drm: add register and unregister functions for connectors
[platform/adaptation/renesas_rcar/renesas_kernel.git] / Documentation / DocBook / drm.tmpl
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3         "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5 <book id="drmDevelopersGuide">
6   <bookinfo>
7     <title>Linux DRM Developer's Guide</title>
8
9     <authorgroup>
10       <author>
11         <firstname>Jesse</firstname>
12         <surname>Barnes</surname>
13         <contrib>Initial version</contrib>
14         <affiliation>
15           <orgname>Intel Corporation</orgname>
16           <address>
17             <email>jesse.barnes@intel.com</email>
18           </address>
19         </affiliation>
20       </author>
21       <author>
22         <firstname>Laurent</firstname>
23         <surname>Pinchart</surname>
24         <contrib>Driver internals</contrib>
25         <affiliation>
26           <orgname>Ideas on board SPRL</orgname>
27           <address>
28             <email>laurent.pinchart@ideasonboard.com</email>
29           </address>
30         </affiliation>
31       </author>
32     </authorgroup>
33
34     <copyright>
35       <year>2008-2009</year>
36       <year>2012</year>
37       <holder>Intel Corporation</holder>
38       <holder>Laurent Pinchart</holder>
39     </copyright>
40
41     <legalnotice>
42       <para>
43         The contents of this file may be used under the terms of the GNU
44         General Public License version 2 (the "GPL") as distributed in
45         the kernel source COPYING file.
46       </para>
47     </legalnotice>
48
49     <revhistory>
50       <!-- Put document revisions here, newest first. -->
51       <revision>
52         <revnumber>1.0</revnumber>
53         <date>2012-07-13</date>
54         <authorinitials>LP</authorinitials>
55         <revremark>Added extensive documentation about driver internals.
56         </revremark>
57       </revision>
58     </revhistory>
59   </bookinfo>
60
61 <toc></toc>
62
63   <!-- Introduction -->
64
65   <chapter id="drmIntroduction">
66     <title>Introduction</title>
67     <para>
68       The Linux DRM layer contains code intended to support the needs
69       of complex graphics devices, usually containing programmable
70       pipelines well suited to 3D graphics acceleration.  Graphics
71       drivers in the kernel may make use of DRM functions to make
72       tasks like memory management, interrupt handling and DMA easier,
73       and provide a uniform interface to applications.
74     </para>
75     <para>
76       A note on versions: this guide covers features found in the DRM
77       tree, including the TTM memory manager, output configuration and
78       mode setting, and the new vblank internals, in addition to all
79       the regular features found in current kernels.
80     </para>
81     <para>
82       [Insert diagram of typical DRM stack here]
83     </para>
84   </chapter>
85
86   <!-- Internals -->
87
88   <chapter id="drmInternals">
89     <title>DRM Internals</title>
90     <para>
91       This chapter documents DRM internals relevant to driver authors
92       and developers working to add support for the latest features to
93       existing drivers.
94     </para>
95     <para>
96       First, we go over some typical driver initialization
97       requirements, like setting up command buffers, creating an
98       initial output configuration, and initializing core services.
99       Subsequent sections cover core internals in more detail,
100       providing implementation notes and examples.
101     </para>
102     <para>
103       The DRM layer provides several services to graphics drivers,
104       many of them driven by the application interfaces it provides
105       through libdrm, the library that wraps most of the DRM ioctls.
106       These include vblank event handling, memory
107       management, output management, framebuffer management, command
108       submission &amp; fencing, suspend/resume support, and DMA
109       services.
110     </para>
111
112   <!-- Internals: driver init -->
113
114   <sect1>
115     <title>Driver Initialization</title>
116     <para>
117       At the core of every DRM driver is a <structname>drm_driver</structname>
118       structure. Drivers typically statically initialize a drm_driver structure,
119       and then pass it to one of the <function>drm_*_init()</function> functions
120       to register it with the DRM subsystem.
121     </para>
122     <para>
123       The <structname>drm_driver</structname> structure contains static
124       information that describes the driver and features it supports, and
125       pointers to methods that the DRM core will call to implement the DRM API.
126       We will first go through the <structname>drm_driver</structname> static
127       information fields, and will then describe individual operations in
128       details as they get used in later sections.
129     </para>
130     <sect2>
131       <title>Driver Information</title>
132       <sect3>
133         <title>Driver Features</title>
134         <para>
135           Drivers inform the DRM core about their requirements and supported
136           features by setting appropriate flags in the
137           <structfield>driver_features</structfield> field. Since those flags
138           influence the DRM core behaviour since registration time, most of them
139           must be set to registering the <structname>drm_driver</structname>
140           instance.
141         </para>
142         <synopsis>u32 driver_features;</synopsis>
143         <variablelist>
144           <title>Driver Feature Flags</title>
145           <varlistentry>
146             <term>DRIVER_USE_AGP</term>
147             <listitem><para>
148               Driver uses AGP interface, the DRM core will manage AGP resources.
149             </para></listitem>
150           </varlistentry>
151           <varlistentry>
152             <term>DRIVER_REQUIRE_AGP</term>
153             <listitem><para>
154               Driver needs AGP interface to function. AGP initialization failure
155               will become a fatal error.
156             </para></listitem>
157           </varlistentry>
158           <varlistentry>
159             <term>DRIVER_PCI_DMA</term>
160             <listitem><para>
161               Driver is capable of PCI DMA, mapping of PCI DMA buffers to
162               userspace will be enabled. Deprecated.
163             </para></listitem>
164           </varlistentry>
165           <varlistentry>
166             <term>DRIVER_SG</term>
167             <listitem><para>
168               Driver can perform scatter/gather DMA, allocation and mapping of
169               scatter/gather buffers will be enabled. Deprecated.
170             </para></listitem>
171           </varlistentry>
172           <varlistentry>
173             <term>DRIVER_HAVE_DMA</term>
174             <listitem><para>
175               Driver supports DMA, the userspace DMA API will be supported.
176               Deprecated.
177             </para></listitem>
178           </varlistentry>
179           <varlistentry>
180             <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term>
181             <listitem><para>
182               DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler
183               managed by the DRM Core. The core will support simple IRQ handler
184               installation when the flag is set. The installation process is
185               described in <xref linkend="drm-irq-registration"/>.</para>
186               <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler
187               support shared IRQs (note that this is required of PCI  drivers).
188             </para></listitem>
189           </varlistentry>
190           <varlistentry>
191             <term>DRIVER_GEM</term>
192             <listitem><para>
193               Driver use the GEM memory manager.
194             </para></listitem>
195           </varlistentry>
196           <varlistentry>
197             <term>DRIVER_MODESET</term>
198             <listitem><para>
199               Driver supports mode setting interfaces (KMS).
200             </para></listitem>
201           </varlistentry>
202           <varlistentry>
203             <term>DRIVER_PRIME</term>
204             <listitem><para>
205               Driver implements DRM PRIME buffer sharing.
206             </para></listitem>
207           </varlistentry>
208           <varlistentry>
209             <term>DRIVER_RENDER</term>
210             <listitem><para>
211               Driver supports dedicated render nodes.
212             </para></listitem>
213           </varlistentry>
214         </variablelist>
215       </sect3>
216       <sect3>
217         <title>Major, Minor and Patchlevel</title>
218         <synopsis>int major;
219 int minor;
220 int patchlevel;</synopsis>
221         <para>
222           The DRM core identifies driver versions by a major, minor and patch
223           level triplet. The information is printed to the kernel log at
224           initialization time and passed to userspace through the
225           DRM_IOCTL_VERSION ioctl.
226         </para>
227         <para>
228           The major and minor numbers are also used to verify the requested driver
229           API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes
230           between minor versions, applications can call DRM_IOCTL_SET_VERSION to
231           select a specific version of the API. If the requested major isn't equal
232           to the driver major, or the requested minor is larger than the driver
233           minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise
234           the driver's set_version() method will be called with the requested
235           version.
236         </para>
237       </sect3>
238       <sect3>
239         <title>Name, Description and Date</title>
240         <synopsis>char *name;
241 char *desc;
242 char *date;</synopsis>
243         <para>
244           The driver name is printed to the kernel log at initialization time,
245           used for IRQ registration and passed to userspace through
246           DRM_IOCTL_VERSION.
247         </para>
248         <para>
249           The driver description is a purely informative string passed to
250           userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by
251           the kernel.
252         </para>
253         <para>
254           The driver date, formatted as YYYYMMDD, is meant to identify the date of
255           the latest modification to the driver. However, as most drivers fail to
256           update it, its value is mostly useless. The DRM core prints it to the
257           kernel log at initialization time and passes it to userspace through the
258           DRM_IOCTL_VERSION ioctl.
259         </para>
260       </sect3>
261     </sect2>
262     <sect2>
263       <title>Driver Load</title>
264       <para>
265         The <methodname>load</methodname> method is the driver and device
266         initialization entry point. The method is responsible for allocating and
267         initializing driver private data, specifying supported performance
268         counters, performing resource allocation and mapping (e.g. acquiring
269         clocks, mapping registers or allocating command buffers), initializing
270         the memory manager (<xref linkend="drm-memory-management"/>), installing
271         the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up
272         vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode
273         setting (<xref linkend="drm-mode-setting"/>) and initial output
274         configuration (<xref linkend="drm-kms-init"/>).
275       </para>
276       <note><para>
277         If compatibility is a concern (e.g. with drivers converted over from
278         User Mode Setting to Kernel Mode Setting), care must be taken to prevent
279         device initialization and control that is incompatible with currently
280         active userspace drivers. For instance, if user level mode setting
281         drivers are in use, it would be problematic to perform output discovery
282         &amp; configuration at load time. Likewise, if user-level drivers
283         unaware of memory management are in use, memory management and command
284         buffer setup may need to be omitted. These requirements are
285         driver-specific, and care needs to be taken to keep both old and new
286         applications and libraries working.
287       </para></note>
288       <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis>
289       <para>
290         The method takes two arguments, a pointer to the newly created
291         <structname>drm_device</structname> and flags. The flags are used to
292         pass the <structfield>driver_data</structfield> field of the device id
293         corresponding to the device passed to <function>drm_*_init()</function>.
294         Only PCI devices currently use this, USB and platform DRM drivers have
295         their <methodname>load</methodname> method called with flags to 0.
296       </para>
297       <sect3>
298         <title>Driver Private &amp; Performance Counters</title>
299         <para>
300           The driver private hangs off the main
301           <structname>drm_device</structname> structure and can be used for
302           tracking various device-specific bits of information, like register
303           offsets, command buffer status, register state for suspend/resume, etc.
304           At load time, a driver may simply allocate one and set
305           <structname>drm_device</structname>.<structfield>dev_priv</structfield>
306           appropriately; it should be freed and
307           <structname>drm_device</structname>.<structfield>dev_priv</structfield>
308           set to NULL when the driver is unloaded.
309         </para>
310         <para>
311           DRM supports several counters which were used for rough performance
312           characterization. This stat counter system is deprecated and should not
313           be used. If performance monitoring is desired, the developer should
314           investigate and potentially enhance the kernel perf and tracing
315           infrastructure to export GPU related performance information for
316           consumption by performance monitoring tools and applications.
317         </para>
318       </sect3>
319       <sect3 id="drm-irq-registration">
320         <title>IRQ Registration</title>
321         <para>
322           The DRM core tries to facilitate IRQ handler registration and
323           unregistration by providing <function>drm_irq_install</function> and
324           <function>drm_irq_uninstall</function> functions. Those functions only
325           support a single interrupt per device, devices that use more than one
326           IRQs need to be handled manually.
327         </para>
328         <sect4>
329           <title>Managed IRQ Registration</title>
330           <para>
331             Both the <function>drm_irq_install</function> and
332             <function>drm_irq_uninstall</function> functions get the device IRQ by
333             calling <function>drm_dev_to_irq</function>. This inline function will
334             call a bus-specific operation to retrieve the IRQ number. For platform
335             devices, <function>platform_get_irq</function>(..., 0) is used to
336             retrieve the IRQ number.
337           </para>
338           <para>
339             <function>drm_irq_install</function> starts by calling the
340             <methodname>irq_preinstall</methodname> driver operation. The operation
341             is optional and must make sure that the interrupt will not get fired by
342             clearing all pending interrupt flags or disabling the interrupt.
343           </para>
344           <para>
345             The IRQ will then be requested by a call to
346             <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver
347             feature flag is set, a shared (IRQF_SHARED) IRQ handler will be
348             requested.
349           </para>
350           <para>
351             The IRQ handler function must be provided as the mandatory irq_handler
352             driver operation. It will get passed directly to
353             <function>request_irq</function> and thus has the same prototype as all
354             IRQ handlers. It will get called with a pointer to the DRM device as the
355             second argument.
356           </para>
357           <para>
358             Finally the function calls the optional
359             <methodname>irq_postinstall</methodname> driver operation. The operation
360             usually enables interrupts (excluding the vblank interrupt, which is
361             enabled separately), but drivers may choose to enable/disable interrupts
362             at a different time.
363           </para>
364           <para>
365             <function>drm_irq_uninstall</function> is similarly used to uninstall an
366             IRQ handler. It starts by waking up all processes waiting on a vblank
367             interrupt to make sure they don't hang, and then calls the optional
368             <methodname>irq_uninstall</methodname> driver operation. The operation
369             must disable all hardware interrupts. Finally the function frees the IRQ
370             by calling <function>free_irq</function>.
371           </para>
372         </sect4>
373         <sect4>
374           <title>Manual IRQ Registration</title>
375           <para>
376             Drivers that require multiple interrupt handlers can't use the managed
377             IRQ registration functions. In that case IRQs must be registered and
378             unregistered manually (usually with the <function>request_irq</function>
379             and <function>free_irq</function> functions, or their devm_* equivalent).
380           </para>
381           <para>
382             When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ
383             driver feature flag, and must not provide the
384             <methodname>irq_handler</methodname> driver operation. They must set the
385             <structname>drm_device</structname> <structfield>irq_enabled</structfield>
386             field to 1 upon registration of the IRQs, and clear it to 0 after
387             unregistering the IRQs.
388           </para>
389         </sect4>
390       </sect3>
391       <sect3>
392         <title>Memory Manager Initialization</title>
393         <para>
394           Every DRM driver requires a memory manager which must be initialized at
395           load time. DRM currently contains two memory managers, the Translation
396           Table Manager (TTM) and the Graphics Execution Manager (GEM).
397           This document describes the use of the GEM memory manager only. See
398           <xref linkend="drm-memory-management"/> for details.
399         </para>
400       </sect3>
401       <sect3>
402         <title>Miscellaneous Device Configuration</title>
403         <para>
404           Another task that may be necessary for PCI devices during configuration
405           is mapping the video BIOS. On many devices, the VBIOS describes device
406           configuration, LCD panel timings (if any), and contains flags indicating
407           device state. Mapping the BIOS can be done using the pci_map_rom() call,
408           a convenience function that takes care of mapping the actual ROM,
409           whether it has been shadowed into memory (typically at address 0xc0000)
410           or exists on the PCI device in the ROM BAR. Note that after the ROM has
411           been mapped and any necessary information has been extracted, it should
412           be unmapped; on many devices, the ROM address decoder is shared with
413           other BARs, so leaving it mapped could cause undesired behaviour like
414           hangs or memory corruption.
415   <!--!Fdrivers/pci/rom.c pci_map_rom-->
416         </para>
417       </sect3>
418     </sect2>
419   </sect1>
420
421   <!-- Internals: memory management -->
422
423   <sect1 id="drm-memory-management">
424     <title>Memory management</title>
425     <para>
426       Modern Linux systems require large amount of graphics memory to store
427       frame buffers, textures, vertices and other graphics-related data. Given
428       the very dynamic nature of many of that data, managing graphics memory
429       efficiently is thus crucial for the graphics stack and plays a central
430       role in the DRM infrastructure.
431     </para>
432     <para>
433       The DRM core includes two memory managers, namely Translation Table Maps
434       (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
435       manager to be developed and tried to be a one-size-fits-them all
436       solution. It provides a single userspace API to accommodate the need of
437       all hardware, supporting both Unified Memory Architecture (UMA) devices
438       and devices with dedicated video RAM (i.e. most discrete video cards).
439       This resulted in a large, complex piece of code that turned out to be
440       hard to use for driver development.
441     </para>
442     <para>
443       GEM started as an Intel-sponsored project in reaction to TTM's
444       complexity. Its design philosophy is completely different: instead of
445       providing a solution to every graphics memory-related problems, GEM
446       identified common code between drivers and created a support library to
447       share it. GEM has simpler initialization and execution requirements than
448       TTM, but has no video RAM management capabitilies and is thus limited to
449       UMA devices.
450     </para>
451     <sect2>
452       <title>The Translation Table Manager (TTM)</title>
453       <para>
454         TTM design background and information belongs here.
455       </para>
456       <sect3>
457         <title>TTM initialization</title>
458         <warning><para>This section is outdated.</para></warning>
459         <para>
460           Drivers wishing to support TTM must fill out a drm_bo_driver
461           structure. The structure contains several fields with function
462           pointers for initializing the TTM, allocating and freeing memory,
463           waiting for command completion and fence synchronization, and memory
464           migration. See the radeon_ttm.c file for an example of usage.
465         </para>
466         <para>
467           The ttm_global_reference structure is made up of several fields:
468         </para>
469         <programlisting>
470           struct ttm_global_reference {
471                 enum ttm_global_types global_type;
472                 size_t size;
473                 void *object;
474                 int (*init) (struct ttm_global_reference *);
475                 void (*release) (struct ttm_global_reference *);
476           };
477         </programlisting>
478         <para>
479           There should be one global reference structure for your memory
480           manager as a whole, and there will be others for each object
481           created by the memory manager at runtime.  Your global TTM should
482           have a type of TTM_GLOBAL_TTM_MEM.  The size field for the global
483           object should be sizeof(struct ttm_mem_global), and the init and
484           release hooks should point at your driver-specific init and
485           release routines, which probably eventually call
486           ttm_mem_global_init and ttm_mem_global_release, respectively.
487         </para>
488         <para>
489           Once your global TTM accounting structure is set up and initialized
490           by calling ttm_global_item_ref() on it,
491           you need to create a buffer object TTM to
492           provide a pool for buffer object allocation by clients and the
493           kernel itself.  The type of this object should be TTM_GLOBAL_TTM_BO,
494           and its size should be sizeof(struct ttm_bo_global).  Again,
495           driver-specific init and release functions may be provided,
496           likely eventually calling ttm_bo_global_init() and
497           ttm_bo_global_release(), respectively.  Also, like the previous
498           object, ttm_global_item_ref() is used to create an initial reference
499           count for the TTM, which will call your initialization function.
500         </para>
501       </sect3>
502     </sect2>
503     <sect2 id="drm-gem">
504       <title>The Graphics Execution Manager (GEM)</title>
505       <para>
506         The GEM design approach has resulted in a memory manager that doesn't
507         provide full coverage of all (or even all common) use cases in its
508         userspace or kernel API. GEM exposes a set of standard memory-related
509         operations to userspace and a set of helper functions to drivers, and let
510         drivers implement hardware-specific operations with their own private API.
511       </para>
512       <para>
513         The GEM userspace API is described in the
514         <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics
515         Execution Manager</citetitle></ulink> article on LWN. While slightly
516         outdated, the document provides a good overview of the GEM API principles.
517         Buffer allocation and read and write operations, described as part of the
518         common GEM API, are currently implemented using driver-specific ioctls.
519       </para>
520       <para>
521         GEM is data-agnostic. It manages abstract buffer objects without knowing
522         what individual buffers contain. APIs that require knowledge of buffer
523         contents or purpose, such as buffer allocation or synchronization
524         primitives, are thus outside of the scope of GEM and must be implemented
525         using driver-specific ioctls.
526       </para>
527       <para>
528         On a fundamental level, GEM involves several operations:
529         <itemizedlist>
530           <listitem>Memory allocation and freeing</listitem>
531           <listitem>Command execution</listitem>
532           <listitem>Aperture management at command execution time</listitem>
533         </itemizedlist>
534         Buffer object allocation is relatively straightforward and largely
535         provided by Linux's shmem layer, which provides memory to back each
536         object.
537       </para>
538       <para>
539         Device-specific operations, such as command execution, pinning, buffer
540         read &amp; write, mapping, and domain ownership transfers are left to
541         driver-specific ioctls.
542       </para>
543       <sect3>
544         <title>GEM Initialization</title>
545         <para>
546           Drivers that use GEM must set the DRIVER_GEM bit in the struct
547           <structname>drm_driver</structname>
548           <structfield>driver_features</structfield> field. The DRM core will
549           then automatically initialize the GEM core before calling the
550           <methodname>load</methodname> operation. Behind the scene, this will
551           create a DRM Memory Manager object which provides an address space
552           pool for object allocation.
553         </para>
554         <para>
555           In a KMS configuration, drivers need to allocate and initialize a
556           command ring buffer following core GEM initialization if required by
557           the hardware. UMA devices usually have what is called a "stolen"
558           memory region, which provides space for the initial framebuffer and
559           large, contiguous memory regions required by the device. This space is
560           typically not managed by GEM, and must be initialized separately into
561           its own DRM MM object.
562         </para>
563       </sect3>
564       <sect3>
565         <title>GEM Objects Creation</title>
566         <para>
567           GEM splits creation of GEM objects and allocation of the memory that
568           backs them in two distinct operations.
569         </para>
570         <para>
571           GEM objects are represented by an instance of struct
572           <structname>drm_gem_object</structname>. Drivers usually need to extend
573           GEM objects with private information and thus create a driver-specific
574           GEM object structure type that embeds an instance of struct
575           <structname>drm_gem_object</structname>.
576         </para>
577         <para>
578           To create a GEM object, a driver allocates memory for an instance of its
579           specific GEM object type and initializes the embedded struct
580           <structname>drm_gem_object</structname> with a call to
581           <function>drm_gem_object_init</function>. The function takes a pointer to
582           the DRM device, a pointer to the GEM object and the buffer object size
583           in bytes.
584         </para>
585         <para>
586           GEM uses shmem to allocate anonymous pageable memory.
587           <function>drm_gem_object_init</function> will create an shmfs file of
588           the requested size and store it into the struct
589           <structname>drm_gem_object</structname> <structfield>filp</structfield>
590           field. The memory is used as either main storage for the object when the
591           graphics hardware uses system memory directly or as a backing store
592           otherwise.
593         </para>
594         <para>
595           Drivers are responsible for the actual physical pages allocation by
596           calling <function>shmem_read_mapping_page_gfp</function> for each page.
597           Note that they can decide to allocate pages when initializing the GEM
598           object, or to delay allocation until the memory is needed (for instance
599           when a page fault occurs as a result of a userspace memory access or
600           when the driver needs to start a DMA transfer involving the memory).
601         </para>
602         <para>
603           Anonymous pageable memory allocation is not always desired, for instance
604           when the hardware requires physically contiguous system memory as is
605           often the case in embedded devices. Drivers can create GEM objects with
606           no shmfs backing (called private GEM objects) by initializing them with
607           a call to <function>drm_gem_private_object_init</function> instead of
608           <function>drm_gem_object_init</function>. Storage for private GEM
609           objects must be managed by drivers.
610         </para>
611         <para>
612           Drivers that do not need to extend GEM objects with private information
613           can call the <function>drm_gem_object_alloc</function> function to
614           allocate and initialize a struct <structname>drm_gem_object</structname>
615           instance. The GEM core will call the optional driver
616           <methodname>gem_init_object</methodname> operation after initializing
617           the GEM object with <function>drm_gem_object_init</function>.
618           <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis>
619         </para>
620         <para>
621           No alloc-and-init function exists for private GEM objects.
622         </para>
623       </sect3>
624       <sect3>
625         <title>GEM Objects Lifetime</title>
626         <para>
627           All GEM objects are reference-counted by the GEM core. References can be
628           acquired and release by <function>calling drm_gem_object_reference</function>
629           and <function>drm_gem_object_unreference</function> respectively. The
630           caller must hold the <structname>drm_device</structname>
631           <structfield>struct_mutex</structfield> lock. As a convenience, GEM
632           provides the <function>drm_gem_object_reference_unlocked</function> and
633           <function>drm_gem_object_unreference_unlocked</function> functions that
634           can be called without holding the lock.
635         </para>
636         <para>
637           When the last reference to a GEM object is released the GEM core calls
638           the <structname>drm_driver</structname>
639           <methodname>gem_free_object</methodname> operation. That operation is
640           mandatory for GEM-enabled drivers and must free the GEM object and all
641           associated resources.
642         </para>
643         <para>
644           <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis>
645           Drivers are responsible for freeing all GEM object resources, including
646           the resources created by the GEM core. If an mmap offset has been
647           created for the object (in which case
648           <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield>
649           is not NULL) it must be freed by a call to
650           <function>drm_gem_free_mmap_offset</function>. The shmfs backing store
651           must be released by calling <function>drm_gem_object_release</function>
652           (that function can safely be called if no shmfs backing store has been
653           created).
654         </para>
655       </sect3>
656       <sect3>
657         <title>GEM Objects Naming</title>
658         <para>
659           Communication between userspace and the kernel refers to GEM objects
660           using local handles, global names or, more recently, file descriptors.
661           All of those are 32-bit integer values; the usual Linux kernel limits
662           apply to the file descriptors.
663         </para>
664         <para>
665           GEM handles are local to a DRM file. Applications get a handle to a GEM
666           object through a driver-specific ioctl, and can use that handle to refer
667           to the GEM object in other standard or driver-specific ioctls. Closing a
668           DRM file handle frees all its GEM handles and dereferences the
669           associated GEM objects.
670         </para>
671         <para>
672           To create a handle for a GEM object drivers call
673           <function>drm_gem_handle_create</function>. The function takes a pointer
674           to the DRM file and the GEM object and returns a locally unique handle.
675           When the handle is no longer needed drivers delete it with a call to
676           <function>drm_gem_handle_delete</function>. Finally the GEM object
677           associated with a handle can be retrieved by a call to
678           <function>drm_gem_object_lookup</function>.
679         </para>
680         <para>
681           Handles don't take ownership of GEM objects, they only take a reference
682           to the object that will be dropped when the handle is destroyed. To
683           avoid leaking GEM objects, drivers must make sure they drop the
684           reference(s) they own (such as the initial reference taken at object
685           creation time) as appropriate, without any special consideration for the
686           handle. For example, in the particular case of combined GEM object and
687           handle creation in the implementation of the
688           <methodname>dumb_create</methodname> operation, drivers must drop the
689           initial reference to the GEM object before returning the handle.
690         </para>
691         <para>
692           GEM names are similar in purpose to handles but are not local to DRM
693           files. They can be passed between processes to reference a GEM object
694           globally. Names can't be used directly to refer to objects in the DRM
695           API, applications must convert handles to names and names to handles
696           using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
697           respectively. The conversion is handled by the DRM core without any
698           driver-specific support.
699         </para>
700         <para>
701           Similar to global names, GEM file descriptors are also used to share GEM
702           objects across processes. They offer additional security: as file
703           descriptors must be explicitly sent over UNIX domain sockets to be shared
704           between applications, they can't be guessed like the globally unique GEM
705           names.
706         </para>
707         <para>
708           Drivers that support GEM file descriptors, also known as the DRM PRIME
709           API, must set the DRIVER_PRIME bit in the struct
710           <structname>drm_driver</structname>
711           <structfield>driver_features</structfield> field, and implement the
712           <methodname>prime_handle_to_fd</methodname> and
713           <methodname>prime_fd_to_handle</methodname> operations.
714         </para>
715         <para>
716           <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev,
717                             struct drm_file *file_priv, uint32_t handle,
718                             uint32_t flags, int *prime_fd);
719   int (*prime_fd_to_handle)(struct drm_device *dev,
720                             struct drm_file *file_priv, int prime_fd,
721                             uint32_t *handle);</synopsis>
722           Those two operations convert a handle to a PRIME file descriptor and
723           vice versa. Drivers must use the kernel dma-buf buffer sharing framework
724           to manage the PRIME file descriptors.
725         </para>
726         <para>
727           While non-GEM drivers must implement the operations themselves, GEM
728           drivers must use the <function>drm_gem_prime_handle_to_fd</function>
729           and <function>drm_gem_prime_fd_to_handle</function> helper functions.
730           Those helpers rely on the driver
731           <methodname>gem_prime_export</methodname> and
732           <methodname>gem_prime_import</methodname> operations to create a dma-buf
733           instance from a GEM object (dma-buf exporter role) and to create a GEM
734           object from a dma-buf instance (dma-buf importer role).
735         </para>
736         <para>
737           <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
738                                        struct drm_gem_object *obj,
739                                        int flags);
740   struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
741                                               struct dma_buf *dma_buf);</synopsis>
742           These two operations are mandatory for GEM drivers that support DRM
743           PRIME.
744         </para>
745         <sect4>
746           <title>DRM PRIME Helper Functions Reference</title>
747 !Pdrivers/gpu/drm/drm_prime.c PRIME Helpers
748         </sect4>
749       </sect3>
750       <sect3 id="drm-gem-objects-mapping">
751         <title>GEM Objects Mapping</title>
752         <para>
753           Because mapping operations are fairly heavyweight GEM favours
754           read/write-like access to buffers, implemented through driver-specific
755           ioctls, over mapping buffers to userspace. However, when random access
756           to the buffer is needed (to perform software rendering for instance),
757           direct access to the object can be more efficient.
758         </para>
759         <para>
760           The mmap system call can't be used directly to map GEM objects, as they
761           don't have their own file handle. Two alternative methods currently
762           co-exist to map GEM objects to userspace. The first method uses a
763           driver-specific ioctl to perform the mapping operation, calling
764           <function>do_mmap</function> under the hood. This is often considered
765           dubious, seems to be discouraged for new GEM-enabled drivers, and will
766           thus not be described here.
767         </para>
768         <para>
769           The second method uses the mmap system call on the DRM file handle.
770           <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd,
771              off_t offset);</synopsis>
772           DRM identifies the GEM object to be mapped by a fake offset passed
773           through the mmap offset argument. Prior to being mapped, a GEM object
774           must thus be associated with a fake offset. To do so, drivers must call
775           <function>drm_gem_create_mmap_offset</function> on the object. The
776           function allocates a fake offset range from a pool and stores the
777           offset divided by PAGE_SIZE in
778           <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to
779           call <function>drm_gem_create_mmap_offset</function> if a fake offset
780           has already been allocated for the object. This can be tested by
781           <literal>obj-&gt;map_list.map</literal> being non-NULL.
782         </para>
783         <para>
784           Once allocated, the fake offset value
785           (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>)
786           must be passed to the application in a driver-specific way and can then
787           be used as the mmap offset argument.
788         </para>
789         <para>
790           The GEM core provides a helper method <function>drm_gem_mmap</function>
791           to handle object mapping. The method can be set directly as the mmap
792           file operation handler. It will look up the GEM object based on the
793           offset value and set the VMA operations to the
794           <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
795           field. Note that <function>drm_gem_mmap</function> doesn't map memory to
796           userspace, but relies on the driver-provided fault handler to map pages
797           individually.
798         </para>
799         <para>
800           To use <function>drm_gem_mmap</function>, drivers must fill the struct
801           <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield>
802           field with a pointer to VM operations.
803         </para>
804         <para>
805           <synopsis>struct vm_operations_struct *gem_vm_ops
806
807   struct vm_operations_struct {
808           void (*open)(struct vm_area_struct * area);
809           void (*close)(struct vm_area_struct * area);
810           int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
811   };</synopsis>
812         </para>
813         <para>
814           The <methodname>open</methodname> and <methodname>close</methodname>
815           operations must update the GEM object reference count. Drivers can use
816           the <function>drm_gem_vm_open</function> and
817           <function>drm_gem_vm_close</function> helper functions directly as open
818           and close handlers.
819         </para>
820         <para>
821           The fault operation handler is responsible for mapping individual pages
822           to userspace when a page fault occurs. Depending on the memory
823           allocation scheme, drivers can allocate pages at fault time, or can
824           decide to allocate memory for the GEM object at the time the object is
825           created.
826         </para>
827         <para>
828           Drivers that want to map the GEM object upfront instead of handling page
829           faults can implement their own mmap file operation handler.
830         </para>
831       </sect3>
832       <sect3>
833         <title>Dumb GEM Objects</title>
834         <para>
835           The GEM API doesn't standardize GEM objects creation and leaves it to
836           driver-specific ioctls. While not an issue for full-fledged graphics
837           stacks that include device-specific userspace components (in libdrm for
838           instance), this limit makes DRM-based early boot graphics unnecessarily
839           complex.
840         </para>
841         <para>
842           Dumb GEM objects partly alleviate the problem by providing a standard
843           API to create dumb buffers suitable for scanout, which can then be used
844           to create KMS frame buffers.
845         </para>
846         <para>
847           To support dumb GEM objects drivers must implement the
848           <methodname>dumb_create</methodname>,
849           <methodname>dumb_destroy</methodname> and
850           <methodname>dumb_map_offset</methodname> operations.
851         </para>
852         <itemizedlist>
853           <listitem>
854             <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
855                      struct drm_mode_create_dumb *args);</synopsis>
856             <para>
857               The <methodname>dumb_create</methodname> operation creates a GEM
858               object suitable for scanout based on the width, height and depth
859               from the struct <structname>drm_mode_create_dumb</structname>
860               argument. It fills the argument's <structfield>handle</structfield>,
861               <structfield>pitch</structfield> and <structfield>size</structfield>
862               fields with a handle for the newly created GEM object and its line
863               pitch and size in bytes.
864             </para>
865           </listitem>
866           <listitem>
867             <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
868                       uint32_t handle);</synopsis>
869             <para>
870               The <methodname>dumb_destroy</methodname> operation destroys a dumb
871               GEM object created by <methodname>dumb_create</methodname>.
872             </para>
873           </listitem>
874           <listitem>
875             <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
876                          uint32_t handle, uint64_t *offset);</synopsis>
877             <para>
878               The <methodname>dumb_map_offset</methodname> operation associates an
879               mmap fake offset with the GEM object given by the handle and returns
880               it. Drivers must use the
881               <function>drm_gem_create_mmap_offset</function> function to
882               associate the fake offset as described in
883               <xref linkend="drm-gem-objects-mapping"/>.
884             </para>
885           </listitem>
886         </itemizedlist>
887       </sect3>
888       <sect3>
889         <title>Memory Coherency</title>
890         <para>
891           When mapped to the device or used in a command buffer, backing pages
892           for an object are flushed to memory and marked write combined so as to
893           be coherent with the GPU. Likewise, if the CPU accesses an object
894           after the GPU has finished rendering to the object, then the object
895           must be made coherent with the CPU's view of memory, usually involving
896           GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU
897           coherency management is provided by a device-specific ioctl, which
898           evaluates an object's current domain and performs any necessary
899           flushing or synchronization to put the object into the desired
900           coherency domain (note that the object may be busy, i.e. an active
901           render target; in that case, setting the domain blocks the client and
902           waits for rendering to complete before performing any necessary
903           flushing operations).
904         </para>
905       </sect3>
906       <sect3>
907         <title>Command Execution</title>
908         <para>
909           Perhaps the most important GEM function for GPU devices is providing a
910           command execution interface to clients. Client programs construct
911           command buffers containing references to previously allocated memory
912           objects, and then submit them to GEM. At that point, GEM takes care to
913           bind all the objects into the GTT, execute the buffer, and provide
914           necessary synchronization between clients accessing the same buffers.
915           This often involves evicting some objects from the GTT and re-binding
916           others (a fairly expensive operation), and providing relocation
917           support which hides fixed GTT offsets from clients. Clients must take
918           care not to submit command buffers that reference more objects than
919           can fit in the GTT; otherwise, GEM will reject them and no rendering
920           will occur. Similarly, if several objects in the buffer require fence
921           registers to be allocated for correct rendering (e.g. 2D blits on
922           pre-965 chips), care must be taken not to require more fence registers
923           than are available to the client. Such resource management should be
924           abstracted from the client in libdrm.
925         </para>
926       </sect3>
927     </sect2>
928   </sect1>
929
930   <!-- Internals: mode setting -->
931
932   <sect1 id="drm-mode-setting">
933     <title>Mode Setting</title>
934     <para>
935       Drivers must initialize the mode setting core by calling
936       <function>drm_mode_config_init</function> on the DRM device. The function
937       initializes the <structname>drm_device</structname>
938       <structfield>mode_config</structfield> field and never fails. Once done,
939       mode configuration must be setup by initializing the following fields.
940     </para>
941     <itemizedlist>
942       <listitem>
943         <synopsis>int min_width, min_height;
944 int max_width, max_height;</synopsis>
945         <para>
946           Minimum and maximum width and height of the frame buffers in pixel
947           units.
948         </para>
949       </listitem>
950       <listitem>
951         <synopsis>struct drm_mode_config_funcs *funcs;</synopsis>
952         <para>Mode setting functions.</para>
953       </listitem>
954     </itemizedlist>
955     <sect2>
956       <title>Frame Buffer Creation</title>
957       <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
958                                      struct drm_file *file_priv,
959                                      struct drm_mode_fb_cmd2 *mode_cmd);</synopsis>
960       <para>
961         Frame buffers are abstract memory objects that provide a source of
962         pixels to scanout to a CRTC. Applications explicitly request the
963         creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and
964         receive an opaque handle that can be passed to the KMS CRTC control,
965         plane configuration and page flip functions.
966       </para>
967       <para>
968         Frame buffers rely on the underneath memory manager for low-level memory
969         operations. When creating a frame buffer applications pass a memory
970         handle (or a list of memory handles for multi-planar formats) through
971         the <parameter>drm_mode_fb_cmd2</parameter> argument. This document
972         assumes that the driver uses GEM, those handles thus reference GEM
973         objects.
974       </para>
975       <para>
976         Drivers must first validate the requested frame buffer parameters passed
977         through the mode_cmd argument. In particular this is where invalid
978         sizes, pixel formats or pitches can be caught.
979       </para>
980       <para>
981         If the parameters are deemed valid, drivers then create, initialize and
982         return an instance of struct <structname>drm_framebuffer</structname>.
983         If desired the instance can be embedded in a larger driver-specific
984         structure. Drivers must fill its <structfield>width</structfield>,
985         <structfield>height</structfield>, <structfield>pitches</structfield>,
986         <structfield>offsets</structfield>, <structfield>depth</structfield>,
987         <structfield>bits_per_pixel</structfield> and
988         <structfield>pixel_format</structfield> fields from the values passed
989         through the <parameter>drm_mode_fb_cmd2</parameter> argument. They
990         should call the <function>drm_helper_mode_fill_fb_struct</function>
991         helper function to do so.
992       </para>
993
994       <para>
995         The initailization of the new framebuffer instance is finalized with a
996         call to <function>drm_framebuffer_init</function> which takes a pointer
997         to DRM frame buffer operations (struct
998         <structname>drm_framebuffer_funcs</structname>). Note that this function
999         publishes the framebuffer and so from this point on it can be accessed
1000         concurrently from other threads. Hence it must be the last step in the
1001         driver's framebuffer initialization sequence. Frame buffer operations
1002         are
1003         <itemizedlist>
1004           <listitem>
1005             <synopsis>int (*create_handle)(struct drm_framebuffer *fb,
1006                      struct drm_file *file_priv, unsigned int *handle);</synopsis>
1007             <para>
1008               Create a handle to the frame buffer underlying memory object. If
1009               the frame buffer uses a multi-plane format, the handle will
1010               reference the memory object associated with the first plane.
1011             </para>
1012             <para>
1013               Drivers call <function>drm_gem_handle_create</function> to create
1014               the handle.
1015             </para>
1016           </listitem>
1017           <listitem>
1018             <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis>
1019             <para>
1020               Destroy the frame buffer object and frees all associated
1021               resources. Drivers must call
1022               <function>drm_framebuffer_cleanup</function> to free resources
1023               allocated by the DRM core for the frame buffer object, and must
1024               make sure to unreference all memory objects associated with the
1025               frame buffer. Handles created by the
1026               <methodname>create_handle</methodname> operation are released by
1027               the DRM core.
1028             </para>
1029           </listitem>
1030           <listitem>
1031             <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer,
1032              struct drm_file *file_priv, unsigned flags, unsigned color,
1033              struct drm_clip_rect *clips, unsigned num_clips);</synopsis>
1034             <para>
1035               This optional operation notifies the driver that a region of the
1036               frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB
1037               ioctl call.
1038             </para>
1039           </listitem>
1040         </itemizedlist>
1041       </para>
1042       <para>
1043         The lifetime of a drm framebuffer is controlled with a reference count,
1044         drivers can grab additional references with
1045         <function>drm_framebuffer_reference</function> </para> and drop them
1046         again with <function>drm_framebuffer_unreference</function>. For
1047         driver-private framebuffers for which the last reference is never
1048         dropped (e.g. for the fbdev framebuffer when the struct
1049         <structname>drm_framebuffer</structname> is embedded into the fbdev
1050         helper struct) drivers can manually clean up a framebuffer at module
1051         unload time with
1052         <function>drm_framebuffer_unregister_private</function>.
1053     </sect2>
1054     <sect2>
1055       <title>Output Polling</title>
1056       <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis>
1057       <para>
1058         This operation notifies the driver that the status of one or more
1059         connectors has changed. Drivers that use the fb helper can just call the
1060         <function>drm_fb_helper_hotplug_event</function> function to handle this
1061         operation.
1062       </para>
1063     </sect2>
1064     <sect2>
1065       <title>Locking</title>
1066       <para>
1067         Beside some lookup structures with their own locking (which is hidden
1068         behind the interface functions) most of the modeset state is protected
1069         by the <code>dev-&lt;mode_config.lock</code> mutex and additionally
1070         per-crtc locks to allow cursor updates, pageflips and similar operations
1071         to occur concurrently with background tasks like output detection.
1072         Operations which cross domains like a full modeset always grab all
1073         locks. Drivers there need to protect resources shared between crtcs with
1074         additional locking. They also need to be careful to always grab the
1075         relevant crtc locks if a modset functions touches crtc state, e.g. for
1076         load detection (which does only grab the <code>mode_config.lock</code>
1077         to allow concurrent screen updates on live crtcs).
1078       </para>
1079     </sect2>
1080   </sect1>
1081
1082   <!-- Internals: kms initialization and cleanup -->
1083
1084   <sect1 id="drm-kms-init">
1085     <title>KMS Initialization and Cleanup</title>
1086     <para>
1087       A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders
1088       and connectors. KMS drivers must thus create and initialize all those
1089       objects at load time after initializing mode setting.
1090     </para>
1091     <sect2>
1092       <title>CRTCs (struct <structname>drm_crtc</structname>)</title>
1093       <para>
1094         A CRTC is an abstraction representing a part of the chip that contains a
1095         pointer to a scanout buffer. Therefore, the number of CRTCs available
1096         determines how many independent scanout buffers can be active at any
1097         given time. The CRTC structure contains several fields to support this:
1098         a pointer to some video memory (abstracted as a frame buffer object), a
1099         display mode, and an (x, y) offset into the video memory to support
1100         panning or configurations where one piece of video memory spans multiple
1101         CRTCs.
1102       </para>
1103       <sect3>
1104         <title>CRTC Initialization</title>
1105         <para>
1106           A KMS device must create and register at least one struct
1107           <structname>drm_crtc</structname> instance. The instance is allocated
1108           and zeroed by the driver, possibly as part of a larger structure, and
1109           registered with a call to <function>drm_crtc_init</function> with a
1110           pointer to CRTC functions.
1111         </para>
1112       </sect3>
1113       <sect3>
1114         <title>CRTC Operations</title>
1115         <sect4>
1116           <title>Set Configuration</title>
1117           <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis>
1118           <para>
1119             Apply a new CRTC configuration to the device. The configuration
1120             specifies a CRTC, a frame buffer to scan out from, a (x,y) position in
1121             the frame buffer, a display mode and an array of connectors to drive
1122             with the CRTC if possible.
1123           </para>
1124           <para>
1125             If the frame buffer specified in the configuration is NULL, the driver
1126             must detach all encoders connected to the CRTC and all connectors
1127             attached to those encoders and disable them.
1128           </para>
1129           <para>
1130             This operation is called with the mode config lock held.
1131           </para>
1132           <note><para>
1133             FIXME: How should set_config interact with DPMS? If the CRTC is
1134             suspended, should it be resumed?
1135           </para></note>
1136         </sect4>
1137         <sect4>
1138           <title>Page Flipping</title>
1139           <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1140                    struct drm_pending_vblank_event *event);</synopsis>
1141           <para>
1142             Schedule a page flip to the given frame buffer for the CRTC. This
1143             operation is called with the mode config mutex held.
1144           </para>
1145           <para>
1146             Page flipping is a synchronization mechanism that replaces the frame
1147             buffer being scanned out by the CRTC with a new frame buffer during
1148             vertical blanking, avoiding tearing. When an application requests a page
1149             flip the DRM core verifies that the new frame buffer is large enough to
1150             be scanned out by  the CRTC in the currently configured mode and then
1151             calls the CRTC <methodname>page_flip</methodname> operation with a
1152             pointer to the new frame buffer.
1153           </para>
1154           <para>
1155             The <methodname>page_flip</methodname> operation schedules a page flip.
1156             Once any pending rendering targeting the new frame buffer has
1157             completed, the CRTC will be reprogrammed to display that frame buffer
1158             after the next vertical refresh. The operation must return immediately
1159             without waiting for rendering or page flip to complete and must block
1160             any new rendering to the frame buffer until the page flip completes.
1161           </para>
1162           <para>
1163             If a page flip can be successfully scheduled the driver must set the
1164             <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to
1165             by <code>fb</code>. This is important so that the reference counting
1166             on framebuffers stays balanced.
1167           </para>
1168           <para>
1169             If a page flip is already pending, the
1170             <methodname>page_flip</methodname> operation must return
1171             -<errorname>EBUSY</errorname>.
1172           </para>
1173           <para>
1174             To synchronize page flip to vertical blanking the driver will likely
1175             need to enable vertical blanking interrupts. It should call
1176             <function>drm_vblank_get</function> for that purpose, and call
1177             <function>drm_vblank_put</function> after the page flip completes.
1178           </para>
1179           <para>
1180             If the application has requested to be notified when page flip completes
1181             the <methodname>page_flip</methodname> operation will be called with a
1182             non-NULL <parameter>event</parameter> argument pointing to a
1183             <structname>drm_pending_vblank_event</structname> instance. Upon page
1184             flip completion the driver must call <methodname>drm_send_vblank_event</methodname>
1185             to fill in the event and send to wake up any waiting processes.
1186             This can be performed with
1187             <programlisting><![CDATA[
1188             spin_lock_irqsave(&dev->event_lock, flags);
1189             ...
1190             drm_send_vblank_event(dev, pipe, event);
1191             spin_unlock_irqrestore(&dev->event_lock, flags);
1192             ]]></programlisting>
1193           </para>
1194           <note><para>
1195             FIXME: Could drivers that don't need to wait for rendering to complete
1196             just add the event to <literal>dev-&gt;vblank_event_list</literal> and
1197             let the DRM core handle everything, as for "normal" vertical blanking
1198             events?
1199           </para></note>
1200           <para>
1201             While waiting for the page flip to complete, the
1202             <literal>event-&gt;base.link</literal> list head can be used freely by
1203             the driver to store the pending event in a driver-specific list.
1204           </para>
1205           <para>
1206             If the file handle is closed before the event is signaled, drivers must
1207             take care to destroy the event in their
1208             <methodname>preclose</methodname> operation (and, if needed, call
1209             <function>drm_vblank_put</function>).
1210           </para>
1211         </sect4>
1212         <sect4>
1213           <title>Miscellaneous</title>
1214           <itemizedlist>
1215             <listitem>
1216               <synopsis>void (*set_property)(struct drm_crtc *crtc,
1217                      struct drm_property *property, uint64_t value);</synopsis>
1218               <para>
1219                 Set the value of the given CRTC property to
1220                 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1221                 for more information about properties.
1222               </para>
1223             </listitem>
1224             <listitem>
1225               <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
1226                         uint32_t start, uint32_t size);</synopsis>
1227               <para>
1228                 Apply a gamma table to the device. The operation is optional.
1229               </para>
1230             </listitem>
1231             <listitem>
1232               <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis>
1233               <para>
1234                 Destroy the CRTC when not needed anymore. See
1235                 <xref linkend="drm-kms-init"/>.
1236               </para>
1237             </listitem>
1238           </itemizedlist>
1239         </sect4>
1240       </sect3>
1241     </sect2>
1242     <sect2>
1243       <title>Planes (struct <structname>drm_plane</structname>)</title>
1244       <para>
1245         A plane represents an image source that can be blended with or overlayed
1246         on top of a CRTC during the scanout process. Planes are associated with
1247         a frame buffer to crop a portion of the image memory (source) and
1248         optionally scale it to a destination size. The result is then blended
1249         with or overlayed on top of a CRTC.
1250       </para>
1251       <sect3>
1252         <title>Plane Initialization</title>
1253         <para>
1254           Planes are optional. To create a plane, a KMS drivers allocates and
1255           zeroes an instances of struct <structname>drm_plane</structname>
1256           (possibly as part of a larger structure) and registers it with a call
1257           to <function>drm_plane_init</function>. The function takes a bitmask
1258           of the CRTCs that can be associated with the plane, a pointer to the
1259           plane functions and a list of format supported formats.
1260         </para>
1261       </sect3>
1262       <sect3>
1263         <title>Plane Operations</title>
1264         <itemizedlist>
1265           <listitem>
1266             <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
1267                         struct drm_framebuffer *fb, int crtc_x, int crtc_y,
1268                         unsigned int crtc_w, unsigned int crtc_h,
1269                         uint32_t src_x, uint32_t src_y,
1270                         uint32_t src_w, uint32_t src_h);</synopsis>
1271             <para>
1272               Enable and configure the plane to use the given CRTC and frame buffer.
1273             </para>
1274             <para>
1275               The source rectangle in frame buffer memory coordinates is given by
1276               the <parameter>src_x</parameter>, <parameter>src_y</parameter>,
1277               <parameter>src_w</parameter> and <parameter>src_h</parameter>
1278               parameters (as 16.16 fixed point values). Devices that don't support
1279               subpixel plane coordinates can ignore the fractional part.
1280             </para>
1281             <para>
1282               The destination rectangle in CRTC coordinates is given by the
1283               <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>,
1284               <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter>
1285               parameters (as integer values). Devices scale the source rectangle to
1286               the destination rectangle. If scaling is not supported, and the source
1287               rectangle size doesn't match the destination rectangle size, the
1288               driver must return a -<errorname>EINVAL</errorname> error.
1289             </para>
1290           </listitem>
1291           <listitem>
1292             <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis>
1293             <para>
1294               Disable the plane. The DRM core calls this method in response to a
1295               DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0.
1296               Disabled planes must not be processed by the CRTC.
1297             </para>
1298           </listitem>
1299           <listitem>
1300             <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis>
1301             <para>
1302               Destroy the plane when not needed anymore. See
1303               <xref linkend="drm-kms-init"/>.
1304             </para>
1305           </listitem>
1306         </itemizedlist>
1307       </sect3>
1308     </sect2>
1309     <sect2>
1310       <title>Encoders (struct <structname>drm_encoder</structname>)</title>
1311       <para>
1312         An encoder takes pixel data from a CRTC and converts it to a format
1313         suitable for any attached connectors. On some devices, it may be
1314         possible to have a CRTC send data to more than one encoder. In that
1315         case, both encoders would receive data from the same scanout buffer,
1316         resulting in a "cloned" display configuration across the connectors
1317         attached to each encoder.
1318       </para>
1319       <sect3>
1320         <title>Encoder Initialization</title>
1321         <para>
1322           As for CRTCs, a KMS driver must create, initialize and register at
1323           least one struct <structname>drm_encoder</structname> instance. The
1324           instance is allocated and zeroed by the driver, possibly as part of a
1325           larger structure.
1326         </para>
1327         <para>
1328           Drivers must initialize the struct <structname>drm_encoder</structname>
1329           <structfield>possible_crtcs</structfield> and
1330           <structfield>possible_clones</structfield> fields before registering the
1331           encoder. Both fields are bitmasks of respectively the CRTCs that the
1332           encoder can be connected to, and sibling encoders candidate for cloning.
1333         </para>
1334         <para>
1335           After being initialized, the encoder must be registered with a call to
1336           <function>drm_encoder_init</function>. The function takes a pointer to
1337           the encoder functions and an encoder type. Supported types are
1338           <itemizedlist>
1339             <listitem>
1340               DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A
1341               </listitem>
1342             <listitem>
1343               DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort
1344             </listitem>
1345             <listitem>
1346               DRM_MODE_ENCODER_LVDS for display panels
1347             </listitem>
1348             <listitem>
1349               DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component,
1350               SCART)
1351             </listitem>
1352             <listitem>
1353               DRM_MODE_ENCODER_VIRTUAL for virtual machine displays
1354             </listitem>
1355           </itemizedlist>
1356         </para>
1357         <para>
1358           Encoders must be attached to a CRTC to be used. DRM drivers leave
1359           encoders unattached at initialization time. Applications (or the fbdev
1360           compatibility layer when implemented) are responsible for attaching the
1361           encoders they want to use to a CRTC.
1362         </para>
1363       </sect3>
1364       <sect3>
1365         <title>Encoder Operations</title>
1366         <itemizedlist>
1367           <listitem>
1368             <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis>
1369             <para>
1370               Called to destroy the encoder when not needed anymore. See
1371               <xref linkend="drm-kms-init"/>.
1372             </para>
1373           </listitem>
1374           <listitem>
1375             <synopsis>void (*set_property)(struct drm_plane *plane,
1376                      struct drm_property *property, uint64_t value);</synopsis>
1377             <para>
1378               Set the value of the given plane property to
1379               <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1380               for more information about properties.
1381             </para>
1382           </listitem>
1383         </itemizedlist>
1384       </sect3>
1385     </sect2>
1386     <sect2>
1387       <title>Connectors (struct <structname>drm_connector</structname>)</title>
1388       <para>
1389         A connector is the final destination for pixel data on a device, and
1390         usually connects directly to an external display device like a monitor
1391         or laptop panel. A connector can only be attached to one encoder at a
1392         time. The connector is also the structure where information about the
1393         attached display is kept, so it contains fields for display data, EDID
1394         data, DPMS &amp; connection status, and information about modes
1395         supported on the attached displays.
1396       </para>
1397       <sect3>
1398         <title>Connector Initialization</title>
1399         <para>
1400           Finally a KMS driver must create, initialize, register and attach at
1401           least one struct <structname>drm_connector</structname> instance. The
1402           instance is created as other KMS objects and initialized by setting the
1403           following fields.
1404         </para>
1405         <variablelist>
1406           <varlistentry>
1407             <term><structfield>interlace_allowed</structfield></term>
1408             <listitem><para>
1409               Whether the connector can handle interlaced modes.
1410             </para></listitem>
1411           </varlistentry>
1412           <varlistentry>
1413             <term><structfield>doublescan_allowed</structfield></term>
1414             <listitem><para>
1415               Whether the connector can handle doublescan.
1416             </para></listitem>
1417           </varlistentry>
1418           <varlistentry>
1419             <term><structfield>display_info
1420             </structfield></term>
1421             <listitem><para>
1422               Display information is filled from EDID information when a display
1423               is detected. For non hot-pluggable displays such as flat panels in
1424               embedded systems, the driver should initialize the
1425               <structfield>display_info</structfield>.<structfield>width_mm</structfield>
1426               and
1427               <structfield>display_info</structfield>.<structfield>height_mm</structfield>
1428               fields with the physical size of the display.
1429             </para></listitem>
1430           </varlistentry>
1431           <varlistentry>
1432             <term id="drm-kms-connector-polled"><structfield>polled</structfield></term>
1433             <listitem><para>
1434               Connector polling mode, a combination of
1435               <variablelist>
1436                 <varlistentry>
1437                   <term>DRM_CONNECTOR_POLL_HPD</term>
1438                   <listitem><para>
1439                     The connector generates hotplug events and doesn't need to be
1440                     periodically polled. The CONNECT and DISCONNECT flags must not
1441                     be set together with the HPD flag.
1442                   </para></listitem>
1443                 </varlistentry>
1444                 <varlistentry>
1445                   <term>DRM_CONNECTOR_POLL_CONNECT</term>
1446                   <listitem><para>
1447                     Periodically poll the connector for connection.
1448                   </para></listitem>
1449                 </varlistentry>
1450                 <varlistentry>
1451                   <term>DRM_CONNECTOR_POLL_DISCONNECT</term>
1452                   <listitem><para>
1453                     Periodically poll the connector for disconnection.
1454                   </para></listitem>
1455                 </varlistentry>
1456               </variablelist>
1457               Set to 0 for connectors that don't support connection status
1458               discovery.
1459             </para></listitem>
1460           </varlistentry>
1461         </variablelist>
1462         <para>
1463           The connector is then registered with a call to
1464           <function>drm_connector_init</function> with a pointer to the connector
1465           functions and a connector type, and exposed through sysfs with a call to
1466           <function>drm_connector_register</function>.
1467         </para>
1468         <para>
1469           Supported connector types are
1470           <itemizedlist>
1471             <listitem>DRM_MODE_CONNECTOR_VGA</listitem>
1472             <listitem>DRM_MODE_CONNECTOR_DVII</listitem>
1473             <listitem>DRM_MODE_CONNECTOR_DVID</listitem>
1474             <listitem>DRM_MODE_CONNECTOR_DVIA</listitem>
1475             <listitem>DRM_MODE_CONNECTOR_Composite</listitem>
1476             <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem>
1477             <listitem>DRM_MODE_CONNECTOR_LVDS</listitem>
1478             <listitem>DRM_MODE_CONNECTOR_Component</listitem>
1479             <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem>
1480             <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem>
1481             <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem>
1482             <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem>
1483             <listitem>DRM_MODE_CONNECTOR_TV</listitem>
1484             <listitem>DRM_MODE_CONNECTOR_eDP</listitem>
1485             <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem>
1486           </itemizedlist>
1487         </para>
1488         <para>
1489           Connectors must be attached to an encoder to be used. For devices that
1490           map connectors to encoders 1:1, the connector should be attached at
1491           initialization time with a call to
1492           <function>drm_mode_connector_attach_encoder</function>. The driver must
1493           also set the <structname>drm_connector</structname>
1494           <structfield>encoder</structfield> field to point to the attached
1495           encoder.
1496         </para>
1497         <para>
1498           Finally, drivers must initialize the connectors state change detection
1499           with a call to <function>drm_kms_helper_poll_init</function>. If at
1500           least one connector is pollable but can't generate hotplug interrupts
1501           (indicated by the DRM_CONNECTOR_POLL_CONNECT and
1502           DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will
1503           automatically be queued to periodically poll for changes. Connectors
1504           that can generate hotplug interrupts must be marked with the
1505           DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must
1506           call <function>drm_helper_hpd_irq_event</function>. The function will
1507           queue a delayed work to check the state of all connectors, but no
1508           periodic polling will be done.
1509         </para>
1510       </sect3>
1511       <sect3>
1512         <title>Connector Operations</title>
1513         <note><para>
1514           Unless otherwise state, all operations are mandatory.
1515         </para></note>
1516         <sect4>
1517           <title>DPMS</title>
1518           <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis>
1519           <para>
1520             The DPMS operation sets the power state of a connector. The mode
1521             argument is one of
1522             <itemizedlist>
1523               <listitem><para>DRM_MODE_DPMS_ON</para></listitem>
1524               <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem>
1525               <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem>
1526               <listitem><para>DRM_MODE_DPMS_OFF</para></listitem>
1527             </itemizedlist>
1528           </para>
1529           <para>
1530             In all but DPMS_ON mode the encoder to which the connector is attached
1531             should put the display in low-power mode by driving its signals
1532             appropriately. If more than one connector is attached to the encoder
1533             care should be taken not to change the power state of other displays as
1534             a side effect. Low-power mode should be propagated to the encoders and
1535             CRTCs when all related connectors are put in low-power mode.
1536           </para>
1537         </sect4>
1538         <sect4>
1539           <title>Modes</title>
1540           <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
1541                       uint32_t max_height);</synopsis>
1542           <para>
1543             Fill the mode list with all supported modes for the connector. If the
1544             <parameter>max_width</parameter> and <parameter>max_height</parameter>
1545             arguments are non-zero, the implementation must ignore all modes wider
1546             than <parameter>max_width</parameter> or higher than
1547             <parameter>max_height</parameter>.
1548           </para>
1549           <para>
1550             The connector must also fill in this operation its
1551             <structfield>display_info</structfield>
1552             <structfield>width_mm</structfield> and
1553             <structfield>height_mm</structfield> fields with the connected display
1554             physical size in millimeters. The fields should be set to 0 if the value
1555             isn't known or is not applicable (for instance for projector devices).
1556           </para>
1557         </sect4>
1558         <sect4>
1559           <title>Connection Status</title>
1560           <para>
1561             The connection status is updated through polling or hotplug events when
1562             supported (see <xref linkend="drm-kms-connector-polled"/>). The status
1563             value is reported to userspace through ioctls and must not be used
1564             inside the driver, as it only gets initialized by a call to
1565             <function>drm_mode_getconnector</function> from userspace.
1566           </para>
1567           <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector,
1568                                         bool force);</synopsis>
1569           <para>
1570             Check to see if anything is attached to the connector. The
1571             <parameter>force</parameter> parameter is set to false whilst polling or
1572             to true when checking the connector due to user request.
1573             <parameter>force</parameter> can be used by the driver to avoid
1574             expensive, destructive operations during automated probing.
1575           </para>
1576           <para>
1577             Return connector_status_connected if something is connected to the
1578             connector, connector_status_disconnected if nothing is connected and
1579             connector_status_unknown if the connection state isn't known.
1580           </para>
1581           <para>
1582             Drivers should only return connector_status_connected if the connection
1583             status has really been probed as connected. Connectors that can't detect
1584             the connection status, or failed connection status probes, should return
1585             connector_status_unknown.
1586           </para>
1587         </sect4>
1588         <sect4>
1589           <title>Miscellaneous</title>
1590           <itemizedlist>
1591             <listitem>
1592               <synopsis>void (*set_property)(struct drm_connector *connector,
1593                      struct drm_property *property, uint64_t value);</synopsis>
1594               <para>
1595                 Set the value of the given connector property to
1596                 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/>
1597                 for more information about properties.
1598               </para>
1599             </listitem>
1600             <listitem>
1601               <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis>
1602               <para>
1603                 Destroy the connector when not needed anymore. See
1604                 <xref linkend="drm-kms-init"/>.
1605               </para>
1606             </listitem>
1607           </itemizedlist>
1608         </sect4>
1609       </sect3>
1610     </sect2>
1611     <sect2>
1612       <title>Cleanup</title>
1613       <para>
1614         The DRM core manages its objects' lifetime. When an object is not needed
1615         anymore the core calls its destroy function, which must clean up and
1616         free every resource allocated for the object. Every
1617         <function>drm_*_init</function> call must be matched with a
1618         corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs
1619         (<function>drm_crtc_cleanup</function>), planes
1620         (<function>drm_plane_cleanup</function>), encoders
1621         (<function>drm_encoder_cleanup</function>) and connectors
1622         (<function>drm_connector_cleanup</function>). Furthermore, connectors
1623         that have been added to sysfs must be removed by a call to
1624         <function>drm_connector_unregister</function> before calling
1625         <function>drm_connector_cleanup</function>.
1626       </para>
1627       <para>
1628         Connectors state change detection must be cleanup up with a call to
1629         <function>drm_kms_helper_poll_fini</function>.
1630       </para>
1631     </sect2>
1632     <sect2>
1633       <title>Output discovery and initialization example</title>
1634       <programlisting><![CDATA[
1635 void intel_crt_init(struct drm_device *dev)
1636 {
1637         struct drm_connector *connector;
1638         struct intel_output *intel_output;
1639
1640         intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
1641         if (!intel_output)
1642                 return;
1643
1644         connector = &intel_output->base;
1645         drm_connector_init(dev, &intel_output->base,
1646                            &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1647
1648         drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
1649                          DRM_MODE_ENCODER_DAC);
1650
1651         drm_mode_connector_attach_encoder(&intel_output->base,
1652                                           &intel_output->enc);
1653
1654         /* Set up the DDC bus. */
1655         intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
1656         if (!intel_output->ddc_bus) {
1657                 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
1658                            "failed.\n");
1659                 return;
1660         }
1661
1662         intel_output->type = INTEL_OUTPUT_ANALOG;
1663         connector->interlace_allowed = 0;
1664         connector->doublescan_allowed = 0;
1665
1666         drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
1667         drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);
1668
1669         drm_connector_register(connector);
1670 }]]></programlisting>
1671       <para>
1672         In the example above (taken from the i915 driver), a CRTC, connector and
1673         encoder combination is created. A device-specific i2c bus is also
1674         created for fetching EDID data and performing monitor detection. Once
1675         the process is complete, the new connector is registered with sysfs to
1676         make its properties available to applications.
1677       </para>
1678     </sect2>
1679     <sect2>
1680       <title>KMS API Functions</title>
1681 !Edrivers/gpu/drm/drm_crtc.c
1682     </sect2>
1683   </sect1>
1684
1685   <!-- Internals: kms helper functions -->
1686
1687   <sect1>
1688     <title>Mode Setting Helper Functions</title>
1689     <para>
1690       The CRTC, encoder and connector functions provided by the drivers
1691       implement the DRM API. They're called by the DRM core and ioctl handlers
1692       to handle device state changes and configuration request. As implementing
1693       those functions often requires logic not specific to drivers, mid-layer
1694       helper functions are available to avoid duplicating boilerplate code.
1695     </para>
1696     <para>
1697       The DRM core contains one mid-layer implementation. The mid-layer provides
1698       implementations of several CRTC, encoder and connector functions (called
1699       from the top of the mid-layer) that pre-process requests and call
1700       lower-level functions provided by the driver (at the bottom of the
1701       mid-layer). For instance, the
1702       <function>drm_crtc_helper_set_config</function> function can be used to
1703       fill the struct <structname>drm_crtc_funcs</structname>
1704       <structfield>set_config</structfield> field. When called, it will split
1705       the <methodname>set_config</methodname> operation in smaller, simpler
1706       operations and call the driver to handle them.
1707     </para>
1708     <para>
1709       To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>,
1710       <function>drm_encoder_helper_add</function> and
1711       <function>drm_connector_helper_add</function> functions to install their
1712       mid-layer bottom operations handlers, and fill the
1713       <structname>drm_crtc_funcs</structname>,
1714       <structname>drm_encoder_funcs</structname> and
1715       <structname>drm_connector_funcs</structname> structures with pointers to
1716       the mid-layer top API functions. Installing the mid-layer bottom operation
1717       handlers is best done right after registering the corresponding KMS object.
1718     </para>
1719     <para>
1720       The mid-layer is not split between CRTC, encoder and connector operations.
1721       To use it, a driver must provide bottom functions for all of the three KMS
1722       entities.
1723     </para>
1724     <sect2>
1725       <title>Helper Functions</title>
1726       <itemizedlist>
1727         <listitem>
1728           <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis>
1729           <para>
1730             The <function>drm_crtc_helper_set_config</function> helper function
1731             is a CRTC <methodname>set_config</methodname> implementation. It
1732             first tries to locate the best encoder for each connector by calling
1733             the connector <methodname>best_encoder</methodname> helper
1734             operation.
1735           </para>
1736           <para>
1737             After locating the appropriate encoders, the helper function will
1738             call the <methodname>mode_fixup</methodname> encoder and CRTC helper
1739             operations to adjust the requested mode, or reject it completely in
1740             which case an error will be returned to the application. If the new
1741             configuration after mode adjustment is identical to the current
1742             configuration the helper function will return without performing any
1743             other operation.
1744           </para>
1745           <para>
1746             If the adjusted mode is identical to the current mode but changes to
1747             the frame buffer need to be applied, the
1748             <function>drm_crtc_helper_set_config</function> function will call
1749             the CRTC <methodname>mode_set_base</methodname> helper operation. If
1750             the adjusted mode differs from the current mode, or if the
1751             <methodname>mode_set_base</methodname> helper operation is not
1752             provided, the helper function performs a full mode set sequence by
1753             calling the <methodname>prepare</methodname>,
1754             <methodname>mode_set</methodname> and
1755             <methodname>commit</methodname> CRTC and encoder helper operations,
1756             in that order.
1757           </para>
1758         </listitem>
1759         <listitem>
1760           <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis>
1761           <para>
1762             The <function>drm_helper_connector_dpms</function> helper function
1763             is a connector <methodname>dpms</methodname> implementation that
1764             tracks power state of connectors. To use the function, drivers must
1765             provide <methodname>dpms</methodname> helper operations for CRTCs
1766             and encoders to apply the DPMS state to the device.
1767           </para>
1768           <para>
1769             The mid-layer doesn't track the power state of CRTCs and encoders.
1770             The <methodname>dpms</methodname> helper operations can thus be
1771             called with a mode identical to the currently active mode.
1772           </para>
1773         </listitem>
1774         <listitem>
1775           <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
1776                                             uint32_t maxX, uint32_t maxY);</synopsis>
1777           <para>
1778             The <function>drm_helper_probe_single_connector_modes</function> helper
1779             function is a connector <methodname>fill_modes</methodname>
1780             implementation that updates the connection status for the connector
1781             and then retrieves a list of modes by calling the connector
1782             <methodname>get_modes</methodname> helper operation.
1783           </para>
1784           <para>
1785             The function filters out modes larger than
1786             <parameter>max_width</parameter> and <parameter>max_height</parameter>
1787             if specified. It then calls the connector
1788             <methodname>mode_valid</methodname> helper operation for  each mode in
1789             the probed list to check whether the mode is valid for the connector.
1790           </para>
1791         </listitem>
1792       </itemizedlist>
1793     </sect2>
1794     <sect2>
1795       <title>CRTC Helper Operations</title>
1796       <itemizedlist>
1797         <listitem id="drm-helper-crtc-mode-fixup">
1798           <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc,
1799                        const struct drm_display_mode *mode,
1800                        struct drm_display_mode *adjusted_mode);</synopsis>
1801           <para>
1802             Let CRTCs adjust the requested mode or reject it completely. This
1803             operation returns true if the mode is accepted (possibly after being
1804             adjusted) or false if it is rejected.
1805           </para>
1806           <para>
1807             The <methodname>mode_fixup</methodname> operation should reject the
1808             mode if it can't reasonably use it. The definition of "reasonable"
1809             is currently fuzzy in this context. One possible behaviour would be
1810             to set the adjusted mode to the panel timings when a fixed-mode
1811             panel is used with hardware capable of scaling. Another behaviour
1812             would be to accept any input mode and adjust it to the closest mode
1813             supported by the hardware (FIXME: This needs to be clarified).
1814           </para>
1815         </listitem>
1816         <listitem>
1817           <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
1818                      struct drm_framebuffer *old_fb)</synopsis>
1819           <para>
1820             Move the CRTC on the current frame buffer (stored in
1821             <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame
1822             buffer, x position or y position may have been modified.
1823           </para>
1824           <para>
1825             This helper operation is optional. If not provided, the
1826             <function>drm_crtc_helper_set_config</function> function will fall
1827             back to the <methodname>mode_set</methodname> helper operation.
1828           </para>
1829           <note><para>
1830             FIXME: Why are x and y passed as arguments, as they can be accessed
1831             through <literal>crtc-&gt;x</literal> and
1832             <literal>crtc-&gt;y</literal>?
1833           </para></note>
1834         </listitem>
1835         <listitem>
1836           <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis>
1837           <para>
1838             Prepare the CRTC for mode setting. This operation is called after
1839             validating the requested mode. Drivers use it to perform
1840             device-specific operations required before setting the new mode.
1841           </para>
1842         </listitem>
1843         <listitem>
1844           <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
1845                 struct drm_display_mode *adjusted_mode, int x, int y,
1846                 struct drm_framebuffer *old_fb);</synopsis>
1847           <para>
1848             Set a new mode, position and frame buffer. Depending on the device
1849             requirements, the mode can be stored internally by the driver and
1850             applied in the <methodname>commit</methodname> operation, or
1851             programmed to the hardware immediately.
1852           </para>
1853           <para>
1854             The <methodname>mode_set</methodname> operation returns 0 on success
1855             or a negative error code if an error occurs.
1856           </para>
1857         </listitem>
1858         <listitem>
1859           <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis>
1860           <para>
1861             Commit a mode. This operation is called after setting the new mode.
1862             Upon return the device must use the new mode and be fully
1863             operational.
1864           </para>
1865         </listitem>
1866       </itemizedlist>
1867     </sect2>
1868     <sect2>
1869       <title>Encoder Helper Operations</title>
1870       <itemizedlist>
1871         <listitem>
1872           <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder,
1873                        const struct drm_display_mode *mode,
1874                        struct drm_display_mode *adjusted_mode);</synopsis>
1875           <para>
1876             Let encoders adjust the requested mode or reject it completely. This
1877             operation returns true if the mode is accepted (possibly after being
1878             adjusted) or false if it is rejected. See the
1879             <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper
1880             operation</link> for an explanation of the allowed adjustments.
1881           </para>
1882         </listitem>
1883         <listitem>
1884           <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis>
1885           <para>
1886             Prepare the encoder for mode setting. This operation is called after
1887             validating the requested mode. Drivers use it to perform
1888             device-specific operations required before setting the new mode.
1889           </para>
1890         </listitem>
1891         <listitem>
1892           <synopsis>void (*mode_set)(struct drm_encoder *encoder,
1893                  struct drm_display_mode *mode,
1894                  struct drm_display_mode *adjusted_mode);</synopsis>
1895           <para>
1896             Set a new mode. Depending on the device requirements, the mode can
1897             be stored internally by the driver and applied in the
1898             <methodname>commit</methodname> operation, or programmed to the
1899             hardware immediately.
1900           </para>
1901         </listitem>
1902         <listitem>
1903           <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis>
1904           <para>
1905             Commit a mode. This operation is called after setting the new mode.
1906             Upon return the device must use the new mode and be fully
1907             operational.
1908           </para>
1909         </listitem>
1910       </itemizedlist>
1911     </sect2>
1912     <sect2>
1913       <title>Connector Helper Operations</title>
1914       <itemizedlist>
1915         <listitem>
1916           <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis>
1917           <para>
1918             Return a pointer to the best encoder for the connecter. Device that
1919             map connectors to encoders 1:1 simply return the pointer to the
1920             associated encoder. This operation is mandatory.
1921           </para>
1922         </listitem>
1923         <listitem>
1924           <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis>
1925           <para>
1926             Fill the connector's <structfield>probed_modes</structfield> list
1927             by parsing EDID data with <function>drm_add_edid_modes</function> or
1928             calling <function>drm_mode_probed_add</function> directly for every
1929             supported mode and return the number of modes it has detected. This
1930             operation is mandatory.
1931           </para>
1932           <para>
1933             When adding modes manually the driver creates each mode with a call to
1934             <function>drm_mode_create</function> and must fill the following fields.
1935             <itemizedlist>
1936               <listitem>
1937                 <synopsis>__u32 type;</synopsis>
1938                 <para>
1939                   Mode type bitmask, a combination of
1940                   <variablelist>
1941                     <varlistentry>
1942                       <term>DRM_MODE_TYPE_BUILTIN</term>
1943                       <listitem><para>not used?</para></listitem>
1944                     </varlistentry>
1945                     <varlistentry>
1946                       <term>DRM_MODE_TYPE_CLOCK_C</term>
1947                       <listitem><para>not used?</para></listitem>
1948                     </varlistentry>
1949                     <varlistentry>
1950                       <term>DRM_MODE_TYPE_CRTC_C</term>
1951                       <listitem><para>not used?</para></listitem>
1952                     </varlistentry>
1953                     <varlistentry>
1954                       <term>
1955         DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector
1956                       </term>
1957                       <listitem>
1958                         <para>not used?</para>
1959                       </listitem>
1960                     </varlistentry>
1961                     <varlistentry>
1962                       <term>DRM_MODE_TYPE_DEFAULT</term>
1963                       <listitem><para>not used?</para></listitem>
1964                     </varlistentry>
1965                     <varlistentry>
1966                       <term>DRM_MODE_TYPE_USERDEF</term>
1967                       <listitem><para>not used?</para></listitem>
1968                     </varlistentry>
1969                     <varlistentry>
1970                       <term>DRM_MODE_TYPE_DRIVER</term>
1971                       <listitem>
1972                         <para>
1973                           The mode has been created by the driver (as opposed to
1974                           to user-created modes).
1975                         </para>
1976                       </listitem>
1977                     </varlistentry>
1978                   </variablelist>
1979                   Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they
1980                   create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred
1981                   mode.
1982                 </para>
1983               </listitem>
1984               <listitem>
1985                 <synopsis>__u32 clock;</synopsis>
1986                 <para>Pixel clock frequency in kHz unit</para>
1987               </listitem>
1988               <listitem>
1989                 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal;
1990     __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis>
1991                 <para>Horizontal and vertical timing information</para>
1992                 <screen><![CDATA[
1993              Active                 Front           Sync           Back
1994              Region                 Porch                          Porch
1995     <-----------------------><----------------><-------------><-------------->
1996
1997       //////////////////////|
1998      ////////////////////// |
1999     //////////////////////  |..................               ................
2000                                                _______________
2001
2002     <----- [hv]display ----->
2003     <------------- [hv]sync_start ------------>
2004     <--------------------- [hv]sync_end --------------------->
2005     <-------------------------------- [hv]total ----------------------------->
2006 ]]></screen>
2007               </listitem>
2008               <listitem>
2009                 <synopsis>__u16 hskew;
2010     __u16 vscan;</synopsis>
2011                 <para>Unknown</para>
2012               </listitem>
2013               <listitem>
2014                 <synopsis>__u32 flags;</synopsis>
2015                 <para>
2016                   Mode flags, a combination of
2017                   <variablelist>
2018                     <varlistentry>
2019                       <term>DRM_MODE_FLAG_PHSYNC</term>
2020                       <listitem><para>
2021                         Horizontal sync is active high
2022                       </para></listitem>
2023                     </varlistentry>
2024                     <varlistentry>
2025                       <term>DRM_MODE_FLAG_NHSYNC</term>
2026                       <listitem><para>
2027                         Horizontal sync is active low
2028                       </para></listitem>
2029                     </varlistentry>
2030                     <varlistentry>
2031                       <term>DRM_MODE_FLAG_PVSYNC</term>
2032                       <listitem><para>
2033                         Vertical sync is active high
2034                       </para></listitem>
2035                     </varlistentry>
2036                     <varlistentry>
2037                       <term>DRM_MODE_FLAG_NVSYNC</term>
2038                       <listitem><para>
2039                         Vertical sync is active low
2040                       </para></listitem>
2041                     </varlistentry>
2042                     <varlistentry>
2043                       <term>DRM_MODE_FLAG_INTERLACE</term>
2044                       <listitem><para>
2045                         Mode is interlaced
2046                       </para></listitem>
2047                     </varlistentry>
2048                     <varlistentry>
2049                       <term>DRM_MODE_FLAG_DBLSCAN</term>
2050                       <listitem><para>
2051                         Mode uses doublescan
2052                       </para></listitem>
2053                     </varlistentry>
2054                     <varlistentry>
2055                       <term>DRM_MODE_FLAG_CSYNC</term>
2056                       <listitem><para>
2057                         Mode uses composite sync
2058                       </para></listitem>
2059                     </varlistentry>
2060                     <varlistentry>
2061                       <term>DRM_MODE_FLAG_PCSYNC</term>
2062                       <listitem><para>
2063                         Composite sync is active high
2064                       </para></listitem>
2065                     </varlistentry>
2066                     <varlistentry>
2067                       <term>DRM_MODE_FLAG_NCSYNC</term>
2068                       <listitem><para>
2069                         Composite sync is active low
2070                       </para></listitem>
2071                     </varlistentry>
2072                     <varlistentry>
2073                       <term>DRM_MODE_FLAG_HSKEW</term>
2074                       <listitem><para>
2075                         hskew provided (not used?)
2076                       </para></listitem>
2077                     </varlistentry>
2078                     <varlistentry>
2079                       <term>DRM_MODE_FLAG_BCAST</term>
2080                       <listitem><para>
2081                         not used?
2082                       </para></listitem>
2083                     </varlistentry>
2084                     <varlistentry>
2085                       <term>DRM_MODE_FLAG_PIXMUX</term>
2086                       <listitem><para>
2087                         not used?
2088                       </para></listitem>
2089                     </varlistentry>
2090                     <varlistentry>
2091                       <term>DRM_MODE_FLAG_DBLCLK</term>
2092                       <listitem><para>
2093                         not used?
2094                       </para></listitem>
2095                     </varlistentry>
2096                     <varlistentry>
2097                       <term>DRM_MODE_FLAG_CLKDIV2</term>
2098                       <listitem><para>
2099                         ?
2100                       </para></listitem>
2101                     </varlistentry>
2102                   </variablelist>
2103                 </para>
2104                 <para>
2105                   Note that modes marked with the INTERLACE or DBLSCAN flags will be
2106                   filtered out by
2107                   <function>drm_helper_probe_single_connector_modes</function> if
2108                   the connector's <structfield>interlace_allowed</structfield> or
2109                   <structfield>doublescan_allowed</structfield> field is set to 0.
2110                 </para>
2111               </listitem>
2112               <listitem>
2113                 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis>
2114                 <para>
2115                   Mode name. The driver must call
2116                   <function>drm_mode_set_name</function> to fill the mode name from
2117                   <structfield>hdisplay</structfield>,
2118                   <structfield>vdisplay</structfield> and interlace flag after
2119                   filling the corresponding fields.
2120                 </para>
2121               </listitem>
2122             </itemizedlist>
2123           </para>
2124           <para>
2125             The <structfield>vrefresh</structfield> value is computed by
2126             <function>drm_helper_probe_single_connector_modes</function>.
2127           </para>
2128           <para>
2129             When parsing EDID data, <function>drm_add_edid_modes</function> fill the
2130             connector <structfield>display_info</structfield>
2131             <structfield>width_mm</structfield> and
2132             <structfield>height_mm</structfield> fields. When creating modes
2133             manually the <methodname>get_modes</methodname> helper operation must
2134             set the <structfield>display_info</structfield>
2135             <structfield>width_mm</structfield> and
2136             <structfield>height_mm</structfield> fields if they haven't been set
2137             already (for instance at initilization time when a fixed-size panel is
2138             attached to the connector). The mode <structfield>width_mm</structfield>
2139             and <structfield>height_mm</structfield> fields are only used internally
2140             during EDID parsing and should not be set when creating modes manually.
2141           </para>
2142         </listitem>
2143         <listitem>
2144           <synopsis>int (*mode_valid)(struct drm_connector *connector,
2145                   struct drm_display_mode *mode);</synopsis>
2146           <para>
2147             Verify whether a mode is valid for the connector. Return MODE_OK for
2148             supported modes and one of the enum drm_mode_status values (MODE_*)
2149             for unsupported modes. This operation is mandatory.
2150           </para>
2151           <para>
2152             As the mode rejection reason is currently not used beside for
2153             immediately removing the unsupported mode, an implementation can
2154             return MODE_BAD regardless of the exact reason why the mode is not
2155             valid.
2156           </para>
2157           <note><para>
2158             Note that the <methodname>mode_valid</methodname> helper operation is
2159             only called for modes detected by the device, and
2160             <emphasis>not</emphasis> for modes set by the user through the CRTC
2161             <methodname>set_config</methodname> operation.
2162           </para></note>
2163         </listitem>
2164       </itemizedlist>
2165     </sect2>
2166     <sect2>
2167       <title>Modeset Helper Functions Reference</title>
2168 !Edrivers/gpu/drm/drm_crtc_helper.c
2169     </sect2>
2170     <sect2>
2171       <title>fbdev Helper Functions Reference</title>
2172 !Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers
2173 !Edrivers/gpu/drm/drm_fb_helper.c
2174 !Iinclude/drm/drm_fb_helper.h
2175     </sect2>
2176     <sect2>
2177       <title>Display Port Helper Functions Reference</title>
2178 !Pdrivers/gpu/drm/drm_dp_helper.c dp helpers
2179 !Iinclude/drm/drm_dp_helper.h
2180 !Edrivers/gpu/drm/drm_dp_helper.c
2181     </sect2>
2182     <sect2>
2183       <title>EDID Helper Functions Reference</title>
2184 !Edrivers/gpu/drm/drm_edid.c
2185     </sect2>
2186     <sect2>
2187       <title>Rectangle Utilities Reference</title>
2188 !Pinclude/drm/drm_rect.h rect utils
2189 !Iinclude/drm/drm_rect.h
2190 !Edrivers/gpu/drm/drm_rect.c
2191     </sect2>
2192     <sect2>
2193       <title>Flip-work Helper Reference</title>
2194 !Pinclude/drm/drm_flip_work.h flip utils
2195 !Iinclude/drm/drm_flip_work.h
2196 !Edrivers/gpu/drm/drm_flip_work.c
2197     </sect2>
2198     <sect2>
2199       <title>VMA Offset Manager</title>
2200 !Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager
2201 !Edrivers/gpu/drm/drm_vma_manager.c
2202 !Iinclude/drm/drm_vma_manager.h
2203     </sect2>
2204   </sect1>
2205
2206   <!-- Internals: kms properties -->
2207
2208   <sect1 id="drm-kms-properties">
2209     <title>KMS Properties</title>
2210     <para>
2211       Drivers may need to expose additional parameters to applications than
2212       those described in the previous sections. KMS supports attaching
2213       properties to CRTCs, connectors and planes and offers a userspace API to
2214       list, get and set the property values.
2215     </para>
2216     <para>
2217       Properties are identified by a name that uniquely defines the property
2218       purpose, and store an associated value. For all property types except blob
2219       properties the value is a 64-bit unsigned integer.
2220     </para>
2221     <para>
2222       KMS differentiates between properties and property instances. Drivers
2223       first create properties and then create and associate individual instances
2224       of those properties to objects. A property can be instantiated multiple
2225       times and associated with different objects. Values are stored in property
2226       instances, and all other property information are stored in the propery
2227       and shared between all instances of the property.
2228     </para>
2229     <para>
2230       Every property is created with a type that influences how the KMS core
2231       handles the property. Supported property types are
2232       <variablelist>
2233         <varlistentry>
2234           <term>DRM_MODE_PROP_RANGE</term>
2235           <listitem><para>Range properties report their minimum and maximum
2236             admissible values. The KMS core verifies that values set by
2237             application fit in that range.</para></listitem>
2238         </varlistentry>
2239         <varlistentry>
2240           <term>DRM_MODE_PROP_ENUM</term>
2241           <listitem><para>Enumerated properties take a numerical value that
2242             ranges from 0 to the number of enumerated values defined by the
2243             property minus one, and associate a free-formed string name to each
2244             value. Applications can retrieve the list of defined value-name pairs
2245             and use the numerical value to get and set property instance values.
2246             </para></listitem>
2247         </varlistentry>
2248         <varlistentry>
2249           <term>DRM_MODE_PROP_BITMASK</term>
2250           <listitem><para>Bitmask properties are enumeration properties that
2251             additionally restrict all enumerated values to the 0..63 range.
2252             Bitmask property instance values combine one or more of the
2253             enumerated bits defined by the property.</para></listitem>
2254         </varlistentry>
2255         <varlistentry>
2256           <term>DRM_MODE_PROP_BLOB</term>
2257           <listitem><para>Blob properties store a binary blob without any format
2258             restriction. The binary blobs are created as KMS standalone objects,
2259             and blob property instance values store the ID of their associated
2260             blob object.</para>
2261             <para>Blob properties are only used for the connector EDID property
2262             and cannot be created by drivers.</para></listitem>
2263         </varlistentry>
2264       </variablelist>
2265     </para>
2266     <para>
2267       To create a property drivers call one of the following functions depending
2268       on the property type. All property creation functions take property flags
2269       and name, as well as type-specific arguments.
2270       <itemizedlist>
2271         <listitem>
2272           <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
2273                                                const char *name,
2274                                                uint64_t min, uint64_t max);</synopsis>
2275           <para>Create a range property with the given minimum and maximum
2276             values.</para>
2277         </listitem>
2278         <listitem>
2279           <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
2280                                               const char *name,
2281                                               const struct drm_prop_enum_list *props,
2282                                               int num_values);</synopsis>
2283           <para>Create an enumerated property. The <parameter>props</parameter>
2284             argument points to an array of <parameter>num_values</parameter>
2285             value-name pairs.</para>
2286         </listitem>
2287         <listitem>
2288           <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
2289                                                  int flags, const char *name,
2290                                                  const struct drm_prop_enum_list *props,
2291                                                  int num_values);</synopsis>
2292           <para>Create a bitmask property. The <parameter>props</parameter>
2293             argument points to an array of <parameter>num_values</parameter>
2294             value-name pairs.</para>
2295         </listitem>
2296       </itemizedlist>
2297     </para>
2298     <para>
2299       Properties can additionally be created as immutable, in which case they
2300       will be read-only for applications but can be modified by the driver. To
2301       create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE
2302       flag at property creation time.
2303     </para>
2304     <para>
2305       When no array of value-name pairs is readily available at property
2306       creation time for enumerated or range properties, drivers can create
2307       the property using the <function>drm_property_create</function> function
2308       and manually add enumeration value-name pairs by calling the
2309       <function>drm_property_add_enum</function> function. Care must be taken to
2310       properly specify the property type through the <parameter>flags</parameter>
2311       argument.
2312     </para>
2313     <para>
2314       After creating properties drivers can attach property instances to CRTC,
2315       connector and plane objects by calling the
2316       <function>drm_object_attach_property</function>. The function takes a
2317       pointer to the target object, a pointer to the previously created property
2318       and an initial instance value.
2319     </para>
2320   </sect1>
2321
2322   <!-- Internals: vertical blanking -->
2323
2324   <sect1 id="drm-vertical-blank">
2325     <title>Vertical Blanking</title>
2326     <para>
2327       Vertical blanking plays a major role in graphics rendering. To achieve
2328       tear-free display, users must synchronize page flips and/or rendering to
2329       vertical blanking. The DRM API offers ioctls to perform page flips
2330       synchronized to vertical blanking and wait for vertical blanking.
2331     </para>
2332     <para>
2333       The DRM core handles most of the vertical blanking management logic, which
2334       involves filtering out spurious interrupts, keeping race-free blanking
2335       counters, coping with counter wrap-around and resets and keeping use
2336       counts. It relies on the driver to generate vertical blanking interrupts
2337       and optionally provide a hardware vertical blanking counter. Drivers must
2338       implement the following operations.
2339     </para>
2340     <itemizedlist>
2341       <listitem>
2342         <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc);
2343 void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis>
2344         <para>
2345           Enable or disable vertical blanking interrupts for the given CRTC.
2346         </para>
2347       </listitem>
2348       <listitem>
2349         <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis>
2350         <para>
2351           Retrieve the value of the vertical blanking counter for the given
2352           CRTC. If the hardware maintains a vertical blanking counter its value
2353           should be returned. Otherwise drivers can use the
2354           <function>drm_vblank_count</function> helper function to handle this
2355           operation.
2356         </para>
2357       </listitem>
2358     </itemizedlist>
2359     <para>
2360       Drivers must initialize the vertical blanking handling core with a call to
2361       <function>drm_vblank_init</function> in their
2362       <methodname>load</methodname> operation. The function will set the struct
2363       <structname>drm_device</structname>
2364       <structfield>vblank_disable_allowed</structfield> field to 0. This will
2365       keep vertical blanking interrupts enabled permanently until the first mode
2366       set operation, where <structfield>vblank_disable_allowed</structfield> is
2367       set to 1. The reason behind this is not clear. Drivers can set the field
2368       to 1 after <function>calling drm_vblank_init</function> to make vertical
2369       blanking interrupts dynamically managed from the beginning.
2370     </para>
2371     <para>
2372       Vertical blanking interrupts can be enabled by the DRM core or by drivers
2373       themselves (for instance to handle page flipping operations). The DRM core
2374       maintains a vertical blanking use count to ensure that the interrupts are
2375       not disabled while a user still needs them. To increment the use count,
2376       drivers call <function>drm_vblank_get</function>. Upon return vertical
2377       blanking interrupts are guaranteed to be enabled.
2378     </para>
2379     <para>
2380       To decrement the use count drivers call
2381       <function>drm_vblank_put</function>. Only when the use count drops to zero
2382       will the DRM core disable the vertical blanking interrupts after a delay
2383       by scheduling a timer. The delay is accessible through the vblankoffdelay
2384       module parameter or the <varname>drm_vblank_offdelay</varname> global
2385       variable and expressed in milliseconds. Its default value is 5000 ms.
2386     </para>
2387     <para>
2388       When a vertical blanking interrupt occurs drivers only need to call the
2389       <function>drm_handle_vblank</function> function to account for the
2390       interrupt.
2391     </para>
2392     <para>
2393       Resources allocated by <function>drm_vblank_init</function> must be freed
2394       with a call to <function>drm_vblank_cleanup</function> in the driver
2395       <methodname>unload</methodname> operation handler.
2396     </para>
2397   </sect1>
2398
2399   <!-- Internals: open/close, file operations and ioctls -->
2400
2401   <sect1>
2402     <title>Open/Close, File Operations and IOCTLs</title>
2403     <sect2>
2404       <title>Open and Close</title>
2405       <synopsis>int (*firstopen) (struct drm_device *);
2406 void (*lastclose) (struct drm_device *);
2407 int (*open) (struct drm_device *, struct drm_file *);
2408 void (*preclose) (struct drm_device *, struct drm_file *);
2409 void (*postclose) (struct drm_device *, struct drm_file *);</synopsis>
2410       <abstract>Open and close handlers. None of those methods are mandatory.
2411       </abstract>
2412       <para>
2413         The <methodname>firstopen</methodname> method is called by the DRM core
2414         for legacy UMS (User Mode Setting) drivers only when an application
2415         opens a device that has no other opened file handle. UMS drivers can
2416         implement it to acquire device resources. KMS drivers can't use the
2417         method and must acquire resources in the <methodname>load</methodname>
2418         method instead.
2419       </para>
2420       <para>
2421         Similarly the <methodname>lastclose</methodname> method is called when
2422         the last application holding a file handle opened on the device closes
2423         it, for both UMS and KMS drivers. Additionally, the method is also
2424         called at module unload time or, for hot-pluggable devices, when the
2425         device is unplugged. The <methodname>firstopen</methodname> and
2426         <methodname>lastclose</methodname> calls can thus be unbalanced.
2427       </para>
2428       <para>
2429         The <methodname>open</methodname> method is called every time the device
2430         is opened by an application. Drivers can allocate per-file private data
2431         in this method and store them in the struct
2432         <structname>drm_file</structname> <structfield>driver_priv</structfield>
2433         field. Note that the <methodname>open</methodname> method is called
2434         before <methodname>firstopen</methodname>.
2435       </para>
2436       <para>
2437         The close operation is split into <methodname>preclose</methodname> and
2438         <methodname>postclose</methodname> methods. Drivers must stop and
2439         cleanup all per-file operations in the <methodname>preclose</methodname>
2440         method. For instance pending vertical blanking and page flip events must
2441         be cancelled. No per-file operation is allowed on the file handle after
2442         returning from the <methodname>preclose</methodname> method.
2443       </para>
2444       <para>
2445         Finally the <methodname>postclose</methodname> method is called as the
2446         last step of the close operation, right before calling the
2447         <methodname>lastclose</methodname> method if no other open file handle
2448         exists for the device. Drivers that have allocated per-file private data
2449         in the <methodname>open</methodname> method should free it here.
2450       </para>
2451       <para>
2452         The <methodname>lastclose</methodname> method should restore CRTC and
2453         plane properties to default value, so that a subsequent open of the
2454         device will not inherit state from the previous user. It can also be
2455         used to execute delayed power switching state changes, e.g. in
2456         conjunction with the vga-switcheroo infrastructure. Beyond that KMS
2457         drivers should not do any further cleanup. Only legacy UMS drivers might
2458         need to clean up device state so that the vga console or an independent
2459         fbdev driver could take over.
2460       </para>
2461     </sect2>
2462     <sect2>
2463       <title>File Operations</title>
2464       <synopsis>const struct file_operations *fops</synopsis>
2465       <abstract>File operations for the DRM device node.</abstract>
2466       <para>
2467         Drivers must define the file operations structure that forms the DRM
2468         userspace API entry point, even though most of those operations are
2469         implemented in the DRM core. The <methodname>open</methodname>,
2470         <methodname>release</methodname> and <methodname>ioctl</methodname>
2471         operations are handled by
2472         <programlisting>
2473         .owner = THIS_MODULE,
2474         .open = drm_open,
2475         .release = drm_release,
2476         .unlocked_ioctl = drm_ioctl,
2477   #ifdef CONFIG_COMPAT
2478         .compat_ioctl = drm_compat_ioctl,
2479   #endif
2480         </programlisting>
2481       </para>
2482       <para>
2483         Drivers that implement private ioctls that requires 32/64bit
2484         compatibility support must provide their own
2485         <methodname>compat_ioctl</methodname> handler that processes private
2486         ioctls and calls <function>drm_compat_ioctl</function> for core ioctls.
2487       </para>
2488       <para>
2489         The <methodname>read</methodname> and <methodname>poll</methodname>
2490         operations provide support for reading DRM events and polling them. They
2491         are implemented by
2492         <programlisting>
2493         .poll = drm_poll,
2494         .read = drm_read,
2495         .llseek = no_llseek,
2496         </programlisting>
2497       </para>
2498       <para>
2499         The memory mapping implementation varies depending on how the driver
2500         manages memory. Pre-GEM drivers will use <function>drm_mmap</function>,
2501         while GEM-aware drivers will use <function>drm_gem_mmap</function>. See
2502         <xref linkend="drm-gem"/>.
2503         <programlisting>
2504         .mmap = drm_gem_mmap,
2505         </programlisting>
2506       </para>
2507       <para>
2508         No other file operation is supported by the DRM API.
2509       </para>
2510     </sect2>
2511     <sect2>
2512       <title>IOCTLs</title>
2513       <synopsis>struct drm_ioctl_desc *ioctls;
2514 int num_ioctls;</synopsis>
2515       <abstract>Driver-specific ioctls descriptors table.</abstract>
2516       <para>
2517         Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls
2518         descriptors table is indexed by the ioctl number offset from the base
2519         value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the
2520         table entries.
2521       </para>
2522       <para>
2523         <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting>
2524         <para>
2525           <parameter>ioctl</parameter> is the ioctl name. Drivers must define
2526           the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number
2527           offset from DRM_COMMAND_BASE and the ioctl number respectively. The
2528           first macro is private to the device while the second must be exposed
2529           to userspace in a public header.
2530         </para>
2531         <para>
2532           <parameter>func</parameter> is a pointer to the ioctl handler function
2533           compatible with the <type>drm_ioctl_t</type> type.
2534           <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data,
2535                 struct drm_file *file_priv);</programlisting>
2536         </para>
2537         <para>
2538           <parameter>flags</parameter> is a bitmask combination of the following
2539           values. It restricts how the ioctl is allowed to be called.
2540           <itemizedlist>
2541             <listitem><para>
2542               DRM_AUTH - Only authenticated callers allowed
2543             </para></listitem>
2544             <listitem><para>
2545               DRM_MASTER - The ioctl can only be called on the master file
2546               handle
2547             </para></listitem>
2548             <listitem><para>
2549               DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed
2550             </para></listitem>
2551             <listitem><para>
2552               DRM_CONTROL_ALLOW - The ioctl can only be called on a control
2553               device
2554             </para></listitem>
2555             <listitem><para>
2556               DRM_UNLOCKED - The ioctl handler will be called without locking
2557               the DRM global mutex
2558             </para></listitem>
2559           </itemizedlist>
2560         </para>
2561       </para>
2562     </sect2>
2563   </sect1>
2564
2565   <sect1>
2566     <title>Command submission &amp; fencing</title>
2567     <para>
2568       This should cover a few device-specific command submission
2569       implementations.
2570     </para>
2571   </sect1>
2572
2573   <!-- Internals: suspend/resume -->
2574
2575   <sect1>
2576     <title>Suspend/Resume</title>
2577     <para>
2578       The DRM core provides some suspend/resume code, but drivers wanting full
2579       suspend/resume support should provide save() and restore() functions.
2580       These are called at suspend, hibernate, or resume time, and should perform
2581       any state save or restore required by your device across suspend or
2582       hibernate states.
2583     </para>
2584     <synopsis>int (*suspend) (struct drm_device *, pm_message_t state);
2585 int (*resume) (struct drm_device *);</synopsis>
2586     <para>
2587       Those are legacy suspend and resume methods. New driver should use the
2588       power management interface provided by their bus type (usually through
2589       the struct <structname>device_driver</structname> dev_pm_ops) and set
2590       these methods to NULL.
2591     </para>
2592   </sect1>
2593
2594   <sect1>
2595     <title>DMA services</title>
2596     <para>
2597       This should cover how DMA mapping etc. is supported by the core.
2598       These functions are deprecated and should not be used.
2599     </para>
2600   </sect1>
2601   </chapter>
2602
2603 <!-- TODO
2604
2605 - Add a glossary
2606 - Document the struct_mutex catch-all lock
2607 - Document connector properties
2608
2609 - Why is the load method optional?
2610 - What are drivers supposed to set the initial display state to, and how?
2611   Connector's DPMS states are not initialized and are thus equal to
2612   DRM_MODE_DPMS_ON. The fbcon compatibility layer calls
2613   drm_helper_disable_unused_functions(), which disables unused encoders and
2614   CRTCs, but doesn't touch the connectors' DPMS state, and
2615   drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers
2616   that don't implement (or just don't use) fbcon compatibility need to call
2617   those functions themselves?
2618 - KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset()
2619   around mode setting. Should this be done in the DRM core?
2620 - vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset()
2621   call and never set back to 0. It seems to be safe to permanently set it to 1
2622   in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as
2623   well. This should be investigated.
2624 - crtc and connector .save and .restore operations are only used internally in
2625   drivers, should they be removed from the core?
2626 - encoder mid-layer .save and .restore operations are only used internally in
2627   drivers, should they be removed from the core?
2628 - encoder mid-layer .detect operation is only used internally in drivers,
2629   should it be removed from the core?
2630 -->
2631
2632   <!-- External interfaces -->
2633
2634   <chapter id="drmExternals">
2635     <title>Userland interfaces</title>
2636     <para>
2637       The DRM core exports several interfaces to applications,
2638       generally intended to be used through corresponding libdrm
2639       wrapper functions.  In addition, drivers export device-specific
2640       interfaces for use by userspace drivers &amp; device-aware
2641       applications through ioctls and sysfs files.
2642     </para>
2643     <para>
2644       External interfaces include: memory mapping, context management,
2645       DMA operations, AGP management, vblank control, fence
2646       management, memory management, and output management.
2647     </para>
2648     <para>
2649       Cover generic ioctls and sysfs layout here.  We only need high-level
2650       info, since man pages should cover the rest.
2651     </para>
2652
2653   <!-- External: render nodes -->
2654
2655     <sect1>
2656       <title>Render nodes</title>
2657       <para>
2658         DRM core provides multiple character-devices for user-space to use.
2659         Depending on which device is opened, user-space can perform a different
2660         set of operations (mainly ioctls). The primary node is always created
2661         and called <term>card&lt;num&gt;</term>. Additionally, a currently
2662         unused control node, called <term>controlD&lt;num&gt;</term> is also
2663         created. The primary node provides all legacy operations and
2664         historically was the only interface used by userspace. With KMS, the
2665         control node was introduced. However, the planned KMS control interface
2666         has never been written and so the control node stays unused to date.
2667       </para>
2668       <para>
2669         With the increased use of offscreen renderers and GPGPU applications,
2670         clients no longer require running compositors or graphics servers to
2671         make use of a GPU. But the DRM API required unprivileged clients to
2672         authenticate to a DRM-Master prior to getting GPU access. To avoid this
2673         step and to grant clients GPU access without authenticating, render
2674         nodes were introduced. Render nodes solely serve render clients, that
2675         is, no modesetting or privileged ioctls can be issued on render nodes.
2676         Only non-global rendering commands are allowed. If a driver supports
2677         render nodes, it must advertise it via the <term>DRIVER_RENDER</term>
2678         DRM driver capability. If not supported, the primary node must be used
2679         for render clients together with the legacy drmAuth authentication
2680         procedure.
2681       </para>
2682       <para>
2683         If a driver advertises render node support, DRM core will create a
2684         separate render node called <term>renderD&lt;num&gt;</term>. There will
2685         be one render node per device. No ioctls except  PRIME-related ioctls
2686         will be allowed on this node. Especially <term>GEM_OPEN</term> will be
2687         explicitly prohibited. Render nodes are designed to avoid the
2688         buffer-leaks, which occur if clients guess the flink names or mmap
2689         offsets on the legacy interface. Additionally to this basic interface,
2690         drivers must mark their driver-dependent render-only ioctls as
2691         <term>DRM_RENDER_ALLOW</term> so render clients can use them. Driver
2692         authors must be careful not to allow any privileged ioctls on render
2693         nodes.
2694       </para>
2695       <para>
2696         With render nodes, user-space can now control access to the render node
2697         via basic file-system access-modes. A running graphics server which
2698         authenticates clients on the privileged primary/legacy node is no longer
2699         required. Instead, a client can open the render node and is immediately
2700         granted GPU access. Communication between clients (or servers) is done
2701         via PRIME. FLINK from render node to legacy node is not supported. New
2702         clients must not use the insecure FLINK interface.
2703       </para>
2704       <para>
2705         Besides dropping all modeset/global ioctls, render nodes also drop the
2706         DRM-Master concept. There is no reason to associate render clients with
2707         a DRM-Master as they are independent of any graphics server. Besides,
2708         they must work without any running master, anyway.
2709         Drivers must be able to run without a master object if they support
2710         render nodes. If, on the other hand, a driver requires shared state
2711         between clients which is visible to user-space and accessible beyond
2712         open-file boundaries, they cannot support render nodes.
2713       </para>
2714     </sect1>
2715
2716   <!-- External: vblank handling -->
2717
2718     <sect1>
2719       <title>VBlank event handling</title>
2720       <para>
2721         The DRM core exposes two vertical blank related ioctls:
2722         <variablelist>
2723           <varlistentry>
2724             <term>DRM_IOCTL_WAIT_VBLANK</term>
2725             <listitem>
2726               <para>
2727                 This takes a struct drm_wait_vblank structure as its argument,
2728                 and it is used to block or request a signal when a specified
2729                 vblank event occurs.
2730               </para>
2731             </listitem>
2732           </varlistentry>
2733           <varlistentry>
2734             <term>DRM_IOCTL_MODESET_CTL</term>
2735             <listitem>
2736               <para>
2737                 This should be called by application level drivers before and
2738                 after mode setting, since on many devices the vertical blank
2739                 counter is reset at that time.  Internally, the DRM snapshots
2740                 the last vblank count when the ioctl is called with the
2741                 _DRM_PRE_MODESET command, so that the counter won't go backwards
2742                 (which is dealt with when _DRM_POST_MODESET is used).
2743               </para>
2744             </listitem>
2745           </varlistentry>
2746         </variablelist>
2747 <!--!Edrivers/char/drm/drm_irq.c-->
2748       </para>
2749     </sect1>
2750
2751   </chapter>
2752
2753   <!-- API reference -->
2754
2755   <appendix id="drmDriverApi">
2756     <title>DRM Driver API</title>
2757     <para>
2758       Include auto-generated API reference here (need to reference it
2759       from paragraphs above too).
2760     </para>
2761   </appendix>
2762
2763 </book>