(qf_cmd_list);
736         struct se_cmd *cmd, *cmd_tmp;
737
738         spin_lock_irq(&dev->qf_cmd_lock);
739         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
740         spin_unlock_irq(&dev->qf_cmd_lock);
741
742         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
743                 list_del(&cmd->se_qf_node);
744                 atomic_dec(&dev->dev_qf_count);
745                 smp_mb__after_atomic_dec();
746
747                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
748                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
749                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
750                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
751                         : "UNKNOWN");
752
753                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
754                         transport_write_pending_qf(cmd);
755                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
756                         transport_complete_qf(cmd);
757         }
758 }
759
760 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
761 {
762         switch (cmd->data_direction) {
763         case DMA_NONE:
764                 return "NONE";
765         case DMA_FROM_DEVICE:
766                 return "READ";
767         case DMA_TO_DEVICE:
768                 return "WRITE";
769         case DMA_BIDIRECTIONAL:
770                 return "BIDI";
771         default:
772                 break;
773         }
774
775         return "UNKNOWN";
776 }
777
778 void transport_dump_dev_state(
779         struct se_device *dev,
780         char *b,
781         int *bl)
782 {
783         *bl += sprintf(b + *bl, "Status: ");
784         if (dev->export_count)
785                 *bl += sprintf(b + *bl, "ACTIVATED");
786         else
787                 *bl += sprintf(b + *bl, "DEACTIVATED");
788
789         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
790         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
791                 dev->dev_attrib.block_size,
792                 dev->dev_attrib.hw_max_sectors);
793         *bl += sprintf(b + *bl, "        ");
794 }
795
796 void transport_dump_vpd_proto_id(
797         struct t10_vpd *vpd,
798         unsigned char *p_buf,
799         int p_buf_len)
800 {
801         unsigned char buf[VPD_TMP_BUF_SIZE];
802         int len;
803
804         memset(buf, 0, VPD_TMP_BUF_SIZE);
805         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
806
807         switch (vpd->protocol_identifier) {
808         case 0x00:
809                 sprintf(buf+len, "Fibre Channel\n");
810                 break;
811         case 0x10:
812                 sprintf(buf+len, "Parallel SCSI\n");
813                 break;
814         case 0x20:
815                 sprintf(buf+len, "SSA\n");
816                 break;
817         case 0x30:
818                 sprintf(buf+len, "IEEE 1394\n");
819                 break;
820         case 0x40:
821                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
822                                 " Protocol\n");
823                 break;
824         case 0x50:
825                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
826                 break;
827         case 0x60:
828                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
829                 break;
830         case 0x70:
831                 sprintf(buf+len, "Automation/Drive Interface Transport"
832                                 " Protocol\n");
833                 break;
834         case 0x80:
835                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
836                 break;
837         default:
838                 sprintf(buf+len, "Unknown 0x%02x\n",
839                                 vpd->protocol_identifier);
840                 break;
841         }
842
843         if (p_buf)
844                 strncpy(p_buf, buf, p_buf_len);
845         else
846                 pr_debug("%s", buf);
847 }
848
849 void
850 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
851 {
852         /*
853          * Check if the Protocol Identifier Valid (PIV) bit is set..
854          *
855          * from spc3r23.pdf section 7.5.1
856          */
857          if (page_83[1] & 0x80) {
858                 vpd->protocol_identifier = (page_83[0] & 0xf0);
859                 vpd->protocol_identifier_set = 1;
860                 transport_dump_vpd_proto_id(vpd, NULL, 0);
861         }
862 }
863 EXPORT_SYMBOL(transport_set_vpd_proto_id);
864
865 int transport_dump_vpd_assoc(
866         struct t10_vpd *vpd,
867         unsigned char *p_buf,
868         int p_buf_len)
869 {
870         unsigned char buf[VPD_TMP_BUF_SIZE];
871         int ret = 0;
872         int len;
873
874         memset(buf, 0, VPD_TMP_BUF_SIZE);
875         len = sprintf(buf, "T10 VPD Identifier Association: ");
876
877         switch (vpd->association) {
878         case 0x00:
879                 sprintf(buf+len, "addressed logical unit\n");
880                 break;
881         case 0x10:
882                 sprintf(buf+len, "target port\n");
883                 break;
884         case 0x20:
885                 sprintf(buf+len, "SCSI target device\n");
886                 break;
887         default:
888                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
889                 ret = -EINVAL;
890                 break;
891         }
892
893         if (p_buf)
894                 strncpy(p_buf, buf, p_buf_len);
895         else
896                 pr_debug("%s", buf);
897
898         return ret;
899 }
900
901 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
902 {
903         /*
904          * The VPD identification association..
905          *
906          * from spc3r23.pdf Section 7.6.3.1 Table 297
907          */
908         vpd->association = (page_83[1] & 0x30);
909         return transport_dump_vpd_assoc(vpd, NULL, 0);
910 }
911 EXPORT_SYMBOL(transport_set_vpd_assoc);
912
913 int transport_dump_vpd_ident_type(
914         struct t10_vpd *vpd,
915         unsigned char *p_buf,
916         int p_buf_len)
917 {
918         unsigned char buf[VPD_TMP_BUF_SIZE];
919         int ret = 0;
920         int len;
921
922         memset(buf, 0, VPD_TMP_BUF_SIZE);
923         len = sprintf(buf, "T10 VPD Identifier Type: ");
924
925         switch (vpd->device_identifier_type) {
926         case 0x00:
927                 sprintf(buf+len, "Vendor specific\n");
928                 break;
929         case 0x01:
930                 sprintf(buf+len, "T10 Vendor ID based\n");
931                 break;
932         case 0x02:
933                 sprintf(buf+len, "EUI-64 based\n");
934                 break;
935         case 0x03:
936                 sprintf(buf+len, "NAA\n");
937                 break;
938         case 0x04:
939                 sprintf(buf+len, "Relative target port identifier\n");
940                 break;
941         case 0x08:
942                 sprintf(buf+len, "SCSI name string\n");
943                 break;
944         default:
945                 sprintf(buf+len, "Unsupported: 0x%02x\n",
946                                 vpd->device_identifier_type);
947                 ret = -EINVAL;
948                 break;
949         }
950
951         if (p_buf) {
952                 if (p_buf_len < strlen(buf)+1)
953                         return -EINVAL;
954                 strncpy(p_buf, buf, p_buf_len);
955         } else {
956                 pr_debug("%s", buf);
957         }
958
959         return ret;
960 }
961
962 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
963 {
964         /*
965          * The VPD identifier type..
966          *
967          * from spc3r23.pdf Section 7.6.3.1 Table 298
968          */
969         vpd->device_identifier_type = (page_83[1] & 0x0f);
970         return transport_dump_vpd_ident_type(vpd, NULL, 0);
971 }
972 EXPORT_SYMBOL(transport_set_vpd_ident_type);
973
974 int transport_dump_vpd_ident(
975         struct t10_vpd *vpd,
976         unsigned char *p_buf,
977         int p_buf_len)
978 {
979         unsigned char buf[VPD_TMP_BUF_SIZE];
980         int ret = 0;
981
982         memset(buf, 0, VPD_TMP_BUF_SIZE);
983
984         switch (vpd->device_identifier_code_set) {
985         case 0x01: /* Binary */
986                 snprintf(buf, sizeof(buf),
987                         "T10 VPD Binary Device Identifier: %s\n",
988                         &vpd->device_identifier[0]);
989                 break;
990         case 0x02: /* ASCII */
991                 snprintf(buf, sizeof(buf),
992                         "T10 VPD ASCII Device Identifier: %s\n",
993                         &vpd->device_identifier[0]);
994                 break;
995         case 0x03: /* UTF-8 */
996                 snprintf(buf, sizeof(buf),
997                         "T10 VPD UTF-8 Device Identifier: %s\n",
998                         &vpd->device_identifier[0]);
999                 break;
1000         default:
1001                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1002                         " 0x%02x", vpd->device_identifier_code_set);
1003                 ret = -EINVAL;
1004                 break;
1005         }
1006
1007         if (p_buf)
1008                 strncpy(p_buf, buf, p_buf_len);
1009         else
1010                 pr_debug("%s", buf);
1011
1012         return ret;
1013 }
1014
1015 int
1016 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1017 {
1018         static const char hex_str[] = "0123456789abcdef";
1019         int j = 0, i = 4; /* offset to start of the identifier */
1020
1021         /*
1022          * The VPD Code Set (encoding)
1023          *
1024          * from spc3r23.pdf Section 7.6.3.1 Table 296
1025          */
1026         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1027         switch (vpd->device_identifier_code_set) {
1028         case 0x01: /* Binary */
1029                 vpd->device_identifier[j++] =
1030                                 hex_str[vpd->device_identifier_type];
1031                 while (i < (4 + page_83[3])) {
1032                         vpd->device_identifier[j++] =
1033                                 hex_str[(page_83[i] & 0xf0) >> 4];
1034                         vpd->device_identifier[j++] =
1035                                 hex_str[page_83[i] & 0x0f];
1036                         i++;
1037                 }
1038                 break;
1039         case 0x02: /* ASCII */
1040         case 0x03: /* UTF-8 */
1041                 while (i < (4 + page_83[3]))
1042                         vpd->device_identifier[j++] = page_83[i++];
1043                 break;
1044         default:
1045                 break;
1046         }
1047
1048         return transport_dump_vpd_ident(vpd, NULL, 0);
1049 }
1050 EXPORT_SYMBOL(transport_set_vpd_ident);
1051
1052 sense_reason_t
1053 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1054 {
1055         struct se_device *dev = cmd->se_dev;
1056
1057         if (cmd->unknown_data_length) {
1058                 cmd->data_length = size;
1059         } else if (size != cmd->data_length) {
1060                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1061                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1062                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1063                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1064
1065                 if (cmd->data_direction == DMA_TO_DEVICE) {
1066                         pr_err("Rejecting underflow/overflow"
1067                                         " WRITE data\n");
1068                         return TCM_INVALID_CDB_FIELD;
1069                 }
1070                 /*
1071                  * Reject READ_* or WRITE_* with overflow/underflow for
1072                  * type SCF_SCSI_DATA_CDB.
1073                  */
1074                 if (dev->dev_attrib.block_size != 512)  {
1075                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1076                                 " CDB on non 512-byte sector setup subsystem"
1077                                 " plugin: %s\n", dev->transport->name);
1078                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1079                         return TCM_INVALID_CDB_FIELD;
1080                 }
1081                 /*
1082                  * For the overflow case keep the existing fabric provided
1083                  * ->data_length.  Otherwise for the underflow case, reset
1084                  * ->data_length to the smaller SCSI expected data transfer
1085                  * length.
1086                  */
1087                 if (size > cmd->data_length) {
1088                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1089                         cmd->residual_count = (size - cmd->data_length);
1090                 } else {
1091                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1092                         cmd->residual_count = (cmd->data_length - size);
1093                         cmd->data_length = size;
1094                 }
1095         }
1096
1097         return 0;
1098
1099 }
1100
1101 /*
1102  * Used by fabric modules containing a local struct se_cmd within their
1103  * fabric dependent per I/O descriptor.
1104  */
1105 void transport_init_se_cmd(
1106         struct se_cmd *cmd,
1107         struct target_core_fabric_ops *tfo,
1108         struct se_session *se_sess,
1109         u32 data_length,
1110         int data_direction,
1111         int task_attr,
1112         unsigned char *sense_buffer)
1113 {
1114         INIT_LIST_HEAD(&cmd->se_delayed_node);
1115         INIT_LIST_HEAD(&cmd->se_qf_node);
1116         INIT_LIST_HEAD(&cmd->se_cmd_list);
1117         INIT_LIST_HEAD(&cmd->state_list);
1118         init_completion(&cmd->t_transport_stop_comp);
1119         init_completion(&cmd->cmd_wait_comp);
1120         init_completion(&cmd->task_stop_comp);
1121         spin_lock_init(&cmd->t_state_lock);
1122         kref_init(&cmd->cmd_kref);
1123         cmd->transport_state = CMD_T_DEV_ACTIVE;
1124
1125         cmd->se_tfo = tfo;
1126         cmd->se_sess = se_sess;
1127         cmd->data_length = data_length;
1128         cmd->data_direction = data_direction;
1129         cmd->sam_task_attr = task_attr;
1130         cmd->sense_buffer = sense_buffer;
1131
1132         cmd->state_active = false;
1133 }
1134 EXPORT_SYMBOL(transport_init_se_cmd);
1135
1136 static sense_reason_t
1137 transport_check_alloc_task_attr(struct se_cmd *cmd)
1138 {
1139         struct se_device *dev = cmd->se_dev;
1140
1141         /*
1142          * Check if SAM Task Attribute emulation is enabled for this
1143          * struct se_device storage object
1144          */
1145         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1146                 return 0;
1147
1148         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1149                 pr_debug("SAM Task Attribute ACA"
1150                         " emulation is not supported\n");
1151                 return TCM_INVALID_CDB_FIELD;
1152         }
1153         /*
1154          * Used to determine when ORDERED commands should go from
1155          * Dormant to Active status.
1156          */
1157         cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1158         smp_mb__after_atomic_inc();
1159         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1160                         cmd->se_ordered_id, cmd->sam_task_attr,
1161                         dev->transport->name);
1162         return 0;
1163 }
1164
1165 sense_reason_t
1166 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1167 {
1168         struct se_device *dev = cmd->se_dev;
1169         sense_reason_t ret;
1170
1171         /*
1172          * Ensure that the received CDB is less than the max (252 + 8) bytes
1173          * for VARIABLE_LENGTH_CMD
1174          */
1175         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1176                 pr_err("Received SCSI CDB with command_size: %d that"
1177                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1178                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1179                 return TCM_INVALID_CDB_FIELD;
1180         }
1181         /*
1182          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1183          * allocate the additional extended CDB buffer now..  Otherwise
1184          * setup the pointer from __t_task_cdb to t_task_cdb.
1185          */
1186         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1187                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1188                                                 GFP_KERNEL);
1189                 if (!cmd->t_task_cdb) {
1190                         pr_err("Unable to allocate cmd->t_task_cdb"
1191                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1192                                 scsi_command_size(cdb),
1193                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1194                         return TCM_OUT_OF_RESOURCES;
1195                 }
1196         } else
1197                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1198         /*
1199          * Copy the original CDB into cmd->
1200          */
1201         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1202
1203         trace_target_sequencer_start(cmd);
1204
1205         /*
1206          * Check for an existing UNIT ATTENTION condition
1207          */
1208         ret = target_scsi3_ua_check(cmd);
1209         if (ret)
1210                 return ret;
1211
1212         ret = target_alua_state_check(cmd);
1213         if (ret)
1214                 return ret;
1215
1216         ret = target_check_reservation(cmd);
1217         if (ret) {
1218                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1219                 return ret;
1220         }
1221
1222         ret = dev->transport->parse_cdb(cmd);
1223         if (ret)
1224                 return ret;
1225
1226         ret = transport_check_alloc_task_attr(cmd);
1227         if (ret)
1228                 return ret;
1229
1230         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1231
1232         spin_lock(&cmd->se_lun->lun_sep_lock);
1233         if (cmd->se_lun->lun_sep)
1234                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1235         spin_unlock(&cmd->se_lun->lun_sep_lock);
1236         return 0;
1237 }
1238 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1239
1240 /*
1241  * Used by fabric module frontends to queue tasks directly.
1242  * Many only be used from process context only
1243  */
1244 int transport_handle_cdb_direct(
1245         struct se_cmd *cmd)
1246 {
1247         sense_reason_t ret;
1248
1249         if (!cmd->se_lun) {
1250                 dump_stack();
1251                 pr_err("cmd->se_lun is NULL\n");
1252                 return -EINVAL;
1253         }
1254         if (in_interrupt()) {
1255                 dump_stack();
1256                 pr_err("transport_generic_handle_cdb cannot be called"
1257                                 " from interrupt context\n");
1258                 return -EINVAL;
1259         }
1260         /*
1261          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1262          * outstanding descriptors are handled correctly during shutdown via
1263          * transport_wait_for_tasks()
1264          *
1265          * Also, we don't take cmd->t_state_lock here as we only expect
1266          * this to be called for initial descriptor submission.
1267          */
1268         cmd->t_state = TRANSPORT_NEW_CMD;
1269         cmd->transport_state |= CMD_T_ACTIVE;
1270
1271         /*
1272          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1273          * so follow TRANSPORT_NEW_CMD processing thread context usage
1274          * and call transport_generic_request_failure() if necessary..
1275          */
1276         ret = transport_generic_new_cmd(cmd);
1277         if (ret)
1278                 transport_generic_request_failure(cmd, ret);
1279         return 0;
1280 }
1281 EXPORT_SYMBOL(transport_handle_cdb_direct);
1282
1283 sense_reason_t
1284 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1285                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1286 {
1287         if (!sgl || !sgl_count)
1288                 return 0;
1289
1290         /*
1291          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1292          * scatterlists already have been set to follow what the fabric
1293          * passes for the original expected data transfer length.
1294          */
1295         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1296                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1297                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1298                 return TCM_INVALID_CDB_FIELD;
1299         }
1300
1301         cmd->t_data_sg = sgl;
1302         cmd->t_data_nents = sgl_count;
1303
1304         if (sgl_bidi && sgl_bidi_count) {
1305                 cmd->t_bidi_data_sg = sgl_bidi;
1306                 cmd->t_bidi_data_nents = sgl_bidi_count;
1307         }
1308         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1309         return 0;
1310 }
1311
1312 /*
1313  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1314  *                       se_cmd + use pre-allocated SGL memory.
1315  *
1316  * @se_cmd: command descriptor to submit
1317  * @se_sess: associated se_sess for endpoint
1318  * @cdb: pointer to SCSI CDB
1319  * @sense: pointer to SCSI sense buffer
1320  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1321  * @data_length: fabric expected data transfer length
1322  * @task_addr: SAM task attribute
1323  * @data_dir: DMA data direction
1324  * @flags: flags for command submission from target_sc_flags_tables
1325  * @sgl: struct scatterlist memory for unidirectional mapping
1326  * @sgl_count: scatterlist count for unidirectional mapping
1327  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1328  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1329  * @sgl_prot: struct scatterlist memory protection information
1330  * @sgl_prot_count: scatterlist count for protection information
1331  *
1332  * Returns non zero to signal active I/O shutdown failure.  All other
1333  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1334  * but still return zero here.
1335  *
1336  * This may only be called from process context, and also currently
1337  * assumes internal allocation of fabric payload buffer by target-core.
1338  */
1339 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1340                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1341                 u32 data_length, int task_attr, int data_dir, int flags,
1342                 struct scatterlist *sgl, u32 sgl_count,
1343                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1344                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1345 {
1346         struct se_portal_group *se_tpg;
1347         sense_reason_t rc;
1348         int ret;
1349
1350         se_tpg = se_sess->se_tpg;
1351         BUG_ON(!se_tpg);
1352         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1353         BUG_ON(in_interrupt());
1354         /*
1355          * Initialize se_cmd for target operation.  From this point
1356          * exceptions are handled by sending exception status via
1357          * target_core_fabric_ops->queue_status() callback
1358          */
1359         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1360                                 data_length, data_dir, task_attr, sense);
1361         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1362                 se_cmd->unknown_data_length = 1;
1363         /*
1364          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1365          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1366          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1367          * kref_put() to happen during fabric packet acknowledgement.
1368          */
1369         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1370         if (ret)
1371                 return ret;
1372         /*
1373          * Signal bidirectional data payloads to target-core
1374          */
1375         if (flags & TARGET_SCF_BIDI_OP)
1376                 se_cmd->se_cmd_flags |= SCF_BIDI;
1377         /*
1378          * Locate se_lun pointer and attach it to struct se_cmd
1379          */
1380         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1381         if (rc) {
1382                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1383                 target_put_sess_cmd(se_sess, se_cmd);
1384                 return 0;
1385         }
1386         /*
1387          * Save pointers for SGLs containing protection information,
1388          * if present.
1389          */
1390         if (sgl_prot_count) {
1391                 se_cmd->t_prot_sg = sgl_prot;
1392                 se_cmd->t_prot_nents = sgl_prot_count;
1393         }
1394
1395         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1396         if (rc != 0) {
1397                 transport_generic_request_failure(se_cmd, rc);
1398                 return 0;
1399         }
1400         /*
1401          * When a non zero sgl_count has been passed perform SGL passthrough
1402          * mapping for pre-allocated fabric memory instead of having target
1403          * core perform an internal SGL allocation..
1404          */
1405         if (sgl_count != 0) {
1406                 BUG_ON(!sgl);
1407
1408                 /*
1409                  * A work-around for tcm_loop as some userspace code via
1410                  * scsi-generic do not memset their associated read buffers,
1411                  * so go ahead and do that here for type non-data CDBs.  Also
1412                  * note that this is currently guaranteed to be a single SGL
1413                  * for this case by target core in target_setup_cmd_from_cdb()
1414                  * -> transport_generic_cmd_sequencer().
1415                  */
1416                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1417                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1418                         unsigned char *buf = NULL;
1419
1420                         if (sgl)
1421                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1422
1423                         if (buf) {
1424                                 memset(buf, 0, sgl->length);
1425                                 kunmap(sg_page(sgl));
1426                         }
1427                 }
1428
1429                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1430                                 sgl_bidi, sgl_bidi_count);
1431                 if (rc != 0) {
1432                         transport_generic_request_failure(se_cmd, rc);
1433                         return 0;
1434                 }
1435         }
1436
1437         /*
1438          * Check if we need to delay processing because of ALUA
1439          * Active/NonOptimized primary access state..
1440          */
1441         core_alua_check_nonop_delay(se_cmd);
1442
1443         transport_handle_cdb_direct(se_cmd);
1444         return 0;
1445 }
1446 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1447
1448 /*
1449  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1450  *
1451  * @se_cmd: command descriptor to submit
1452  * @se_sess: associated se_sess for endpoint
1453  * @cdb: pointer to SCSI CDB
1454  * @sense: pointer to SCSI sense buffer
1455  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1456  * @data_length: fabric expected data transfer length
1457  * @task_addr: SAM task attribute
1458  * @data_dir: DMA data direction
1459  * @flags: flags for command submission from target_sc_flags_tables
1460  *
1461  * Returns non zero to signal active I/O shutdown failure.  All other
1462  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1463  * but still return zero here.
1464  *
1465  * This may only be called from process context, and also currently
1466  * assumes internal allocation of fabric payload buffer by target-core.
1467  *
1468  * It also assumes interal target core SGL memory allocation.
1469  */
1470 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1471                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1472                 u32 data_length, int task_attr, int data_dir, int flags)
1473 {
1474         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1475                         unpacked_lun, data_length, task_attr, data_dir,
1476                         flags, NULL, 0, NULL, 0, NULL, 0);
1477 }
1478 EXPORT_SYMBOL(target_submit_cmd);
1479
1480 static void target_complete_tmr_failure(struct work_struct *work)
1481 {
1482         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1483
1484         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1485         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1486
1487         transport_cmd_check_stop_to_fabric(se_cmd);
1488 }
1489
1490 /**
1491  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1492  *                     for TMR CDBs
1493  *
1494  * @se_cmd: command descriptor to submit
1495  * @se_sess: associated se_sess for endpoint
1496  * @sense: pointer to SCSI sense buffer
1497  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1498  * @fabric_context: fabric context for TMR req
1499  * @tm_type: Type of TM request
1500  * @gfp: gfp type for caller
1501  * @tag: referenced task tag for TMR_ABORT_TASK
1502  * @flags: submit cmd flags
1503  *
1504  * Callable from all contexts.
1505  **/
1506
1507 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1508                 unsigned char *sense, u32 unpacked_lun,
1509                 void *fabric_tmr_ptr, unsigned char tm_type,
1510                 gfp_t gfp, unsigned int tag, int flags)
1511 {
1512         struct se_portal_group *se_tpg;
1513         int ret;
1514
1515         se_tpg = se_sess->se_tpg;
1516         BUG_ON(!se_tpg);
1517
1518         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1519                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1520         /*
1521          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1522          * allocation failure.
1523          */
1524         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1525         if (ret < 0)
1526                 return -ENOMEM;
1527
1528         if (tm_type == TMR_ABORT_TASK)
1529                 se_cmd->se_tmr_req->ref_task_tag = tag;
1530
1531         /* See target_submit_cmd for commentary */
1532         ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1533         if (ret) {
1534                 core_tmr_release_req(se_cmd->se_tmr_req);
1535                 return ret;
1536         }
1537
1538         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1539         if (ret) {
1540                 /*
1541                  * For callback during failure handling, push this work off
1542                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1543                  */
1544                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1545                 schedule_work(&se_cmd->work);
1546                 return 0;
1547         }
1548         transport_generic_handle_tmr(se_cmd);
1549         return 0;
1550 }
1551 EXPORT_SYMBOL(target_submit_tmr);
1552
1553 /*
1554  * If the cmd is active, request it to be stopped and sleep until it
1555  * has completed.
1556  */
1557 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1558 {
1559         bool was_active = false;
1560
1561         if (cmd->transport_state & CMD_T_BUSY) {
1562                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1563                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1564
1565                 pr_debug("cmd %p waiting to complete\n", cmd);
1566                 wait_for_completion(&cmd->task_stop_comp);
1567                 pr_debug("cmd %p stopped successfully\n", cmd);
1568
1569                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1570                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1571                 cmd->transport_state &= ~CMD_T_BUSY;
1572                 was_active = true;
1573         }
1574
1575         return was_active;
1576 }
1577
1578 /*
1579  * Handle SAM-esque emulation for generic transport request failures.
1580  */
1581 void transport_generic_request_failure(struct se_cmd *cmd,
1582                 sense_reason_t sense_reason)
1583 {
1584         int ret = 0;
1585
1586         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1587                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1588                 cmd->t_task_cdb[0]);
1589         pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1590                 cmd->se_tfo->get_cmd_state(cmd),
1591                 cmd->t_state, sense_reason);
1592         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1593                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1594                 (cmd->transport_state & CMD_T_STOP) != 0,
1595                 (cmd->transport_state & CMD_T_SENT) != 0);
1596
1597         /*
1598          * For SAM Task Attribute emulation for failed struct se_cmd
1599          */
1600         transport_complete_task_attr(cmd);
1601         /*
1602          * Handle special case for COMPARE_AND_WRITE failure, where the
1603          * callback is expected to drop the per device ->caw_mutex.
1604          */
1605         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1606              cmd->transport_complete_callback)
1607                 cmd->transport_complete_callback(cmd);
1608
1609         switch (sense_reason) {
1610         case TCM_NON_EXISTENT_LUN:
1611         case TCM_UNSUPPORTED_SCSI_OPCODE:
1612         case TCM_INVALID_CDB_FIELD:
1613         case TCM_INVALID_PARAMETER_LIST:
1614         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1615         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1616         case TCM_UNKNOWN_MODE_PAGE:
1617         case TCM_WRITE_PROTECTED:
1618         case TCM_ADDRESS_OUT_OF_RANGE:
1619         case TCM_CHECK_CONDITION_ABORT_CMD:
1620         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1621         case TCM_CHECK_CONDITION_NOT_READY:
1622         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1623         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1624         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1625                 break;
1626         case TCM_OUT_OF_RESOURCES:
1627                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1628                 break;
1629         case TCM_RESERVATION_CONFLICT:
1630                 /*
1631                  * No SENSE Data payload for this case, set SCSI Status
1632                  * and queue the response to $FABRIC_MOD.
1633                  *
1634                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1635                  */
1636                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1637                 /*
1638                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1639                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1640                  * CONFLICT STATUS.
1641                  *
1642                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1643                  */
1644                 if (cmd->se_sess &&
1645                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1646                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1647                                 cmd->orig_fe_lun, 0x2C,
1648                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1649
1650                 trace_target_cmd_complete(cmd);
1651                 ret = cmd->se_tfo-> queue_status(cmd);
1652                 if (ret == -EAGAIN || ret == -ENOMEM)
1653                         goto queue_full;
1654                 goto check_stop;
1655         default:
1656                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1657                         cmd->t_task_cdb[0], sense_reason);
1658                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1659                 break;
1660         }
1661
1662         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1663         if (ret == -EAGAIN || ret == -ENOMEM)
1664                 goto queue_full;
1665
1666 check_stop:
1667         transport_lun_remove_cmd(cmd);
1668         if (!transport_cmd_check_stop_to_fabric(cmd))
1669                 ;
1670         return;
1671
1672 queue_full:
1673         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1674         transport_handle_queue_full(cmd, cmd->se_dev);
1675 }
1676 EXPORT_SYMBOL(transport_generic_request_failure);
1677
1678 void __target_execute_cmd(struct se_cmd *cmd)
1679 {
1680         sense_reason_t ret;
1681
1682         if (cmd->execute_cmd) {
1683                 ret = cmd->execute_cmd(cmd);
1684                 if (ret) {
1685                         spin_lock_irq(&cmd->t_state_lock);
1686                         cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1687                         spin_unlock_irq(&cmd->t_state_lock);
1688
1689                         transport_generic_request_failure(cmd, ret);
1690                 }
1691         }
1692 }
1693
1694 static bool target_handle_task_attr(struct se_cmd *cmd)
1695 {
1696         struct se_device *dev = cmd->se_dev;
1697
1698         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1699                 return false;
1700
1701         /*
1702          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1703          * to allow the passed struct se_cmd list of tasks to the front of the list.
1704          */
1705         switch (cmd->sam_task_attr) {
1706         case MSG_HEAD_TAG:
1707                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1708                          "se_ordered_id: %u\n",
1709                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1710                 return false;
1711         case MSG_ORDERED_TAG:
1712                 atomic_inc(&dev->dev_ordered_sync);
1713                 smp_mb__after_atomic_inc();
1714
1715                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1716                          " se_ordered_id: %u\n",
1717                          cmd->t_task_cdb[0], cmd->se_ordered_id);
1718
1719                 /*
1720                  * Execute an ORDERED command if no other older commands
1721                  * exist that need to be completed first.
1722                  */
1723                 if (!atomic_read(&dev->simple_cmds))
1724                         return false;
1725                 break;
1726         default:
1727                 /*
1728                  * For SIMPLE and UNTAGGED Task Attribute commands
1729                  */
1730                 atomic_inc(&dev->simple_cmds);
1731                 smp_mb__after_atomic_inc();
1732                 break;
1733         }
1734
1735         if (atomic_read(&dev->dev_ordered_sync) == 0)
1736                 return false;
1737
1738         spin_lock(&dev->delayed_cmd_lock);
1739         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1740         spin_unlock(&dev->delayed_cmd_lock);
1741
1742         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1743                 " delayed CMD list, se_ordered_id: %u\n",
1744                 cmd->t_task_cdb[0], cmd->sam_task_attr,
1745                 cmd->se_ordered_id);
1746         return true;
1747 }
1748
1749 void target_execute_cmd(struct se_cmd *cmd)
1750 {
1751         /*
1752          * If the received CDB has aleady been aborted stop processing it here.
1753          */
1754         if (transport_check_aborted_status(cmd, 1))
1755                 return;
1756
1757         /*
1758          * Determine if frontend context caller is requesting the stopping of
1759          * this command for frontend exceptions.
1760          */
1761         spin_lock_irq(&cmd->t_state_lock);
1762         if (cmd->transport_state & CMD_T_STOP) {
1763                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1764                         __func__, __LINE__,
1765                         cmd->se_tfo->get_task_tag(cmd));
1766
1767                 spin_unlock_irq(&cmd->t_state_lock);
1768                 complete_all(&cmd->t_transport_stop_comp);
1769                 return;
1770         }
1771
1772         cmd->t_state = TRANSPORT_PROCESSING;
1773         cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1774         spin_unlock_irq(&cmd->t_state_lock);
1775
1776         if (target_handle_task_attr(cmd)) {
1777                 spin_lock_irq(&cmd->t_state_lock);
1778                 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1779                 spin_unlock_irq(&cmd->t_state_lock);
1780                 return;
1781         }
1782
1783         __target_execute_cmd(cmd);
1784 }
1785 EXPORT_SYMBOL(target_execute_cmd);
1786
1787 /*
1788  * Process all commands up to the last received ORDERED task attribute which
1789  * requires another blocking boundary
1790  */
1791 static void target_restart_delayed_cmds(struct se_device *dev)
1792 {
1793         for (;;) {
1794                 struct se_cmd *cmd;
1795
1796                 spin_lock(&dev->delayed_cmd_lock);
1797                 if (list_empty(&dev->delayed_cmd_list)) {
1798                         spin_unlock(&dev->delayed_cmd_lock);
1799                         break;
1800                 }
1801
1802                 cmd = list_entry(dev->delayed_cmd_list.next,
1803                                  struct se_cmd, se_delayed_node);
1804                 list_del(&cmd->se_delayed_node);
1805                 spin_unlock(&dev->delayed_cmd_lock);
1806
1807                 __target_execute_cmd(cmd);
1808
1809                 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1810                         break;
1811         }
1812 }
1813
1814 /*
1815  * Called from I/O completion to determine which dormant/delayed
1816  * and ordered cmds need to have their tasks added to the execution queue.
1817  */
1818 static void transport_complete_task_attr(struct se_cmd *cmd)
1819 {
1820         struct se_device *dev = cmd->se_dev;
1821
1822         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1823                 return;
1824
1825         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1826                 atomic_dec(&dev->simple_cmds);
1827                 smp_mb__after_atomic_dec();
1828                 dev->dev_cur_ordered_id++;
1829                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1830                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1831                         cmd->se_ordered_id);
1832         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1833                 dev->dev_cur_ordered_id++;
1834                 pr_debug("Incremented dev_cur_ordered_id: %u for"
1835                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1836                         cmd->se_ordered_id);
1837         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1838                 atomic_dec(&dev->dev_ordered_sync);
1839                 smp_mb__after_atomic_dec();
1840
1841                 dev->dev_cur_ordered_id++;
1842                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1843                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1844         }
1845
1846         target_restart_delayed_cmds(dev);
1847 }
1848
1849 static void transport_complete_qf(struct se_cmd *cmd)
1850 {
1851         int ret = 0;
1852
1853         transport_complete_task_attr(cmd);
1854
1855         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1856                 trace_target_cmd_complete(cmd);
1857                 ret = cmd->se_tfo->queue_status(cmd);
1858                 goto out;
1859         }
1860
1861         switch (cmd->data_direction) {
1862         case DMA_FROM_DEVICE:
1863                 trace_target_cmd_complete(cmd);
1864                 ret = cmd->se_tfo->queue_data_in(cmd);
1865                 break;
1866         case DMA_TO_DEVICE:
1867                 if (cmd->se_cmd_flags & SCF_BIDI) {
1868                         ret = cmd->se_tfo->queue_data_in(cmd);
1869                         if (ret < 0)
1870                                 break;
1871                 }
1872                 /* Fall through for DMA_TO_DEVICE */
1873         case DMA_NONE:
1874                 trace_target_cmd_complete(cmd);
1875                 ret = cmd->se_tfo->queue_status(cmd);
1876                 break;
1877         default:
1878                 break;
1879         }
1880
1881 out:
1882         if (ret < 0) {
1883                 transport_handle_queue_full(cmd, cmd->se_dev);
1884                 return;
1885         }
1886         transport_lun_remove_cmd(cmd);
1887         transport_cmd_check_stop_to_fabric(cmd);
1888 }
1889
1890 static void transport_handle_queue_full(
1891         struct se_cmd *cmd,
1892         struct se_device *dev)
1893 {
1894         spin_lock_irq(&dev->qf_cmd_lock);
1895         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1896         atomic_inc(&dev->dev_qf_count);
1897         smp_mb__after_atomic_inc();
1898         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1899
1900         schedule_work(&cmd->se_dev->qf_work_queue);
1901 }
1902
1903 static void target_complete_ok_work(struct work_struct *work)
1904 {
1905         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1906         int ret;
1907
1908         /*
1909          * Check if we need to move delayed/dormant tasks from cmds on the
1910          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1911          * Attribute.
1912          */
1913         transport_complete_task_attr(cmd);
1914
1915         /*
1916          * Check to schedule QUEUE_FULL work, or execute an existing
1917          * cmd->transport_qf_callback()
1918          */
1919         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1920                 schedule_work(&cmd->se_dev->qf_work_queue);
1921
1922         /*
1923          * Check if we need to send a sense buffer from
1924          * the struct se_cmd in question.
1925          */
1926         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1927                 WARN_ON(!cmd->scsi_status);
1928                 ret = transport_send_check_condition_and_sense(
1929                                         cmd, 0, 1);
1930                 if (ret == -EAGAIN || ret == -ENOMEM)
1931                         goto queue_full;
1932
1933                 transport_lun_remove_cmd(cmd);
1934                 transport_cmd_check_stop_to_fabric(cmd);
1935                 return;
1936         }
1937         /*
1938          * Check for a callback, used by amongst other things
1939          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1940          */
1941         if (cmd->transport_complete_callback) {
1942                 sense_reason_t rc;
1943
1944                 rc = cmd->transport_complete_callback(cmd);
1945                 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1946                         return;
1947                 } else if (rc) {
1948                         ret = transport_send_check_condition_and_sense(cmd,
1949                                                 rc, 0);
1950                         if (ret == -EAGAIN || ret == -ENOMEM)
1951                                 goto queue_full;
1952
1953                         transport_lun_remove_cmd(cmd);
1954                         transport_cmd_check_stop_to_fabric(cmd);
1955                         return;
1956                 }
1957         }
1958
1959         switch (cmd->data_direction) {
1960         case DMA_FROM_DEVICE:
1961                 spin_lock(&cmd->se_lun->lun_sep_lock);
1962                 if (cmd->se_lun->lun_sep) {
1963                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1964                                         cmd->data_length;
1965                 }
1966                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1967
1968                 trace_target_cmd_complete(cmd);
1969                 ret = cmd->se_tfo->queue_data_in(cmd);
1970                 if (ret == -EAGAIN || ret == -ENOMEM)
1971                         goto queue_full;
1972                 break;
1973         case DMA_TO_DEVICE:
1974                 spin_lock(&cmd->se_lun->lun_sep_lock);
1975                 if (cmd->se_lun->lun_sep) {
1976                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1977                                 cmd->data_length;
1978                 }
1979                 spin_unlock(&cmd->se_lun->lun_sep_lock);
1980                 /*
1981                  * Check if we need to send READ payload for BIDI-COMMAND
1982                  */
1983                 if (cmd->se_cmd_flags & SCF_BIDI) {
1984                         spin_lock(&cmd->se_lun->lun_sep_lock);
1985                         if (cmd->se_lun->lun_sep) {
1986                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1987                                         cmd->data_length;
1988                         }
1989                         spin_unlock(&cmd->se_lun->lun_sep_lock);
1990                         ret = cmd->se_tfo->queue_data_in(cmd);
1991                         if (ret == -EAGAIN || ret == -ENOMEM)
1992                                 goto queue_full;
1993                         break;
1994                 }
1995                 /* Fall through for DMA_TO_DEVICE */
1996         case DMA_NONE:
1997                 trace_target_cmd_complete(cmd);
1998                 ret = cmd->se_tfo->queue_status(cmd);
1999                 if (ret == -EAGAIN || ret == -ENOMEM)
2000                         goto queue_full;
2001                 break;
2002         default:
2003                 break;
2004         }
2005
2006         transport_lun_remove_cmd(cmd);
2007         transport_cmd_check_stop_to_fabric(cmd);
2008         return;
2009
2010 queue_full:
2011         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2012                 " data_direction: %d\n", cmd, cmd->data_direction);
2013         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2014         transport_handle_queue_full(cmd, cmd->se_dev);
2015 }
2016
2017 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2018 {
2019         struct scatterlist *sg;
2020         int count;
2021
2022         for_each_sg(sgl, sg, nents, count)
2023                 __free_page(sg_page(sg));
2024
2025         kfree(sgl);
2026 }
2027
2028 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2029 {
2030         /*
2031          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2032          * emulation, and free + reset pointers if necessary..
2033          */
2034         if (!cmd->t_data_sg_orig)
2035                 return;
2036
2037         kfree(cmd->t_data_sg);
2038         cmd->t_data_sg = cmd->t_data_sg_orig;
2039         cmd->t_data_sg_orig = NULL;
2040         cmd->t_data_nents = cmd->t_data_nents_orig;
2041         cmd->t_data_nents_orig = 0;
2042 }
2043
2044 static inline void transport_free_pages(struct se_cmd *cmd)
2045 {
2046         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2047                 transport_reset_sgl_orig(cmd);
2048                 return;
2049         }
2050         transport_reset_sgl_orig(cmd);
2051
2052         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2053         cmd->t_data_sg = NULL;
2054         cmd->t_data_nents = 0;
2055
2056         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2057         cmd->t_bidi_data_sg = NULL;
2058         cmd->t_bidi_data_nents = 0;
2059 }
2060
2061 /**
2062  * transport_release_cmd - free a command
2063  * @cmd:       command to free
2064  *
2065  * This routine unconditionally frees a command, and reference counting
2066  * or list removal must be done in the caller.
2067  */
2068 static int transport_release_cmd(struct se_cmd *cmd)
2069 {
2070         BUG_ON(!cmd->se_tfo);
2071
2072         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2073                 core_tmr_release_req(cmd->se_tmr_req);
2074         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2075                 kfree(cmd->t_task_cdb);
2076         /*
2077          * If this cmd has been setup with target_get_sess_cmd(), drop
2078          * the kref and call ->release_cmd() in kref callback.
2079          */
2080         return target_put_sess_cmd(cmd->se_sess, cmd);
2081 }
2082
2083 /**
2084  * transport_put_cmd - release a reference to a command
2085  * @cmd:       command to release
2086  *
2087  * This routine releases our reference to the command and frees it if possible.
2088  */
2089 static int transport_put_cmd(struct se_cmd *cmd)
2090 {
2091         transport_free_pages(cmd);
2092         return transport_release_cmd(cmd);
2093 }
2094
2095 void *transport_kmap_data_sg(struct se_cmd *cmd)
2096 {
2097         struct scatterlist *sg = cmd->t_data_sg;
2098         struct page **pages;
2099         int i;
2100
2101         /*
2102          * We need to take into account a possible offset here for fabrics like
2103          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2104          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2105          */
2106         if (!cmd->t_data_nents)
2107                 return NULL;
2108
2109         BUG_ON(!sg);
2110         if (cmd->t_data_nents == 1)
2111                 return kmap(sg_page(sg)) + sg->offset;
2112
2113         /* >1 page. use vmap */
2114         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2115         if (!pages)
2116                 return NULL;
2117
2118         /* convert sg[] to pages[] */
2119         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2120                 pages[i] = sg_page(sg);
2121         }
2122
2123         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2124         kfree(pages);
2125         if (!cmd->t_data_vmap)
2126                 return NULL;
2127
2128         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2129 }
2130 EXPORT_SYMBOL(transport_kmap_data_sg);
2131
2132 void transport_kunmap_data_sg(struct se_cmd *cmd)
2133 {
2134         if (!cmd->t_data_nents) {
2135                 return;
2136         } else if (cmd->t_data_nents == 1) {
2137                 kunmap(sg_page(cmd->t_data_sg));
2138                 return;
2139         }
2140
2141         vunmap(cmd->t_data_vmap);
2142         cmd->t_data_vmap = NULL;
2143 }
2144 EXPORT_SYMBOL(transport_kunmap_data_sg);
2145
2146 int
2147 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2148                  bool zero_page)
2149 {
2150         struct scatterlist *sg;
2151         struct page *page;
2152         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2153         unsigned int nent;
2154         int i = 0;
2155
2156         nent = DIV_ROUND_UP(length, PAGE_SIZE);
2157         sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2158         if (!sg)
2159                 return -ENOMEM;
2160
2161         sg_init_table(sg, nent);
2162
2163         while (length) {
2164                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2165                 page = alloc_page(GFP_KERNEL | zero_flag);
2166                 if (!page)
2167                         goto out;
2168
2169                 sg_set_page(&sg[i], page, page_len, 0);
2170                 length -= page_len;
2171                 i++;
2172         }
2173         *sgl = sg;
2174         *nents = nent;
2175         return 0;
2176
2177 out:
2178         while (i > 0) {
2179                 i--;
2180                 __free_page(sg_page(&sg[i]));
2181         }
2182         kfree(sg);
2183         return -ENOMEM;
2184 }
2185
2186 /*
2187  * Allocate any required resources to execute the command.  For writes we
2188  * might not have the payload yet, so notify the fabric via a call to
2189  * ->write_pending instead. Otherwise place it on the execution queue.
2190  */
2191 sense_reason_t
2192 transport_generic_new_cmd(struct se_cmd *cmd)
2193 {
2194         int ret = 0;
2195
2196         /*
2197          * Determine is the TCM fabric module has already allocated physical
2198          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2199          * beforehand.
2200          */
2201         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2202             cmd->data_length) {
2203                 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2204
2205                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2206                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2207                         u32 bidi_length;
2208
2209                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2210                                 bidi_length = cmd->t_task_nolb *
2211                                               cmd->se_dev->dev_attrib.block_size;
2212                         else
2213                                 bidi_length = cmd->data_length;
2214
2215                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2216                                                &cmd->t_bidi_data_nents,
2217                                                bidi_length, zero_flag);
2218                         if (ret < 0)
2219                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2220                 }
2221
2222                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2223                                        cmd->data_length, zero_flag);
2224                 if (ret < 0)
2225                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2226         }
2227         /*
2228          * If this command is not a write we can execute it right here,
2229          * for write buffers we need to notify the fabric driver first
2230          * and let it call back once the write buffers are ready.
2231          */
2232         target_add_to_state_list(cmd);
2233         if (cmd->data_direction != DMA_TO_DEVICE) {
2234                 target_execute_cmd(cmd);
2235                 return 0;
2236         }
2237         transport_cmd_check_stop(cmd, false, true);
2238
2239         ret = cmd->se_tfo->write_pending(cmd);
2240         if (ret == -EAGAIN || ret == -ENOMEM)
2241                 goto queue_full;
2242
2243         /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2244         WARN_ON(ret);
2245
2246         return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2247
2248 queue_full:
2249         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2250         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2251         transport_handle_queue_full(cmd, cmd->se_dev);
2252         return 0;
2253 }
2254 EXPORT_SYMBOL(transport_generic_new_cmd);
2255
2256 static void transport_write_pending_qf(struct se_cmd *cmd)
2257 {
2258         int ret;
2259
2260         ret = cmd->se_tfo->write_pending(cmd);
2261         if (ret == -EAGAIN || ret == -ENOMEM) {
2262                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2263                          cmd);
2264                 transport_handle_queue_full(cmd, cmd->se_dev);
2265         }
2266 }
2267
2268 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2269 {
2270         unsigned long flags;
2271         int ret = 0;
2272
2273         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2274                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2275                          transport_wait_for_tasks(cmd);
2276
2277                 ret = transport_release_cmd(cmd);
2278         } else {
2279                 if (wait_for_tasks)
2280                         transport_wait_for_tasks(cmd);
2281                 /*
2282                  * Handle WRITE failure case where transport_generic_new_cmd()
2283                  * has already added se_cmd to state_list, but fabric has
2284                  * failed command before I/O submission.
2285                  */
2286                 if (cmd->state_active) {
2287                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2288                         target_remove_from_state_list(cmd);
2289                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2290                 }
2291
2292                 if (cmd->se_lun)
2293                         transport_lun_remove_cmd(cmd);
2294
2295                 ret = transport_put_cmd(cmd);
2296         }
2297         return ret;
2298 }
2299 EXPORT_SYMBOL(transport_generic_free_cmd);
2300
2301 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2302  * @se_sess:    session to reference
2303  * @se_cmd:     command descriptor to add
2304  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2305  */
2306 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2307                                bool ack_kref)
2308 {
2309         unsigned long flags;
2310         int ret = 0;
2311
2312         /*
2313          * Add a second kref if the fabric caller is expecting to handle
2314          * fabric acknowledgement that requires two target_put_sess_cmd()
2315          * invocations before se_cmd descriptor release.
2316          */
2317         if (ack_kref == true) {
2318                 kref_get(&se_cmd->cmd_kref);
2319                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2320         }
2321
2322         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2323         if (se_sess->sess_tearing_down) {
2324                 ret = -ESHUTDOWN;
2325                 goto out;
2326         }
2327         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2328 out:
2329         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2330         return ret;
2331 }
2332 EXPORT_SYMBOL(target_get_sess_cmd);
2333
2334 static void target_release_cmd_kref(struct kref *kref)
2335 {
2336         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2337         struct se_session *se_sess = se_cmd->se_sess;
2338
2339         if (list_empty(&se_cmd->se_cmd_list)) {
2340                 spin_unlock(&se_sess->sess_cmd_lock);
2341                 se_cmd->se_tfo->release_cmd(se_cmd);
2342                 return;
2343         }
2344         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2345                 spin_unlock(&se_sess->sess_cmd_lock);
2346                 complete(&se_cmd->cmd_wait_comp);
2347                 return;
2348         }
2349         list_del(&se_cmd->se_cmd_list);
2350         spin_unlock(&se_sess->sess_cmd_lock);
2351
2352         se_cmd->se_tfo->release_cmd(se_cmd);
2353 }
2354
2355 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2356  * @se_sess:    session to reference
2357  * @se_cmd:     command descriptor to drop
2358  */
2359 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2360 {
2361         if (!se_sess) {
2362                 se_cmd->se_tfo->release_cmd(se_cmd);
2363                 return 1;
2364         }
2365         return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2366                         &se_sess->sess_cmd_lock);
2367 }
2368 EXPORT_SYMBOL(target_put_sess_cmd);
2369
2370 /* target_sess_cmd_list_set_waiting - Flag all commands in
2371  *         sess_cmd_list to complete cmd_wait_comp.  Set
2372  *         sess_tearing_down so no more commands are queued.
2373  * @se_sess:    session to flag
2374  */
2375 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2376 {
2377         struct se_cmd *se_cmd;
2378         unsigned long flags;
2379
2380         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2381         if (se_sess->sess_tearing_down) {
2382                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2383                 return;
2384         }
2385         se_sess->sess_tearing_down = 1;
2386         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2387
2388         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2389                 se_cmd->cmd_wait_set = 1;
2390
2391         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2392 }
2393 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2394
2395 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2396  * @se_sess:    session to wait for active I/O
2397  */
2398 void target_wait_for_sess_cmds(struct se_session *se_sess)
2399 {
2400         struct se_cmd *se_cmd, *tmp_cmd;
2401         unsigned long flags;
2402
2403         list_for_each_entry_safe(se_cmd, tmp_cmd,
2404                                 &se_sess->sess_wait_list, se_cmd_list) {
2405                 list_del(&se_cmd->se_cmd_list);
2406
2407                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2408                         " %d\n", se_cmd, se_cmd->t_state,
2409                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2410
2411                 wait_for_completion(&se_cmd->cmd_wait_comp);
2412                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2413                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2414                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2415
2416                 se_cmd->se_tfo->release_cmd(se_cmd);
2417         }
2418
2419         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2420         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2421         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2422
2423 }
2424 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2425
2426 static int transport_clear_lun_ref_thread(void *p)
2427 {
2428         struct se_lun *lun = p;
2429
2430         percpu_ref_kill(&lun->lun_ref);
2431
2432         wait_for_completion(&lun->lun_ref_comp);
2433         complete(&lun->lun_shutdown_comp);
2434
2435         return 0;
2436 }
2437
2438 int transport_clear_lun_ref(struct se_lun *lun)
2439 {
2440         struct task_struct *kt;
2441
2442         kt = kthread_run(transport_clear_lun_ref_thread, lun,
2443                         "tcm_cl_%u", lun->unpacked_lun);
2444         if (IS_ERR(kt)) {
2445                 pr_err("Unable to start clear_lun thread\n");
2446                 return PTR_ERR(kt);
2447         }
2448         wait_for_completion(&lun->lun_shutdown_comp);
2449
2450         return 0;
2451 }
2452
2453 /**
2454  * transport_wait_for_tasks - wait for completion to occur
2455  * @cmd:        command to wait
2456  *
2457  * Called from frontend fabric context to wait for storage engine
2458  * to pause and/or release frontend generated struct se_cmd.
2459  */
2460 bool transport_wait_for_tasks(struct se_cmd *cmd)
2461 {
2462         unsigned long flags;
2463
2464         spin_lock_irqsave(&cmd->t_state_lock, flags);
2465         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2466             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2467                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2468                 return false;
2469         }
2470
2471         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2472             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2473                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2474                 return false;
2475         }
2476
2477         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2478                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2479                 return false;
2480         }
2481
2482         cmd->transport_state |= CMD_T_STOP;
2483
2484         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2485                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2486                 cmd, cmd->se_tfo->get_task_tag(cmd),
2487                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2488
2489         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2490
2491         wait_for_completion(&cmd->t_transport_stop_comp);
2492
2493         spin_lock_irqsave(&cmd->t_state_lock, flags);
2494         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2495
2496         pr_debug("wait_for_tasks: Stopped wait_for_completion("
2497                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2498                 cmd->se_tfo->get_task_tag(cmd));
2499
2500         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2501
2502         return true;
2503 }
2504 EXPORT_SYMBOL(transport_wait_for_tasks);
2505
2506 static int transport_get_sense_codes(
2507         struct se_cmd *cmd,
2508         u8 *asc,
2509         u8 *ascq)
2510 {
2511         *asc = cmd->scsi_asc;
2512         *ascq = cmd->scsi_ascq;
2513
2514         return 0;
2515 }
2516
2517 static
2518 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2519 {
2520         /* Place failed LBA in sense data information descriptor 0. */
2521         buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2522         buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2523         buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2524         buffer[SPC_VALIDITY_OFFSET] = 0x80;
2525
2526         /* Descriptor Information: failing sector */
2527         put_unaligned_be64(bad_sector, &buffer[12]);
2528 }
2529
2530 int
2531 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2532                 sense_reason_t reason, int from_transport)
2533 {
2534         unsigned char *buffer = cmd->sense_buffer;
2535         unsigned long flags;
2536         u8 asc = 0, ascq = 0;
2537
2538         spin_lock_irqsave(&cmd->t_state_lock, flags);
2539         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2540                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2541                 return 0;
2542         }
2543         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2544         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2545
2546         if (!reason && from_transport)
2547                 goto after_reason;
2548
2549         if (!from_transport)
2550                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2551
2552         /*
2553          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2554          * SENSE KEY values from include/scsi/scsi.h
2555          */
2556         switch (reason) {
2557         case TCM_NO_SENSE:
2558                 /* CURRENT ERROR */
2559                 buffer[0] = 0x70;
2560                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2561                 /* Not Ready */
2562                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2563                 /* NO ADDITIONAL SENSE INFORMATION */
2564                 buffer[SPC_ASC_KEY_OFFSET] = 0;
2565                 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2566                 break;
2567         case TCM_NON_EXISTENT_LUN:
2568                 /* CURRENT ERROR */
2569                 buffer[0] = 0x70;
2570                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2571                 /* ILLEGAL REQUEST */
2572                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2573                 /* LOGICAL UNIT NOT SUPPORTED */
2574                 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2575                 break;
2576         case TCM_UNSUPPORTED_SCSI_OPCODE:
2577         case TCM_SECTOR_COUNT_TOO_MANY:
2578                 /* CURRENT ERROR */
2579                 buffer[0] = 0x70;
2580                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2581                 /* ILLEGAL REQUEST */
2582                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2583                 /* INVALID COMMAND OPERATION CODE */
2584                 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2585                 break;
2586         case TCM_UNKNOWN_MODE_PAGE:
2587                 /* CURRENT ERROR */
2588                 buffer[0] = 0x70;
2589                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2590                 /* ILLEGAL REQUEST */
2591                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2592                 /* INVALID FIELD IN CDB */
2593                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2594                 break;
2595         case TCM_CHECK_CONDITION_ABORT_CMD:
2596                 /* CURRENT ERROR */
2597                 buffer[0] = 0x70;
2598                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2599                 /* ABORTED COMMAND */
2600                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2601                 /* BUS DEVICE RESET FUNCTION OCCURRED */
2602                 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2603                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2604                 break;
2605         case TCM_INCORRECT_AMOUNT_OF_DATA:
2606                 /* CURRENT ERROR */
2607                 buffer[0] = 0x70;
2608                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2609                 /* ABORTED COMMAND */
2610                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2611                 /* WRITE ERROR */
2612                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2613                 /* NOT ENOUGH UNSOLICITED DATA */
2614                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2615                 break;
2616         case TCM_INVALID_CDB_FIELD:
2617                 /* CURRENT ERROR */
2618                 buffer[0] = 0x70;
2619                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2620                 /* ILLEGAL REQUEST */
2621                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2622                 /* INVALID FIELD IN CDB */
2623                 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2624                 break;
2625         case TCM_INVALID_PARAMETER_LIST:
2626                 /* CURRENT ERROR */
2627                 buffer[0] = 0x70;
2628                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2629                 /* ILLEGAL REQUEST */
2630                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2631                 /* INVALID FIELD IN PARAMETER LIST */
2632                 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2633                 break;
2634         case TCM_PARAMETER_LIST_LENGTH_ERROR:
2635                 /* CURRENT ERROR */
2636                 buffer[0] = 0x70;
2637                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2638                 /* ILLEGAL REQUEST */
2639                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2640                 /* PARAMETER LIST LENGTH ERROR */
2641                 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2642                 break;
2643         case TCM_UNEXPECTED_UNSOLICITED_DATA:
2644                 /* CURRENT ERROR */
2645                 buffer[0] = 0x70;
2646                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2647                 /* ABORTED COMMAND */
2648                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2649                 /* WRITE ERROR */
2650                 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2651                 /* UNEXPECTED_UNSOLICITED_DATA */
2652                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2653                 break;
2654         case TCM_SERVICE_CRC_ERROR:
2655                 /* CURRENT ERROR */
2656                 buffer[0] = 0x70;
2657                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2658                 /* ABORTED COMMAND */
2659                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2660                 /* PROTOCOL SERVICE CRC ERROR */
2661                 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2662                 /* N/A */
2663                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2664                 break;
2665         case TCM_SNACK_REJECTED:
2666                 /* CURRENT ERROR */
2667                 buffer[0] = 0x70;
2668                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2669                 /* ABORTED COMMAND */
2670                 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2671                 /* READ ERROR */
2672                 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2673                 /* FAILED RETRANSMISSION REQUEST */
2674                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2675                 break;
2676         case TCM_WRITE_PROTECTED:
2677                 /* CURRENT ERROR */
2678                 buffer[0] = 0x70;
2679                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2680                 /* DATA PROTECT */
2681                 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2682                 /* WRITE PROTECTED */
2683                 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2684                 break;
2685         case TCM_ADDRESS_OUT_OF_RANGE:
2686                 /* CURRENT ERROR */
2687                 buffer[0] = 0x70;
2688                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2689                 /* ILLEGAL REQUEST */
2690                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2691                 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2692                 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2693                 break;
2694         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2695                 /* CURRENT ERROR */
2696                 buffer[0] = 0x70;
2697                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2698                 /* UNIT ATTENTION */
2699                 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2700                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2701                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2702                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2703                 break;
2704         case TCM_CHECK_CONDITION_NOT_READY:
2705                 /* CURRENT ERROR */
2706                 buffer[0] = 0x70;
2707                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2708                 /* Not Ready */
2709                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2710                 transport_get_sense_codes(cmd, &asc, &ascq);
2711                 buffer[SPC_ASC_KEY_OFFSET] = asc;
2712                 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2713                 break;
2714         case TCM_MISCOMPARE_VERIFY:
2715                 /* CURRENT ERROR */
2716                 buffer[0] = 0x70;
2717                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2718                 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2719                 /* MISCOMPARE DURING VERIFY OPERATION */
2720                 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2721                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2722                 break;
2723         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2724                 /* CURRENT ERROR */
2725                 buffer[0] = 0x70;
2726                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2727                 /* ILLEGAL REQUEST */
2728                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2729                 /* LOGICAL BLOCK GUARD CHECK FAILED */
2730                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2731                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2732                 transport_err_sector_info(buffer, cmd->bad_sector);
2733                 break;
2734         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2735                 /* CURRENT ERROR */
2736                 buffer[0] = 0x70;
2737                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2738                 /* ILLEGAL REQUEST */
2739                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2740                 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2741                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2742                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2743                 transport_err_sector_info(buffer, cmd->bad_sector);
2744                 break;
2745         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2746                 /* CURRENT ERROR */
2747                 buffer[0] = 0x70;
2748                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2749                 /* ILLEGAL REQUEST */
2750                 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2751                 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2752                 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2753                 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2754                 transport_err_sector_info(buffer, cmd->bad_sector);
2755                 break;
2756         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2757         default:
2758                 /* CURRENT ERROR */
2759                 buffer[0] = 0x70;
2760                 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2761                 /*
2762                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
2763                  * Solaris initiators.  Returning NOT READY instead means the
2764                  * operations will be retried a finite number of times and we
2765                  * can survive intermittent errors.
2766                  */
2767                 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2768                 /* LOGICAL UNIT COMMUNICATION FAILURE */
2769                 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2770                 break;
2771         }
2772         /*
2773          * This code uses linux/include/scsi/scsi.h SAM status codes!
2774          */
2775         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2776         /*
2777          * Automatically padded, this value is encoded in the fabric's
2778          * data_length response PDU containing the SCSI defined sense data.
2779          */
2780         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2781
2782 after_reason:
2783         trace_target_cmd_complete(cmd);
2784         return cmd->se_tfo->queue_status(cmd);
2785 }
2786 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2787
2788 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2789 {
2790         if (!(cmd->transport_state & CMD_T_ABORTED))
2791                 return 0;
2792
2793         if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2794                 return 1;
2795
2796         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2797                  cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2798
2799         cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2800         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2801         trace_target_cmd_complete(cmd);
2802         cmd->se_tfo->queue_status(cmd);
2803
2804         return 1;
2805 }
2806 EXPORT_SYMBOL(transport_check_aborted_status);
2807
2808 void transport_send_task_abort(struct se_cmd *cmd)
2809 {
2810         unsigned long flags;
2811
2812         spin_lock_irqsave(&cmd->t_state_lock, flags);
2813         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2814                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2815                 return;
2816         }
2817         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2818
2819         /*
2820          * If there are still expected incoming fabric WRITEs, we wait
2821          * until until they have completed before sending a TASK_ABORTED
2822          * response.  This response with TASK_ABORTED status will be
2823          * queued back to fabric module by transport_check_aborted_status().
2824          */
2825         if (cmd->data_direction == DMA_TO_DEVICE) {
2826                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2827                         cmd->transport_state |= CMD_T_ABORTED;
2828                         smp_mb__after_atomic_inc();
2829                         return;
2830                 }
2831         }
2832         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2833
2834         transport_lun_remove_cmd(cmd);
2835
2836         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2837                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2838                 cmd->se_tfo->get_task_tag(cmd));
2839
2840         trace_target_cmd_complete(cmd);
2841         cmd->se_tfo->queue_status(cmd);
2842 }
2843
2844 static void target_tmr_work(struct work_struct *work)
2845 {
2846         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2847         struct se_device *dev = cmd->se_dev;
2848         struct se_tmr_req *tmr = cmd->se_tmr_req;
2849         int ret;
2850
2851         switch (tmr->function) {
2852         case TMR_ABORT_TASK:
2853                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2854                 break;
2855         case TMR_ABORT_TASK_SET:
2856         case TMR_CLEAR_ACA:
2857         case TMR_CLEAR_TASK_SET:
2858                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2859                 break;
2860         case TMR_LUN_RESET:
2861                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2862                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2863                                          TMR_FUNCTION_REJECTED;
2864                 break;
2865         case TMR_TARGET_WARM_RESET:
2866                 tmr->response = TMR_FUNCTION_REJECTED;
2867                 break;
2868         case TMR_TARGET_COLD_RESET:
2869                 tmr->response = TMR_FUNCTION_REJECTED;
2870                 break;
2871         default:
2872                 pr_err("Uknown TMR function: 0x%02x.\n",
2873                                 tmr->function);
2874                 tmr->response = TMR_FUNCTION_REJECTED;
2875                 break;
2876         }
2877
2878         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2879         cmd->se_tfo->queue_tm_rsp(cmd);
2880
2881         transport_cmd_check_stop_to_fabric(cmd);
2882 }
2883
2884 int transport_generic_handle_tmr(
2885         struct se_cmd *cmd)
2886 {
2887         unsigned long flags;
2888
2889         spin_lock_irqsave(&cmd->t_state_lock, flags);
2890         cmd->transport_state |= CMD_T_ACTIVE;
2891         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2892
2893         INIT_WORK(&cmd->work, target_tmr_work);
2894         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2895         return 0;
2896 }
2897 EXPORT_SYMBOL(transport_generic_handle_tmr);