190c655d8352456389b0f12a67f625d8707812b0
[platform/adaptation/renesas_rcar/renesas_kernel.git] / drivers / clocksource / sh_cmt.c
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33
34 struct sh_cmt_device;
35
36 /*
37  * The CMT comes in 5 different identified flavours, depending not only on the
38  * SoC but also on the particular instance. The following table lists the main
39  * characteristics of those flavours.
40  *
41  *                      16B     32B     32B-F   48B     48B-2
42  * -----------------------------------------------------------------------------
43  * Channels             2       1/4     1       6       2/8
44  * Control Width        16      16      16      16      32
45  * Counter Width        16      32      32      32/48   32/48
46  * Shared Start/Stop    Y       Y       Y       Y       N
47  *
48  * The 48-bit gen2 version has a per-channel start/stop register located in the
49  * channel registers block. All other versions have a shared start/stop register
50  * located in the global space.
51  *
52  * Channels are indexed from 0 to N-1 in the documentation. The channel index
53  * infers the start/stop bit position in the control register and the channel
54  * registers block address. Some CMT instances have a subset of channels
55  * available, in which case the index in the documentation doesn't match the
56  * "real" index as implemented in hardware. This is for instance the case with
57  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58  * in the documentation but using start/stop bit 5 and having its registers
59  * block at 0x60.
60  *
61  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
62  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63  */
64
65 enum sh_cmt_model {
66         SH_CMT_16BIT,
67         SH_CMT_32BIT,
68         SH_CMT_32BIT_FAST,
69         SH_CMT_48BIT,
70         SH_CMT_48BIT_GEN2,
71 };
72
73 struct sh_cmt_info {
74         enum sh_cmt_model model;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         unsigned long overflow_bit;
78         unsigned long clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         unsigned long (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               unsigned long value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         unsigned long (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs,
88                             unsigned long value);
89 };
90
91 struct sh_cmt_channel {
92         struct sh_cmt_device *cmt;
93
94         unsigned int index;     /* Index in the documentation */
95         unsigned int hwidx;     /* Real hardware index */
96
97         void __iomem *iostart;
98         void __iomem *ioctrl;
99
100         unsigned int timer_bit;
101         unsigned long flags;
102         unsigned long match_value;
103         unsigned long next_match_value;
104         unsigned long max_match_value;
105         unsigned long rate;
106         raw_spinlock_t lock;
107         struct clock_event_device ced;
108         struct clocksource cs;
109         unsigned long total_cycles;
110         bool cs_enabled;
111 };
112
113 struct sh_cmt_device {
114         struct platform_device *pdev;
115
116         const struct sh_cmt_info *info;
117
118         void __iomem *mapbase;
119         struct clk *clk;
120
121         raw_spinlock_t lock; /* Protect the shared start/stop register */
122
123         struct sh_cmt_channel *channels;
124         unsigned int num_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
169                            unsigned long value)
170 {
171         iowrite16(value, base + (offs << 1));
172 }
173
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
175                            unsigned long value)
176 {
177         iowrite32(value, base + (offs << 2));
178 }
179
180 static const struct sh_cmt_info sh_cmt_info[] = {
181         [SH_CMT_16BIT] = {
182                 .model = SH_CMT_16BIT,
183                 .width = 16,
184                 .overflow_bit = SH_CMT16_CMCSR_CMF,
185                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186                 .read_control = sh_cmt_read16,
187                 .write_control = sh_cmt_write16,
188                 .read_count = sh_cmt_read16,
189                 .write_count = sh_cmt_write16,
190         },
191         [SH_CMT_32BIT] = {
192                 .model = SH_CMT_32BIT,
193                 .width = 32,
194                 .overflow_bit = SH_CMT32_CMCSR_CMF,
195                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196                 .read_control = sh_cmt_read16,
197                 .write_control = sh_cmt_write16,
198                 .read_count = sh_cmt_read32,
199                 .write_count = sh_cmt_write32,
200         },
201         [SH_CMT_32BIT_FAST] = {
202                 .model = SH_CMT_32BIT_FAST,
203                 .width = 32,
204                 .overflow_bit = SH_CMT32_CMCSR_CMF,
205                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206                 .read_control = sh_cmt_read16,
207                 .write_control = sh_cmt_write16,
208                 .read_count = sh_cmt_read32,
209                 .write_count = sh_cmt_write32,
210         },
211         [SH_CMT_48BIT] = {
212                 .model = SH_CMT_48BIT,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT_48BIT_GEN2] = {
222                 .model = SH_CMT_48BIT_GEN2,
223                 .width = 32,
224                 .overflow_bit = SH_CMT32_CMCSR_CMF,
225                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
226                 .read_control = sh_cmt_read32,
227                 .write_control = sh_cmt_write32,
228                 .read_count = sh_cmt_read32,
229                 .write_count = sh_cmt_write32,
230         },
231 };
232
233 #define CMCSR 0 /* channel register */
234 #define CMCNT 1 /* channel register */
235 #define CMCOR 2 /* channel register */
236
237 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
238 {
239         if (ch->iostart)
240                 return ch->cmt->info->read_control(ch->iostart, 0);
241         else
242                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
243 }
244
245 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
246                                       unsigned long value)
247 {
248         if (ch->iostart)
249                 ch->cmt->info->write_control(ch->iostart, 0, value);
250         else
251                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252 }
253
254 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255 {
256         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257 }
258
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
260                                       unsigned long value)
261 {
262         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
263 }
264
265 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
266 {
267         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
268 }
269
270 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
271                                       unsigned long value)
272 {
273         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
277                                       unsigned long value)
278 {
279         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
280 }
281
282 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
283                                         int *has_wrapped)
284 {
285         unsigned long v1, v2, v3;
286         int o1, o2;
287
288         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289
290         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
291         do {
292                 o2 = o1;
293                 v1 = sh_cmt_read_cmcnt(ch);
294                 v2 = sh_cmt_read_cmcnt(ch);
295                 v3 = sh_cmt_read_cmcnt(ch);
296                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
299
300         *has_wrapped = o1;
301         return v2;
302 }
303
304 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
305 {
306         unsigned long flags, value;
307
308         /* start stop register shared by multiple timer channels */
309         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
310         value = sh_cmt_read_cmstr(ch);
311
312         if (start)
313                 value |= 1 << ch->timer_bit;
314         else
315                 value &= ~(1 << ch->timer_bit);
316
317         sh_cmt_write_cmstr(ch, value);
318         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
319 }
320
321 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
322 {
323         int k, ret;
324
325         pm_runtime_get_sync(&ch->cmt->pdev->dev);
326         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
327
328         /* enable clock */
329         ret = clk_enable(ch->cmt->clk);
330         if (ret) {
331                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
332                         ch->index);
333                 goto err0;
334         }
335
336         /* make sure channel is disabled */
337         sh_cmt_start_stop_ch(ch, 0);
338
339         /* configure channel, periodic mode and maximum timeout */
340         if (ch->cmt->info->width == 16) {
341                 *rate = clk_get_rate(ch->cmt->clk) / 512;
342                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
343                                    SH_CMT16_CMCSR_CKS512);
344         } else {
345                 *rate = clk_get_rate(ch->cmt->clk) / 8;
346                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347                                    SH_CMT32_CMCSR_CMTOUT_IE |
348                                    SH_CMT32_CMCSR_CMR_IRQ |
349                                    SH_CMT32_CMCSR_CKS_RCLK8);
350         }
351
352         sh_cmt_write_cmcor(ch, 0xffffffff);
353         sh_cmt_write_cmcnt(ch, 0);
354
355         /*
356          * According to the sh73a0 user's manual, as CMCNT can be operated
357          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358          * modifying CMCNT register; two RCLK cycles are necessary before
359          * this register is either read or any modification of the value
360          * it holds is reflected in the LSI's actual operation.
361          *
362          * While at it, we're supposed to clear out the CMCNT as of this
363          * moment, so make sure it's processed properly here.  This will
364          * take RCLKx2 at maximum.
365          */
366         for (k = 0; k < 100; k++) {
367                 if (!sh_cmt_read_cmcnt(ch))
368                         break;
369                 udelay(1);
370         }
371
372         if (sh_cmt_read_cmcnt(ch)) {
373                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374                         ch->index);
375                 ret = -ETIMEDOUT;
376                 goto err1;
377         }
378
379         /* enable channel */
380         sh_cmt_start_stop_ch(ch, 1);
381         return 0;
382  err1:
383         /* stop clock */
384         clk_disable(ch->cmt->clk);
385
386  err0:
387         return ret;
388 }
389
390 static void sh_cmt_disable(struct sh_cmt_channel *ch)
391 {
392         /* disable channel */
393         sh_cmt_start_stop_ch(ch, 0);
394
395         /* disable interrupts in CMT block */
396         sh_cmt_write_cmcsr(ch, 0);
397
398         /* stop clock */
399         clk_disable(ch->cmt->clk);
400
401         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402         pm_runtime_put(&ch->cmt->pdev->dev);
403 }
404
405 /* private flags */
406 #define FLAG_CLOCKEVENT (1 << 0)
407 #define FLAG_CLOCKSOURCE (1 << 1)
408 #define FLAG_REPROGRAM (1 << 2)
409 #define FLAG_SKIPEVENT (1 << 3)
410 #define FLAG_IRQCONTEXT (1 << 4)
411
412 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
413                                               int absolute)
414 {
415         unsigned long new_match;
416         unsigned long value = ch->next_match_value;
417         unsigned long delay = 0;
418         unsigned long now = 0;
419         int has_wrapped;
420
421         now = sh_cmt_get_counter(ch, &has_wrapped);
422         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
423
424         if (has_wrapped) {
425                 /* we're competing with the interrupt handler.
426                  *  -> let the interrupt handler reprogram the timer.
427                  *  -> interrupt number two handles the event.
428                  */
429                 ch->flags |= FLAG_SKIPEVENT;
430                 return;
431         }
432
433         if (absolute)
434                 now = 0;
435
436         do {
437                 /* reprogram the timer hardware,
438                  * but don't save the new match value yet.
439                  */
440                 new_match = now + value + delay;
441                 if (new_match > ch->max_match_value)
442                         new_match = ch->max_match_value;
443
444                 sh_cmt_write_cmcor(ch, new_match);
445
446                 now = sh_cmt_get_counter(ch, &has_wrapped);
447                 if (has_wrapped && (new_match > ch->match_value)) {
448                         /* we are changing to a greater match value,
449                          * so this wrap must be caused by the counter
450                          * matching the old value.
451                          * -> first interrupt reprograms the timer.
452                          * -> interrupt number two handles the event.
453                          */
454                         ch->flags |= FLAG_SKIPEVENT;
455                         break;
456                 }
457
458                 if (has_wrapped) {
459                         /* we are changing to a smaller match value,
460                          * so the wrap must be caused by the counter
461                          * matching the new value.
462                          * -> save programmed match value.
463                          * -> let isr handle the event.
464                          */
465                         ch->match_value = new_match;
466                         break;
467                 }
468
469                 /* be safe: verify hardware settings */
470                 if (now < new_match) {
471                         /* timer value is below match value, all good.
472                          * this makes sure we won't miss any match events.
473                          * -> save programmed match value.
474                          * -> let isr handle the event.
475                          */
476                         ch->match_value = new_match;
477                         break;
478                 }
479
480                 /* the counter has reached a value greater
481                  * than our new match value. and since the
482                  * has_wrapped flag isn't set we must have
483                  * programmed a too close event.
484                  * -> increase delay and retry.
485                  */
486                 if (delay)
487                         delay <<= 1;
488                 else
489                         delay = 1;
490
491                 if (!delay)
492                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493                                  ch->index);
494
495         } while (delay);
496 }
497
498 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
499 {
500         if (delta > ch->max_match_value)
501                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502                          ch->index);
503
504         ch->next_match_value = delta;
505         sh_cmt_clock_event_program_verify(ch, 0);
506 }
507
508 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
509 {
510         unsigned long flags;
511
512         raw_spin_lock_irqsave(&ch->lock, flags);
513         __sh_cmt_set_next(ch, delta);
514         raw_spin_unlock_irqrestore(&ch->lock, flags);
515 }
516
517 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518 {
519         struct sh_cmt_channel *ch = dev_id;
520
521         /* clear flags */
522         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523                            ch->cmt->info->clear_bits);
524
525         /* update clock source counter to begin with if enabled
526          * the wrap flag should be cleared by the timer specific
527          * isr before we end up here.
528          */
529         if (ch->flags & FLAG_CLOCKSOURCE)
530                 ch->total_cycles += ch->match_value + 1;
531
532         if (!(ch->flags & FLAG_REPROGRAM))
533                 ch->next_match_value = ch->max_match_value;
534
535         ch->flags |= FLAG_IRQCONTEXT;
536
537         if (ch->flags & FLAG_CLOCKEVENT) {
538                 if (!(ch->flags & FLAG_SKIPEVENT)) {
539                         if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
540                                 ch->next_match_value = ch->max_match_value;
541                                 ch->flags |= FLAG_REPROGRAM;
542                         }
543
544                         ch->ced.event_handler(&ch->ced);
545                 }
546         }
547
548         ch->flags &= ~FLAG_SKIPEVENT;
549
550         if (ch->flags & FLAG_REPROGRAM) {
551                 ch->flags &= ~FLAG_REPROGRAM;
552                 sh_cmt_clock_event_program_verify(ch, 1);
553
554                 if (ch->flags & FLAG_CLOCKEVENT)
555                         if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
556                             || (ch->match_value == ch->next_match_value))
557                                 ch->flags &= ~FLAG_REPROGRAM;
558         }
559
560         ch->flags &= ~FLAG_IRQCONTEXT;
561
562         return IRQ_HANDLED;
563 }
564
565 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
566 {
567         int ret = 0;
568         unsigned long flags;
569
570         raw_spin_lock_irqsave(&ch->lock, flags);
571
572         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
573                 ret = sh_cmt_enable(ch, &ch->rate);
574
575         if (ret)
576                 goto out;
577         ch->flags |= flag;
578
579         /* setup timeout if no clockevent */
580         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581                 __sh_cmt_set_next(ch, ch->max_match_value);
582  out:
583         raw_spin_unlock_irqrestore(&ch->lock, flags);
584
585         return ret;
586 }
587
588 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
589 {
590         unsigned long flags;
591         unsigned long f;
592
593         raw_spin_lock_irqsave(&ch->lock, flags);
594
595         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596         ch->flags &= ~flag;
597
598         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599                 sh_cmt_disable(ch);
600
601         /* adjust the timeout to maximum if only clocksource left */
602         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603                 __sh_cmt_set_next(ch, ch->max_match_value);
604
605         raw_spin_unlock_irqrestore(&ch->lock, flags);
606 }
607
608 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
609 {
610         return container_of(cs, struct sh_cmt_channel, cs);
611 }
612
613 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
614 {
615         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
616         unsigned long flags, raw;
617         unsigned long value;
618         int has_wrapped;
619
620         raw_spin_lock_irqsave(&ch->lock, flags);
621         value = ch->total_cycles;
622         raw = sh_cmt_get_counter(ch, &has_wrapped);
623
624         if (unlikely(has_wrapped))
625                 raw += ch->match_value + 1;
626         raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628         return value + raw;
629 }
630
631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633         int ret;
634         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635
636         WARN_ON(ch->cs_enabled);
637
638         ch->total_cycles = 0;
639
640         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641         if (!ret) {
642                 __clocksource_updatefreq_hz(cs, ch->rate);
643                 ch->cs_enabled = true;
644         }
645         return ret;
646 }
647
648 static void sh_cmt_clocksource_disable(struct clocksource *cs)
649 {
650         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
651
652         WARN_ON(!ch->cs_enabled);
653
654         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
655         ch->cs_enabled = false;
656 }
657
658 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
659 {
660         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
661
662         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
663         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
664 }
665
666 static void sh_cmt_clocksource_resume(struct clocksource *cs)
667 {
668         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
669
670         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
671         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
672 }
673
674 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
675                                        const char *name)
676 {
677         struct clocksource *cs = &ch->cs;
678
679         cs->name = name;
680         cs->rating = 125;
681         cs->read = sh_cmt_clocksource_read;
682         cs->enable = sh_cmt_clocksource_enable;
683         cs->disable = sh_cmt_clocksource_disable;
684         cs->suspend = sh_cmt_clocksource_suspend;
685         cs->resume = sh_cmt_clocksource_resume;
686         cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
687         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
688
689         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
690                  ch->index);
691
692         /* Register with dummy 1 Hz value, gets updated in ->enable() */
693         clocksource_register_hz(cs, 1);
694         return 0;
695 }
696
697 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698 {
699         return container_of(ced, struct sh_cmt_channel, ced);
700 }
701
702 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703 {
704         struct clock_event_device *ced = &ch->ced;
705
706         sh_cmt_start(ch, FLAG_CLOCKEVENT);
707
708         /* TODO: calculate good shift from rate and counter bit width */
709
710         ced->shift = 32;
711         ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
712         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
713         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
714
715         if (periodic)
716                 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
717         else
718                 sh_cmt_set_next(ch, ch->max_match_value);
719 }
720
721 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
722                                     struct clock_event_device *ced)
723 {
724         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
725
726         /* deal with old setting first */
727         switch (ced->mode) {
728         case CLOCK_EVT_MODE_PERIODIC:
729         case CLOCK_EVT_MODE_ONESHOT:
730                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
731                 break;
732         default:
733                 break;
734         }
735
736         switch (mode) {
737         case CLOCK_EVT_MODE_PERIODIC:
738                 dev_info(&ch->cmt->pdev->dev,
739                          "ch%u: used for periodic clock events\n", ch->index);
740                 sh_cmt_clock_event_start(ch, 1);
741                 break;
742         case CLOCK_EVT_MODE_ONESHOT:
743                 dev_info(&ch->cmt->pdev->dev,
744                          "ch%u: used for oneshot clock events\n", ch->index);
745                 sh_cmt_clock_event_start(ch, 0);
746                 break;
747         case CLOCK_EVT_MODE_SHUTDOWN:
748         case CLOCK_EVT_MODE_UNUSED:
749                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
750                 break;
751         default:
752                 break;
753         }
754 }
755
756 static int sh_cmt_clock_event_next(unsigned long delta,
757                                    struct clock_event_device *ced)
758 {
759         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
760
761         BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
762         if (likely(ch->flags & FLAG_IRQCONTEXT))
763                 ch->next_match_value = delta - 1;
764         else
765                 sh_cmt_set_next(ch, delta - 1);
766
767         return 0;
768 }
769
770 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
771 {
772         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
773
774         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
775         clk_unprepare(ch->cmt->clk);
776 }
777
778 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
779 {
780         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
781
782         clk_prepare(ch->cmt->clk);
783         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
784 }
785
786 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
787                                       const char *name)
788 {
789         struct clock_event_device *ced = &ch->ced;
790         int irq;
791         int ret;
792
793         irq = platform_get_irq(ch->cmt->pdev, ch->index);
794         if (irq < 0) {
795                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
796                         ch->index);
797                 return irq;
798         }
799
800         ret = request_irq(irq, sh_cmt_interrupt,
801                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
802                           dev_name(&ch->cmt->pdev->dev), ch);
803         if (ret) {
804                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
805                         ch->index, irq);
806                 return ret;
807         }
808
809         ced->name = name;
810         ced->features = CLOCK_EVT_FEAT_PERIODIC;
811         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
812         ced->rating = 125;
813         ced->cpumask = cpu_possible_mask;
814         ced->set_next_event = sh_cmt_clock_event_next;
815         ced->set_mode = sh_cmt_clock_event_mode;
816         ced->suspend = sh_cmt_clock_event_suspend;
817         ced->resume = sh_cmt_clock_event_resume;
818
819         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
820                  ch->index);
821         clockevents_register_device(ced);
822
823         return 0;
824 }
825
826 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
827                            bool clockevent, bool clocksource)
828 {
829         int ret;
830
831         if (clockevent) {
832                 ch->cmt->has_clockevent = true;
833                 ret = sh_cmt_register_clockevent(ch, name);
834                 if (ret < 0)
835                         return ret;
836         }
837
838         if (clocksource) {
839                 ch->cmt->has_clocksource = true;
840                 sh_cmt_register_clocksource(ch, name);
841         }
842
843         return 0;
844 }
845
846 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
847                                 unsigned int hwidx, bool clockevent,
848                                 bool clocksource, struct sh_cmt_device *cmt)
849 {
850         int ret;
851
852         /* Skip unused channels. */
853         if (!clockevent && !clocksource)
854                 return 0;
855
856         ch->cmt = cmt;
857         ch->index = index;
858         ch->hwidx = hwidx;
859
860         /*
861          * Compute the address of the channel control register block. For the
862          * timers with a per-channel start/stop register, compute its address
863          * as well.
864          */
865         switch (cmt->info->model) {
866         case SH_CMT_16BIT:
867                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
868                 break;
869         case SH_CMT_32BIT:
870         case SH_CMT_48BIT:
871                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
872                 break;
873         case SH_CMT_32BIT_FAST:
874                 /*
875                  * The 32-bit "fast" timer has a single channel at hwidx 5 but
876                  * is located at offset 0x40 instead of 0x60 for some reason.
877                  */
878                 ch->ioctrl = cmt->mapbase + 0x40;
879                 break;
880         case SH_CMT_48BIT_GEN2:
881                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
882                 ch->ioctrl = ch->iostart + 0x10;
883                 break;
884         }
885
886         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
887                 ch->max_match_value = ~0;
888         else
889                 ch->max_match_value = (1 << cmt->info->width) - 1;
890
891         ch->match_value = ch->max_match_value;
892         raw_spin_lock_init(&ch->lock);
893
894         ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
895
896         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
897                               clockevent, clocksource);
898         if (ret) {
899                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
900                         ch->index);
901                 return ret;
902         }
903         ch->cs_enabled = false;
904
905         return 0;
906 }
907
908 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
909 {
910         struct resource *mem;
911
912         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
913         if (!mem) {
914                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
915                 return -ENXIO;
916         }
917
918         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
919         if (cmt->mapbase == NULL) {
920                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
921                 return -ENXIO;
922         }
923
924         return 0;
925 }
926
927 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
928 {
929         struct sh_timer_config *cfg = pdev->dev.platform_data;
930         const struct platform_device_id *id = pdev->id_entry;
931         unsigned int mask;
932         unsigned int i;
933         int ret;
934
935         memset(cmt, 0, sizeof(*cmt));
936         cmt->pdev = pdev;
937         raw_spin_lock_init(&cmt->lock);
938
939         if (!cfg) {
940                 dev_err(&cmt->pdev->dev, "missing platform data\n");
941                 return -ENXIO;
942         }
943
944         cmt->info = (const struct sh_cmt_info *)id->driver_data;
945
946         /* Get hold of clock. */
947         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
948         if (IS_ERR(cmt->clk)) {
949                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
950                 return PTR_ERR(cmt->clk);
951         }
952
953         ret = clk_prepare(cmt->clk);
954         if (ret < 0)
955                 goto err_clk_put;
956
957         /* Map the memory resource(s). */
958         ret = sh_cmt_map_memory(cmt);
959         if (ret < 0)
960                 goto err_clk_unprepare;
961
962         /* Allocate and setup the channels. */
963         cmt->num_channels = hweight8(cfg->channels_mask);
964
965         cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
966                                 GFP_KERNEL);
967         if (cmt->channels == NULL) {
968                 ret = -ENOMEM;
969                 goto err_unmap;
970         }
971
972         /*
973          * Use the first channel as a clock event device and the second channel
974          * as a clock source. If only one channel is available use it for both.
975          */
976         for (i = 0, mask = cfg->channels_mask; i < cmt->num_channels; ++i) {
977                 unsigned int hwidx = ffs(mask) - 1;
978                 bool clocksource = i == 1 || cmt->num_channels == 1;
979                 bool clockevent = i == 0;
980
981                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
982                                            clockevent, clocksource, cmt);
983                 if (ret < 0)
984                         goto err_unmap;
985
986                 mask &= ~(1 << hwidx);
987         }
988
989         platform_set_drvdata(pdev, cmt);
990
991         return 0;
992
993 err_unmap:
994         kfree(cmt->channels);
995         iounmap(cmt->mapbase);
996 err_clk_unprepare:
997         clk_unprepare(cmt->clk);
998 err_clk_put:
999         clk_put(cmt->clk);
1000         return ret;
1001 }
1002
1003 static int sh_cmt_probe(struct platform_device *pdev)
1004 {
1005         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1006         int ret;
1007
1008         if (!is_early_platform_device(pdev)) {
1009                 pm_runtime_set_active(&pdev->dev);
1010                 pm_runtime_enable(&pdev->dev);
1011         }
1012
1013         if (cmt) {
1014                 dev_info(&pdev->dev, "kept as earlytimer\n");
1015                 goto out;
1016         }
1017
1018         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1019         if (cmt == NULL)
1020                 return -ENOMEM;
1021
1022         ret = sh_cmt_setup(cmt, pdev);
1023         if (ret) {
1024                 kfree(cmt);
1025                 pm_runtime_idle(&pdev->dev);
1026                 return ret;
1027         }
1028         if (is_early_platform_device(pdev))
1029                 return 0;
1030
1031  out:
1032         if (cmt->has_clockevent || cmt->has_clocksource)
1033                 pm_runtime_irq_safe(&pdev->dev);
1034         else
1035                 pm_runtime_idle(&pdev->dev);
1036
1037         return 0;
1038 }
1039
1040 static int sh_cmt_remove(struct platform_device *pdev)
1041 {
1042         return -EBUSY; /* cannot unregister clockevent and clocksource */
1043 }
1044
1045 static const struct platform_device_id sh_cmt_id_table[] = {
1046         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1047         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1048         { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1049         { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1050         { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1051         { }
1052 };
1053 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1054
1055 static struct platform_driver sh_cmt_device_driver = {
1056         .probe          = sh_cmt_probe,
1057         .remove         = sh_cmt_remove,
1058         .driver         = {
1059                 .name   = "sh_cmt",
1060         },
1061         .id_table       = sh_cmt_id_table,
1062 };
1063
1064 static int __init sh_cmt_init(void)
1065 {
1066         return platform_driver_register(&sh_cmt_device_driver);
1067 }
1068
1069 static void __exit sh_cmt_exit(void)
1070 {
1071         platform_driver_unregister(&sh_cmt_device_driver);
1072 }
1073
1074 early_platform_init("earlytimer", &sh_cmt_device_driver);
1075 subsys_initcall(sh_cmt_init);
1076 module_exit(sh_cmt_exit);
1077
1078 MODULE_AUTHOR("Magnus Damm");
1079 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1080 MODULE_LICENSE("GPL v2");