drm: use anon-inode instead of relying on cdevs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42                                                    bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45                                bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48                            struct i915_address_space *vm,
49                            unsigned alignment,
50                            bool map_and_fenceable,
51                            bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53                                 struct drm_i915_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58                                  struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60                                          struct drm_i915_fence_reg *fence,
61                                          bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64                                              struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66                                             struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72                                   enum i915_cache_level level)
73 {
74         return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80                 return true;
81
82         return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87         if (obj->tiling_mode)
88                 i915_gem_release_mmap(obj);
89
90         /* As we do not have an associated fence register, we will force
91          * a tiling change if we ever need to acquire one.
92          */
93         obj->fence_dirty = false;
94         obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99                                   size_t size)
100 {
101         spin_lock(&dev_priv->mm.object_stat_lock);
102         dev_priv->mm.object_count++;
103         dev_priv->mm.object_memory += size;
104         spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108                                      size_t size)
109 {
110         spin_lock(&dev_priv->mm.object_stat_lock);
111         dev_priv->mm.object_count--;
112         dev_priv->mm.object_memory -= size;
113         spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119         int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122                    i915_terminally_wedged(error))
123         if (EXIT_COND)
124                 return 0;
125
126         /*
127          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128          * userspace. If it takes that long something really bad is going on and
129          * we should simply try to bail out and fail as gracefully as possible.
130          */
131         ret = wait_event_interruptible_timeout(error->reset_queue,
132                                                EXIT_COND,
133                                                10*HZ);
134         if (ret == 0) {
135                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136                 return -EIO;
137         } else if (ret < 0) {
138                 return ret;
139         }
140 #undef EXIT_COND
141
142         return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147         struct drm_i915_private *dev_priv = dev->dev_private;
148         int ret;
149
150         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151         if (ret)
152                 return ret;
153
154         ret = mutex_lock_interruptible(&dev->struct_mutex);
155         if (ret)
156                 return ret;
157
158         WARN_ON(i915_verify_lists(dev));
159         return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165         return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170                     struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_init *args = data;
174
175         if (drm_core_check_feature(dev, DRIVER_MODESET))
176                 return -ENODEV;
177
178         if (args->gtt_start >= args->gtt_end ||
179             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180                 return -EINVAL;
181
182         /* GEM with user mode setting was never supported on ilk and later. */
183         if (INTEL_INFO(dev)->gen >= 5)
184                 return -ENODEV;
185
186         mutex_lock(&dev->struct_mutex);
187         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188                                   args->gtt_end);
189         dev_priv->gtt.mappable_end = args->gtt_end;
190         mutex_unlock(&dev->struct_mutex);
191
192         return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197                             struct drm_file *file)
198 {
199         struct drm_i915_private *dev_priv = dev->dev_private;
200         struct drm_i915_gem_get_aperture *args = data;
201         struct drm_i915_gem_object *obj;
202         size_t pinned;
203
204         pinned = 0;
205         mutex_lock(&dev->struct_mutex);
206         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207                 if (obj->pin_count)
208                         pinned += i915_gem_obj_ggtt_size(obj);
209         mutex_unlock(&dev->struct_mutex);
210
211         args->aper_size = dev_priv->gtt.base.total;
212         args->aper_available_size = args->aper_size - pinned;
213
214         return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219         struct drm_i915_private *dev_priv = dev->dev_private;
220         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226         kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231                 struct drm_device *dev,
232                 uint64_t size,
233                 uint32_t *handle_p)
234 {
235         struct drm_i915_gem_object *obj;
236         int ret;
237         u32 handle;
238
239         size = roundup(size, PAGE_SIZE);
240         if (size == 0)
241                 return -EINVAL;
242
243         /* Allocate the new object */
244         obj = i915_gem_alloc_object(dev, size);
245         if (obj == NULL)
246                 return -ENOMEM;
247
248         ret = drm_gem_handle_create(file, &obj->base, &handle);
249         /* drop reference from allocate - handle holds it now */
250         drm_gem_object_unreference_unlocked(&obj->base);
251         if (ret)
252                 return ret;
253
254         *handle_p = handle;
255         return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260                      struct drm_device *dev,
261                      struct drm_mode_create_dumb *args)
262 {
263         /* have to work out size/pitch and return them */
264         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265         args->size = args->pitch * args->height;
266         return i915_gem_create(file, dev,
267                                args->size, &args->handle);
268 }
269
270 /**
271  * Creates a new mm object and returns a handle to it.
272  */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275                       struct drm_file *file)
276 {
277         struct drm_i915_gem_create *args = data;
278
279         return i915_gem_create(file, dev,
280                                args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285                         const char *gpu_vaddr, int gpu_offset,
286                         int length)
287 {
288         int ret, cpu_offset = 0;
289
290         while (length > 0) {
291                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292                 int this_length = min(cacheline_end - gpu_offset, length);
293                 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296                                      gpu_vaddr + swizzled_gpu_offset,
297                                      this_length);
298                 if (ret)
299                         return ret + length;
300
301                 cpu_offset += this_length;
302                 gpu_offset += this_length;
303                 length -= this_length;
304         }
305
306         return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311                           const char __user *cpu_vaddr,
312                           int length)
313 {
314         int ret, cpu_offset = 0;
315
316         while (length > 0) {
317                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318                 int this_length = min(cacheline_end - gpu_offset, length);
319                 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322                                        cpu_vaddr + cpu_offset,
323                                        this_length);
324                 if (ret)
325                         return ret + length;
326
327                 cpu_offset += this_length;
328                 gpu_offset += this_length;
329                 length -= this_length;
330         }
331
332         return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336  * Flushes invalid cachelines before reading the target if
337  * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340                  char __user *user_data,
341                  bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343         char *vaddr;
344         int ret;
345
346         if (unlikely(page_do_bit17_swizzling))
347                 return -EINVAL;
348
349         vaddr = kmap_atomic(page);
350         if (needs_clflush)
351                 drm_clflush_virt_range(vaddr + shmem_page_offset,
352                                        page_length);
353         ret = __copy_to_user_inatomic(user_data,
354                                       vaddr + shmem_page_offset,
355                                       page_length);
356         kunmap_atomic(vaddr);
357
358         return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363                              bool swizzled)
364 {
365         if (unlikely(swizzled)) {
366                 unsigned long start = (unsigned long) addr;
367                 unsigned long end = (unsigned long) addr + length;
368
369                 /* For swizzling simply ensure that we always flush both
370                  * channels. Lame, but simple and it works. Swizzled
371                  * pwrite/pread is far from a hotpath - current userspace
372                  * doesn't use it at all. */
373                 start = round_down(start, 128);
374                 end = round_up(end, 128);
375
376                 drm_clflush_virt_range((void *)start, end - start);
377         } else {
378                 drm_clflush_virt_range(addr, length);
379         }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384  * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387                  char __user *user_data,
388                  bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390         char *vaddr;
391         int ret;
392
393         vaddr = kmap(page);
394         if (needs_clflush)
395                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396                                              page_length,
397                                              page_do_bit17_swizzling);
398
399         if (page_do_bit17_swizzling)
400                 ret = __copy_to_user_swizzled(user_data,
401                                               vaddr, shmem_page_offset,
402                                               page_length);
403         else
404                 ret = __copy_to_user(user_data,
405                                      vaddr + shmem_page_offset,
406                                      page_length);
407         kunmap(page);
408
409         return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414                      struct drm_i915_gem_object *obj,
415                      struct drm_i915_gem_pread *args,
416                      struct drm_file *file)
417 {
418         char __user *user_data;
419         ssize_t remain;
420         loff_t offset;
421         int shmem_page_offset, page_length, ret = 0;
422         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423         int prefaulted = 0;
424         int needs_clflush = 0;
425         struct sg_page_iter sg_iter;
426
427         user_data = to_user_ptr(args->data_ptr);
428         remain = args->size;
429
430         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433                 /* If we're not in the cpu read domain, set ourself into the gtt
434                  * read domain and manually flush cachelines (if required). This
435                  * optimizes for the case when the gpu will dirty the data
436                  * anyway again before the next pread happens. */
437                 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438                 ret = i915_gem_object_wait_rendering(obj, true);
439                 if (ret)
440                         return ret;
441         }
442
443         ret = i915_gem_object_get_pages(obj);
444         if (ret)
445                 return ret;
446
447         i915_gem_object_pin_pages(obj);
448
449         offset = args->offset;
450
451         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452                          offset >> PAGE_SHIFT) {
453                 struct page *page = sg_page_iter_page(&sg_iter);
454
455                 if (remain <= 0)
456                         break;
457
458                 /* Operation in this page
459                  *
460                  * shmem_page_offset = offset within page in shmem file
461                  * page_length = bytes to copy for this page
462                  */
463                 shmem_page_offset = offset_in_page(offset);
464                 page_length = remain;
465                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466                         page_length = PAGE_SIZE - shmem_page_offset;
467
468                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469                         (page_to_phys(page) & (1 << 17)) != 0;
470
471                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472                                        user_data, page_do_bit17_swizzling,
473                                        needs_clflush);
474                 if (ret == 0)
475                         goto next_page;
476
477                 mutex_unlock(&dev->struct_mutex);
478
479                 if (likely(!i915_prefault_disable) && !prefaulted) {
480                         ret = fault_in_multipages_writeable(user_data, remain);
481                         /* Userspace is tricking us, but we've already clobbered
482                          * its pages with the prefault and promised to write the
483                          * data up to the first fault. Hence ignore any errors
484                          * and just continue. */
485                         (void)ret;
486                         prefaulted = 1;
487                 }
488
489                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490                                        user_data, page_do_bit17_swizzling,
491                                        needs_clflush);
492
493                 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496                 mark_page_accessed(page);
497
498                 if (ret)
499                         goto out;
500
501                 remain -= page_length;
502                 user_data += page_length;
503                 offset += page_length;
504         }
505
506 out:
507         i915_gem_object_unpin_pages(obj);
508
509         return ret;
510 }
511
512 /**
513  * Reads data from the object referenced by handle.
514  *
515  * On error, the contents of *data are undefined.
516  */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519                      struct drm_file *file)
520 {
521         struct drm_i915_gem_pread *args = data;
522         struct drm_i915_gem_object *obj;
523         int ret = 0;
524
525         if (args->size == 0)
526                 return 0;
527
528         if (!access_ok(VERIFY_WRITE,
529                        to_user_ptr(args->data_ptr),
530                        args->size))
531                 return -EFAULT;
532
533         ret = i915_mutex_lock_interruptible(dev);
534         if (ret)
535                 return ret;
536
537         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538         if (&obj->base == NULL) {
539                 ret = -ENOENT;
540                 goto unlock;
541         }
542
543         /* Bounds check source.  */
544         if (args->offset > obj->base.size ||
545             args->size > obj->base.size - args->offset) {
546                 ret = -EINVAL;
547                 goto out;
548         }
549
550         /* prime objects have no backing filp to GEM pread/pwrite
551          * pages from.
552          */
553         if (!obj->base.filp) {
554                 ret = -EINVAL;
555                 goto out;
556         }
557
558         trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560         ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563         drm_gem_object_unreference(&obj->base);
564 unlock:
565         mutex_unlock(&dev->struct_mutex);
566         return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570  * page faults in the source data
571  */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575                 loff_t page_base, int page_offset,
576                 char __user *user_data,
577                 int length)
578 {
579         void __iomem *vaddr_atomic;
580         void *vaddr;
581         unsigned long unwritten;
582
583         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584         /* We can use the cpu mem copy function because this is X86. */
585         vaddr = (void __force*)vaddr_atomic + page_offset;
586         unwritten = __copy_from_user_inatomic_nocache(vaddr,
587                                                       user_data, length);
588         io_mapping_unmap_atomic(vaddr_atomic);
589         return unwritten;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598                          struct drm_i915_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file)
601 {
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length, ret;
607
608         ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609         if (ret)
610                 goto out;
611
612         ret = i915_gem_object_set_to_gtt_domain(obj, true);
613         if (ret)
614                 goto out_unpin;
615
616         ret = i915_gem_object_put_fence(obj);
617         if (ret)
618                 goto out_unpin;
619
620         user_data = to_user_ptr(args->data_ptr);
621         remain = args->size;
622
623         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625         while (remain > 0) {
626                 /* Operation in this page
627                  *
628                  * page_base = page offset within aperture
629                  * page_offset = offset within page
630                  * page_length = bytes to copy for this page
631                  */
632                 page_base = offset & PAGE_MASK;
633                 page_offset = offset_in_page(offset);
634                 page_length = remain;
635                 if ((page_offset + remain) > PAGE_SIZE)
636                         page_length = PAGE_SIZE - page_offset;
637
638                 /* If we get a fault while copying data, then (presumably) our
639                  * source page isn't available.  Return the error and we'll
640                  * retry in the slow path.
641                  */
642                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643                                     page_offset, user_data, page_length)) {
644                         ret = -EFAULT;
645                         goto out_unpin;
646                 }
647
648                 remain -= page_length;
649                 user_data += page_length;
650                 offset += page_length;
651         }
652
653 out_unpin:
654         i915_gem_object_unpin(obj);
655 out:
656         return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660  * Flushes invalid cachelines before writing to the target if
661  * needs_clflush_before is set and flushes out any written cachelines after
662  * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665                   char __user *user_data,
666                   bool page_do_bit17_swizzling,
667                   bool needs_clflush_before,
668                   bool needs_clflush_after)
669 {
670         char *vaddr;
671         int ret;
672
673         if (unlikely(page_do_bit17_swizzling))
674                 return -EINVAL;
675
676         vaddr = kmap_atomic(page);
677         if (needs_clflush_before)
678                 drm_clflush_virt_range(vaddr + shmem_page_offset,
679                                        page_length);
680         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681                                                 user_data,
682                                                 page_length);
683         if (needs_clflush_after)
684                 drm_clflush_virt_range(vaddr + shmem_page_offset,
685                                        page_length);
686         kunmap_atomic(vaddr);
687
688         return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692  * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695                   char __user *user_data,
696                   bool page_do_bit17_swizzling,
697                   bool needs_clflush_before,
698                   bool needs_clflush_after)
699 {
700         char *vaddr;
701         int ret;
702
703         vaddr = kmap(page);
704         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706                                              page_length,
707                                              page_do_bit17_swizzling);
708         if (page_do_bit17_swizzling)
709                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710                                                 user_data,
711                                                 page_length);
712         else
713                 ret = __copy_from_user(vaddr + shmem_page_offset,
714                                        user_data,
715                                        page_length);
716         if (needs_clflush_after)
717                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718                                              page_length,
719                                              page_do_bit17_swizzling);
720         kunmap(page);
721
722         return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727                       struct drm_i915_gem_object *obj,
728                       struct drm_i915_gem_pwrite *args,
729                       struct drm_file *file)
730 {
731         ssize_t remain;
732         loff_t offset;
733         char __user *user_data;
734         int shmem_page_offset, page_length, ret = 0;
735         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736         int hit_slowpath = 0;
737         int needs_clflush_after = 0;
738         int needs_clflush_before = 0;
739         struct sg_page_iter sg_iter;
740
741         user_data = to_user_ptr(args->data_ptr);
742         remain = args->size;
743
744         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747                 /* If we're not in the cpu write domain, set ourself into the gtt
748                  * write domain and manually flush cachelines (if required). This
749                  * optimizes for the case when the gpu will use the data
750                  * right away and we therefore have to clflush anyway. */
751                 needs_clflush_after = cpu_write_needs_clflush(obj);
752                 ret = i915_gem_object_wait_rendering(obj, false);
753                 if (ret)
754                         return ret;
755         }
756         /* Same trick applies to invalidate partially written cachelines read
757          * before writing. */
758         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759                 needs_clflush_before =
760                         !cpu_cache_is_coherent(dev, obj->cache_level);
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772                          offset >> PAGE_SHIFT) {
773                 struct page *page = sg_page_iter_page(&sg_iter);
774                 int partial_cacheline_write;
775
776                 if (remain <= 0)
777                         break;
778
779                 /* Operation in this page
780                  *
781                  * shmem_page_offset = offset within page in shmem file
782                  * page_length = bytes to copy for this page
783                  */
784                 shmem_page_offset = offset_in_page(offset);
785
786                 page_length = remain;
787                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788                         page_length = PAGE_SIZE - shmem_page_offset;
789
790                 /* If we don't overwrite a cacheline completely we need to be
791                  * careful to have up-to-date data by first clflushing. Don't
792                  * overcomplicate things and flush the entire patch. */
793                 partial_cacheline_write = needs_clflush_before &&
794                         ((shmem_page_offset | page_length)
795                                 & (boot_cpu_data.x86_clflush_size - 1));
796
797                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798                         (page_to_phys(page) & (1 << 17)) != 0;
799
800                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801                                         user_data, page_do_bit17_swizzling,
802                                         partial_cacheline_write,
803                                         needs_clflush_after);
804                 if (ret == 0)
805                         goto next_page;
806
807                 hit_slowpath = 1;
808                 mutex_unlock(&dev->struct_mutex);
809                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810                                         user_data, page_do_bit17_swizzling,
811                                         partial_cacheline_write,
812                                         needs_clflush_after);
813
814                 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817                 set_page_dirty(page);
818                 mark_page_accessed(page);
819
820                 if (ret)
821                         goto out;
822
823                 remain -= page_length;
824                 user_data += page_length;
825                 offset += page_length;
826         }
827
828 out:
829         i915_gem_object_unpin_pages(obj);
830
831         if (hit_slowpath) {
832                 /*
833                  * Fixup: Flush cpu caches in case we didn't flush the dirty
834                  * cachelines in-line while writing and the object moved
835                  * out of the cpu write domain while we've dropped the lock.
836                  */
837                 if (!needs_clflush_after &&
838                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839                         if (i915_gem_clflush_object(obj, obj->pin_display))
840                                 i915_gem_chipset_flush(dev);
841                 }
842         }
843
844         if (needs_clflush_after)
845                 i915_gem_chipset_flush(dev);
846
847         return ret;
848 }
849
850 /**
851  * Writes data to the object referenced by handle.
852  *
853  * On error, the contents of the buffer that were to be modified are undefined.
854  */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857                       struct drm_file *file)
858 {
859         struct drm_i915_gem_pwrite *args = data;
860         struct drm_i915_gem_object *obj;
861         int ret;
862
863         if (args->size == 0)
864                 return 0;
865
866         if (!access_ok(VERIFY_READ,
867                        to_user_ptr(args->data_ptr),
868                        args->size))
869                 return -EFAULT;
870
871         if (likely(!i915_prefault_disable)) {
872                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873                                                    args->size);
874                 if (ret)
875                         return -EFAULT;
876         }
877
878         ret = i915_mutex_lock_interruptible(dev);
879         if (ret)
880                 return ret;
881
882         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883         if (&obj->base == NULL) {
884                 ret = -ENOENT;
885                 goto unlock;
886         }
887
888         /* Bounds check destination. */
889         if (args->offset > obj->base.size ||
890             args->size > obj->base.size - args->offset) {
891                 ret = -EINVAL;
892                 goto out;
893         }
894
895         /* prime objects have no backing filp to GEM pread/pwrite
896          * pages from.
897          */
898         if (!obj->base.filp) {
899                 ret = -EINVAL;
900                 goto out;
901         }
902
903         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905         ret = -EFAULT;
906         /* We can only do the GTT pwrite on untiled buffers, as otherwise
907          * it would end up going through the fenced access, and we'll get
908          * different detiling behavior between reading and writing.
909          * pread/pwrite currently are reading and writing from the CPU
910          * perspective, requiring manual detiling by the client.
911          */
912         if (obj->phys_obj) {
913                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914                 goto out;
915         }
916
917         if (obj->tiling_mode == I915_TILING_NONE &&
918             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919             cpu_write_needs_clflush(obj)) {
920                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921                 /* Note that the gtt paths might fail with non-page-backed user
922                  * pointers (e.g. gtt mappings when moving data between
923                  * textures). Fallback to the shmem path in that case. */
924         }
925
926         if (ret == -EFAULT || ret == -ENOSPC)
927                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930         drm_gem_object_unreference(&obj->base);
931 unlock:
932         mutex_unlock(&dev->struct_mutex);
933         return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938                      bool interruptible)
939 {
940         if (i915_reset_in_progress(error)) {
941                 /* Non-interruptible callers can't handle -EAGAIN, hence return
942                  * -EIO unconditionally for these. */
943                 if (!interruptible)
944                         return -EIO;
945
946                 /* Recovery complete, but the reset failed ... */
947                 if (i915_terminally_wedged(error))
948                         return -EIO;
949
950                 return -EAGAIN;
951         }
952
953         return 0;
954 }
955
956 /*
957  * Compare seqno against outstanding lazy request. Emit a request if they are
958  * equal.
959  */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963         int ret;
964
965         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967         ret = 0;
968         if (seqno == ring->outstanding_lazy_seqno)
969                 ret = i915_add_request(ring, NULL);
970
971         return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976         wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980                        struct intel_ring_buffer *ring)
981 {
982         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987         if (file_priv == NULL)
988                 return true;
989
990         return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994  * __wait_seqno - wait until execution of seqno has finished
995  * @ring: the ring expected to report seqno
996  * @seqno: duh!
997  * @reset_counter: reset sequence associated with the given seqno
998  * @interruptible: do an interruptible wait (normally yes)
999  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000  *
1001  * Note: It is of utmost importance that the passed in seqno and reset_counter
1002  * values have been read by the caller in an smp safe manner. Where read-side
1003  * locks are involved, it is sufficient to read the reset_counter before
1004  * unlocking the lock that protects the seqno. For lockless tricks, the
1005  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006  * inserted.
1007  *
1008  * Returns 0 if the seqno was found within the alloted time. Else returns the
1009  * errno with remaining time filled in timeout argument.
1010  */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012                         unsigned reset_counter,
1013                         bool interruptible,
1014                         struct timespec *timeout,
1015                         struct drm_i915_file_private *file_priv)
1016 {
1017         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018         const bool irq_test_in_progress =
1019                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020         struct timespec before, now;
1021         DEFINE_WAIT(wait);
1022         unsigned long timeout_expire;
1023         int ret;
1024
1025         WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028                 return 0;
1029
1030         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032         if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033                 gen6_rps_boost(dev_priv);
1034                 if (file_priv)
1035                         mod_delayed_work(dev_priv->wq,
1036                                          &file_priv->mm.idle_work,
1037                                          msecs_to_jiffies(100));
1038         }
1039
1040         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041                 return -ENODEV;
1042
1043         /* Record current time in case interrupted by signal, or wedged */
1044         trace_i915_gem_request_wait_begin(ring, seqno);
1045         getrawmonotonic(&before);
1046         for (;;) {
1047                 struct timer_list timer;
1048
1049                 prepare_to_wait(&ring->irq_queue, &wait,
1050                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052                 /* We need to check whether any gpu reset happened in between
1053                  * the caller grabbing the seqno and now ... */
1054                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056                          * is truely gone. */
1057                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058                         if (ret == 0)
1059                                 ret = -EAGAIN;
1060                         break;
1061                 }
1062
1063                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064                         ret = 0;
1065                         break;
1066                 }
1067
1068                 if (interruptible && signal_pending(current)) {
1069                         ret = -ERESTARTSYS;
1070                         break;
1071                 }
1072
1073                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074                         ret = -ETIME;
1075                         break;
1076                 }
1077
1078                 timer.function = NULL;
1079                 if (timeout || missed_irq(dev_priv, ring)) {
1080                         unsigned long expire;
1081
1082                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084                         mod_timer(&timer, expire);
1085                 }
1086
1087                 io_schedule();
1088
1089                 if (timer.function) {
1090                         del_singleshot_timer_sync(&timer);
1091                         destroy_timer_on_stack(&timer);
1092                 }
1093         }
1094         getrawmonotonic(&now);
1095         trace_i915_gem_request_wait_end(ring, seqno);
1096
1097         if (!irq_test_in_progress)
1098                 ring->irq_put(ring);
1099
1100         finish_wait(&ring->irq_queue, &wait);
1101
1102         if (timeout) {
1103                 struct timespec sleep_time = timespec_sub(now, before);
1104                 *timeout = timespec_sub(*timeout, sleep_time);
1105                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106                         set_normalized_timespec(timeout, 0, 0);
1107         }
1108
1109         return ret;
1110 }
1111
1112 /**
1113  * Waits for a sequence number to be signaled, and cleans up the
1114  * request and object lists appropriately for that event.
1115  */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119         struct drm_device *dev = ring->dev;
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121         bool interruptible = dev_priv->mm.interruptible;
1122         int ret;
1123
1124         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125         BUG_ON(seqno == 0);
1126
1127         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128         if (ret)
1129                 return ret;
1130
1131         ret = i915_gem_check_olr(ring, seqno);
1132         if (ret)
1133                 return ret;
1134
1135         return __wait_seqno(ring, seqno,
1136                             atomic_read(&dev_priv->gpu_error.reset_counter),
1137                             interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142                                      struct intel_ring_buffer *ring)
1143 {
1144         i915_gem_retire_requests_ring(ring);
1145
1146         /* Manually manage the write flush as we may have not yet
1147          * retired the buffer.
1148          *
1149          * Note that the last_write_seqno is always the earlier of
1150          * the two (read/write) seqno, so if we haved successfully waited,
1151          * we know we have passed the last write.
1152          */
1153         obj->last_write_seqno = 0;
1154         obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156         return 0;
1157 }
1158
1159 /**
1160  * Ensures that all rendering to the object has completed and the object is
1161  * safe to unbind from the GTT or access from the CPU.
1162  */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165                                bool readonly)
1166 {
1167         struct intel_ring_buffer *ring = obj->ring;
1168         u32 seqno;
1169         int ret;
1170
1171         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172         if (seqno == 0)
1173                 return 0;
1174
1175         ret = i915_wait_seqno(ring, seqno);
1176         if (ret)
1177                 return ret;
1178
1179         return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183  * as the object state may change during this call.
1184  */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187                                             struct drm_file *file,
1188                                             bool readonly)
1189 {
1190         struct drm_device *dev = obj->base.dev;
1191         struct drm_i915_private *dev_priv = dev->dev_private;
1192         struct intel_ring_buffer *ring = obj->ring;
1193         unsigned reset_counter;
1194         u32 seqno;
1195         int ret;
1196
1197         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198         BUG_ON(!dev_priv->mm.interruptible);
1199
1200         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201         if (seqno == 0)
1202                 return 0;
1203
1204         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205         if (ret)
1206                 return ret;
1207
1208         ret = i915_gem_check_olr(ring, seqno);
1209         if (ret)
1210                 return ret;
1211
1212         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213         mutex_unlock(&dev->struct_mutex);
1214         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215         mutex_lock(&dev->struct_mutex);
1216         if (ret)
1217                 return ret;
1218
1219         return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223  * Called when user space prepares to use an object with the CPU, either
1224  * through the mmap ioctl's mapping or a GTT mapping.
1225  */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228                           struct drm_file *file)
1229 {
1230         struct drm_i915_gem_set_domain *args = data;
1231         struct drm_i915_gem_object *obj;
1232         uint32_t read_domains = args->read_domains;
1233         uint32_t write_domain = args->write_domain;
1234         int ret;
1235
1236         /* Only handle setting domains to types used by the CPU. */
1237         if (write_domain & I915_GEM_GPU_DOMAINS)
1238                 return -EINVAL;
1239
1240         if (read_domains & I915_GEM_GPU_DOMAINS)
1241                 return -EINVAL;
1242
1243         /* Having something in the write domain implies it's in the read
1244          * domain, and only that read domain.  Enforce that in the request.
1245          */
1246         if (write_domain != 0 && read_domains != write_domain)
1247                 return -EINVAL;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Try to flush the object off the GPU without holding the lock.
1260          * We will repeat the flush holding the lock in the normal manner
1261          * to catch cases where we are gazumped.
1262          */
1263         ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264         if (ret)
1265                 goto unref;
1266
1267         if (read_domains & I915_GEM_DOMAIN_GTT) {
1268                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270                 /* Silently promote "you're not bound, there was nothing to do"
1271                  * to success, since the client was just asking us to
1272                  * make sure everything was done.
1273                  */
1274                 if (ret == -EINVAL)
1275                         ret = 0;
1276         } else {
1277                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278         }
1279
1280 unref:
1281         drm_gem_object_unreference(&obj->base);
1282 unlock:
1283         mutex_unlock(&dev->struct_mutex);
1284         return ret;
1285 }
1286
1287 /**
1288  * Called when user space has done writes to this buffer
1289  */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292                          struct drm_file *file)
1293 {
1294         struct drm_i915_gem_sw_finish *args = data;
1295         struct drm_i915_gem_object *obj;
1296         int ret = 0;
1297
1298         ret = i915_mutex_lock_interruptible(dev);
1299         if (ret)
1300                 return ret;
1301
1302         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303         if (&obj->base == NULL) {
1304                 ret = -ENOENT;
1305                 goto unlock;
1306         }
1307
1308         /* Pinned buffers may be scanout, so flush the cache */
1309         if (obj->pin_display)
1310                 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312         drm_gem_object_unreference(&obj->base);
1313 unlock:
1314         mutex_unlock(&dev->struct_mutex);
1315         return ret;
1316 }
1317
1318 /**
1319  * Maps the contents of an object, returning the address it is mapped
1320  * into.
1321  *
1322  * While the mapping holds a reference on the contents of the object, it doesn't
1323  * imply a ref on the object itself.
1324  */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327                     struct drm_file *file)
1328 {
1329         struct drm_i915_gem_mmap *args = data;
1330         struct drm_gem_object *obj;
1331         unsigned long addr;
1332
1333         obj = drm_gem_object_lookup(dev, file, args->handle);
1334         if (obj == NULL)
1335                 return -ENOENT;
1336
1337         /* prime objects have no backing filp to GEM mmap
1338          * pages from.
1339          */
1340         if (!obj->filp) {
1341                 drm_gem_object_unreference_unlocked(obj);
1342                 return -EINVAL;
1343         }
1344
1345         addr = vm_mmap(obj->filp, 0, args->size,
1346                        PROT_READ | PROT_WRITE, MAP_SHARED,
1347                        args->offset);
1348         drm_gem_object_unreference_unlocked(obj);
1349         if (IS_ERR((void *)addr))
1350                 return addr;
1351
1352         args->addr_ptr = (uint64_t) addr;
1353
1354         return 0;
1355 }
1356
1357 /**
1358  * i915_gem_fault - fault a page into the GTT
1359  * vma: VMA in question
1360  * vmf: fault info
1361  *
1362  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363  * from userspace.  The fault handler takes care of binding the object to
1364  * the GTT (if needed), allocating and programming a fence register (again,
1365  * only if needed based on whether the old reg is still valid or the object
1366  * is tiled) and inserting a new PTE into the faulting process.
1367  *
1368  * Note that the faulting process may involve evicting existing objects
1369  * from the GTT and/or fence registers to make room.  So performance may
1370  * suffer if the GTT working set is large or there are few fence registers
1371  * left.
1372  */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376         struct drm_device *dev = obj->base.dev;
1377         drm_i915_private_t *dev_priv = dev->dev_private;
1378         pgoff_t page_offset;
1379         unsigned long pfn;
1380         int ret = 0;
1381         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383         intel_runtime_pm_get(dev_priv);
1384
1385         /* We don't use vmf->pgoff since that has the fake offset */
1386         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387                 PAGE_SHIFT;
1388
1389         ret = i915_mutex_lock_interruptible(dev);
1390         if (ret)
1391                 goto out;
1392
1393         trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395         /* Access to snoopable pages through the GTT is incoherent. */
1396         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397                 ret = -EINVAL;
1398                 goto unlock;
1399         }
1400
1401         /* Now bind it into the GTT if needed */
1402         ret = i915_gem_obj_ggtt_pin(obj,  0, true, false);
1403         if (ret)
1404                 goto unlock;
1405
1406         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407         if (ret)
1408                 goto unpin;
1409
1410         ret = i915_gem_object_get_fence(obj);
1411         if (ret)
1412                 goto unpin;
1413
1414         obj->fault_mappable = true;
1415
1416         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417         pfn >>= PAGE_SHIFT;
1418         pfn += page_offset;
1419
1420         /* Finally, remap it using the new GTT offset */
1421         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423         i915_gem_object_unpin(obj);
1424 unlock:
1425         mutex_unlock(&dev->struct_mutex);
1426 out:
1427         switch (ret) {
1428         case -EIO:
1429                 /*
1430                  * We eat errors when the gpu is terminally wedged to avoid
1431                  * userspace unduly crashing (gl has no provisions for mmaps to
1432                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1433                  * and so needs to be reported.
1434                  */
1435                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1436                         ret = VM_FAULT_SIGBUS;
1437                         break;
1438                 }
1439         case -EAGAIN:
1440                 /*
1441                  * EAGAIN means the gpu is hung and we'll wait for the error
1442                  * handler to reset everything when re-faulting in
1443                  * i915_mutex_lock_interruptible.
1444                  */
1445         case 0:
1446         case -ERESTARTSYS:
1447         case -EINTR:
1448         case -EBUSY:
1449                 /*
1450                  * EBUSY is ok: this just means that another thread
1451                  * already did the job.
1452                  */
1453                 ret = VM_FAULT_NOPAGE;
1454                 break;
1455         case -ENOMEM:
1456                 ret = VM_FAULT_OOM;
1457                 break;
1458         case -ENOSPC:
1459                 ret = VM_FAULT_SIGBUS;
1460                 break;
1461         default:
1462                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1463                 ret = VM_FAULT_SIGBUS;
1464                 break;
1465         }
1466
1467         intel_runtime_pm_put(dev_priv);
1468         return ret;
1469 }
1470
1471 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1472 {
1473         struct i915_vma *vma;
1474
1475         /*
1476          * Only the global gtt is relevant for gtt memory mappings, so restrict
1477          * list traversal to objects bound into the global address space. Note
1478          * that the active list should be empty, but better safe than sorry.
1479          */
1480         WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1481         list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1482                 i915_gem_release_mmap(vma->obj);
1483         list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1484                 i915_gem_release_mmap(vma->obj);
1485 }
1486
1487 /**
1488  * i915_gem_release_mmap - remove physical page mappings
1489  * @obj: obj in question
1490  *
1491  * Preserve the reservation of the mmapping with the DRM core code, but
1492  * relinquish ownership of the pages back to the system.
1493  *
1494  * It is vital that we remove the page mapping if we have mapped a tiled
1495  * object through the GTT and then lose the fence register due to
1496  * resource pressure. Similarly if the object has been moved out of the
1497  * aperture, than pages mapped into userspace must be revoked. Removing the
1498  * mapping will then trigger a page fault on the next user access, allowing
1499  * fixup by i915_gem_fault().
1500  */
1501 void
1502 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1503 {
1504         if (!obj->fault_mappable)
1505                 return;
1506
1507         drm_vma_node_unmap(&obj->base.vma_node,
1508                            obj->base.dev->anon_inode->i_mapping);
1509         obj->fault_mappable = false;
1510 }
1511
1512 uint32_t
1513 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1514 {
1515         uint32_t gtt_size;
1516
1517         if (INTEL_INFO(dev)->gen >= 4 ||
1518             tiling_mode == I915_TILING_NONE)
1519                 return size;
1520
1521         /* Previous chips need a power-of-two fence region when tiling */
1522         if (INTEL_INFO(dev)->gen == 3)
1523                 gtt_size = 1024*1024;
1524         else
1525                 gtt_size = 512*1024;
1526
1527         while (gtt_size < size)
1528                 gtt_size <<= 1;
1529
1530         return gtt_size;
1531 }
1532
1533 /**
1534  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1535  * @obj: object to check
1536  *
1537  * Return the required GTT alignment for an object, taking into account
1538  * potential fence register mapping.
1539  */
1540 uint32_t
1541 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1542                            int tiling_mode, bool fenced)
1543 {
1544         /*
1545          * Minimum alignment is 4k (GTT page size), but might be greater
1546          * if a fence register is needed for the object.
1547          */
1548         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1549             tiling_mode == I915_TILING_NONE)
1550                 return 4096;
1551
1552         /*
1553          * Previous chips need to be aligned to the size of the smallest
1554          * fence register that can contain the object.
1555          */
1556         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1557 }
1558
1559 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1560 {
1561         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1562         int ret;
1563
1564         if (drm_vma_node_has_offset(&obj->base.vma_node))
1565                 return 0;
1566
1567         dev_priv->mm.shrinker_no_lock_stealing = true;
1568
1569         ret = drm_gem_create_mmap_offset(&obj->base);
1570         if (ret != -ENOSPC)
1571                 goto out;
1572
1573         /* Badly fragmented mmap space? The only way we can recover
1574          * space is by destroying unwanted objects. We can't randomly release
1575          * mmap_offsets as userspace expects them to be persistent for the
1576          * lifetime of the objects. The closest we can is to release the
1577          * offsets on purgeable objects by truncating it and marking it purged,
1578          * which prevents userspace from ever using that object again.
1579          */
1580         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1581         ret = drm_gem_create_mmap_offset(&obj->base);
1582         if (ret != -ENOSPC)
1583                 goto out;
1584
1585         i915_gem_shrink_all(dev_priv);
1586         ret = drm_gem_create_mmap_offset(&obj->base);
1587 out:
1588         dev_priv->mm.shrinker_no_lock_stealing = false;
1589
1590         return ret;
1591 }
1592
1593 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1594 {
1595         drm_gem_free_mmap_offset(&obj->base);
1596 }
1597
1598 int
1599 i915_gem_mmap_gtt(struct drm_file *file,
1600                   struct drm_device *dev,
1601                   uint32_t handle,
1602                   uint64_t *offset)
1603 {
1604         struct drm_i915_private *dev_priv = dev->dev_private;
1605         struct drm_i915_gem_object *obj;
1606         int ret;
1607
1608         ret = i915_mutex_lock_interruptible(dev);
1609         if (ret)
1610                 return ret;
1611
1612         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1613         if (&obj->base == NULL) {
1614                 ret = -ENOENT;
1615                 goto unlock;
1616         }
1617
1618         if (obj->base.size > dev_priv->gtt.mappable_end) {
1619                 ret = -E2BIG;
1620                 goto out;
1621         }
1622
1623         if (obj->madv != I915_MADV_WILLNEED) {
1624                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1625                 ret = -EINVAL;
1626                 goto out;
1627         }
1628
1629         ret = i915_gem_object_create_mmap_offset(obj);
1630         if (ret)
1631                 goto out;
1632
1633         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1634
1635 out:
1636         drm_gem_object_unreference(&obj->base);
1637 unlock:
1638         mutex_unlock(&dev->struct_mutex);
1639         return ret;
1640 }
1641
1642 /**
1643  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1644  * @dev: DRM device
1645  * @data: GTT mapping ioctl data
1646  * @file: GEM object info
1647  *
1648  * Simply returns the fake offset to userspace so it can mmap it.
1649  * The mmap call will end up in drm_gem_mmap(), which will set things
1650  * up so we can get faults in the handler above.
1651  *
1652  * The fault handler will take care of binding the object into the GTT
1653  * (since it may have been evicted to make room for something), allocating
1654  * a fence register, and mapping the appropriate aperture address into
1655  * userspace.
1656  */
1657 int
1658 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1659                         struct drm_file *file)
1660 {
1661         struct drm_i915_gem_mmap_gtt *args = data;
1662
1663         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1664 }
1665
1666 /* Immediately discard the backing storage */
1667 static void
1668 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1669 {
1670         struct inode *inode;
1671
1672         i915_gem_object_free_mmap_offset(obj);
1673
1674         if (obj->base.filp == NULL)
1675                 return;
1676
1677         /* Our goal here is to return as much of the memory as
1678          * is possible back to the system as we are called from OOM.
1679          * To do this we must instruct the shmfs to drop all of its
1680          * backing pages, *now*.
1681          */
1682         inode = file_inode(obj->base.filp);
1683         shmem_truncate_range(inode, 0, (loff_t)-1);
1684
1685         obj->madv = __I915_MADV_PURGED;
1686 }
1687
1688 static inline int
1689 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1690 {
1691         return obj->madv == I915_MADV_DONTNEED;
1692 }
1693
1694 static void
1695 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1696 {
1697         struct sg_page_iter sg_iter;
1698         int ret;
1699
1700         BUG_ON(obj->madv == __I915_MADV_PURGED);
1701
1702         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1703         if (ret) {
1704                 /* In the event of a disaster, abandon all caches and
1705                  * hope for the best.
1706                  */
1707                 WARN_ON(ret != -EIO);
1708                 i915_gem_clflush_object(obj, true);
1709                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1710         }
1711
1712         if (i915_gem_object_needs_bit17_swizzle(obj))
1713                 i915_gem_object_save_bit_17_swizzle(obj);
1714
1715         if (obj->madv == I915_MADV_DONTNEED)
1716                 obj->dirty = 0;
1717
1718         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1719                 struct page *page = sg_page_iter_page(&sg_iter);
1720
1721                 if (obj->dirty)
1722                         set_page_dirty(page);
1723
1724                 if (obj->madv == I915_MADV_WILLNEED)
1725                         mark_page_accessed(page);
1726
1727                 page_cache_release(page);
1728         }
1729         obj->dirty = 0;
1730
1731         sg_free_table(obj->pages);
1732         kfree(obj->pages);
1733 }
1734
1735 int
1736 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1737 {
1738         const struct drm_i915_gem_object_ops *ops = obj->ops;
1739
1740         if (obj->pages == NULL)
1741                 return 0;
1742
1743         if (obj->pages_pin_count)
1744                 return -EBUSY;
1745
1746         BUG_ON(i915_gem_obj_bound_any(obj));
1747
1748         /* ->put_pages might need to allocate memory for the bit17 swizzle
1749          * array, hence protect them from being reaped by removing them from gtt
1750          * lists early. */
1751         list_del(&obj->global_list);
1752
1753         ops->put_pages(obj);
1754         obj->pages = NULL;
1755
1756         if (i915_gem_object_is_purgeable(obj))
1757                 i915_gem_object_truncate(obj);
1758
1759         return 0;
1760 }
1761
1762 static unsigned long
1763 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1764                   bool purgeable_only)
1765 {
1766         struct list_head still_bound_list;
1767         struct drm_i915_gem_object *obj, *next;
1768         unsigned long count = 0;
1769
1770         list_for_each_entry_safe(obj, next,
1771                                  &dev_priv->mm.unbound_list,
1772                                  global_list) {
1773                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1774                     i915_gem_object_put_pages(obj) == 0) {
1775                         count += obj->base.size >> PAGE_SHIFT;
1776                         if (count >= target)
1777                                 return count;
1778                 }
1779         }
1780
1781         /*
1782          * As we may completely rewrite the bound list whilst unbinding
1783          * (due to retiring requests) we have to strictly process only
1784          * one element of the list at the time, and recheck the list
1785          * on every iteration.
1786          */
1787         INIT_LIST_HEAD(&still_bound_list);
1788         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1789                 struct i915_vma *vma, *v;
1790
1791                 obj = list_first_entry(&dev_priv->mm.bound_list,
1792                                        typeof(*obj), global_list);
1793                 list_move_tail(&obj->global_list, &still_bound_list);
1794
1795                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1796                         continue;
1797
1798                 /*
1799                  * Hold a reference whilst we unbind this object, as we may
1800                  * end up waiting for and retiring requests. This might
1801                  * release the final reference (held by the active list)
1802                  * and result in the object being freed from under us.
1803                  * in this object being freed.
1804                  *
1805                  * Note 1: Shrinking the bound list is special since only active
1806                  * (and hence bound objects) can contain such limbo objects, so
1807                  * we don't need special tricks for shrinking the unbound list.
1808                  * The only other place where we have to be careful with active
1809                  * objects suddenly disappearing due to retiring requests is the
1810                  * eviction code.
1811                  *
1812                  * Note 2: Even though the bound list doesn't hold a reference
1813                  * to the object we can safely grab one here: The final object
1814                  * unreferencing and the bound_list are both protected by the
1815                  * dev->struct_mutex and so we won't ever be able to observe an
1816                  * object on the bound_list with a reference count equals 0.
1817                  */
1818                 drm_gem_object_reference(&obj->base);
1819
1820                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1821                         if (i915_vma_unbind(vma))
1822                                 break;
1823
1824                 if (i915_gem_object_put_pages(obj) == 0)
1825                         count += obj->base.size >> PAGE_SHIFT;
1826
1827                 drm_gem_object_unreference(&obj->base);
1828         }
1829         list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1830
1831         return count;
1832 }
1833
1834 static unsigned long
1835 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1836 {
1837         return __i915_gem_shrink(dev_priv, target, true);
1838 }
1839
1840 static unsigned long
1841 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1842 {
1843         struct drm_i915_gem_object *obj, *next;
1844         long freed = 0;
1845
1846         i915_gem_evict_everything(dev_priv->dev);
1847
1848         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1849                                  global_list) {
1850                 if (i915_gem_object_put_pages(obj) == 0)
1851                         freed += obj->base.size >> PAGE_SHIFT;
1852         }
1853         return freed;
1854 }
1855
1856 static int
1857 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1858 {
1859         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1860         int page_count, i;
1861         struct address_space *mapping;
1862         struct sg_table *st;
1863         struct scatterlist *sg;
1864         struct sg_page_iter sg_iter;
1865         struct page *page;
1866         unsigned long last_pfn = 0;     /* suppress gcc warning */
1867         gfp_t gfp;
1868
1869         /* Assert that the object is not currently in any GPU domain. As it
1870          * wasn't in the GTT, there shouldn't be any way it could have been in
1871          * a GPU cache
1872          */
1873         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1874         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1875
1876         st = kmalloc(sizeof(*st), GFP_KERNEL);
1877         if (st == NULL)
1878                 return -ENOMEM;
1879
1880         page_count = obj->base.size / PAGE_SIZE;
1881         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1882                 kfree(st);
1883                 return -ENOMEM;
1884         }
1885
1886         /* Get the list of pages out of our struct file.  They'll be pinned
1887          * at this point until we release them.
1888          *
1889          * Fail silently without starting the shrinker
1890          */
1891         mapping = file_inode(obj->base.filp)->i_mapping;
1892         gfp = mapping_gfp_mask(mapping);
1893         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1894         gfp &= ~(__GFP_IO | __GFP_WAIT);
1895         sg = st->sgl;
1896         st->nents = 0;
1897         for (i = 0; i < page_count; i++) {
1898                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1899                 if (IS_ERR(page)) {
1900                         i915_gem_purge(dev_priv, page_count);
1901                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1902                 }
1903                 if (IS_ERR(page)) {
1904                         /* We've tried hard to allocate the memory by reaping
1905                          * our own buffer, now let the real VM do its job and
1906                          * go down in flames if truly OOM.
1907                          */
1908                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1909                         gfp |= __GFP_IO | __GFP_WAIT;
1910
1911                         i915_gem_shrink_all(dev_priv);
1912                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1913                         if (IS_ERR(page))
1914                                 goto err_pages;
1915
1916                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1917                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1918                 }
1919 #ifdef CONFIG_SWIOTLB
1920                 if (swiotlb_nr_tbl()) {
1921                         st->nents++;
1922                         sg_set_page(sg, page, PAGE_SIZE, 0);
1923                         sg = sg_next(sg);
1924                         continue;
1925                 }
1926 #endif
1927                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1928                         if (i)
1929                                 sg = sg_next(sg);
1930                         st->nents++;
1931                         sg_set_page(sg, page, PAGE_SIZE, 0);
1932                 } else {
1933                         sg->length += PAGE_SIZE;
1934                 }
1935                 last_pfn = page_to_pfn(page);
1936
1937                 /* Check that the i965g/gm workaround works. */
1938                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1939         }
1940 #ifdef CONFIG_SWIOTLB
1941         if (!swiotlb_nr_tbl())
1942 #endif
1943                 sg_mark_end(sg);
1944         obj->pages = st;
1945
1946         if (i915_gem_object_needs_bit17_swizzle(obj))
1947                 i915_gem_object_do_bit_17_swizzle(obj);
1948
1949         return 0;
1950
1951 err_pages:
1952         sg_mark_end(sg);
1953         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1954                 page_cache_release(sg_page_iter_page(&sg_iter));
1955         sg_free_table(st);
1956         kfree(st);
1957         return PTR_ERR(page);
1958 }
1959
1960 /* Ensure that the associated pages are gathered from the backing storage
1961  * and pinned into our object. i915_gem_object_get_pages() may be called
1962  * multiple times before they are released by a single call to
1963  * i915_gem_object_put_pages() - once the pages are no longer referenced
1964  * either as a result of memory pressure (reaping pages under the shrinker)
1965  * or as the object is itself released.
1966  */
1967 int
1968 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1969 {
1970         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971         const struct drm_i915_gem_object_ops *ops = obj->ops;
1972         int ret;
1973
1974         if (obj->pages)
1975                 return 0;
1976
1977         if (obj->madv != I915_MADV_WILLNEED) {
1978                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1979                 return -EINVAL;
1980         }
1981
1982         BUG_ON(obj->pages_pin_count);
1983
1984         ret = ops->get_pages(obj);
1985         if (ret)
1986                 return ret;
1987
1988         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1989         return 0;
1990 }
1991
1992 static void
1993 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1994                                struct intel_ring_buffer *ring)
1995 {
1996         struct drm_device *dev = obj->base.dev;
1997         struct drm_i915_private *dev_priv = dev->dev_private;
1998         u32 seqno = intel_ring_get_seqno(ring);
1999
2000         BUG_ON(ring == NULL);
2001         if (obj->ring != ring && obj->last_write_seqno) {
2002                 /* Keep the seqno relative to the current ring */
2003                 obj->last_write_seqno = seqno;
2004         }
2005         obj->ring = ring;
2006
2007         /* Add a reference if we're newly entering the active list. */
2008         if (!obj->active) {
2009                 drm_gem_object_reference(&obj->base);
2010                 obj->active = 1;
2011         }
2012
2013         list_move_tail(&obj->ring_list, &ring->active_list);
2014
2015         obj->last_read_seqno = seqno;
2016
2017         if (obj->fenced_gpu_access) {
2018                 obj->last_fenced_seqno = seqno;
2019
2020                 /* Bump MRU to take account of the delayed flush */
2021                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2022                         struct drm_i915_fence_reg *reg;
2023
2024                         reg = &dev_priv->fence_regs[obj->fence_reg];
2025                         list_move_tail(&reg->lru_list,
2026                                        &dev_priv->mm.fence_list);
2027                 }
2028         }
2029 }
2030
2031 void i915_vma_move_to_active(struct i915_vma *vma,
2032                              struct intel_ring_buffer *ring)
2033 {
2034         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2035         return i915_gem_object_move_to_active(vma->obj, ring);
2036 }
2037
2038 static void
2039 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2040 {
2041         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2042         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2043         struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2044
2045         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2046         BUG_ON(!obj->active);
2047
2048         list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2049
2050         list_del_init(&obj->ring_list);
2051         obj->ring = NULL;
2052
2053         obj->last_read_seqno = 0;
2054         obj->last_write_seqno = 0;
2055         obj->base.write_domain = 0;
2056
2057         obj->last_fenced_seqno = 0;
2058         obj->fenced_gpu_access = false;
2059
2060         obj->active = 0;
2061         drm_gem_object_unreference(&obj->base);
2062
2063         WARN_ON(i915_verify_lists(dev));
2064 }
2065
2066 static int
2067 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2068 {
2069         struct drm_i915_private *dev_priv = dev->dev_private;
2070         struct intel_ring_buffer *ring;
2071         int ret, i, j;
2072
2073         /* Carefully retire all requests without writing to the rings */
2074         for_each_ring(ring, dev_priv, i) {
2075                 ret = intel_ring_idle(ring);
2076                 if (ret)
2077                         return ret;
2078         }
2079         i915_gem_retire_requests(dev);
2080
2081         /* Finally reset hw state */
2082         for_each_ring(ring, dev_priv, i) {
2083                 intel_ring_init_seqno(ring, seqno);
2084
2085                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2086                         ring->sync_seqno[j] = 0;
2087         }
2088
2089         return 0;
2090 }
2091
2092 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2093 {
2094         struct drm_i915_private *dev_priv = dev->dev_private;
2095         int ret;
2096
2097         if (seqno == 0)
2098                 return -EINVAL;
2099
2100         /* HWS page needs to be set less than what we
2101          * will inject to ring
2102          */
2103         ret = i915_gem_init_seqno(dev, seqno - 1);
2104         if (ret)
2105                 return ret;
2106
2107         /* Carefully set the last_seqno value so that wrap
2108          * detection still works
2109          */
2110         dev_priv->next_seqno = seqno;
2111         dev_priv->last_seqno = seqno - 1;
2112         if (dev_priv->last_seqno == 0)
2113                 dev_priv->last_seqno--;
2114
2115         return 0;
2116 }
2117
2118 int
2119 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2120 {
2121         struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123         /* reserve 0 for non-seqno */
2124         if (dev_priv->next_seqno == 0) {
2125                 int ret = i915_gem_init_seqno(dev, 0);
2126                 if (ret)
2127                         return ret;
2128
2129                 dev_priv->next_seqno = 1;
2130         }
2131
2132         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2133         return 0;
2134 }
2135
2136 int __i915_add_request(struct intel_ring_buffer *ring,
2137                        struct drm_file *file,
2138                        struct drm_i915_gem_object *obj,
2139                        u32 *out_seqno)
2140 {
2141         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2142         struct drm_i915_gem_request *request;
2143         u32 request_ring_position, request_start;
2144         int was_empty;
2145         int ret;
2146
2147         request_start = intel_ring_get_tail(ring);
2148         /*
2149          * Emit any outstanding flushes - execbuf can fail to emit the flush
2150          * after having emitted the batchbuffer command. Hence we need to fix
2151          * things up similar to emitting the lazy request. The difference here
2152          * is that the flush _must_ happen before the next request, no matter
2153          * what.
2154          */
2155         ret = intel_ring_flush_all_caches(ring);
2156         if (ret)
2157                 return ret;
2158
2159         request = ring->preallocated_lazy_request;
2160         if (WARN_ON(request == NULL))
2161                 return -ENOMEM;
2162
2163         /* Record the position of the start of the request so that
2164          * should we detect the updated seqno part-way through the
2165          * GPU processing the request, we never over-estimate the
2166          * position of the head.
2167          */
2168         request_ring_position = intel_ring_get_tail(ring);
2169
2170         ret = ring->add_request(ring);
2171         if (ret)
2172                 return ret;
2173
2174         request->seqno = intel_ring_get_seqno(ring);
2175         request->ring = ring;
2176         request->head = request_start;
2177         request->tail = request_ring_position;
2178
2179         /* Whilst this request exists, batch_obj will be on the
2180          * active_list, and so will hold the active reference. Only when this
2181          * request is retired will the the batch_obj be moved onto the
2182          * inactive_list and lose its active reference. Hence we do not need
2183          * to explicitly hold another reference here.
2184          */
2185         request->batch_obj = obj;
2186
2187         /* Hold a reference to the current context so that we can inspect
2188          * it later in case a hangcheck error event fires.
2189          */
2190         request->ctx = ring->last_context;
2191         if (request->ctx)
2192                 i915_gem_context_reference(request->ctx);
2193
2194         request->emitted_jiffies = jiffies;
2195         was_empty = list_empty(&ring->request_list);
2196         list_add_tail(&request->list, &ring->request_list);
2197         request->file_priv = NULL;
2198
2199         if (file) {
2200                 struct drm_i915_file_private *file_priv = file->driver_priv;
2201
2202                 spin_lock(&file_priv->mm.lock);
2203                 request->file_priv = file_priv;
2204                 list_add_tail(&request->client_list,
2205                               &file_priv->mm.request_list);
2206                 spin_unlock(&file_priv->mm.lock);
2207         }
2208
2209         trace_i915_gem_request_add(ring, request->seqno);
2210         ring->outstanding_lazy_seqno = 0;
2211         ring->preallocated_lazy_request = NULL;
2212
2213         if (!dev_priv->ums.mm_suspended) {
2214                 i915_queue_hangcheck(ring->dev);
2215
2216                 if (was_empty) {
2217                         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2218                         queue_delayed_work(dev_priv->wq,
2219                                            &dev_priv->mm.retire_work,
2220                                            round_jiffies_up_relative(HZ));
2221                         intel_mark_busy(dev_priv->dev);
2222                 }
2223         }
2224
2225         if (out_seqno)
2226                 *out_seqno = request->seqno;
2227         return 0;
2228 }
2229
2230 static inline void
2231 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2232 {
2233         struct drm_i915_file_private *file_priv = request->file_priv;
2234
2235         if (!file_priv)
2236                 return;
2237
2238         spin_lock(&file_priv->mm.lock);
2239         list_del(&request->client_list);
2240         request->file_priv = NULL;
2241         spin_unlock(&file_priv->mm.lock);
2242 }
2243
2244 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2245                                     struct i915_address_space *vm)
2246 {
2247         if (acthd >= i915_gem_obj_offset(obj, vm) &&
2248             acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2249                 return true;
2250
2251         return false;
2252 }
2253
2254 static bool i915_head_inside_request(const u32 acthd_unmasked,
2255                                      const u32 request_start,
2256                                      const u32 request_end)
2257 {
2258         const u32 acthd = acthd_unmasked & HEAD_ADDR;
2259
2260         if (request_start < request_end) {
2261                 if (acthd >= request_start && acthd < request_end)
2262                         return true;
2263         } else if (request_start > request_end) {
2264                 if (acthd >= request_start || acthd < request_end)
2265                         return true;
2266         }
2267
2268         return false;
2269 }
2270
2271 static struct i915_address_space *
2272 request_to_vm(struct drm_i915_gem_request *request)
2273 {
2274         struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2275         struct i915_address_space *vm;
2276
2277         vm = &dev_priv->gtt.base;
2278
2279         return vm;
2280 }
2281
2282 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2283                                 const u32 acthd, bool *inside)
2284 {
2285         /* There is a possibility that unmasked head address
2286          * pointing inside the ring, matches the batch_obj address range.
2287          * However this is extremely unlikely.
2288          */
2289         if (request->batch_obj) {
2290                 if (i915_head_inside_object(acthd, request->batch_obj,
2291                                             request_to_vm(request))) {
2292                         *inside = true;
2293                         return true;
2294                 }
2295         }
2296
2297         if (i915_head_inside_request(acthd, request->head, request->tail)) {
2298                 *inside = false;
2299                 return true;
2300         }
2301
2302         return false;
2303 }
2304
2305 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2306 {
2307         const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2308
2309         if (hs->banned)
2310                 return true;
2311
2312         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2313                 DRM_ERROR("context hanging too fast, declaring banned!\n");
2314                 return true;
2315         }
2316
2317         return false;
2318 }
2319
2320 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2321                                   struct drm_i915_gem_request *request,
2322                                   u32 acthd)
2323 {
2324         struct i915_ctx_hang_stats *hs = NULL;
2325         bool inside, guilty;
2326         unsigned long offset = 0;
2327
2328         /* Innocent until proven guilty */
2329         guilty = false;
2330
2331         if (request->batch_obj)
2332                 offset = i915_gem_obj_offset(request->batch_obj,
2333                                              request_to_vm(request));
2334
2335         if (ring->hangcheck.action != HANGCHECK_WAIT &&
2336             i915_request_guilty(request, acthd, &inside)) {
2337                 DRM_DEBUG("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2338                           ring->name,
2339                           inside ? "inside" : "flushing",
2340                           offset,
2341                           request->ctx ? request->ctx->id : 0,
2342                           acthd);
2343
2344                 guilty = true;
2345         }
2346
2347         /* If contexts are disabled or this is the default context, use
2348          * file_priv->reset_state
2349          */
2350         if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2351                 hs = &request->ctx->hang_stats;
2352         else if (request->file_priv)
2353                 hs = &request->file_priv->hang_stats;
2354
2355         if (hs) {
2356                 if (guilty) {
2357                         hs->banned = i915_context_is_banned(hs);
2358                         hs->batch_active++;
2359                         hs->guilty_ts = get_seconds();
2360                 } else {
2361                         hs->batch_pending++;
2362                 }
2363         }
2364 }
2365
2366 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2367 {
2368         list_del(&request->list);
2369         i915_gem_request_remove_from_client(request);
2370
2371         if (request->ctx)
2372                 i915_gem_context_unreference(request->ctx);
2373
2374         kfree(request);
2375 }
2376
2377 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2378                                        struct intel_ring_buffer *ring)
2379 {
2380         u32 completed_seqno = ring->get_seqno(ring, false);
2381         u32 acthd = intel_ring_get_active_head(ring);
2382         struct drm_i915_gem_request *request;
2383
2384         list_for_each_entry(request, &ring->request_list, list) {
2385                 if (i915_seqno_passed(completed_seqno, request->seqno))
2386                         continue;
2387
2388                 i915_set_reset_status(ring, request, acthd);
2389         }
2390 }
2391
2392 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2393                                         struct intel_ring_buffer *ring)
2394 {
2395         while (!list_empty(&ring->active_list)) {
2396                 struct drm_i915_gem_object *obj;
2397
2398                 obj = list_first_entry(&ring->active_list,
2399                                        struct drm_i915_gem_object,
2400                                        ring_list);
2401
2402                 i915_gem_object_move_to_inactive(obj);
2403         }
2404
2405         /*
2406          * We must free the requests after all the corresponding objects have
2407          * been moved off active lists. Which is the same order as the normal
2408          * retire_requests function does. This is important if object hold
2409          * implicit references on things like e.g. ppgtt address spaces through
2410          * the request.
2411          */
2412         while (!list_empty(&ring->request_list)) {
2413                 struct drm_i915_gem_request *request;
2414
2415                 request = list_first_entry(&ring->request_list,
2416                                            struct drm_i915_gem_request,
2417                                            list);
2418
2419                 i915_gem_free_request(request);
2420         }
2421 }
2422
2423 void i915_gem_restore_fences(struct drm_device *dev)
2424 {
2425         struct drm_i915_private *dev_priv = dev->dev_private;
2426         int i;
2427
2428         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2429                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2430
2431                 /*
2432                  * Commit delayed tiling changes if we have an object still
2433                  * attached to the fence, otherwise just clear the fence.
2434                  */
2435                 if (reg->obj) {
2436                         i915_gem_object_update_fence(reg->obj, reg,
2437                                                      reg->obj->tiling_mode);
2438                 } else {
2439                         i915_gem_write_fence(dev, i, NULL);
2440                 }
2441         }
2442 }
2443
2444 void i915_gem_reset(struct drm_device *dev)
2445 {
2446         struct drm_i915_private *dev_priv = dev->dev_private;
2447         struct intel_ring_buffer *ring;
2448         int i;
2449
2450         /*
2451          * Before we free the objects from the requests, we need to inspect
2452          * them for finding the guilty party. As the requests only borrow
2453          * their reference to the objects, the inspection must be done first.
2454          */
2455         for_each_ring(ring, dev_priv, i)
2456                 i915_gem_reset_ring_status(dev_priv, ring);
2457
2458         for_each_ring(ring, dev_priv, i)
2459                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2460
2461         i915_gem_cleanup_ringbuffer(dev);
2462
2463         i915_gem_restore_fences(dev);
2464 }
2465
2466 /**
2467  * This function clears the request list as sequence numbers are passed.
2468  */
2469 void
2470 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2471 {
2472         uint32_t seqno;
2473
2474         if (list_empty(&ring->request_list))
2475                 return;
2476
2477         WARN_ON(i915_verify_lists(ring->dev));
2478
2479         seqno = ring->get_seqno(ring, true);
2480
2481         while (!list_empty(&ring->request_list)) {
2482                 struct drm_i915_gem_request *request;
2483
2484                 request = list_first_entry(&ring->request_list,
2485                                            struct drm_i915_gem_request,
2486                                            list);
2487
2488                 if (!i915_seqno_passed(seqno, request->seqno))
2489                         break;
2490
2491                 trace_i915_gem_request_retire(ring, request->seqno);
2492                 /* We know the GPU must have read the request to have
2493                  * sent us the seqno + interrupt, so use the position
2494                  * of tail of the request to update the last known position
2495                  * of the GPU head.
2496                  */
2497                 ring->last_retired_head = request->tail;
2498
2499                 i915_gem_free_request(request);
2500         }
2501
2502         /* Move any buffers on the active list that are no longer referenced
2503          * by the ringbuffer to the flushing/inactive lists as appropriate.
2504          */
2505         while (!list_empty(&ring->active_list)) {
2506                 struct drm_i915_gem_object *obj;
2507
2508                 obj = list_first_entry(&ring->active_list,
2509                                       struct drm_i915_gem_object,
2510                                       ring_list);
2511
2512                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2513                         break;
2514
2515                 i915_gem_object_move_to_inactive(obj);
2516         }
2517
2518         if (unlikely(ring->trace_irq_seqno &&
2519                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2520                 ring->irq_put(ring);
2521                 ring->trace_irq_seqno = 0;
2522         }
2523
2524         WARN_ON(i915_verify_lists(ring->dev));
2525 }
2526
2527 bool
2528 i915_gem_retire_requests(struct drm_device *dev)
2529 {
2530         drm_i915_private_t *dev_priv = dev->dev_private;
2531         struct intel_ring_buffer *ring;
2532         bool idle = true;
2533         int i;
2534
2535         for_each_ring(ring, dev_priv, i) {
2536                 i915_gem_retire_requests_ring(ring);
2537                 idle &= list_empty(&ring->request_list);
2538         }
2539
2540         if (idle)
2541                 mod_delayed_work(dev_priv->wq,
2542                                    &dev_priv->mm.idle_work,
2543                                    msecs_to_jiffies(100));
2544
2545         return idle;
2546 }
2547
2548 static void
2549 i915_gem_retire_work_handler(struct work_struct *work)
2550 {
2551         struct drm_i915_private *dev_priv =
2552                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2553         struct drm_device *dev = dev_priv->dev;
2554         bool idle;
2555
2556         /* Come back later if the device is busy... */
2557         idle = false;
2558         if (mutex_trylock(&dev->struct_mutex)) {
2559                 idle = i915_gem_retire_requests(dev);
2560                 mutex_unlock(&dev->struct_mutex);
2561         }
2562         if (!idle)
2563                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2564                                    round_jiffies_up_relative(HZ));
2565 }
2566
2567 static void
2568 i915_gem_idle_work_handler(struct work_struct *work)
2569 {
2570         struct drm_i915_private *dev_priv =
2571                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2572
2573         intel_mark_idle(dev_priv->dev);
2574 }
2575
2576 /**
2577  * Ensures that an object will eventually get non-busy by flushing any required
2578  * write domains, emitting any outstanding lazy request and retiring and
2579  * completed requests.
2580  */
2581 static int
2582 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2583 {
2584         int ret;
2585
2586         if (obj->active) {
2587                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2588                 if (ret)
2589                         return ret;
2590
2591                 i915_gem_retire_requests_ring(obj->ring);
2592         }
2593
2594         return 0;
2595 }
2596
2597 /**
2598  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2599  * @DRM_IOCTL_ARGS: standard ioctl arguments
2600  *
2601  * Returns 0 if successful, else an error is returned with the remaining time in
2602  * the timeout parameter.
2603  *  -ETIME: object is still busy after timeout
2604  *  -ERESTARTSYS: signal interrupted the wait
2605  *  -ENONENT: object doesn't exist
2606  * Also possible, but rare:
2607  *  -EAGAIN: GPU wedged
2608  *  -ENOMEM: damn
2609  *  -ENODEV: Internal IRQ fail
2610  *  -E?: The add request failed
2611  *
2612  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2613  * non-zero timeout parameter the wait ioctl will wait for the given number of
2614  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2615  * without holding struct_mutex the object may become re-busied before this
2616  * function completes. A similar but shorter * race condition exists in the busy
2617  * ioctl
2618  */
2619 int
2620 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2621 {
2622         drm_i915_private_t *dev_priv = dev->dev_private;
2623         struct drm_i915_gem_wait *args = data;
2624         struct drm_i915_gem_object *obj;
2625         struct intel_ring_buffer *ring = NULL;
2626         struct timespec timeout_stack, *timeout = NULL;
2627         unsigned reset_counter;
2628         u32 seqno = 0;
2629         int ret = 0;
2630
2631         if (args->timeout_ns >= 0) {
2632                 timeout_stack = ns_to_timespec(args->timeout_ns);
2633                 timeout = &timeout_stack;
2634         }
2635
2636         ret = i915_mutex_lock_interruptible(dev);
2637         if (ret)
2638                 return ret;
2639
2640         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2641         if (&obj->base == NULL) {
2642                 mutex_unlock(&dev->struct_mutex);
2643                 return -ENOENT;
2644         }
2645
2646         /* Need to make sure the object gets inactive eventually. */
2647         ret = i915_gem_object_flush_active(obj);
2648         if (ret)
2649                 goto out;
2650
2651         if (obj->active) {
2652                 seqno = obj->last_read_seqno;
2653                 ring = obj->ring;
2654         }
2655
2656         if (seqno == 0)
2657                  goto out;
2658
2659         /* Do this after OLR check to make sure we make forward progress polling
2660          * on this IOCTL with a 0 timeout (like busy ioctl)
2661          */
2662         if (!args->timeout_ns) {
2663                 ret = -ETIME;
2664                 goto out;
2665         }
2666
2667         drm_gem_object_unreference(&obj->base);
2668         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2669         mutex_unlock(&dev->struct_mutex);
2670
2671         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2672         if (timeout)
2673                 args->timeout_ns = timespec_to_ns(timeout);
2674         return ret;
2675
2676 out:
2677         drm_gem_object_unreference(&obj->base);
2678         mutex_unlock(&dev->struct_mutex);
2679         return ret;
2680 }
2681
2682 /**
2683  * i915_gem_object_sync - sync an object to a ring.
2684  *
2685  * @obj: object which may be in use on another ring.
2686  * @to: ring we wish to use the object on. May be NULL.
2687  *
2688  * This code is meant to abstract object synchronization with the GPU.
2689  * Calling with NULL implies synchronizing the object with the CPU
2690  * rather than a particular GPU ring.
2691  *
2692  * Returns 0 if successful, else propagates up the lower layer error.
2693  */
2694 int
2695 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2696                      struct intel_ring_buffer *to)
2697 {
2698         struct intel_ring_buffer *from = obj->ring;
2699         u32 seqno;
2700         int ret, idx;
2701
2702         if (from == NULL || to == from)
2703                 return 0;
2704
2705         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2706                 return i915_gem_object_wait_rendering(obj, false);
2707
2708         idx = intel_ring_sync_index(from, to);
2709
2710         seqno = obj->last_read_seqno;
2711         if (seqno <= from->sync_seqno[idx])
2712                 return 0;
2713
2714         ret = i915_gem_check_olr(obj->ring, seqno);
2715         if (ret)
2716                 return ret;
2717
2718         trace_i915_gem_ring_sync_to(from, to, seqno);
2719         ret = to->sync_to(to, from, seqno);
2720         if (!ret)
2721                 /* We use last_read_seqno because sync_to()
2722                  * might have just caused seqno wrap under
2723                  * the radar.
2724                  */
2725                 from->sync_seqno[idx] = obj->last_read_seqno;
2726
2727         return ret;
2728 }
2729
2730 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2731 {
2732         u32 old_write_domain, old_read_domains;
2733
2734         /* Force a pagefault for domain tracking on next user access */
2735         i915_gem_release_mmap(obj);
2736
2737         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2738                 return;
2739
2740         /* Wait for any direct GTT access to complete */
2741         mb();
2742
2743         old_read_domains = obj->base.read_domains;
2744         old_write_domain = obj->base.write_domain;
2745
2746         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2747         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2748
2749         trace_i915_gem_object_change_domain(obj,
2750                                             old_read_domains,
2751                                             old_write_domain);
2752 }
2753
2754 int i915_vma_unbind(struct i915_vma *vma)
2755 {
2756         struct drm_i915_gem_object *obj = vma->obj;
2757         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2758         int ret;
2759
2760         /* For now we only ever use 1 vma per object */
2761         WARN_ON(!list_is_singular(&obj->vma_list));
2762
2763         if (list_empty(&vma->vma_link))
2764                 return 0;
2765
2766         if (!drm_mm_node_allocated(&vma->node)) {
2767                 i915_gem_vma_destroy(vma);
2768
2769                 return 0;
2770         }
2771
2772         if (obj->pin_count)
2773                 return -EBUSY;
2774
2775         BUG_ON(obj->pages == NULL);
2776
2777         ret = i915_gem_object_finish_gpu(obj);
2778         if (ret)
2779                 return ret;
2780         /* Continue on if we fail due to EIO, the GPU is hung so we
2781          * should be safe and we need to cleanup or else we might
2782          * cause memory corruption through use-after-free.
2783          */
2784
2785         i915_gem_object_finish_gtt(obj);
2786
2787         /* release the fence reg _after_ flushing */
2788         ret = i915_gem_object_put_fence(obj);
2789         if (ret)
2790                 return ret;
2791
2792         trace_i915_vma_unbind(vma);
2793
2794         if (obj->has_global_gtt_mapping)
2795                 i915_gem_gtt_unbind_object(obj);
2796         if (obj->has_aliasing_ppgtt_mapping) {
2797                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2798                 obj->has_aliasing_ppgtt_mapping = 0;
2799         }
2800         i915_gem_gtt_finish_object(obj);
2801
2802         list_del(&vma->mm_list);
2803         /* Avoid an unnecessary call to unbind on rebind. */
2804         if (i915_is_ggtt(vma->vm))
2805                 obj->map_and_fenceable = true;
2806
2807         drm_mm_remove_node(&vma->node);
2808         i915_gem_vma_destroy(vma);
2809
2810         /* Since the unbound list is global, only move to that list if
2811          * no more VMAs exist. */
2812         if (list_empty(&obj->vma_list))
2813                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2814
2815         /* And finally now the object is completely decoupled from this vma,
2816          * we can drop its hold on the backing storage and allow it to be
2817          * reaped by the shrinker.
2818          */
2819         i915_gem_object_unpin_pages(obj);
2820
2821         return 0;
2822 }
2823
2824 /**
2825  * Unbinds an object from the global GTT aperture.
2826  */
2827 int
2828 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2829 {
2830         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2831         struct i915_address_space *ggtt = &dev_priv->gtt.base;
2832
2833         if (!i915_gem_obj_ggtt_bound(obj))
2834                 return 0;
2835
2836         if (obj->pin_count)
2837                 return -EBUSY;
2838
2839         BUG_ON(obj->pages == NULL);
2840
2841         return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2842 }
2843
2844 int i915_gpu_idle(struct drm_device *dev)
2845 {
2846         drm_i915_private_t *dev_priv = dev->dev_private;
2847         struct intel_ring_buffer *ring;
2848         int ret, i;
2849
2850         /* Flush everything onto the inactive list. */
2851         for_each_ring(ring, dev_priv, i) {
2852                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2853                 if (ret)
2854                         return ret;
2855
2856                 ret = intel_ring_idle(ring);
2857                 if (ret)
2858                         return ret;
2859         }
2860
2861         return 0;
2862 }
2863
2864 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2865                                  struct drm_i915_gem_object *obj)
2866 {
2867         drm_i915_private_t *dev_priv = dev->dev_private;
2868         int fence_reg;
2869         int fence_pitch_shift;
2870
2871         if (INTEL_INFO(dev)->gen >= 6) {
2872                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2873                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2874         } else {
2875                 fence_reg = FENCE_REG_965_0;
2876                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2877         }
2878
2879         fence_reg += reg * 8;
2880
2881         /* To w/a incoherency with non-atomic 64-bit register updates,
2882          * we split the 64-bit update into two 32-bit writes. In order
2883          * for a partial fence not to be evaluated between writes, we
2884          * precede the update with write to turn off the fence register,
2885          * and only enable the fence as the last step.
2886          *
2887          * For extra levels of paranoia, we make sure each step lands
2888          * before applying the next step.
2889          */
2890         I915_WRITE(fence_reg, 0);
2891         POSTING_READ(fence_reg);
2892
2893         if (obj) {
2894                 u32 size = i915_gem_obj_ggtt_size(obj);
2895                 uint64_t val;
2896
2897                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2898                                  0xfffff000) << 32;
2899                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2900                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2901                 if (obj->tiling_mode == I915_TILING_Y)
2902                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2903                 val |= I965_FENCE_REG_VALID;
2904
2905                 I915_WRITE(fence_reg + 4, val >> 32);
2906                 POSTING_READ(fence_reg + 4);
2907
2908                 I915_WRITE(fence_reg + 0, val);
2909                 POSTING_READ(fence_reg);
2910         } else {
2911                 I915_WRITE(fence_reg + 4, 0);
2912                 POSTING_READ(fence_reg + 4);
2913         }
2914 }
2915
2916 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2917                                  struct drm_i915_gem_object *obj)
2918 {
2919         drm_i915_private_t *dev_priv = dev->dev_private;
2920         u32 val;
2921
2922         if (obj) {
2923                 u32 size = i915_gem_obj_ggtt_size(obj);
2924                 int pitch_val;
2925                 int tile_width;
2926
2927                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2928                      (size & -size) != size ||
2929                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2930                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2931                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2932
2933                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2934                         tile_width = 128;
2935                 else
2936                         tile_width = 512;
2937
2938                 /* Note: pitch better be a power of two tile widths */
2939                 pitch_val = obj->stride / tile_width;
2940                 pitch_val = ffs(pitch_val) - 1;
2941
2942                 val = i915_gem_obj_ggtt_offset(obj);
2943                 if (obj->tiling_mode == I915_TILING_Y)
2944                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2945                 val |= I915_FENCE_SIZE_BITS(size);
2946                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2947                 val |= I830_FENCE_REG_VALID;
2948         } else
2949                 val = 0;
2950
2951         if (reg < 8)
2952                 reg = FENCE_REG_830_0 + reg * 4;
2953         else
2954                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2955
2956         I915_WRITE(reg, val);
2957         POSTING_READ(reg);
2958 }
2959
2960 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2961                                 struct drm_i915_gem_object *obj)
2962 {
2963         drm_i915_private_t *dev_priv = dev->dev_private;
2964         uint32_t val;
2965
2966         if (obj) {
2967                 u32 size = i915_gem_obj_ggtt_size(obj);
2968                 uint32_t pitch_val;
2969
2970                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2971                      (size & -size) != size ||
2972                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2973                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2974                      i915_gem_obj_ggtt_offset(obj), size);
2975
2976                 pitch_val = obj->stride / 128;
2977                 pitch_val = ffs(pitch_val) - 1;
2978
2979                 val = i915_gem_obj_ggtt_offset(obj);
2980                 if (obj->tiling_mode == I915_TILING_Y)
2981                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2982                 val |= I830_FENCE_SIZE_BITS(size);
2983                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2984                 val |= I830_FENCE_REG_VALID;
2985         } else
2986                 val = 0;
2987
2988         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2989         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2990 }
2991
2992 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2993 {
2994         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2995 }
2996
2997 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2998                                  struct drm_i915_gem_object *obj)
2999 {
3000         struct drm_i915_private *dev_priv = dev->dev_private;
3001
3002         /* Ensure that all CPU reads are completed before installing a fence
3003          * and all writes before removing the fence.
3004          */
3005         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3006                 mb();
3007
3008         WARN(obj && (!obj->stride || !obj->tiling_mode),
3009              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3010              obj->stride, obj->tiling_mode);
3011
3012         switch (INTEL_INFO(dev)->gen) {
3013         case 8:
3014         case 7:
3015         case 6:
3016         case 5:
3017         case 4: i965_write_fence_reg(dev, reg, obj); break;
3018         case 3: i915_write_fence_reg(dev, reg, obj); break;
3019         case 2: i830_write_fence_reg(dev, reg, obj); break;
3020         default: BUG();
3021         }
3022
3023         /* And similarly be paranoid that no direct access to this region
3024          * is reordered to before the fence is installed.
3025          */
3026         if (i915_gem_object_needs_mb(obj))
3027                 mb();
3028 }
3029
3030 static inline int fence_number(struct drm_i915_private *dev_priv,
3031                                struct drm_i915_fence_reg *fence)
3032 {
3033         return fence - dev_priv->fence_regs;
3034 }
3035
3036 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3037                                          struct drm_i915_fence_reg *fence,
3038                                          bool enable)
3039 {
3040         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3041         int reg = fence_number(dev_priv, fence);
3042
3043         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3044
3045         if (enable) {
3046                 obj->fence_reg = reg;
3047                 fence->obj = obj;
3048                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3049         } else {
3050                 obj->fence_reg = I915_FENCE_REG_NONE;
3051                 fence->obj = NULL;
3052                 list_del_init(&fence->lru_list);
3053         }
3054         obj->fence_dirty = false;
3055 }
3056
3057 static int
3058 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3059 {
3060         if (obj->last_fenced_seqno) {
3061                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3062                 if (ret)
3063                         return ret;
3064
3065                 obj->last_fenced_seqno = 0;
3066         }
3067
3068         obj->fenced_gpu_access = false;
3069         return 0;
3070 }
3071
3072 int
3073 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3074 {
3075         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3076         struct drm_i915_fence_reg *fence;
3077         int ret;
3078
3079         ret = i915_gem_object_wait_fence(obj);
3080         if (ret)
3081                 return ret;
3082
3083         if (obj->fence_reg == I915_FENCE_REG_NONE)
3084                 return 0;
3085
3086         fence = &dev_priv->fence_regs[obj->fence_reg];
3087
3088         i915_gem_object_fence_lost(obj);
3089         i915_gem_object_update_fence(obj, fence, false);
3090
3091         return 0;
3092 }
3093
3094 static struct drm_i915_fence_reg *
3095 i915_find_fence_reg(struct drm_device *dev)
3096 {
3097         struct drm_i915_private *dev_priv = dev->dev_private;
3098         struct drm_i915_fence_reg *reg, *avail;
3099         int i;
3100
3101         /* First try to find a free reg */
3102         avail = NULL;
3103         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3104                 reg = &dev_priv->fence_regs[i];
3105                 if (!reg->obj)
3106                         return reg;
3107
3108                 if (!reg->pin_count)
3109                         avail = reg;
3110         }
3111
3112         if (avail == NULL)
3113                 goto deadlock;
3114
3115         /* None available, try to steal one or wait for a user to finish */
3116         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3117                 if (reg->pin_count)
3118                         continue;
3119
3120                 return reg;
3121         }
3122
3123 deadlock:
3124         /* Wait for completion of pending flips which consume fences */
3125         if (intel_has_pending_fb_unpin(dev))
3126                 return ERR_PTR(-EAGAIN);
3127
3128         return ERR_PTR(-EDEADLK);
3129 }
3130
3131 /**
3132  * i915_gem_object_get_fence - set up fencing for an object
3133  * @obj: object to map through a fence reg
3134  *
3135  * When mapping objects through the GTT, userspace wants to be able to write
3136  * to them without having to worry about swizzling if the object is tiled.
3137  * This function walks the fence regs looking for a free one for @obj,
3138  * stealing one if it can't find any.
3139  *
3140  * It then sets up the reg based on the object's properties: address, pitch
3141  * and tiling format.
3142  *
3143  * For an untiled surface, this removes any existing fence.
3144  */
3145 int
3146 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3147 {
3148         struct drm_device *dev = obj->base.dev;
3149         struct drm_i915_private *dev_priv = dev->dev_private;
3150         bool enable = obj->tiling_mode != I915_TILING_NONE;
3151         struct drm_i915_fence_reg *reg;
3152         int ret;
3153
3154         /* Have we updated the tiling parameters upon the object and so
3155          * will need to serialise the write to the associated fence register?
3156          */
3157         if (obj->fence_dirty) {
3158                 ret = i915_gem_object_wait_fence(obj);
3159                 if (ret)
3160                         return ret;
3161         }
3162
3163         /* Just update our place in the LRU if our fence is getting reused. */
3164         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3165                 reg = &dev_priv->fence_regs[obj->fence_reg];
3166                 if (!obj->fence_dirty) {
3167                         list_move_tail(&reg->lru_list,
3168                                        &dev_priv->mm.fence_list);
3169                         return 0;
3170                 }
3171         } else if (enable) {
3172                 reg = i915_find_fence_reg(dev);
3173                 if (IS_ERR(reg))
3174                         return PTR_ERR(reg);
3175
3176                 if (reg->obj) {
3177                         struct drm_i915_gem_object *old = reg->obj;
3178
3179                         ret = i915_gem_object_wait_fence(old);
3180                         if (ret)
3181                                 return ret;
3182
3183                         i915_gem_object_fence_lost(old);
3184                 }
3185         } else
3186                 return 0;
3187
3188         i915_gem_object_update_fence(obj, reg, enable);
3189
3190         return 0;
3191 }
3192
3193 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3194                                      struct drm_mm_node *gtt_space,
3195                                      unsigned long cache_level)
3196 {
3197         struct drm_mm_node *other;
3198
3199         /* On non-LLC machines we have to be careful when putting differing
3200          * types of snoopable memory together to avoid the prefetcher
3201          * crossing memory domains and dying.
3202          */
3203         if (HAS_LLC(dev))
3204                 return true;
3205
3206         if (!drm_mm_node_allocated(gtt_space))
3207                 return true;
3208
3209         if (list_empty(&gtt_space->node_list))
3210                 return true;
3211
3212         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3213         if (other->allocated && !other->hole_follows && other->color != cache_level)
3214                 return false;
3215
3216         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3217         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3218                 return false;
3219
3220         return true;
3221 }
3222
3223 static void i915_gem_verify_gtt(struct drm_device *dev)
3224 {
3225 #if WATCH_GTT
3226         struct drm_i915_private *dev_priv = dev->dev_private;
3227         struct drm_i915_gem_object *obj;
3228         int err = 0;
3229
3230         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3231                 if (obj->gtt_space == NULL) {
3232                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3233                         err++;
3234                         continue;
3235                 }
3236
3237                 if (obj->cache_level != obj->gtt_space->color) {
3238                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3239                                i915_gem_obj_ggtt_offset(obj),
3240                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3241                                obj->cache_level,
3242                                obj->gtt_space->color);
3243                         err++;
3244                         continue;
3245                 }
3246
3247                 if (!i915_gem_valid_gtt_space(dev,
3248                                               obj->gtt_space,
3249                                               obj->cache_level)) {
3250                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3251                                i915_gem_obj_ggtt_offset(obj),
3252                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3253                                obj->cache_level);
3254                         err++;
3255                         continue;
3256                 }
3257         }
3258
3259         WARN_ON(err);
3260 #endif
3261 }
3262
3263 /**
3264  * Finds free space in the GTT aperture and binds the object there.
3265  */
3266 static int
3267 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3268                            struct i915_address_space *vm,
3269                            unsigned alignment,
3270                            bool map_and_fenceable,
3271                            bool nonblocking)
3272 {
3273         struct drm_device *dev = obj->base.dev;
3274         drm_i915_private_t *dev_priv = dev->dev_private;
3275         u32 size, fence_size, fence_alignment, unfenced_alignment;
3276         size_t gtt_max =
3277                 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3278         struct i915_vma *vma;
3279         int ret;
3280
3281         fence_size = i915_gem_get_gtt_size(dev,
3282                                            obj->base.size,
3283                                            obj->tiling_mode);
3284         fence_alignment = i915_gem_get_gtt_alignment(dev,
3285                                                      obj->base.size,
3286                                                      obj->tiling_mode, true);
3287         unfenced_alignment =
3288                 i915_gem_get_gtt_alignment(dev,
3289                                                     obj->base.size,
3290                                                     obj->tiling_mode, false);
3291
3292         if (alignment == 0)
3293                 alignment = map_and_fenceable ? fence_alignment :
3294                                                 unfenced_alignment;
3295         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3296                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3297                 return -EINVAL;
3298         }
3299
3300         size = map_and_fenceable ? fence_size : obj->base.size;
3301
3302         /* If the object is bigger than the entire aperture, reject it early
3303          * before evicting everything in a vain attempt to find space.
3304          */
3305         if (obj->base.size > gtt_max) {
3306                 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3307                           obj->base.size,
3308                           map_and_fenceable ? "mappable" : "total",
3309                           gtt_max);
3310                 return -E2BIG;
3311         }
3312
3313         ret = i915_gem_object_get_pages(obj);
3314         if (ret)
3315                 return ret;
3316
3317         i915_gem_object_pin_pages(obj);
3318
3319         BUG_ON(!i915_is_ggtt(vm));
3320
3321         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3322         if (IS_ERR(vma)) {
3323                 ret = PTR_ERR(vma);
3324                 goto err_unpin;
3325         }
3326
3327         /* For now we only ever use 1 vma per object */
3328         WARN_ON(!list_is_singular(&obj->vma_list));
3329
3330 search_free:
3331         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3332                                                   size, alignment,
3333                                                   obj->cache_level, 0, gtt_max,
3334                                                   DRM_MM_SEARCH_DEFAULT);
3335         if (ret) {
3336                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3337                                                obj->cache_level,
3338                                                map_and_fenceable,
3339                                                nonblocking);
3340                 if (ret == 0)
3341                         goto search_free;
3342
3343                 goto err_free_vma;
3344         }
3345         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3346                                               obj->cache_level))) {
3347                 ret = -EINVAL;
3348                 goto err_remove_node;
3349         }
3350
3351         ret = i915_gem_gtt_prepare_object(obj);
3352         if (ret)
3353                 goto err_remove_node;
3354
3355         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3356         list_add_tail(&vma->mm_list, &vm->inactive_list);
3357
3358         if (i915_is_ggtt(vm)) {
3359                 bool mappable, fenceable;
3360
3361                 fenceable = (vma->node.size == fence_size &&
3362                              (vma->node.start & (fence_alignment - 1)) == 0);
3363
3364                 mappable = (vma->node.start + obj->base.size <=
3365                             dev_priv->gtt.mappable_end);
3366
3367                 obj->map_and_fenceable = mappable && fenceable;
3368         }
3369
3370         WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3371
3372         trace_i915_vma_bind(vma, map_and_fenceable);
3373         i915_gem_verify_gtt(dev);
3374         return 0;
3375
3376 err_remove_node:
3377         drm_mm_remove_node(&vma->node);
3378 err_free_vma:
3379         i915_gem_vma_destroy(vma);
3380 err_unpin:
3381         i915_gem_object_unpin_pages(obj);
3382         return ret;
3383 }
3384
3385 bool
3386 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3387                         bool force)
3388 {
3389         /* If we don't have a page list set up, then we're not pinned
3390          * to GPU, and we can ignore the cache flush because it'll happen
3391          * again at bind time.
3392          */
3393         if (obj->pages == NULL)
3394                 return false;
3395
3396         /*
3397          * Stolen memory is always coherent with the GPU as it is explicitly
3398          * marked as wc by the system, or the system is cache-coherent.
3399          */
3400         if (obj->stolen)
3401                 return false;
3402
3403         /* If the GPU is snooping the contents of the CPU cache,
3404          * we do not need to manually clear the CPU cache lines.  However,
3405          * the caches are only snooped when the render cache is
3406          * flushed/invalidated.  As we always have to emit invalidations
3407          * and flushes when moving into and out of the RENDER domain, correct
3408          * snooping behaviour occurs naturally as the result of our domain
3409          * tracking.
3410          */
3411         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3412                 return false;
3413
3414         trace_i915_gem_object_clflush(obj);
3415         drm_clflush_sg(obj->pages);
3416
3417         return true;
3418 }
3419
3420 /** Flushes the GTT write domain for the object if it's dirty. */
3421 static void
3422 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3423 {
3424         uint32_t old_write_domain;
3425
3426         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3427                 return;
3428
3429         /* No actual flushing is required for the GTT write domain.  Writes
3430          * to it immediately go to main memory as far as we know, so there's
3431          * no chipset flush.  It also doesn't land in render cache.
3432          *
3433          * However, we do have to enforce the order so that all writes through
3434          * the GTT land before any writes to the device, such as updates to
3435          * the GATT itself.
3436          */
3437         wmb();
3438
3439         old_write_domain = obj->base.write_domain;
3440         obj->base.write_domain = 0;
3441
3442         trace_i915_gem_object_change_domain(obj,
3443                                             obj->base.read_domains,
3444                                             old_write_domain);
3445 }
3446
3447 /** Flushes the CPU write domain for the object if it's dirty. */
3448 static void
3449 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3450                                        bool force)
3451 {
3452         uint32_t old_write_domain;
3453
3454         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3455                 return;
3456
3457         if (i915_gem_clflush_object(obj, force))
3458                 i915_gem_chipset_flush(obj->base.dev);
3459
3460         old_write_domain = obj->base.write_domain;
3461         obj->base.write_domain = 0;
3462
3463         trace_i915_gem_object_change_domain(obj,
3464                                             obj->base.read_domains,
3465                                             old_write_domain);
3466 }
3467
3468 /**
3469  * Moves a single object to the GTT read, and possibly write domain.
3470  *
3471  * This function returns when the move is complete, including waiting on
3472  * flushes to occur.
3473  */
3474 int
3475 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3476 {
3477         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3478         uint32_t old_write_domain, old_read_domains;
3479         int ret;
3480
3481         /* Not valid to be called on unbound objects. */
3482         if (!i915_gem_obj_bound_any(obj))
3483                 return -EINVAL;
3484
3485         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3486                 return 0;
3487
3488         ret = i915_gem_object_wait_rendering(obj, !write);
3489         if (ret)
3490                 return ret;
3491
3492         i915_gem_object_flush_cpu_write_domain(obj, false);
3493
3494         /* Serialise direct access to this object with the barriers for
3495          * coherent writes from the GPU, by effectively invalidating the
3496          * GTT domain upon first access.
3497          */
3498         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3499                 mb();
3500
3501         old_write_domain = obj->base.write_domain;
3502         old_read_domains = obj->base.read_domains;
3503
3504         /* It should now be out of any other write domains, and we can update
3505          * the domain values for our changes.
3506          */
3507         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3508         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3509         if (write) {
3510                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3511                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3512                 obj->dirty = 1;
3513         }
3514
3515         trace_i915_gem_object_change_domain(obj,
3516                                             old_read_domains,
3517                                             old_write_domain);
3518
3519         /* And bump the LRU for this access */
3520         if (i915_gem_object_is_inactive(obj)) {
3521                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3522                 if (vma)
3523                         list_move_tail(&vma->mm_list,
3524                                        &dev_priv->gtt.base.inactive_list);
3525
3526         }
3527
3528         return 0;
3529 }
3530
3531 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3532                                     enum i915_cache_level cache_level)
3533 {
3534         struct drm_device *dev = obj->base.dev;
3535         drm_i915_private_t *dev_priv = dev->dev_private;
3536         struct i915_vma *vma, *next;
3537         int ret;
3538
3539         if (obj->cache_level == cache_level)
3540                 return 0;
3541
3542         if (obj->pin_count) {
3543                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3544                 return -EBUSY;
3545         }
3546
3547         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3548                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3549                         ret = i915_vma_unbind(vma);
3550                         if (ret)
3551                                 return ret;
3552
3553                         break;
3554                 }
3555         }
3556
3557         if (i915_gem_obj_bound_any(obj)) {
3558                 ret = i915_gem_object_finish_gpu(obj);
3559                 if (ret)
3560                         return ret;
3561
3562                 i915_gem_object_finish_gtt(obj);
3563
3564                 /* Before SandyBridge, you could not use tiling or fence
3565                  * registers with snooped memory, so relinquish any fences
3566                  * currently pointing to our region in the aperture.
3567                  */
3568                 if (INTEL_INFO(dev)->gen < 6) {
3569                         ret = i915_gem_object_put_fence(obj);
3570                         if (ret)
3571                                 return ret;
3572                 }
3573
3574                 if (obj->has_global_gtt_mapping)
3575                         i915_gem_gtt_bind_object(obj, cache_level);
3576                 if (obj->has_aliasing_ppgtt_mapping)
3577                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3578                                                obj, cache_level);
3579         }
3580
3581         list_for_each_entry(vma, &obj->vma_list, vma_link)
3582                 vma->node.color = cache_level;
3583         obj->cache_level = cache_level;
3584
3585         if (cpu_write_needs_clflush(obj)) {
3586                 u32 old_read_domains, old_write_domain;
3587
3588                 /* If we're coming from LLC cached, then we haven't
3589                  * actually been tracking whether the data is in the
3590                  * CPU cache or not, since we only allow one bit set
3591                  * in obj->write_domain and have been skipping the clflushes.
3592                  * Just set it to the CPU cache for now.
3593                  */
3594                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3595
3596                 old_read_domains = obj->base.read_domains;
3597                 old_write_domain = obj->base.write_domain;
3598
3599                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3600                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3601
3602                 trace_i915_gem_object_change_domain(obj,
3603                                                     old_read_domains,
3604                                                     old_write_domain);
3605         }
3606
3607         i915_gem_verify_gtt(dev);
3608         return 0;
3609 }
3610
3611 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3612                                struct drm_file *file)
3613 {
3614         struct drm_i915_gem_caching *args = data;
3615         struct drm_i915_gem_object *obj;
3616         int ret;
3617
3618         ret = i915_mutex_lock_interruptible(dev);
3619         if (ret)
3620                 return ret;
3621
3622         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3623         if (&obj->base == NULL) {
3624                 ret = -ENOENT;
3625                 goto unlock;
3626         }
3627
3628         switch (obj->cache_level) {
3629         case I915_CACHE_LLC:
3630         case I915_CACHE_L3_LLC:
3631                 args->caching = I915_CACHING_CACHED;
3632                 break;
3633
3634         case I915_CACHE_WT:
3635                 args->caching = I915_CACHING_DISPLAY;
3636                 break;
3637
3638         default:
3639                 args->caching = I915_CACHING_NONE;
3640                 break;
3641         }
3642
3643         drm_gem_object_unreference(&obj->base);
3644 unlock:
3645         mutex_unlock(&dev->struct_mutex);
3646         return ret;
3647 }
3648
3649 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3650                                struct drm_file *file)
3651 {
3652         struct drm_i915_gem_caching *args = data;
3653         struct drm_i915_gem_object *obj;
3654         enum i915_cache_level level;
3655         int ret;
3656
3657         switch (args->caching) {
3658         case I915_CACHING_NONE:
3659                 level = I915_CACHE_NONE;
3660                 break;
3661         case I915_CACHING_CACHED:
3662                 level = I915_CACHE_LLC;
3663                 break;
3664         case I915_CACHING_DISPLAY:
3665                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3666                 break;
3667         default:
3668                 return -EINVAL;
3669         }
3670
3671         ret = i915_mutex_lock_interruptible(dev);
3672         if (ret)
3673                 return ret;
3674
3675         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3676         if (&obj->base == NULL) {
3677                 ret = -ENOENT;
3678                 goto unlock;
3679         }
3680
3681         ret = i915_gem_object_set_cache_level(obj, level);
3682
3683         drm_gem_object_unreference(&obj->base);
3684 unlock:
3685         mutex_unlock(&dev->struct_mutex);
3686         return ret;
3687 }
3688
3689 static bool is_pin_display(struct drm_i915_gem_object *obj)
3690 {
3691         /* There are 3 sources that pin objects:
3692          *   1. The display engine (scanouts, sprites, cursors);
3693          *   2. Reservations for execbuffer;
3694          *   3. The user.
3695          *
3696          * We can ignore reservations as we hold the struct_mutex and
3697          * are only called outside of the reservation path.  The user
3698          * can only increment pin_count once, and so if after
3699          * subtracting the potential reference by the user, any pin_count
3700          * remains, it must be due to another use by the display engine.
3701          */
3702         return obj->pin_count - !!obj->user_pin_count;
3703 }
3704
3705 /*
3706  * Prepare buffer for display plane (scanout, cursors, etc).
3707  * Can be called from an uninterruptible phase (modesetting) and allows
3708  * any flushes to be pipelined (for pageflips).
3709  */
3710 int
3711 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3712                                      u32 alignment,
3713                                      struct intel_ring_buffer *pipelined)
3714 {
3715         u32 old_read_domains, old_write_domain;
3716         int ret;
3717
3718         if (pipelined != obj->ring) {
3719                 ret = i915_gem_object_sync(obj, pipelined);
3720                 if (ret)
3721                         return ret;
3722         }
3723
3724         /* Mark the pin_display early so that we account for the
3725          * display coherency whilst setting up the cache domains.
3726          */
3727         obj->pin_display = true;
3728
3729         /* The display engine is not coherent with the LLC cache on gen6.  As
3730          * a result, we make sure that the pinning that is about to occur is
3731          * done with uncached PTEs. This is lowest common denominator for all
3732          * chipsets.
3733          *
3734          * However for gen6+, we could do better by using the GFDT bit instead
3735          * of uncaching, which would allow us to flush all the LLC-cached data
3736          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3737          */
3738         ret = i915_gem_object_set_cache_level(obj,
3739                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3740         if (ret)
3741                 goto err_unpin_display;
3742
3743         /* As the user may map the buffer once pinned in the display plane
3744          * (e.g. libkms for the bootup splash), we have to ensure that we
3745          * always use map_and_fenceable for all scanout buffers.
3746          */
3747         ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3748         if (ret)
3749                 goto err_unpin_display;
3750
3751         i915_gem_object_flush_cpu_write_domain(obj, true);
3752
3753         old_write_domain = obj->base.write_domain;
3754         old_read_domains = obj->base.read_domains;
3755
3756         /* It should now be out of any other write domains, and we can update
3757          * the domain values for our changes.
3758          */
3759         obj->base.write_domain = 0;
3760         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3761
3762         trace_i915_gem_object_change_domain(obj,
3763                                             old_read_domains,
3764                                             old_write_domain);
3765
3766         return 0;
3767
3768 err_unpin_display:
3769         obj->pin_display = is_pin_display(obj);
3770         return ret;
3771 }
3772
3773 void
3774 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3775 {
3776         i915_gem_object_unpin(obj);
3777         obj->pin_display = is_pin_display(obj);
3778 }
3779
3780 int
3781 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3782 {
3783         int ret;
3784
3785         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3786                 return 0;
3787
3788         ret = i915_gem_object_wait_rendering(obj, false);
3789         if (ret)
3790                 return ret;
3791
3792         /* Ensure that we invalidate the GPU's caches and TLBs. */
3793         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3794         return 0;
3795 }
3796
3797 /**
3798  * Moves a single object to the CPU read, and possibly write domain.
3799  *
3800  * This function returns when the move is complete, including waiting on
3801  * flushes to occur.
3802  */
3803 int
3804 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3805 {
3806         uint32_t old_write_domain, old_read_domains;
3807         int ret;
3808
3809         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3810                 return 0;
3811
3812         ret = i915_gem_object_wait_rendering(obj, !write);
3813         if (ret)
3814                 return ret;
3815
3816         i915_gem_object_flush_gtt_write_domain(obj);
3817
3818         old_write_domain = obj->base.write_domain;
3819         old_read_domains = obj->base.read_domains;
3820
3821         /* Flush the CPU cache if it's still invalid. */
3822         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3823                 i915_gem_clflush_object(obj, false);
3824
3825                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3826         }
3827
3828         /* It should now be out of any other write domains, and we can update
3829          * the domain values for our changes.
3830          */
3831         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3832
3833         /* If we're writing through the CPU, then the GPU read domains will
3834          * need to be invalidated at next use.
3835          */
3836         if (write) {
3837                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3838                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3839         }
3840
3841         trace_i915_gem_object_change_domain(obj,
3842                                             old_read_domains,
3843                                             old_write_domain);
3844
3845         return 0;
3846 }
3847
3848 /* Throttle our rendering by waiting until the ring has completed our requests
3849  * emitted over 20 msec ago.
3850  *
3851  * Note that if we were to use the current jiffies each time around the loop,
3852  * we wouldn't escape the function with any frames outstanding if the time to
3853  * render a frame was over 20ms.
3854  *
3855  * This should get us reasonable parallelism between CPU and GPU but also
3856  * relatively low latency when blocking on a particular request to finish.
3857  */
3858 static int
3859 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3860 {
3861         struct drm_i915_private *dev_priv = dev->dev_private;
3862         struct drm_i915_file_private *file_priv = file->driver_priv;
3863         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3864         struct drm_i915_gem_request *request;
3865         struct intel_ring_buffer *ring = NULL;
3866         unsigned reset_counter;
3867         u32 seqno = 0;
3868         int ret;
3869
3870         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3871         if (ret)
3872                 return ret;
3873
3874         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3875         if (ret)
3876                 return ret;
3877
3878         spin_lock(&file_priv->mm.lock);
3879         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3880                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3881                         break;
3882
3883                 ring = request->ring;
3884                 seqno = request->seqno;
3885         }
3886         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3887         spin_unlock(&file_priv->mm.lock);
3888
3889         if (seqno == 0)
3890                 return 0;
3891
3892         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3893         if (ret == 0)
3894                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3895
3896         return ret;
3897 }
3898
3899 int
3900 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3901                     struct i915_address_space *vm,
3902                     uint32_t alignment,
3903                     bool map_and_fenceable,
3904                     bool nonblocking)
3905 {
3906         struct i915_vma *vma;
3907         int ret;
3908
3909         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3910                 return -EBUSY;
3911
3912         WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3913
3914         vma = i915_gem_obj_to_vma(obj, vm);
3915
3916         if (vma) {
3917                 if ((alignment &&
3918                      vma->node.start & (alignment - 1)) ||
3919                     (map_and_fenceable && !obj->map_and_fenceable)) {
3920                         WARN(obj->pin_count,
3921                              "bo is already pinned with incorrect alignment:"
3922                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3923                              " obj->map_and_fenceable=%d\n",
3924                              i915_gem_obj_offset(obj, vm), alignment,
3925                              map_and_fenceable,
3926                              obj->map_and_fenceable);
3927                         ret = i915_vma_unbind(vma);
3928                         if (ret)
3929                                 return ret;
3930                 }
3931         }
3932
3933         if (!i915_gem_obj_bound(obj, vm)) {
3934                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3935
3936                 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3937                                                  map_and_fenceable,
3938                                                  nonblocking);
3939                 if (ret)
3940                         return ret;
3941
3942                 if (!dev_priv->mm.aliasing_ppgtt)
3943                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3944         }
3945
3946         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3947                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3948
3949         obj->pin_count++;
3950         obj->pin_mappable |= map_and_fenceable;
3951
3952         return 0;
3953 }
3954
3955 void
3956 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3957 {
3958         BUG_ON(obj->pin_count == 0);
3959         BUG_ON(!i915_gem_obj_bound_any(obj));
3960
3961         if (--obj->pin_count == 0)
3962                 obj->pin_mappable = false;
3963 }
3964
3965 int
3966 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3967                    struct drm_file *file)
3968 {
3969         struct drm_i915_gem_pin *args = data;
3970         struct drm_i915_gem_object *obj;
3971         int ret;
3972
3973         ret = i915_mutex_lock_interruptible(dev);
3974         if (ret)
3975                 return ret;
3976
3977         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3978         if (&obj->base == NULL) {
3979                 ret = -ENOENT;
3980                 goto unlock;
3981         }
3982
3983         if (obj->madv != I915_MADV_WILLNEED) {
3984                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3985                 ret = -EINVAL;
3986                 goto out;
3987         }
3988
3989         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3990                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3991                           args->handle);
3992                 ret = -EINVAL;
3993                 goto out;
3994         }
3995
3996         if (obj->user_pin_count == ULONG_MAX) {
3997                 ret = -EBUSY;
3998                 goto out;
3999         }
4000
4001         if (obj->user_pin_count == 0) {
4002                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
4003                 if (ret)
4004                         goto out;
4005         }
4006
4007         obj->user_pin_count++;
4008         obj->pin_filp = file;
4009
4010         args->offset = i915_gem_obj_ggtt_offset(obj);
4011 out:
4012         drm_gem_object_unreference(&obj->base);
4013 unlock:
4014         mutex_unlock(&dev->struct_mutex);
4015         return ret;
4016 }
4017
4018 int
4019 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4020                      struct drm_file *file)
4021 {
4022         struct drm_i915_gem_pin *args = data;
4023         struct drm_i915_gem_object *obj;
4024         int ret;
4025
4026         ret = i915_mutex_lock_interruptible(dev);
4027         if (ret)
4028                 return ret;
4029
4030         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4031         if (&obj->base == NULL) {
4032                 ret = -ENOENT;
4033                 goto unlock;
4034         }
4035
4036         if (obj->pin_filp != file) {
4037                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4038                           args->handle);
4039                 ret = -EINVAL;
4040                 goto out;
4041         }
4042         obj->user_pin_count--;
4043         if (obj->user_pin_count == 0) {
4044                 obj->pin_filp = NULL;
4045                 i915_gem_object_unpin(obj);
4046         }
4047
4048 out:
4049         drm_gem_object_unreference(&obj->base);
4050 unlock:
4051         mutex_unlock(&dev->struct_mutex);
4052         return ret;
4053 }
4054
4055 int
4056 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4057                     struct drm_file *file)
4058 {
4059         struct drm_i915_gem_busy *args = data;
4060         struct drm_i915_gem_object *obj;
4061         int ret;
4062
4063         ret = i915_mutex_lock_interruptible(dev);
4064         if (ret)
4065                 return ret;
4066
4067         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4068         if (&obj->base == NULL) {
4069                 ret = -ENOENT;
4070                 goto unlock;
4071         }
4072
4073         /* Count all active objects as busy, even if they are currently not used
4074          * by the gpu. Users of this interface expect objects to eventually
4075          * become non-busy without any further actions, therefore emit any
4076          * necessary flushes here.
4077          */
4078         ret = i915_gem_object_flush_active(obj);
4079
4080         args->busy = obj->active;
4081         if (obj->ring) {
4082                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4083                 args->busy |= intel_ring_flag(obj->ring) << 16;
4084         }
4085
4086         drm_gem_object_unreference(&obj->base);
4087 unlock:
4088         mutex_unlock(&dev->struct_mutex);
4089         return ret;
4090 }
4091
4092 int
4093 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4094                         struct drm_file *file_priv)
4095 {
4096         return i915_gem_ring_throttle(dev, file_priv);
4097 }
4098
4099 int
4100 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4101                        struct drm_file *file_priv)
4102 {
4103         struct drm_i915_gem_madvise *args = data;
4104         struct drm_i915_gem_object *obj;
4105         int ret;
4106
4107         switch (args->madv) {
4108         case I915_MADV_DONTNEED:
4109         case I915_MADV_WILLNEED:
4110             break;
4111         default:
4112             return -EINVAL;
4113         }
4114
4115         ret = i915_mutex_lock_interruptible(dev);
4116         if (ret)
4117                 return ret;
4118
4119         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4120         if (&obj->base == NULL) {
4121                 ret = -ENOENT;
4122                 goto unlock;
4123         }
4124
4125         if (obj->pin_count) {
4126                 ret = -EINVAL;
4127                 goto out;
4128         }
4129
4130         if (obj->madv != __I915_MADV_PURGED)
4131                 obj->madv = args->madv;
4132
4133         /* if the object is no longer attached, discard its backing storage */
4134         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4135                 i915_gem_object_truncate(obj);
4136
4137         args->retained = obj->madv != __I915_MADV_PURGED;
4138
4139 out:
4140         drm_gem_object_unreference(&obj->base);
4141 unlock:
4142         mutex_unlock(&dev->struct_mutex);
4143         return ret;
4144 }
4145
4146 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4147                           const struct drm_i915_gem_object_ops *ops)
4148 {
4149         INIT_LIST_HEAD(&obj->global_list);
4150         INIT_LIST_HEAD(&obj->ring_list);
4151         INIT_LIST_HEAD(&obj->obj_exec_link);
4152         INIT_LIST_HEAD(&obj->vma_list);
4153
4154         obj->ops = ops;
4155
4156         obj->fence_reg = I915_FENCE_REG_NONE;
4157         obj->madv = I915_MADV_WILLNEED;
4158         /* Avoid an unnecessary call to unbind on the first bind. */
4159         obj->map_and_fenceable = true;
4160
4161         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4162 }
4163
4164 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4165         .get_pages = i915_gem_object_get_pages_gtt,
4166         .put_pages = i915_gem_object_put_pages_gtt,
4167 };
4168
4169 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4170                                                   size_t size)
4171 {
4172         struct drm_i915_gem_object *obj;
4173         struct address_space *mapping;
4174         gfp_t mask;
4175
4176         obj = i915_gem_object_alloc(dev);
4177         if (obj == NULL)
4178                 return NULL;
4179
4180         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4181                 i915_gem_object_free(obj);
4182                 return NULL;
4183         }
4184
4185         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4186         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4187                 /* 965gm cannot relocate objects above 4GiB. */
4188                 mask &= ~__GFP_HIGHMEM;
4189                 mask |= __GFP_DMA32;
4190         }
4191
4192         mapping = file_inode(obj->base.filp)->i_mapping;
4193         mapping_set_gfp_mask(mapping, mask);
4194
4195         i915_gem_object_init(obj, &i915_gem_object_ops);
4196
4197         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4198         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4199
4200         if (HAS_LLC(dev)) {
4201                 /* On some devices, we can have the GPU use the LLC (the CPU
4202                  * cache) for about a 10% performance improvement
4203                  * compared to uncached.  Graphics requests other than
4204                  * display scanout are coherent with the CPU in
4205                  * accessing this cache.  This means in this mode we
4206                  * don't need to clflush on the CPU side, and on the
4207                  * GPU side we only need to flush internal caches to
4208                  * get data visible to the CPU.
4209                  *
4210                  * However, we maintain the display planes as UC, and so
4211                  * need to rebind when first used as such.
4212                  */
4213                 obj->cache_level = I915_CACHE_LLC;
4214         } else
4215                 obj->cache_level = I915_CACHE_NONE;
4216
4217         trace_i915_gem_object_create(obj);
4218
4219         return obj;
4220 }
4221
4222 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4223 {
4224         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4225         struct drm_device *dev = obj->base.dev;
4226         drm_i915_private_t *dev_priv = dev->dev_private;
4227         struct i915_vma *vma, *next;
4228
4229         intel_runtime_pm_get(dev_priv);
4230
4231         trace_i915_gem_object_destroy(obj);
4232
4233         if (obj->phys_obj)
4234                 i915_gem_detach_phys_object(dev, obj);
4235
4236         obj->pin_count = 0;
4237         /* NB: 0 or 1 elements */
4238         WARN_ON(!list_empty(&obj->vma_list) &&
4239                 !list_is_singular(&obj->vma_list));
4240         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4241                 int ret = i915_vma_unbind(vma);
4242                 if (WARN_ON(ret == -ERESTARTSYS)) {
4243                         bool was_interruptible;
4244
4245                         was_interruptible = dev_priv->mm.interruptible;
4246                         dev_priv->mm.interruptible = false;
4247
4248                         WARN_ON(i915_vma_unbind(vma));
4249
4250                         dev_priv->mm.interruptible = was_interruptible;
4251                 }
4252         }
4253
4254         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4255          * before progressing. */
4256         if (obj->stolen)
4257                 i915_gem_object_unpin_pages(obj);
4258
4259         if (WARN_ON(obj->pages_pin_count))
4260                 obj->pages_pin_count = 0;
4261         i915_gem_object_put_pages(obj);
4262         i915_gem_object_free_mmap_offset(obj);
4263         i915_gem_object_release_stolen(obj);
4264
4265         BUG_ON(obj->pages);
4266
4267         if (obj->base.import_attach)
4268                 drm_prime_gem_destroy(&obj->base, NULL);
4269
4270         drm_gem_object_release(&obj->base);
4271         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4272
4273         kfree(obj->bit_17);
4274         i915_gem_object_free(obj);
4275
4276         intel_runtime_pm_put(dev_priv);
4277 }
4278
4279 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4280                                      struct i915_address_space *vm)
4281 {
4282         struct i915_vma *vma;
4283         list_for_each_entry(vma, &obj->vma_list, vma_link)
4284                 if (vma->vm == vm)
4285                         return vma;
4286
4287         return NULL;
4288 }
4289
4290 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4291                                               struct i915_address_space *vm)
4292 {
4293         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4294         if (vma == NULL)
4295                 return ERR_PTR(-ENOMEM);
4296
4297         INIT_LIST_HEAD(&vma->vma_link);
4298         INIT_LIST_HEAD(&vma->mm_list);
4299         INIT_LIST_HEAD(&vma->exec_list);
4300         vma->vm = vm;
4301         vma->obj = obj;
4302
4303         /* Keep GGTT vmas first to make debug easier */
4304         if (i915_is_ggtt(vm))
4305                 list_add(&vma->vma_link, &obj->vma_list);
4306         else
4307                 list_add_tail(&vma->vma_link, &obj->vma_list);
4308
4309         return vma;
4310 }
4311
4312 struct i915_vma *
4313 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4314                                   struct i915_address_space *vm)
4315 {
4316         struct i915_vma *vma;
4317
4318         vma = i915_gem_obj_to_vma(obj, vm);
4319         if (!vma)
4320                 vma = __i915_gem_vma_create(obj, vm);
4321
4322         return vma;
4323 }
4324
4325 void i915_gem_vma_destroy(struct i915_vma *vma)
4326 {
4327         WARN_ON(vma->node.allocated);
4328
4329         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4330         if (!list_empty(&vma->exec_list))
4331                 return;
4332
4333         list_del(&vma->vma_link);
4334
4335         kfree(vma);
4336 }
4337
4338 int
4339 i915_gem_suspend(struct drm_device *dev)
4340 {
4341         drm_i915_private_t *dev_priv = dev->dev_private;
4342         int ret = 0;
4343
4344         mutex_lock(&dev->struct_mutex);
4345         if (dev_priv->ums.mm_suspended)
4346                 goto err;
4347
4348         ret = i915_gpu_idle(dev);
4349         if (ret)
4350                 goto err;
4351
4352         i915_gem_retire_requests(dev);
4353
4354         /* Under UMS, be paranoid and evict. */
4355         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4356                 i915_gem_evict_everything(dev);
4357
4358         i915_kernel_lost_context(dev);
4359         i915_gem_cleanup_ringbuffer(dev);
4360
4361         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4362          * We need to replace this with a semaphore, or something.
4363          * And not confound ums.mm_suspended!
4364          */
4365         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4366                                                              DRIVER_MODESET);
4367         mutex_unlock(&dev->struct_mutex);
4368
4369         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4370         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4371         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4372
4373         return 0;
4374
4375 err:
4376         mutex_unlock(&dev->struct_mutex);
4377         return ret;
4378 }
4379
4380 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4381 {
4382         struct drm_device *dev = ring->dev;
4383         drm_i915_private_t *dev_priv = dev->dev_private;
4384         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4385         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4386         int i, ret;
4387
4388         if (!HAS_L3_DPF(dev) || !remap_info)
4389                 return 0;
4390
4391         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4392         if (ret)
4393                 return ret;
4394
4395         /*
4396          * Note: We do not worry about the concurrent register cacheline hang
4397          * here because no other code should access these registers other than
4398          * at initialization time.
4399          */
4400         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4401                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4402                 intel_ring_emit(ring, reg_base + i);
4403                 intel_ring_emit(ring, remap_info[i/4]);
4404         }
4405
4406         intel_ring_advance(ring);
4407
4408         return ret;
4409 }
4410
4411 void i915_gem_init_swizzling(struct drm_device *dev)
4412 {
4413         drm_i915_private_t *dev_priv = dev->dev_private;
4414
4415         if (INTEL_INFO(dev)->gen < 5 ||
4416             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4417                 return;
4418
4419         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4420                                  DISP_TILE_SURFACE_SWIZZLING);
4421
4422         if (IS_GEN5(dev))
4423                 return;
4424
4425         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4426         if (IS_GEN6(dev))
4427                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4428         else if (IS_GEN7(dev))
4429                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4430         else if (IS_GEN8(dev))
4431                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4432         else
4433                 BUG();
4434 }
4435
4436 static bool
4437 intel_enable_blt(struct drm_device *dev)
4438 {
4439         if (!HAS_BLT(dev))
4440                 return false;
4441
4442         /* The blitter was dysfunctional on early prototypes */
4443         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4444                 DRM_INFO("BLT not supported on this pre-production hardware;"
4445                          " graphics performance will be degraded.\n");
4446                 return false;
4447         }
4448
4449         return true;
4450 }
4451
4452 static int i915_gem_init_rings(struct drm_device *dev)
4453 {
4454         struct drm_i915_private *dev_priv = dev->dev_private;
4455         int ret;
4456
4457         ret = intel_init_render_ring_buffer(dev);
4458         if (ret)
4459                 return ret;
4460
4461         if (HAS_BSD(dev)) {
4462                 ret = intel_init_bsd_ring_buffer(dev);
4463                 if (ret)
4464                         goto cleanup_render_ring;
4465         }
4466
4467         if (intel_enable_blt(dev)) {
4468                 ret = intel_init_blt_ring_buffer(dev);
4469                 if (ret)
4470                         goto cleanup_bsd_ring;
4471         }
4472
4473         if (HAS_VEBOX(dev)) {
4474                 ret = intel_init_vebox_ring_buffer(dev);
4475                 if (ret)
4476                         goto cleanup_blt_ring;
4477         }
4478
4479
4480         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4481         if (ret)
4482                 goto cleanup_vebox_ring;
4483
4484         return 0;
4485
4486 cleanup_vebox_ring:
4487         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4488 cleanup_blt_ring:
4489         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4490 cleanup_bsd_ring:
4491         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4492 cleanup_render_ring:
4493         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4494
4495         return ret;
4496 }
4497
4498 int
4499 i915_gem_init_hw(struct drm_device *dev)
4500 {
4501         drm_i915_private_t *dev_priv = dev->dev_private;
4502         int ret, i;
4503
4504         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4505                 return -EIO;
4506
4507         if (dev_priv->ellc_size)
4508                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4509
4510         if (IS_HASWELL(dev))
4511                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4512                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4513
4514         if (HAS_PCH_NOP(dev)) {
4515                 u32 temp = I915_READ(GEN7_MSG_CTL);
4516                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4517                 I915_WRITE(GEN7_MSG_CTL, temp);
4518         }
4519
4520         i915_gem_init_swizzling(dev);
4521
4522         ret = i915_gem_init_rings(dev);
4523         if (ret)
4524                 return ret;
4525
4526         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4527                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4528
4529         /*
4530          * XXX: There was some w/a described somewhere suggesting loading
4531          * contexts before PPGTT.
4532          */
4533         ret = i915_gem_context_init(dev);
4534         if (ret) {
4535                 i915_gem_cleanup_ringbuffer(dev);
4536                 DRM_ERROR("Context initialization failed %d\n", ret);
4537                 return ret;
4538         }
4539
4540         if (dev_priv->mm.aliasing_ppgtt) {
4541                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4542                 if (ret) {
4543                         i915_gem_cleanup_aliasing_ppgtt(dev);
4544                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4545                 }
4546         }
4547
4548         return 0;
4549 }
4550
4551 int i915_gem_init(struct drm_device *dev)
4552 {
4553         struct drm_i915_private *dev_priv = dev->dev_private;
4554         int ret;
4555
4556         mutex_lock(&dev->struct_mutex);
4557
4558         if (IS_VALLEYVIEW(dev)) {
4559                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4560                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4561                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4562                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4563         }
4564
4565         i915_gem_init_global_gtt(dev);
4566
4567         ret = i915_gem_init_hw(dev);
4568         mutex_unlock(&dev->struct_mutex);
4569         if (ret) {
4570                 i915_gem_cleanup_aliasing_ppgtt(dev);
4571                 return ret;
4572         }
4573
4574         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4575         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4576                 dev_priv->dri1.allow_batchbuffer = 1;
4577         return 0;
4578 }
4579
4580 void
4581 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4582 {
4583         drm_i915_private_t *dev_priv = dev->dev_private;
4584         struct intel_ring_buffer *ring;
4585         int i;
4586
4587         for_each_ring(ring, dev_priv, i)
4588                 intel_cleanup_ring_buffer(ring);
4589 }
4590
4591 int
4592 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4593                        struct drm_file *file_priv)
4594 {
4595         struct drm_i915_private *dev_priv = dev->dev_private;
4596         int ret;
4597
4598         if (drm_core_check_feature(dev, DRIVER_MODESET))
4599                 return 0;
4600
4601         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4602                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4603                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4604         }
4605
4606         mutex_lock(&dev->struct_mutex);
4607         dev_priv->ums.mm_suspended = 0;
4608
4609         ret = i915_gem_init_hw(dev);
4610         if (ret != 0) {
4611                 mutex_unlock(&dev->struct_mutex);
4612                 return ret;
4613         }
4614
4615         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4616         mutex_unlock(&dev->struct_mutex);
4617
4618         ret = drm_irq_install(dev);
4619         if (ret)
4620                 goto cleanup_ringbuffer;
4621
4622         return 0;
4623
4624 cleanup_ringbuffer:
4625         mutex_lock(&dev->struct_mutex);
4626         i915_gem_cleanup_ringbuffer(dev);
4627         dev_priv->ums.mm_suspended = 1;
4628         mutex_unlock(&dev->struct_mutex);
4629
4630         return ret;
4631 }
4632
4633 int
4634 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4635                        struct drm_file *file_priv)
4636 {
4637         if (drm_core_check_feature(dev, DRIVER_MODESET))
4638                 return 0;
4639
4640         drm_irq_uninstall(dev);
4641
4642         return i915_gem_suspend(dev);
4643 }
4644
4645 void
4646 i915_gem_lastclose(struct drm_device *dev)
4647 {
4648         int ret;
4649
4650         if (drm_core_check_feature(dev, DRIVER_MODESET))
4651                 return;
4652
4653         ret = i915_gem_suspend(dev);
4654         if (ret)
4655                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4656 }
4657
4658 static void
4659 init_ring_lists(struct intel_ring_buffer *ring)
4660 {
4661         INIT_LIST_HEAD(&ring->active_list);
4662         INIT_LIST_HEAD(&ring->request_list);
4663 }
4664
4665 static void i915_init_vm(struct drm_i915_private *dev_priv,
4666                          struct i915_address_space *vm)
4667 {
4668         vm->dev = dev_priv->dev;
4669         INIT_LIST_HEAD(&vm->active_list);
4670         INIT_LIST_HEAD(&vm->inactive_list);
4671         INIT_LIST_HEAD(&vm->global_link);
4672         list_add(&vm->global_link, &dev_priv->vm_list);
4673 }
4674
4675 void
4676 i915_gem_load(struct drm_device *dev)
4677 {
4678         drm_i915_private_t *dev_priv = dev->dev_private;
4679         int i;
4680
4681         dev_priv->slab =
4682                 kmem_cache_create("i915_gem_object",
4683                                   sizeof(struct drm_i915_gem_object), 0,
4684                                   SLAB_HWCACHE_ALIGN,
4685                                   NULL);
4686
4687         INIT_LIST_HEAD(&dev_priv->vm_list);
4688         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4689
4690         INIT_LIST_HEAD(&dev_priv->context_list);
4691         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4692         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4693         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4694         for (i = 0; i < I915_NUM_RINGS; i++)
4695                 init_ring_lists(&dev_priv->ring[i]);
4696         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4697                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4698         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4699                           i915_gem_retire_work_handler);
4700         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4701                           i915_gem_idle_work_handler);
4702         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4703
4704         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4705         if (IS_GEN3(dev)) {
4706                 I915_WRITE(MI_ARB_STATE,
4707                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4708         }
4709
4710         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4711
4712         /* Old X drivers will take 0-2 for front, back, depth buffers */
4713         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4714                 dev_priv->fence_reg_start = 3;
4715
4716         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4717                 dev_priv->num_fence_regs = 32;
4718         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4719                 dev_priv->num_fence_regs = 16;
4720         else
4721                 dev_priv->num_fence_regs = 8;
4722
4723         /* Initialize fence registers to zero */
4724         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4725         i915_gem_restore_fences(dev);
4726
4727         i915_gem_detect_bit_6_swizzle(dev);
4728         init_waitqueue_head(&dev_priv->pending_flip_queue);
4729
4730         dev_priv->mm.interruptible = true;
4731
4732         dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4733         dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4734         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4735         register_shrinker(&dev_priv->mm.inactive_shrinker);
4736 }
4737
4738 /*
4739  * Create a physically contiguous memory object for this object
4740  * e.g. for cursor + overlay regs
4741  */
4742 static int i915_gem_init_phys_object(struct drm_device *dev,
4743                                      int id, int size, int align)
4744 {
4745         drm_i915_private_t *dev_priv = dev->dev_private;
4746         struct drm_i915_gem_phys_object *phys_obj;
4747         int ret;
4748
4749         if (dev_priv->mm.phys_objs[id - 1] || !size)
4750                 return 0;
4751
4752         phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4753         if (!phys_obj)
4754                 return -ENOMEM;
4755
4756         phys_obj->id = id;
4757
4758         phys_obj->handle = drm_pci_alloc(dev, size, align);
4759         if (!phys_obj->handle) {
4760                 ret = -ENOMEM;
4761                 goto kfree_obj;
4762         }
4763 #ifdef CONFIG_X86
4764         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4765 #endif
4766
4767         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4768
4769         return 0;
4770 kfree_obj:
4771         kfree(phys_obj);
4772         return ret;
4773 }
4774
4775 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4776 {
4777         drm_i915_private_t *dev_priv = dev->dev_private;
4778         struct drm_i915_gem_phys_object *phys_obj;
4779
4780         if (!dev_priv->mm.phys_objs[id - 1])
4781                 return;
4782
4783         phys_obj = dev_priv->mm.phys_objs[id - 1];
4784         if (phys_obj->cur_obj) {
4785                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4786         }
4787
4788 #ifdef CONFIG_X86
4789         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4790 #endif
4791         drm_pci_free(dev, phys_obj->handle);
4792         kfree(phys_obj);
4793         dev_priv->mm.phys_objs[id - 1] = NULL;
4794 }
4795
4796 void i915_gem_free_all_phys_object(struct drm_device *dev)
4797 {
4798         int i;
4799
4800         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4801                 i915_gem_free_phys_object(dev, i);
4802 }
4803
4804 void i915_gem_detach_phys_object(struct drm_device *dev,
4805                                  struct drm_i915_gem_object *obj)
4806 {
4807         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4808         char *vaddr;
4809         int i;
4810         int page_count;
4811
4812         if (!obj->phys_obj)
4813                 return;
4814         vaddr = obj->phys_obj->handle->vaddr;
4815
4816         page_count = obj->base.size / PAGE_SIZE;
4817         for (i = 0; i < page_count; i++) {
4818                 struct page *page = shmem_read_mapping_page(mapping, i);
4819                 if (!IS_ERR(page)) {
4820                         char *dst = kmap_atomic(page);
4821                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4822                         kunmap_atomic(dst);
4823
4824                         drm_clflush_pages(&page, 1);
4825
4826                         set_page_dirty(page);
4827                         mark_page_accessed(page);
4828                         page_cache_release(page);
4829                 }
4830         }
4831         i915_gem_chipset_flush(dev);
4832
4833         obj->phys_obj->cur_obj = NULL;
4834         obj->phys_obj = NULL;
4835 }
4836
4837 int
4838 i915_gem_attach_phys_object(struct drm_device *dev,
4839                             struct drm_i915_gem_object *obj,
4840                             int id,
4841                             int align)
4842 {
4843         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4844         drm_i915_private_t *dev_priv = dev->dev_private;
4845         int ret = 0;
4846         int page_count;
4847         int i;
4848
4849         if (id > I915_MAX_PHYS_OBJECT)
4850                 return -EINVAL;
4851
4852         if (obj->phys_obj) {
4853                 if (obj->phys_obj->id == id)
4854                         return 0;
4855                 i915_gem_detach_phys_object(dev, obj);
4856         }
4857
4858         /* create a new object */
4859         if (!dev_priv->mm.phys_objs[id - 1]) {
4860                 ret = i915_gem_init_phys_object(dev, id,
4861                                                 obj->base.size, align);
4862                 if (ret) {
4863                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4864                                   id, obj->base.size);
4865                         return ret;
4866                 }
4867         }
4868
4869         /* bind to the object */
4870         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4871         obj->phys_obj->cur_obj = obj;
4872
4873         page_count = obj->base.size / PAGE_SIZE;
4874
4875         for (i = 0; i < page_count; i++) {
4876                 struct page *page;
4877                 char *dst, *src;
4878
4879                 page = shmem_read_mapping_page(mapping, i);
4880                 if (IS_ERR(page))
4881                         return PTR_ERR(page);
4882
4883                 src = kmap_atomic(page);
4884                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4885                 memcpy(dst, src, PAGE_SIZE);
4886                 kunmap_atomic(src);
4887
4888                 mark_page_accessed(page);
4889                 page_cache_release(page);
4890         }
4891
4892         return 0;
4893 }
4894
4895 static int
4896 i915_gem_phys_pwrite(struct drm_device *dev,
4897                      struct drm_i915_gem_object *obj,
4898                      struct drm_i915_gem_pwrite *args,
4899                      struct drm_file *file_priv)
4900 {
4901         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4902         char __user *user_data = to_user_ptr(args->data_ptr);
4903
4904         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4905                 unsigned long unwritten;
4906
4907                 /* The physical object once assigned is fixed for the lifetime
4908                  * of the obj, so we can safely drop the lock and continue
4909                  * to access vaddr.
4910                  */
4911                 mutex_unlock(&dev->struct_mutex);
4912                 unwritten = copy_from_user(vaddr, user_data, args->size);
4913                 mutex_lock(&dev->struct_mutex);
4914                 if (unwritten)
4915                         return -EFAULT;
4916         }
4917
4918         i915_gem_chipset_flush(dev);
4919         return 0;
4920 }
4921
4922 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4923 {
4924         struct drm_i915_file_private *file_priv = file->driver_priv;
4925
4926         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4927
4928         /* Clean up our request list when the client is going away, so that
4929          * later retire_requests won't dereference our soon-to-be-gone
4930          * file_priv.
4931          */
4932         spin_lock(&file_priv->mm.lock);
4933         while (!list_empty(&file_priv->mm.request_list)) {
4934                 struct drm_i915_gem_request *request;
4935
4936                 request = list_first_entry(&file_priv->mm.request_list,
4937                                            struct drm_i915_gem_request,
4938                                            client_list);
4939                 list_del(&request->client_list);
4940                 request->file_priv = NULL;
4941         }
4942         spin_unlock(&file_priv->mm.lock);
4943 }
4944
4945 static void
4946 i915_gem_file_idle_work_handler(struct work_struct *work)
4947 {
4948         struct drm_i915_file_private *file_priv =
4949                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4950
4951         atomic_set(&file_priv->rps_wait_boost, false);
4952 }
4953
4954 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4955 {
4956         struct drm_i915_file_private *file_priv;
4957
4958         DRM_DEBUG_DRIVER("\n");
4959
4960         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4961         if (!file_priv)
4962                 return -ENOMEM;
4963
4964         file->driver_priv = file_priv;
4965         file_priv->dev_priv = dev->dev_private;
4966
4967         spin_lock_init(&file_priv->mm.lock);
4968         INIT_LIST_HEAD(&file_priv->mm.request_list);
4969         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4970                           i915_gem_file_idle_work_handler);
4971
4972         idr_init(&file_priv->context_idr);
4973
4974         return 0;
4975 }
4976
4977 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4978 {
4979         if (!mutex_is_locked(mutex))
4980                 return false;
4981
4982 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4983         return mutex->owner == task;
4984 #else
4985         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4986         return false;
4987 #endif
4988 }
4989
4990 static unsigned long
4991 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4992 {
4993         struct drm_i915_private *dev_priv =
4994                 container_of(shrinker,
4995                              struct drm_i915_private,
4996                              mm.inactive_shrinker);
4997         struct drm_device *dev = dev_priv->dev;
4998         struct drm_i915_gem_object *obj;
4999         bool unlock = true;
5000         unsigned long count;
5001
5002         if (!mutex_trylock(&dev->struct_mutex)) {
5003                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5004                         return 0;
5005
5006                 if (dev_priv->mm.shrinker_no_lock_stealing)
5007                         return 0;
5008
5009                 unlock = false;
5010         }
5011
5012         count = 0;
5013         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5014                 if (obj->pages_pin_count == 0)
5015                         count += obj->base.size >> PAGE_SHIFT;
5016
5017         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5018                 if (obj->active)
5019                         continue;
5020
5021                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
5022                         count += obj->base.size >> PAGE_SHIFT;
5023         }
5024
5025         if (unlock)
5026                 mutex_unlock(&dev->struct_mutex);
5027
5028         return count;
5029 }
5030
5031 /* All the new VM stuff */
5032 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5033                                   struct i915_address_space *vm)
5034 {
5035         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5036         struct i915_vma *vma;
5037
5038         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5039                 vm = &dev_priv->gtt.base;
5040
5041         BUG_ON(list_empty(&o->vma_list));
5042         list_for_each_entry(vma, &o->vma_list, vma_link) {
5043                 if (vma->vm == vm)
5044                         return vma->node.start;
5045
5046         }
5047         return -1;
5048 }
5049
5050 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5051                         struct i915_address_space *vm)
5052 {
5053         struct i915_vma *vma;
5054
5055         list_for_each_entry(vma, &o->vma_list, vma_link)
5056                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5057                         return true;
5058
5059         return false;
5060 }
5061
5062 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5063 {
5064         struct i915_vma *vma;
5065
5066         list_for_each_entry(vma, &o->vma_list, vma_link)
5067                 if (drm_mm_node_allocated(&vma->node))
5068                         return true;
5069
5070         return false;
5071 }
5072
5073 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5074                                 struct i915_address_space *vm)
5075 {
5076         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5077         struct i915_vma *vma;
5078
5079         if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5080                 vm = &dev_priv->gtt.base;
5081
5082         BUG_ON(list_empty(&o->vma_list));
5083
5084         list_for_each_entry(vma, &o->vma_list, vma_link)
5085                 if (vma->vm == vm)
5086                         return vma->node.size;
5087
5088         return 0;
5089 }
5090
5091 static unsigned long
5092 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5093 {
5094         struct drm_i915_private *dev_priv =
5095                 container_of(shrinker,
5096                              struct drm_i915_private,
5097                              mm.inactive_shrinker);
5098         struct drm_device *dev = dev_priv->dev;
5099         unsigned long freed;
5100         bool unlock = true;
5101
5102         if (!mutex_trylock(&dev->struct_mutex)) {
5103                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5104                         return SHRINK_STOP;
5105
5106                 if (dev_priv->mm.shrinker_no_lock_stealing)
5107                         return SHRINK_STOP;
5108
5109                 unlock = false;
5110         }
5111
5112         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5113         if (freed < sc->nr_to_scan)
5114                 freed += __i915_gem_shrink(dev_priv,
5115                                            sc->nr_to_scan - freed,
5116                                            false);
5117         if (freed < sc->nr_to_scan)
5118                 freed += i915_gem_shrink_all(dev_priv);
5119
5120         if (unlock)
5121                 mutex_unlock(&dev->struct_mutex);
5122
5123         return freed;
5124 }
5125
5126 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5127 {
5128         struct i915_vma *vma;
5129
5130         if (WARN_ON(list_empty(&obj->vma_list)))
5131                 return NULL;
5132
5133         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5134         if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5135                 return NULL;
5136
5137         return vma;
5138 }