tizen 2.4 release
[kernel/u-boot-tm1.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  *  Credits:
8  *      Adrian Hunter <ext-adrian.hunter@nokia.com>:
9  *      auto-placement support, read-while load support, various fixes
10  *      Copyright (C) Nokia Corporation, 2007
11  *
12  *      Rohit Hagargundgi <h.rohit at samsung.com>,
13  *      Amul Kumar Saha <amul.saha@samsung.com>:
14  *      Flex-OneNAND support
15  *      Copyright (C) Samsung Electronics, 2009
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21
22 #include <common.h>
23 #include <linux/mtd/compat.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/onenand.h>
26
27 #include <asm/io.h>
28 #include <asm/errno.h>
29 #include <malloc.h>
30
31 /* It should access 16-bit instead of 8-bit */
32 static void *memcpy_16(void *dst, const void *src, unsigned int len)
33 {
34         void *ret = dst;
35         short *d = dst;
36         const short *s = src;
37
38         len >>= 1;
39         while (len-- > 0)
40                 *d++ = *s++;
41         return ret;
42 }
43
44 /**
45  *  onenand_oob_128 - oob info for Flex-Onenand with 4KB page
46  *  For now, we expose only 64 out of 80 ecc bytes
47  */
48 static struct nand_ecclayout onenand_oob_128 = {
49         .eccbytes       = 64,
50         .eccpos         = {
51                 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
52                 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
53                 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
54                 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
55                 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
56                 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
57                 102, 103, 104, 105
58                 },
59         .oobfree        = {
60                 {2, 4}, {18, 4}, {34, 4}, {50, 4},
61                 {66, 4}, {82, 4}, {98, 4}, {114, 4}
62         }
63 };
64
65 /**
66  * onenand_oob_64 - oob info for large (2KB) page
67  */
68 static struct nand_ecclayout onenand_oob_64 = {
69         .eccbytes       = 20,
70         .eccpos         = {
71                 8, 9, 10, 11, 12,
72                 24, 25, 26, 27, 28,
73                 40, 41, 42, 43, 44,
74                 56, 57, 58, 59, 60,
75                 },
76         .oobfree        = {
77                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
78                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
79         }
80 };
81
82 /**
83  * onenand_oob_32 - oob info for middle (1KB) page
84  */
85 static struct nand_ecclayout onenand_oob_32 = {
86         .eccbytes       = 10,
87         .eccpos         = {
88                 8, 9, 10, 11, 12,
89                 24, 25, 26, 27, 28,
90                 },
91         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
92 };
93
94 static const unsigned char ffchars[] = {
95         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
96         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
97         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
98         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
99         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
100         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
101         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
102         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
103         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
104         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
105         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
106         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
107         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
108         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
109         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
110         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
111 };
112
113 /**
114  * onenand_readw - [OneNAND Interface] Read OneNAND register
115  * @param addr          address to read
116  *
117  * Read OneNAND register
118  */
119 static unsigned short onenand_readw(void __iomem * addr)
120 {
121         return readw(addr);
122 }
123
124 /**
125  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
126  * @param value         value to write
127  * @param addr          address to write
128  *
129  * Write OneNAND register with value
130  */
131 static void onenand_writew(unsigned short value, void __iomem * addr)
132 {
133         writew(value, addr);
134 }
135
136 /**
137  * onenand_block_address - [DEFAULT] Get block address
138  * @param device        the device id
139  * @param block         the block
140  * @return              translated block address if DDP, otherwise same
141  *
142  * Setup Start Address 1 Register (F100h)
143  */
144 static int onenand_block_address(struct onenand_chip *this, int block)
145 {
146         /* Device Flash Core select, NAND Flash Block Address */
147         if (block & this->density_mask)
148                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
149
150         return block;
151 }
152
153 /**
154  * onenand_bufferram_address - [DEFAULT] Get bufferram address
155  * @param device        the device id
156  * @param block         the block
157  * @return              set DBS value if DDP, otherwise 0
158  *
159  * Setup Start Address 2 Register (F101h) for DDP
160  */
161 static int onenand_bufferram_address(struct onenand_chip *this, int block)
162 {
163         /* Device BufferRAM Select */
164         if (block & this->density_mask)
165                 return ONENAND_DDP_CHIP1;
166
167         return ONENAND_DDP_CHIP0;
168 }
169
170 /**
171  * onenand_page_address - [DEFAULT] Get page address
172  * @param page          the page address
173  * @param sector        the sector address
174  * @return              combined page and sector address
175  *
176  * Setup Start Address 8 Register (F107h)
177  */
178 static int onenand_page_address(int page, int sector)
179 {
180         /* Flash Page Address, Flash Sector Address */
181         int fpa, fsa;
182
183         fpa = page & ONENAND_FPA_MASK;
184         fsa = sector & ONENAND_FSA_MASK;
185
186         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
187 }
188
189 /**
190  * onenand_buffer_address - [DEFAULT] Get buffer address
191  * @param dataram1      DataRAM index
192  * @param sectors       the sector address
193  * @param count         the number of sectors
194  * @return              the start buffer value
195  *
196  * Setup Start Buffer Register (F200h)
197  */
198 static int onenand_buffer_address(int dataram1, int sectors, int count)
199 {
200         int bsa, bsc;
201
202         /* BufferRAM Sector Address */
203         bsa = sectors & ONENAND_BSA_MASK;
204
205         if (dataram1)
206                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
207         else
208                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
209
210         /* BufferRAM Sector Count */
211         bsc = count & ONENAND_BSC_MASK;
212
213         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
214 }
215
216 /**
217  * flexonenand_block - Return block number for flash address
218  * @param this          - OneNAND device structure
219  * @param addr          - Address for which block number is needed
220  */
221 static unsigned int flexonenand_block(struct onenand_chip *this, loff_t addr)
222 {
223         unsigned int boundary, blk, die = 0;
224
225         if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
226                 die = 1;
227                 addr -= this->diesize[0];
228         }
229
230         boundary = this->boundary[die];
231
232         blk = addr >> (this->erase_shift - 1);
233         if (blk > boundary)
234                 blk = (blk + boundary + 1) >> 1;
235
236         blk += die ? this->density_mask : 0;
237         return blk;
238 }
239
240 unsigned int onenand_block(struct onenand_chip *this, loff_t addr)
241 {
242         if (!FLEXONENAND(this))
243                 return addr >> this->erase_shift;
244         return flexonenand_block(this, addr);
245 }
246
247 /**
248  * flexonenand_addr - Return address of the block
249  * @this:               OneNAND device structure
250  * @block:              Block number on Flex-OneNAND
251  *
252  * Return address of the block
253  */
254 static loff_t flexonenand_addr(struct onenand_chip *this, int block)
255 {
256         loff_t ofs = 0;
257         int die = 0, boundary;
258
259         if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
260                 block -= this->density_mask;
261                 die = 1;
262                 ofs = this->diesize[0];
263         }
264
265         boundary = this->boundary[die];
266         ofs += (loff_t) block << (this->erase_shift - 1);
267         if (block > (boundary + 1))
268                 ofs += (loff_t) (block - boundary - 1)
269                         << (this->erase_shift - 1);
270         return ofs;
271 }
272
273 loff_t onenand_addr(struct onenand_chip *this, int block)
274 {
275         if (!FLEXONENAND(this))
276                 return (loff_t) block << this->erase_shift;
277         return flexonenand_addr(this, block);
278 }
279
280 /**
281  * flexonenand_region - [Flex-OneNAND] Return erase region of addr
282  * @param mtd           MTD device structure
283  * @param addr          address whose erase region needs to be identified
284  */
285 int flexonenand_region(struct mtd_info *mtd, loff_t addr)
286 {
287         int i;
288
289         for (i = 0; i < mtd->numeraseregions; i++)
290                 if (addr < mtd->eraseregions[i].offset)
291                         break;
292         return i - 1;
293 }
294
295 /**
296  * onenand_get_density - [DEFAULT] Get OneNAND density
297  * @param dev_id        OneNAND device ID
298  *
299  * Get OneNAND density from device ID
300  */
301 static inline int onenand_get_density(int dev_id)
302 {
303         int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
304         return (density & ONENAND_DEVICE_DENSITY_MASK);
305 }
306
307 /**
308  * onenand_command - [DEFAULT] Send command to OneNAND device
309  * @param mtd           MTD device structure
310  * @param cmd           the command to be sent
311  * @param addr          offset to read from or write to
312  * @param len           number of bytes to read or write
313  *
314  * Send command to OneNAND device. This function is used for middle/large page
315  * devices (1KB/2KB Bytes per page)
316  */
317 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
318                            size_t len)
319 {
320         struct onenand_chip *this = mtd->priv;
321         int value;
322         int block, page;
323
324         /* Now we use page size operation */
325         int sectors = 0, count = 0;
326
327         /* Address translation */
328         switch (cmd) {
329         case ONENAND_CMD_UNLOCK:
330         case ONENAND_CMD_LOCK:
331         case ONENAND_CMD_LOCK_TIGHT:
332         case ONENAND_CMD_UNLOCK_ALL:
333                 block = -1;
334                 page = -1;
335                 break;
336
337         case FLEXONENAND_CMD_PI_ACCESS:
338                 /* addr contains die index */
339                 block = addr * this->density_mask;
340                 page = -1;
341                 break;
342
343         case ONENAND_CMD_ERASE:
344         case ONENAND_CMD_BUFFERRAM:
345                 block = onenand_block(this, addr);
346                 page = -1;
347                 break;
348
349         case FLEXONENAND_CMD_READ_PI:
350                 cmd = ONENAND_CMD_READ;
351                 block = addr * this->density_mask;
352                 page = 0;
353                 break;
354
355         default:
356                 block = onenand_block(this, addr);
357                 page = (int) (addr
358                         - onenand_addr(this, block)) >> this->page_shift;
359                 page &= this->page_mask;
360                 break;
361         }
362
363         /* NOTE: The setting order of the registers is very important! */
364         if (cmd == ONENAND_CMD_BUFFERRAM) {
365                 /* Select DataRAM for DDP */
366                 value = onenand_bufferram_address(this, block);
367                 this->write_word(value,
368                                  this->base + ONENAND_REG_START_ADDRESS2);
369
370                 if (ONENAND_IS_MLC(this))
371                         ONENAND_SET_BUFFERRAM0(this);
372                 else
373                         /* Switch to the next data buffer */
374                         ONENAND_SET_NEXT_BUFFERRAM(this);
375
376                 return 0;
377         }
378
379         if (block != -1) {
380                 /* Write 'DFS, FBA' of Flash */
381                 value = onenand_block_address(this, block);
382                 this->write_word(value,
383                                  this->base + ONENAND_REG_START_ADDRESS1);
384
385                 /* Select DataRAM for DDP */
386                 value = onenand_bufferram_address(this, block);
387                 this->write_word(value,
388                                  this->base + ONENAND_REG_START_ADDRESS2);
389         }
390
391         if (page != -1) {
392                 int dataram;
393
394                 switch (cmd) {
395                 case FLEXONENAND_CMD_RECOVER_LSB:
396                 case ONENAND_CMD_READ:
397                 case ONENAND_CMD_READOOB:
398                         if (ONENAND_IS_MLC(this))
399                                 dataram = ONENAND_SET_BUFFERRAM0(this);
400                         else
401                                 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
402
403                         break;
404
405                 default:
406                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
407                         break;
408                 }
409
410                 /* Write 'FPA, FSA' of Flash */
411                 value = onenand_page_address(page, sectors);
412                 this->write_word(value,
413                                  this->base + ONENAND_REG_START_ADDRESS8);
414
415                 /* Write 'BSA, BSC' of DataRAM */
416                 value = onenand_buffer_address(dataram, sectors, count);
417                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
418         }
419
420         /* Interrupt clear */
421         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
422         /* Write command */
423         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
424
425         return 0;
426 }
427
428 /**
429  * onenand_read_ecc - return ecc status
430  * @param this          onenand chip structure
431  */
432 static int onenand_read_ecc(struct onenand_chip *this)
433 {
434         int ecc, i;
435
436         if (!FLEXONENAND(this))
437                 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
438
439         for (i = 0; i < 4; i++) {
440                 ecc = this->read_word(this->base
441                                 + ((ONENAND_REG_ECC_STATUS + i) << 1));
442                 if (likely(!ecc))
443                         continue;
444                 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
445                         return ONENAND_ECC_2BIT_ALL;
446         }
447
448         return 0;
449 }
450
451 /**
452  * onenand_wait - [DEFAULT] wait until the command is done
453  * @param mtd           MTD device structure
454  * @param state         state to select the max. timeout value
455  *
456  * Wait for command done. This applies to all OneNAND command
457  * Read can take up to 30us, erase up to 2ms and program up to 350us
458  * according to general OneNAND specs
459  */
460 static int onenand_wait(struct mtd_info *mtd, int state)
461 {
462         struct onenand_chip *this = mtd->priv;
463         unsigned int flags = ONENAND_INT_MASTER;
464         unsigned int interrupt = 0;
465         unsigned int ctrl;
466
467         while (1) {
468                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
469                 if (interrupt & flags)
470                         break;
471         }
472
473         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
474
475         if (interrupt & ONENAND_INT_READ) {
476                 int ecc = onenand_read_ecc(this);
477                 if (ecc & ONENAND_ECC_2BIT_ALL) {
478                         printk("onenand_wait: ECC error = 0x%04x\n", ecc);
479                         return -EBADMSG;
480                 }
481         }
482
483         if (ctrl & ONENAND_CTRL_ERROR) {
484                 printk("onenand_wait: controller error = 0x%04x\n", ctrl);
485                 if (ctrl & ONENAND_CTRL_LOCK)
486                         printk("onenand_wait: it's locked error = 0x%04x\n",
487                                 ctrl);
488
489                 return -EIO;
490         }
491
492
493         return 0;
494 }
495
496 /**
497  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
498  * @param mtd           MTD data structure
499  * @param area          BufferRAM area
500  * @return              offset given area
501  *
502  * Return BufferRAM offset given area
503  */
504 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
505 {
506         struct onenand_chip *this = mtd->priv;
507
508         if (ONENAND_CURRENT_BUFFERRAM(this)) {
509                 if (area == ONENAND_DATARAM)
510                         return mtd->writesize;
511                 if (area == ONENAND_SPARERAM)
512                         return mtd->oobsize;
513         }
514
515         return 0;
516 }
517
518 /**
519  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
520  * @param mtd           MTD data structure
521  * @param area          BufferRAM area
522  * @param buffer        the databuffer to put/get data
523  * @param offset        offset to read from or write to
524  * @param count         number of bytes to read/write
525  *
526  * Read the BufferRAM area
527  */
528 static int onenand_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
529                                   unsigned char *buffer, int offset,
530                                   size_t count)
531 {
532         struct onenand_chip *this = mtd->priv;
533         void __iomem *bufferram;
534
535         bufferram = this->base + area;
536         bufferram += onenand_bufferram_offset(mtd, area);
537
538         memcpy_16(buffer, bufferram + offset, count);
539
540         return 0;
541 }
542
543 /**
544  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
545  * @param mtd           MTD data structure
546  * @param area          BufferRAM area
547  * @param buffer        the databuffer to put/get data
548  * @param offset        offset to read from or write to
549  * @param count         number of bytes to read/write
550  *
551  * Read the BufferRAM area with Sync. Burst Mode
552  */
553 static int onenand_sync_read_bufferram(struct mtd_info *mtd, loff_t addr, int area,
554                                        unsigned char *buffer, int offset,
555                                        size_t count)
556 {
557         struct onenand_chip *this = mtd->priv;
558         void __iomem *bufferram;
559
560         bufferram = this->base + area;
561         bufferram += onenand_bufferram_offset(mtd, area);
562
563         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
564
565         memcpy_16(buffer, bufferram + offset, count);
566
567         this->mmcontrol(mtd, 0);
568
569         return 0;
570 }
571
572 /**
573  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
574  * @param mtd           MTD data structure
575  * @param area          BufferRAM area
576  * @param buffer        the databuffer to put/get data
577  * @param offset        offset to read from or write to
578  * @param count         number of bytes to read/write
579  *
580  * Write the BufferRAM area
581  */
582 static int onenand_write_bufferram(struct mtd_info *mtd, loff_t addr, int area,
583                                    const unsigned char *buffer, int offset,
584                                    size_t count)
585 {
586         struct onenand_chip *this = mtd->priv;
587         void __iomem *bufferram;
588
589         bufferram = this->base + area;
590         bufferram += onenand_bufferram_offset(mtd, area);
591
592         memcpy_16(bufferram + offset, buffer, count);
593
594         return 0;
595 }
596
597 /**
598  * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
599  * @param mtd           MTD data structure
600  * @param addr          address to check
601  * @return              blockpage address
602  *
603  * Get blockpage address at 2x program mode
604  */
605 static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
606 {
607         struct onenand_chip *this = mtd->priv;
608         int blockpage, block, page;
609
610         /* Calculate the even block number */
611         block = (int) (addr >> this->erase_shift) & ~1;
612         /* Is it the odd plane? */
613         if (addr & this->writesize)
614                 block++;
615         page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
616         blockpage = (block << 7) | page;
617
618         return blockpage;
619 }
620
621 /**
622  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
623  * @param mtd           MTD data structure
624  * @param addr          address to check
625  * @return              1 if there are valid data, otherwise 0
626  *
627  * Check bufferram if there is data we required
628  */
629 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
630 {
631         struct onenand_chip *this = mtd->priv;
632         int blockpage, found = 0;
633         unsigned int i;
634
635 #ifdef CONFIG_S3C64XX
636         return 0;
637 #endif
638
639         if (ONENAND_IS_2PLANE(this))
640                 blockpage = onenand_get_2x_blockpage(mtd, addr);
641         else
642                 blockpage = (int) (addr >> this->page_shift);
643
644         /* Is there valid data? */
645         i = ONENAND_CURRENT_BUFFERRAM(this);
646         if (this->bufferram[i].blockpage == blockpage)
647                 found = 1;
648         else {
649                 /* Check another BufferRAM */
650                 i = ONENAND_NEXT_BUFFERRAM(this);
651                 if (this->bufferram[i].blockpage == blockpage) {
652                         ONENAND_SET_NEXT_BUFFERRAM(this);
653                         found = 1;
654                 }
655         }
656
657         if (found && ONENAND_IS_DDP(this)) {
658                 /* Select DataRAM for DDP */
659                 int block = onenand_block(this, addr);
660                 int value = onenand_bufferram_address(this, block);
661                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
662         }
663
664         return found;
665 }
666
667 /**
668  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
669  * @param mtd           MTD data structure
670  * @param addr          address to update
671  * @param valid         valid flag
672  *
673  * Update BufferRAM information
674  */
675 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
676                                     int valid)
677 {
678         struct onenand_chip *this = mtd->priv;
679         int blockpage;
680         unsigned int i;
681
682         if (ONENAND_IS_2PLANE(this))
683                 blockpage = onenand_get_2x_blockpage(mtd, addr);
684         else
685                 blockpage = (int)(addr >> this->page_shift);
686
687         /* Invalidate another BufferRAM */
688         i = ONENAND_NEXT_BUFFERRAM(this);
689         if (this->bufferram[i].blockpage == blockpage)
690                 this->bufferram[i].blockpage = -1;
691
692         /* Update BufferRAM */
693         i = ONENAND_CURRENT_BUFFERRAM(this);
694         if (valid)
695                 this->bufferram[i].blockpage = blockpage;
696         else
697                 this->bufferram[i].blockpage = -1;
698
699         return 0;
700 }
701
702 /**
703  * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
704  * @param mtd           MTD data structure
705  * @param addr          start address to invalidate
706  * @param len           length to invalidate
707  *
708  * Invalidate BufferRAM information
709  */
710 static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
711                                          unsigned int len)
712 {
713         struct onenand_chip *this = mtd->priv;
714         int i;
715         loff_t end_addr = addr + len;
716
717         /* Invalidate BufferRAM */
718         for (i = 0; i < MAX_BUFFERRAM; i++) {
719                 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
720
721                 if (buf_addr >= addr && buf_addr < end_addr)
722                         this->bufferram[i].blockpage = -1;
723         }
724 }
725
726 /**
727  * onenand_get_device - [GENERIC] Get chip for selected access
728  * @param mtd           MTD device structure
729  * @param new_state     the state which is requested
730  *
731  * Get the device and lock it for exclusive access
732  */
733 static void onenand_get_device(struct mtd_info *mtd, int new_state)
734 {
735         /* Do nothing */
736 }
737
738 /**
739  * onenand_release_device - [GENERIC] release chip
740  * @param mtd           MTD device structure
741  *
742  * Deselect, release chip lock and wake up anyone waiting on the device
743  */
744 static void onenand_release_device(struct mtd_info *mtd)
745 {
746         /* Do nothing */
747 }
748
749 /**
750  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
751  * @param mtd           MTD device structure
752  * @param buf           destination address
753  * @param column        oob offset to read from
754  * @param thislen       oob length to read
755  */
756 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf,
757                                         int column, int thislen)
758 {
759         struct onenand_chip *this = mtd->priv;
760         struct nand_oobfree *free;
761         int readcol = column;
762         int readend = column + thislen;
763         int lastgap = 0;
764         unsigned int i;
765         uint8_t *oob_buf = this->oob_buf;
766
767         free = this->ecclayout->oobfree;
768         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
769                 if (readcol >= lastgap)
770                         readcol += free->offset - lastgap;
771                 if (readend >= lastgap)
772                         readend += free->offset - lastgap;
773                 lastgap = free->offset + free->length;
774         }
775         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
776         free = this->ecclayout->oobfree;
777         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
778                 int free_end = free->offset + free->length;
779                 if (free->offset < readend && free_end > readcol) {
780                         int st = max_t(int,free->offset,readcol);
781                         int ed = min_t(int,free_end,readend);
782                         int n = ed - st;
783                         memcpy(buf, oob_buf + st, n);
784                         buf += n;
785                 } else if (column == 0)
786                         break;
787         }
788         return 0;
789 }
790
791 /**
792  * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
793  * @param mtd           MTD device structure
794  * @param addr          address to recover
795  * @param status        return value from onenand_wait
796  *
797  * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
798  * lower page address and MSB page has higher page address in paired pages.
799  * If power off occurs during MSB page program, the paired LSB page data can
800  * become corrupt. LSB page recovery read is a way to read LSB page though page
801  * data are corrupted. When uncorrectable error occurs as a result of LSB page
802  * read after power up, issue LSB page recovery read.
803  */
804 static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
805 {
806         struct onenand_chip *this = mtd->priv;
807         int i;
808
809         /* Recovery is only for Flex-OneNAND */
810         if (!FLEXONENAND(this))
811                 return status;
812
813         /* check if we failed due to uncorrectable error */
814         if (status != -EBADMSG && status != ONENAND_BBT_READ_ECC_ERROR)
815                 return status;
816
817         /* check if address lies in MLC region */
818         i = flexonenand_region(mtd, addr);
819         if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
820                 return status;
821
822         printk("onenand_recover_lsb:"
823                 "Attempting to recover from uncorrectable read\n");
824
825         /* Issue the LSB page recovery command */
826         this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
827         return this->wait(mtd, FL_READING);
828 }
829
830 /**
831  * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
832  * @param mtd           MTD device structure
833  * @param from          offset to read from
834  * @param ops           oob operation description structure
835  *
836  * OneNAND read main and/or out-of-band data
837  */
838 static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
839                 struct mtd_oob_ops *ops)
840 {
841         struct onenand_chip *this = mtd->priv;
842         struct mtd_ecc_stats stats;
843         size_t len = ops->len;
844         size_t ooblen = ops->ooblen;
845         u_char *buf = ops->datbuf;
846         u_char *oobbuf = ops->oobbuf;
847         int read = 0, column, thislen;
848         int oobread = 0, oobcolumn, thisooblen, oobsize;
849         int ret = 0, boundary = 0;
850         int writesize = this->writesize;
851
852         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_ops_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
853
854         if (ops->mode == MTD_OOB_AUTO)
855                 oobsize = this->ecclayout->oobavail;
856         else
857                 oobsize = mtd->oobsize;
858
859         oobcolumn = from & (mtd->oobsize - 1);
860
861         /* Do not allow reads past end of device */
862         if ((from + len) > mtd->size) {
863                 printk(KERN_ERR "onenand_read_ops_nolock: Attempt read beyond end of device\n");
864                 ops->retlen = 0;
865                 ops->oobretlen = 0;
866                 return -EINVAL;
867         }
868
869         stats = mtd->ecc_stats;
870
871         /* Read-while-load method */
872         /* Note: We can't use this feature in MLC */
873
874         /* Do first load to bufferRAM */
875         if (read < len) {
876                 if (!onenand_check_bufferram(mtd, from)) {
877                         this->main_buf = buf;
878                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
879                         ret = this->wait(mtd, FL_READING);
880                         if (unlikely(ret))
881                                 ret = onenand_recover_lsb(mtd, from, ret);
882                         onenand_update_bufferram(mtd, from, !ret);
883                         if (ret == -EBADMSG)
884                                 ret = 0;
885                 }
886         }
887
888         thislen = min_t(int, writesize, len - read);
889         column = from & (writesize - 1);
890         if (column + thislen > writesize)
891                 thislen = writesize - column;
892
893         while (!ret) {
894                 /* If there is more to load then start next load */
895                 from += thislen;
896                 if (!ONENAND_IS_MLC(this) && read + thislen < len) {
897                         this->main_buf = buf + thislen;
898                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
899                         /*
900                          * Chip boundary handling in DDP
901                          * Now we issued chip 1 read and pointed chip 1
902                          * bufferam so we have to point chip 0 bufferam.
903                          */
904                         if (ONENAND_IS_DDP(this) &&
905                                         unlikely(from == (this->chipsize >> 1))) {
906                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
907                                 boundary = 1;
908                         } else
909                                 boundary = 0;
910                         ONENAND_SET_PREV_BUFFERRAM(this);
911                 }
912
913                 /* While load is going, read from last bufferRAM */
914                 this->read_bufferram(mtd, from - thislen, ONENAND_DATARAM, buf, column, thislen);
915
916                 /* Read oob area if needed */
917                 if (oobbuf) {
918                         thisooblen = oobsize - oobcolumn;
919                         thisooblen = min_t(int, thisooblen, ooblen - oobread);
920
921                         if (ops->mode == MTD_OOB_AUTO)
922                                 onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen);
923                         else
924                                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
925                         oobread += thisooblen;
926                         oobbuf += thisooblen;
927                         oobcolumn = 0;
928                 }
929
930                 if (ONENAND_IS_MLC(this) && (read + thislen < len)) {
931                         this->command(mtd, ONENAND_CMD_READ, from, writesize);
932                         ret = this->wait(mtd, FL_READING);
933                         if (unlikely(ret))
934                                 ret = onenand_recover_lsb(mtd, from, ret);
935                         onenand_update_bufferram(mtd, from, !ret);
936                         if (ret == -EBADMSG)
937                                 ret = 0;
938                 }
939
940                 /* See if we are done */
941                 read += thislen;
942                 if (read == len)
943                         break;
944                 /* Set up for next read from bufferRAM */
945                 if (unlikely(boundary))
946                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
947                 if (!ONENAND_IS_MLC(this))
948                         ONENAND_SET_NEXT_BUFFERRAM(this);
949                 buf += thislen;
950                 thislen = min_t(int, writesize, len - read);
951                 column = 0;
952
953                 if (!ONENAND_IS_MLC(this)) {
954                         /* Now wait for load */
955                         ret = this->wait(mtd, FL_READING);
956                         onenand_update_bufferram(mtd, from, !ret);
957                         if (ret == -EBADMSG)
958                                 ret = 0;
959                 }
960         }
961
962         /*
963          * Return success, if no ECC failures, else -EBADMSG
964          * fs driver will take care of that, because
965          * retlen == desired len and result == -EBADMSG
966          */
967         ops->retlen = read;
968         ops->oobretlen = oobread;
969
970         if (ret)
971                 return ret;
972
973         if (mtd->ecc_stats.failed - stats.failed)
974                 return -EBADMSG;
975
976         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
977 }
978
979 /**
980  * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
981  * @param mtd           MTD device structure
982  * @param from          offset to read from
983  * @param ops           oob operation description structure
984  *
985  * OneNAND read out-of-band data from the spare area
986  */
987 static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
988                 struct mtd_oob_ops *ops)
989 {
990         struct onenand_chip *this = mtd->priv;
991         struct mtd_ecc_stats stats;
992         int read = 0, thislen, column, oobsize;
993         size_t len = ops->ooblen;
994         mtd_oob_mode_t mode = ops->mode;
995         u_char *buf = ops->oobbuf;
996         int ret = 0, readcmd;
997
998         from += ops->ooboffs;
999
1000         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob_nolock: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
1001
1002         /* Initialize return length value */
1003         ops->oobretlen = 0;
1004
1005         if (mode == MTD_OOB_AUTO)
1006                 oobsize = this->ecclayout->oobavail;
1007         else
1008                 oobsize = mtd->oobsize;
1009
1010         column = from & (mtd->oobsize - 1);
1011
1012         if (unlikely(column >= oobsize)) {
1013                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to start read outside oob\n");
1014                 return -EINVAL;
1015         }
1016
1017         /* Do not allow reads past end of device */
1018         if (unlikely(from >= mtd->size ||
1019                 column + len > ((mtd->size >> this->page_shift) -
1020                                 (from >> this->page_shift)) * oobsize)) {
1021                 printk(KERN_ERR "onenand_read_oob_nolock: Attempted to read beyond end of device\n");
1022                 return -EINVAL;
1023         }
1024
1025         stats = mtd->ecc_stats;
1026
1027         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1028
1029         while (read < len) {
1030                 thislen = oobsize - column;
1031                 thislen = min_t(int, thislen, len);
1032
1033                 this->spare_buf = buf;
1034                 this->command(mtd, readcmd, from, mtd->oobsize);
1035
1036                 onenand_update_bufferram(mtd, from, 0);
1037
1038                 ret = this->wait(mtd, FL_READING);
1039                 if (unlikely(ret))
1040                         ret = onenand_recover_lsb(mtd, from, ret);
1041
1042                 if (ret && ret != -EBADMSG) {
1043                         printk(KERN_ERR "onenand_read_oob_nolock: read failed = 0x%x\n", ret);
1044                         break;
1045                 }
1046
1047                 if (mode == MTD_OOB_AUTO)
1048                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
1049                 else
1050                         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1051
1052                 read += thislen;
1053
1054                 if (read == len)
1055                         break;
1056
1057                 buf += thislen;
1058
1059                 /* Read more? */
1060                 if (read < len) {
1061                         /* Page size */
1062                         from += mtd->writesize;
1063                         column = 0;
1064                 }
1065         }
1066
1067         ops->oobretlen = read;
1068
1069         if (ret)
1070                 return ret;
1071
1072         if (mtd->ecc_stats.failed - stats.failed)
1073                 return -EBADMSG;
1074
1075         return 0;
1076 }
1077
1078 /**
1079  * onenand_read - [MTD Interface] MTD compability function for onenand_read_ecc
1080  * @param mtd           MTD device structure
1081  * @param from          offset to read from
1082  * @param len           number of bytes to read
1083  * @param retlen        pointer to variable to store the number of read bytes
1084  * @param buf           the databuffer to put data
1085  *
1086  * This function simply calls onenand_read_ecc with oob buffer and oobsel = NULL
1087 */
1088 int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089                  size_t * retlen, u_char * buf)
1090 {
1091         struct mtd_oob_ops ops = {
1092                 .len    = len,
1093                 .ooblen = 0,
1094                 .datbuf = buf,
1095                 .oobbuf = NULL,
1096         };
1097         int ret;
1098
1099         onenand_get_device(mtd, FL_READING);
1100         ret = onenand_read_ops_nolock(mtd, from, &ops);
1101         onenand_release_device(mtd);
1102
1103         *retlen = ops.retlen;
1104         return ret;
1105 }
1106
1107 /**
1108  * onenand_read_oob - [MTD Interface] OneNAND read out-of-band
1109  * @param mtd           MTD device structure
1110  * @param from          offset to read from
1111  * @param ops           oob operations description structure
1112  *
1113  * OneNAND main and/or out-of-band
1114  */
1115 int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1116                         struct mtd_oob_ops *ops)
1117 {
1118         int ret;
1119
1120         switch (ops->mode) {
1121         case MTD_OOB_PLACE:
1122         case MTD_OOB_AUTO:
1123                 break;
1124         case MTD_OOB_RAW:
1125                 /* Not implemented yet */
1126         default:
1127                 return -EINVAL;
1128         }
1129
1130         onenand_get_device(mtd, FL_READING);
1131         if (ops->datbuf)
1132                 ret = onenand_read_ops_nolock(mtd, from, ops);
1133         else
1134                 ret = onenand_read_oob_nolock(mtd, from, ops);
1135         onenand_release_device(mtd);
1136
1137         return ret;
1138 }
1139
1140 /**
1141  * onenand_bbt_wait - [DEFAULT] wait until the command is done
1142  * @param mtd           MTD device structure
1143  * @param state         state to select the max. timeout value
1144  *
1145  * Wait for command done.
1146  */
1147 static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1148 {
1149         struct onenand_chip *this = mtd->priv;
1150         unsigned int flags = ONENAND_INT_MASTER;
1151         unsigned int interrupt;
1152         unsigned int ctrl;
1153
1154         while (1) {
1155                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1156                 if (interrupt & flags)
1157                         break;
1158         }
1159
1160         /* To get correct interrupt status in timeout case */
1161         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1162         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1163
1164         if (interrupt & ONENAND_INT_READ) {
1165                 int ecc = onenand_read_ecc(this);
1166                 if (ecc & ONENAND_ECC_2BIT_ALL) {
1167                         printk(KERN_INFO "onenand_bbt_wait: ecc error = 0x%04x"
1168                                 ", controller = 0x%04x\n", ecc, ctrl);
1169                         return ONENAND_BBT_READ_ERROR;
1170                 }
1171         } else {
1172                 printk(KERN_ERR "onenand_bbt_wait: read timeout!"
1173                                 "ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
1174                 return ONENAND_BBT_READ_FATAL_ERROR;
1175         }
1176
1177         /* Initial bad block case: 0x2400 or 0x0400 */
1178         if (ctrl & ONENAND_CTRL_ERROR) {
1179                 printk(KERN_DEBUG "onenand_bbt_wait: controller error = 0x%04x\n", ctrl);
1180                 return ONENAND_BBT_READ_ERROR;
1181         }
1182
1183         return 0;
1184 }
1185
1186 /**
1187  * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1188  * @param mtd           MTD device structure
1189  * @param from          offset to read from
1190  * @param ops           oob operation description structure
1191  *
1192  * OneNAND read out-of-band data from the spare area for bbt scan
1193  */
1194 int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1195                 struct mtd_oob_ops *ops)
1196 {
1197         struct onenand_chip *this = mtd->priv;
1198         int read = 0, thislen, column;
1199         int ret = 0, readcmd;
1200         size_t len = ops->ooblen;
1201         u_char *buf = ops->oobbuf;
1202
1203         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_bbt_read_oob: from = 0x%08x, len = %zi\n", (unsigned int) from, len);
1204
1205         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1206
1207         /* Initialize return value */
1208         ops->oobretlen = 0;
1209
1210         /* Do not allow reads past end of device */
1211         if (unlikely((from + len) > mtd->size)) {
1212                 printk(KERN_ERR "onenand_bbt_read_oob: Attempt read beyond end of device\n");
1213                 return ONENAND_BBT_READ_FATAL_ERROR;
1214         }
1215
1216         /* Grab the lock and see if the device is available */
1217         onenand_get_device(mtd, FL_READING);
1218
1219         column = from & (mtd->oobsize - 1);
1220
1221         while (read < len) {
1222
1223                 thislen = mtd->oobsize - column;
1224                 thislen = min_t(int, thislen, len);
1225
1226                 this->spare_buf = buf;
1227                 this->command(mtd, readcmd, from, mtd->oobsize);
1228
1229                 onenand_update_bufferram(mtd, from, 0);
1230
1231                 ret = this->bbt_wait(mtd, FL_READING);
1232                 if (unlikely(ret))
1233                         ret = onenand_recover_lsb(mtd, from, ret);
1234
1235                 if (ret)
1236                         break;
1237
1238                 this->read_bufferram(mtd, 0, ONENAND_SPARERAM, buf, column, thislen);
1239                 read += thislen;
1240                 if (read == len)
1241                         break;
1242
1243                 buf += thislen;
1244
1245                 /* Read more? */
1246                 if (read < len) {
1247                         /* Update Page size */
1248                         from += this->writesize;
1249                         column = 0;
1250                 }
1251         }
1252
1253         /* Deselect and wake up anyone waiting on the device */
1254         onenand_release_device(mtd);
1255
1256         ops->oobretlen = read;
1257         return ret;
1258 }
1259
1260
1261 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1262 /**
1263  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1264  * @param mtd           MTD device structure
1265  * @param buf           the databuffer to verify
1266  * @param to            offset to read from
1267  */
1268 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1269 {
1270         struct onenand_chip *this = mtd->priv;
1271         u_char *oob_buf = this->oob_buf;
1272         int status, i, readcmd;
1273
1274         readcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1275
1276         this->command(mtd, readcmd, to, mtd->oobsize);
1277         onenand_update_bufferram(mtd, to, 0);
1278         status = this->wait(mtd, FL_READING);
1279         if (status)
1280                 return status;
1281
1282         this->read_bufferram(mtd, 0, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1283         for (i = 0; i < mtd->oobsize; i++)
1284                 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1285                         return -EBADMSG;
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * onenand_verify - [GENERIC] verify the chip contents after a write
1292  * @param mtd          MTD device structure
1293  * @param buf          the databuffer to verify
1294  * @param addr         offset to read from
1295  * @param len          number of bytes to read and compare
1296  */
1297 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1298 {
1299         struct onenand_chip *this = mtd->priv;
1300         void __iomem *dataram;
1301         int ret = 0;
1302         int thislen, column;
1303
1304         while (len != 0) {
1305                 thislen = min_t(int, this->writesize, len);
1306                 column = addr & (this->writesize - 1);
1307                 if (column + thislen > this->writesize)
1308                         thislen = this->writesize - column;
1309
1310                 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1311
1312                 onenand_update_bufferram(mtd, addr, 0);
1313
1314                 ret = this->wait(mtd, FL_READING);
1315                 if (ret)
1316                         return ret;
1317
1318                 onenand_update_bufferram(mtd, addr, 1);
1319
1320                 dataram = this->base + ONENAND_DATARAM;
1321                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1322
1323                 if (memcmp(buf, dataram + column, thislen))
1324                         return -EBADMSG;
1325
1326                 len -= thislen;
1327                 buf += thislen;
1328                 addr += thislen;
1329         }
1330
1331         return 0;
1332 }
1333 #else
1334 #define onenand_verify(...)             (0)
1335 #define onenand_verify_oob(...)         (0)
1336 #endif
1337
1338 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1339
1340 /**
1341  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1342  * @param mtd           MTD device structure
1343  * @param oob_buf       oob buffer
1344  * @param buf           source address
1345  * @param column        oob offset to write to
1346  * @param thislen       oob length to write
1347  */
1348 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1349                 const u_char *buf, int column, int thislen)
1350 {
1351         struct onenand_chip *this = mtd->priv;
1352         struct nand_oobfree *free;
1353         int writecol = column;
1354         int writeend = column + thislen;
1355         int lastgap = 0;
1356         unsigned int i;
1357
1358         free = this->ecclayout->oobfree;
1359         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1360                 if (writecol >= lastgap)
1361                         writecol += free->offset - lastgap;
1362                 if (writeend >= lastgap)
1363                         writeend += free->offset - lastgap;
1364                 lastgap = free->offset + free->length;
1365         }
1366         free = this->ecclayout->oobfree;
1367         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES && free->length; i++, free++) {
1368                 int free_end = free->offset + free->length;
1369                 if (free->offset < writeend && free_end > writecol) {
1370                         int st = max_t(int,free->offset,writecol);
1371                         int ed = min_t(int,free_end,writeend);
1372                         int n = ed - st;
1373                         memcpy(oob_buf + st, buf, n);
1374                         buf += n;
1375                 } else if (column == 0)
1376                         break;
1377         }
1378         return 0;
1379 }
1380
1381 /**
1382  * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1383  * @param mtd           MTD device structure
1384  * @param to            offset to write to
1385  * @param ops           oob operation description structure
1386  *
1387  * Write main and/or oob with ECC
1388  */
1389 static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1390                 struct mtd_oob_ops *ops)
1391 {
1392         struct onenand_chip *this = mtd->priv;
1393         int written = 0, column, thislen, subpage;
1394         int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1395         size_t len = ops->len;
1396         size_t ooblen = ops->ooblen;
1397         const u_char *buf = ops->datbuf;
1398         const u_char *oob = ops->oobbuf;
1399         u_char *oobbuf;
1400         int ret = 0;
1401
1402         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_ops_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1403
1404         /* Initialize retlen, in case of early exit */
1405         ops->retlen = 0;
1406         ops->oobretlen = 0;
1407
1408         /* Do not allow writes past end of device */
1409         if (unlikely((to + len) > mtd->size)) {
1410                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt write to past end of device\n");
1411                 return -EINVAL;
1412         }
1413
1414         /* Reject writes, which are not page aligned */
1415         if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1416                 printk(KERN_ERR "onenand_write_ops_nolock: Attempt to write not page aligned data\n");
1417                 return -EINVAL;
1418         }
1419
1420         if (ops->mode == MTD_OOB_AUTO)
1421                 oobsize = this->ecclayout->oobavail;
1422         else
1423                 oobsize = mtd->oobsize;
1424
1425         oobcolumn = to & (mtd->oobsize - 1);
1426
1427         column = to & (mtd->writesize - 1);
1428
1429         /* Loop until all data write */
1430         while (written < len) {
1431                 u_char *wbuf = (u_char *) buf;
1432
1433                 thislen = min_t(int, mtd->writesize - column, len - written);
1434                 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1435
1436                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1437
1438                 /* Partial page write */
1439                 subpage = thislen < mtd->writesize;
1440                 if (subpage) {
1441                         memset(this->page_buf, 0xff, mtd->writesize);
1442                         memcpy(this->page_buf + column, buf, thislen);
1443                         wbuf = this->page_buf;
1444                 }
1445
1446                 this->write_bufferram(mtd, to, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1447
1448                 if (oob) {
1449                         oobbuf = this->oob_buf;
1450
1451                         /* We send data to spare ram with oobsize
1452                          *                          * to prevent byte access */
1453                         memset(oobbuf, 0xff, mtd->oobsize);
1454                         if (ops->mode == MTD_OOB_AUTO)
1455                                 onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen);
1456                         else
1457                                 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1458
1459                         oobwritten += thisooblen;
1460                         oob += thisooblen;
1461                         oobcolumn = 0;
1462                 } else
1463                         oobbuf = (u_char *) ffchars;
1464
1465                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1466
1467                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1468
1469                 ret = this->wait(mtd, FL_WRITING);
1470
1471                 /* In partial page write we don't update bufferram */
1472                 onenand_update_bufferram(mtd, to, !ret && !subpage);
1473                 if (ONENAND_IS_2PLANE(this)) {
1474                         ONENAND_SET_BUFFERRAM1(this);
1475                         onenand_update_bufferram(mtd, to + this->writesize, !ret && !subpage);
1476                 }
1477
1478                 if (ret) {
1479                         printk(KERN_ERR "onenand_write_ops_nolock: write filaed %d\n", ret);
1480                         break;
1481                 }
1482
1483                 /* Only check verify write turn on */
1484                 ret = onenand_verify(mtd, buf, to, thislen);
1485                 if (ret) {
1486                         printk(KERN_ERR "onenand_write_ops_nolock: verify failed %d\n", ret);
1487                         break;
1488                 }
1489
1490                 written += thislen;
1491
1492                 if (written == len)
1493                         break;
1494
1495                 column = 0;
1496                 to += thislen;
1497                 buf += thislen;
1498         }
1499
1500         ops->retlen = written;
1501
1502         return ret;
1503 }
1504
1505 /**
1506  * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
1507  * @param mtd           MTD device structure
1508  * @param to            offset to write to
1509  * @param len           number of bytes to write
1510  * @param retlen        pointer to variable to store the number of written bytes
1511  * @param buf           the data to write
1512  * @param mode          operation mode
1513  *
1514  * OneNAND write out-of-band
1515  */
1516 static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1517                 struct mtd_oob_ops *ops)
1518 {
1519         struct onenand_chip *this = mtd->priv;
1520         int column, ret = 0, oobsize;
1521         int written = 0, oobcmd;
1522         u_char *oobbuf;
1523         size_t len = ops->ooblen;
1524         const u_char *buf = ops->oobbuf;
1525         mtd_oob_mode_t mode = ops->mode;
1526
1527         to += ops->ooboffs;
1528
1529         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob_nolock: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1530
1531         /* Initialize retlen, in case of early exit */
1532         ops->oobretlen = 0;
1533
1534         if (mode == MTD_OOB_AUTO)
1535                 oobsize = this->ecclayout->oobavail;
1536         else
1537                 oobsize = mtd->oobsize;
1538
1539         column = to & (mtd->oobsize - 1);
1540
1541         if (unlikely(column >= oobsize)) {
1542                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to start write outside oob\n");
1543                 return -EINVAL;
1544         }
1545
1546         /* For compatibility with NAND: Do not allow write past end of page */
1547         if (unlikely(column + len > oobsize)) {
1548                 printk(KERN_ERR "onenand_write_oob_nolock: "
1549                                 "Attempt to write past end of page\n");
1550                 return -EINVAL;
1551         }
1552
1553         /* Do not allow reads past end of device */
1554         if (unlikely(to >= mtd->size ||
1555                                 column + len > ((mtd->size >> this->page_shift) -
1556                                         (to >> this->page_shift)) * oobsize)) {
1557                 printk(KERN_ERR "onenand_write_oob_nolock: Attempted to write past end of device\n");
1558                 return -EINVAL;
1559         }
1560
1561         oobbuf = this->oob_buf;
1562
1563         oobcmd = ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
1564
1565         /* Loop until all data write */
1566         while (written < len) {
1567                 int thislen = min_t(int, oobsize, len - written);
1568
1569                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1570
1571                 /* We send data to spare ram with oobsize
1572                  * to prevent byte access */
1573                 memset(oobbuf, 0xff, mtd->oobsize);
1574                 if (mode == MTD_OOB_AUTO)
1575                         onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen);
1576                 else
1577                         memcpy(oobbuf + column, buf, thislen);
1578                 this->write_bufferram(mtd, 0, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1579
1580                 if (ONENAND_IS_MLC(this)) {
1581                         /* Set main area of DataRAM to 0xff*/
1582                         memset(this->page_buf, 0xff, mtd->writesize);
1583                         this->write_bufferram(mtd, 0, ONENAND_DATARAM,
1584                                 this->page_buf, 0, mtd->writesize);
1585                 }
1586
1587                 this->command(mtd, oobcmd, to, mtd->oobsize);
1588
1589                 onenand_update_bufferram(mtd, to, 0);
1590                 if (ONENAND_IS_2PLANE(this)) {
1591                         ONENAND_SET_BUFFERRAM1(this);
1592                         onenand_update_bufferram(mtd, to + this->writesize, 0);
1593                 }
1594
1595                 ret = this->wait(mtd, FL_WRITING);
1596                 if (ret) {
1597                         printk(KERN_ERR "onenand_write_oob_nolock: write failed %d\n", ret);
1598                         break;
1599                 }
1600
1601                 ret = onenand_verify_oob(mtd, oobbuf, to);
1602                 if (ret) {
1603                         printk(KERN_ERR "onenand_write_oob_nolock: verify failed %d\n", ret);
1604                         break;
1605                 }
1606
1607                 written += thislen;
1608                 if (written == len)
1609                         break;
1610
1611                 to += mtd->writesize;
1612                 buf += thislen;
1613                 column = 0;
1614         }
1615
1616         ops->oobretlen = written;
1617
1618         return ret;
1619 }
1620
1621 /**
1622  * onenand_write - [MTD Interface] compability function for onenand_write_ecc
1623  * @param mtd           MTD device structure
1624  * @param to            offset to write to
1625  * @param len           number of bytes to write
1626  * @param retlen        pointer to variable to store the number of written bytes
1627  * @param buf           the data to write
1628  *
1629  * Write with ECC
1630  */
1631 int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1632                   size_t * retlen, const u_char * buf)
1633 {
1634         struct mtd_oob_ops ops = {
1635                 .len    = len,
1636                 .ooblen = 0,
1637                 .datbuf = (u_char *) buf,
1638                 .oobbuf = NULL,
1639         };
1640         int ret;
1641
1642         onenand_get_device(mtd, FL_WRITING);
1643         ret = onenand_write_ops_nolock(mtd, to, &ops);
1644         onenand_release_device(mtd);
1645
1646         *retlen = ops.retlen;
1647         return ret;
1648 }
1649
1650 /**
1651  * onenand_write_oob - [MTD Interface] OneNAND write out-of-band
1652  * @param mtd           MTD device structure
1653  * @param to            offset to write to
1654  * @param ops           oob operation description structure
1655  *
1656  * OneNAND write main and/or out-of-band
1657  */
1658 int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1659                         struct mtd_oob_ops *ops)
1660 {
1661         int ret;
1662
1663         switch (ops->mode) {
1664         case MTD_OOB_PLACE:
1665         case MTD_OOB_AUTO:
1666                 break;
1667         case MTD_OOB_RAW:
1668                 /* Not implemented yet */
1669         default:
1670                 return -EINVAL;
1671         }
1672
1673         onenand_get_device(mtd, FL_WRITING);
1674         if (ops->datbuf)
1675                 ret = onenand_write_ops_nolock(mtd, to, ops);
1676         else
1677                 ret = onenand_write_oob_nolock(mtd, to, ops);
1678         onenand_release_device(mtd);
1679
1680         return ret;
1681
1682 }
1683
1684 /**
1685  * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
1686  * @param mtd           MTD device structure
1687  * @param ofs           offset from device start
1688  * @param allowbbt      1, if its allowed to access the bbt area
1689  *
1690  * Check, if the block is bad, Either by reading the bad block table or
1691  * calling of the scan function.
1692  */
1693 static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
1694 {
1695         struct onenand_chip *this = mtd->priv;
1696         struct bbm_info *bbm = this->bbm;
1697
1698         /* Return info from the table */
1699         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1700 }
1701
1702
1703 /**
1704  * onenand_erase - [MTD Interface] erase block(s)
1705  * @param mtd           MTD device structure
1706  * @param instr         erase instruction
1707  *
1708  * Erase one ore more blocks
1709  */
1710 int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1711 {
1712         struct onenand_chip *this = mtd->priv;
1713         unsigned int block_size;
1714         loff_t addr = instr->addr;
1715         unsigned int len = instr->len;
1716         int ret = 0, i;
1717         struct mtd_erase_region_info *region = NULL;
1718         unsigned int region_end = 0;
1719
1720         MTDDEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n",
1721                         (unsigned int) addr, len);
1722
1723         /* Do not allow erase past end of device */
1724         if (unlikely((len + addr) > mtd->size)) {
1725                 MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1726                                         "Erase past end of device\n");
1727                 return -EINVAL;
1728         }
1729
1730         if (FLEXONENAND(this)) {
1731                 /* Find the eraseregion of this address */
1732                 i = flexonenand_region(mtd, addr);
1733                 region = &mtd->eraseregions[i];
1734
1735                 block_size = region->erasesize;
1736                 region_end = region->offset
1737                         + region->erasesize * region->numblocks;
1738
1739                 /* Start address within region must align on block boundary.
1740                  * Erase region's start offset is always block start address.
1741                  */
1742                 if (unlikely((addr - region->offset) & (block_size - 1))) {
1743                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1744                                 " Unaligned address\n");
1745                         return -EINVAL;
1746                 }
1747         } else {
1748                 block_size = 1 << this->erase_shift;
1749
1750                 /* Start address must align on block boundary */
1751                 if (unlikely(addr & (block_size - 1))) {
1752                         MTDDEBUG(MTD_DEBUG_LEVEL0, "onenand_erase:"
1753                                                 "Unaligned address\n");
1754                         return -EINVAL;
1755                 }
1756         }
1757
1758         /* Length must align on block boundary */
1759         if (unlikely(len & (block_size - 1))) {
1760                 MTDDEBUG (MTD_DEBUG_LEVEL0,
1761                          "onenand_erase: Length not block aligned\n");
1762                 return -EINVAL;
1763         }
1764
1765         instr->fail_addr = 0xffffffff;
1766
1767         /* Grab the lock and see if the device is available */
1768         onenand_get_device(mtd, FL_ERASING);
1769
1770         /* Loop throught the pages */
1771         instr->state = MTD_ERASING;
1772
1773         while (len) {
1774
1775                 /* Check if we have a bad block, we do not erase bad blocks */
1776                 if (instr->priv == 0 && onenand_block_isbad_nolock(mtd, addr, 0)) {
1777                         printk(KERN_WARNING "onenand_erase: attempt to erase"
1778                                 " a bad block at addr 0x%08x\n",
1779                                 (unsigned int) addr);
1780                         instr->state = MTD_ERASE_FAILED;
1781                         goto erase_exit;
1782                 }
1783
1784                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1785
1786                 onenand_invalidate_bufferram(mtd, addr, block_size);
1787
1788                 ret = this->wait(mtd, FL_ERASING);
1789                 /* Check, if it is write protected */
1790                 if (ret) {
1791                         if (ret == -EPERM)
1792                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1793                                           "Device is write protected!!!\n");
1794                         else
1795                                 MTDDEBUG (MTD_DEBUG_LEVEL0, "onenand_erase: "
1796                                           "Failed erase, block %d\n",
1797                                         onenand_block(this, addr));
1798                         instr->state = MTD_ERASE_FAILED;
1799                         instr->fail_addr = addr;
1800
1801                         goto erase_exit;
1802                 }
1803
1804                 len -= block_size;
1805                 addr += block_size;
1806
1807                 if (addr == region_end) {
1808                         if (!len)
1809                                 break;
1810                         region++;
1811
1812                         block_size = region->erasesize;
1813                         region_end = region->offset
1814                                 + region->erasesize * region->numblocks;
1815
1816                         if (len & (block_size - 1)) {
1817                                 /* This has been checked at MTD
1818                                  * partitioning level. */
1819                                 printk("onenand_erase: Unaligned address\n");
1820                                 goto erase_exit;
1821                         }
1822                 }
1823         }
1824
1825         instr->state = MTD_ERASE_DONE;
1826
1827 erase_exit:
1828
1829         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1830         /* Do call back function */
1831         if (!ret)
1832                 mtd_erase_callback(instr);
1833
1834         /* Deselect and wake up anyone waiting on the device */
1835         onenand_release_device(mtd);
1836
1837         return ret;
1838 }
1839
1840 /**
1841  * onenand_sync - [MTD Interface] sync
1842  * @param mtd           MTD device structure
1843  *
1844  * Sync is actually a wait for chip ready function
1845  */
1846 void onenand_sync(struct mtd_info *mtd)
1847 {
1848         MTDDEBUG (MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1849
1850         /* Grab the lock and see if the device is available */
1851         onenand_get_device(mtd, FL_SYNCING);
1852
1853         /* Release it and go back */
1854         onenand_release_device(mtd);
1855 }
1856
1857 /**
1858  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1859  * @param mtd           MTD device structure
1860  * @param ofs           offset relative to mtd start
1861  *
1862  * Check whether the block is bad
1863  */
1864 int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1865 {
1866         int ret;
1867
1868         /* Check for invalid offset */
1869         if (ofs > mtd->size)
1870                 return -EINVAL;
1871
1872         onenand_get_device(mtd, FL_READING);
1873         ret = onenand_block_isbad_nolock(mtd,ofs, 0);
1874         onenand_release_device(mtd);
1875         return ret;
1876 }
1877
1878 /**
1879  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1880  * @param mtd           MTD device structure
1881  * @param ofs           offset from device start
1882  *
1883  * This is the default implementation, which can be overridden by
1884  * a hardware specific driver.
1885  */
1886 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1887 {
1888         struct onenand_chip *this = mtd->priv;
1889         struct bbm_info *bbm = this->bbm;
1890         u_char buf[2] = {0, 0};
1891         struct mtd_oob_ops ops = {
1892                 .mode = MTD_OOB_PLACE,
1893                 .ooblen = 2,
1894                 .oobbuf = buf,
1895                 .ooboffs = 0,
1896         };
1897         int block;
1898
1899         /* Get block number */
1900         block = onenand_block(this, ofs);
1901         if (bbm->bbt)
1902                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1903
1904         /* We write two bytes, so we dont have to mess with 16 bit access */
1905         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1906         return onenand_write_oob_nolock(mtd, ofs, &ops);
1907 }
1908
1909 /**
1910  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1911  * @param mtd           MTD device structure
1912  * @param ofs           offset relative to mtd start
1913  *
1914  * Mark the block as bad
1915  */
1916 int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1917 {
1918         struct onenand_chip *this = mtd->priv;
1919         int ret;
1920
1921         ret = onenand_block_isbad(mtd, ofs);
1922         if (ret) {
1923                 /* If it was bad already, return success and do nothing */
1924                 if (ret > 0)
1925                         return 0;
1926                 return ret;
1927         }
1928
1929         ret = this->block_markbad(mtd, ofs);
1930         return ret;
1931 }
1932
1933 /**
1934  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1935  * @param mtd           MTD device structure
1936  * @param ofs           offset relative to mtd start
1937  * @param len           number of bytes to lock or unlock
1938  * @param cmd           lock or unlock command
1939  *
1940  * Lock or unlock one or more blocks
1941  */
1942 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1943 {
1944         struct onenand_chip *this = mtd->priv;
1945         int start, end, block, value, status;
1946         int wp_status_mask;
1947
1948         start = onenand_block(this, ofs);
1949         end = onenand_block(this, ofs + len);
1950
1951         if (cmd == ONENAND_CMD_LOCK)
1952                 wp_status_mask = ONENAND_WP_LS;
1953         else
1954                 wp_status_mask = ONENAND_WP_US;
1955
1956         /* Continuous lock scheme */
1957         if (this->options & ONENAND_HAS_CONT_LOCK) {
1958                 /* Set start block address */
1959                 this->write_word(start,
1960                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1961                 /* Set end block address */
1962                 this->write_word(end - 1,
1963                                  this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1964                 /* Write unlock command */
1965                 this->command(mtd, cmd, 0, 0);
1966
1967                 /* There's no return value */
1968                 this->wait(mtd, FL_UNLOCKING);
1969
1970                 /* Sanity check */
1971                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1972                        & ONENAND_CTRL_ONGO)
1973                         continue;
1974
1975                 /* Check lock status */
1976                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1977                 if (!(status & ONENAND_WP_US))
1978                         printk(KERN_ERR "wp status = 0x%x\n", status);
1979
1980                 return 0;
1981         }
1982
1983         /* Block lock scheme */
1984         for (block = start; block < end; block++) {
1985                 /* Set block address */
1986                 value = onenand_block_address(this, block);
1987                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1988                 /* Select DataRAM for DDP */
1989                 value = onenand_bufferram_address(this, block);
1990                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1991
1992                 /* Set start block address */
1993                 this->write_word(block,
1994                                  this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1995                 /* Write unlock command */
1996                 this->command(mtd, ONENAND_CMD_UNLOCK, 0, 0);
1997
1998                 /* There's no return value */
1999                 this->wait(mtd, FL_UNLOCKING);
2000
2001                 /* Sanity check */
2002                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2003                        & ONENAND_CTRL_ONGO)
2004                         continue;
2005
2006                 /* Check lock status */
2007                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2008                 if (!(status & ONENAND_WP_US))
2009                         printk(KERN_ERR "block = %d, wp status = 0x%x\n",
2010                                block, status);
2011         }
2012
2013         return 0;
2014 }
2015
2016 #ifdef ONENAND_LINUX
2017 /**
2018  * onenand_lock - [MTD Interface] Lock block(s)
2019  * @param mtd           MTD device structure
2020  * @param ofs           offset relative to mtd start
2021  * @param len           number of bytes to unlock
2022  *
2023  * Lock one or more blocks
2024  */
2025 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
2026 {
2027         int ret;
2028
2029         onenand_get_device(mtd, FL_LOCKING);
2030         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2031         onenand_release_device(mtd);
2032         return ret;
2033 }
2034
2035 /**
2036  * onenand_unlock - [MTD Interface] Unlock block(s)
2037  * @param mtd           MTD device structure
2038  * @param ofs           offset relative to mtd start
2039  * @param len           number of bytes to unlock
2040  *
2041  * Unlock one or more blocks
2042  */
2043 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
2044 {
2045         int ret;
2046
2047         onenand_get_device(mtd, FL_LOCKING);
2048         ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2049         onenand_release_device(mtd);
2050         return ret;
2051 }
2052 #endif
2053
2054 /**
2055  * onenand_check_lock_status - [OneNAND Interface] Check lock status
2056  * @param this          onenand chip data structure
2057  *
2058  * Check lock status
2059  */
2060 static int onenand_check_lock_status(struct onenand_chip *this)
2061 {
2062         unsigned int value, block, status;
2063         unsigned int end;
2064
2065         end = this->chipsize >> this->erase_shift;
2066         for (block = 0; block < end; block++) {
2067                 /* Set block address */
2068                 value = onenand_block_address(this, block);
2069                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2070                 /* Select DataRAM for DDP */
2071                 value = onenand_bufferram_address(this, block);
2072                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2073                 /* Set start block address */
2074                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2075
2076                 /* Check lock status */
2077                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2078                 if (!(status & ONENAND_WP_US)) {
2079                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
2080                         return 0;
2081                 }
2082         }
2083
2084         return 1;
2085 }
2086
2087 /**
2088  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2089  * @param mtd           MTD device structure
2090  *
2091  * Unlock all blocks
2092  */
2093 static void onenand_unlock_all(struct mtd_info *mtd)
2094 {
2095         struct onenand_chip *this = mtd->priv;
2096         loff_t ofs = 0;
2097         size_t len = mtd->size;
2098
2099         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2100                 /* Set start block address */
2101                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2102                 /* Write unlock command */
2103                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2104
2105                 /* There's no return value */
2106                 this->wait(mtd, FL_LOCKING);
2107
2108                 /* Sanity check */
2109                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2110                                 & ONENAND_CTRL_ONGO)
2111                         continue;
2112
2113                 /* Check lock status */
2114                 if (onenand_check_lock_status(this))
2115                         return;
2116
2117                 /* Workaround for all block unlock in DDP */
2118                 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2119                         /* All blocks on another chip */
2120                         ofs = this->chipsize >> 1;
2121                         len = this->chipsize >> 1;
2122                 }
2123         }
2124
2125         onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2126 }
2127
2128
2129 /**
2130  * onenand_check_features - Check and set OneNAND features
2131  * @param mtd           MTD data structure
2132  *
2133  * Check and set OneNAND features
2134  * - lock scheme
2135  * - two plane
2136  */
2137 static void onenand_check_features(struct mtd_info *mtd)
2138 {
2139         struct onenand_chip *this = mtd->priv;
2140         unsigned int density, process;
2141
2142         /* Lock scheme depends on density and process */
2143         density = onenand_get_density(this->device_id);
2144         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
2145
2146         /* Lock scheme */
2147         switch (density) {
2148         case ONENAND_DEVICE_DENSITY_4Gb:
2149                 this->options |= ONENAND_HAS_2PLANE;
2150
2151         case ONENAND_DEVICE_DENSITY_2Gb:
2152                 /* 2Gb DDP don't have 2 plane */
2153                 if (!ONENAND_IS_DDP(this))
2154                         this->options |= ONENAND_HAS_2PLANE;
2155                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2156
2157         case ONENAND_DEVICE_DENSITY_1Gb:
2158                 /* A-Die has all block unlock */
2159                 if (process)
2160                         this->options |= ONENAND_HAS_UNLOCK_ALL;
2161                 break;
2162
2163         default:
2164                 /* Some OneNAND has continuous lock scheme */
2165                 if (!process)
2166                         this->options |= ONENAND_HAS_CONT_LOCK;
2167                 break;
2168         }
2169
2170         if (ONENAND_IS_MLC(this))
2171                 this->options &= ~ONENAND_HAS_2PLANE;
2172
2173         if (FLEXONENAND(this)) {
2174                 this->options &= ~ONENAND_HAS_CONT_LOCK;
2175                 this->options |= ONENAND_HAS_UNLOCK_ALL;
2176         }
2177
2178         if (this->options & ONENAND_HAS_CONT_LOCK)
2179                 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
2180         if (this->options & ONENAND_HAS_UNLOCK_ALL)
2181                 printk(KERN_DEBUG "Chip support all block unlock\n");
2182         if (this->options & ONENAND_HAS_2PLANE)
2183                 printk(KERN_DEBUG "Chip has 2 plane\n");
2184 }
2185
2186 /**
2187  * onenand_print_device_info - Print device ID
2188  * @param device        device ID
2189  *
2190  * Print device ID
2191  */
2192 char *onenand_print_device_info(int device, int version)
2193 {
2194         int vcc, demuxed, ddp, density, flexonenand;
2195         char *dev_info = malloc(80);
2196         char *p = dev_info;
2197
2198         vcc = device & ONENAND_DEVICE_VCC_MASK;
2199         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
2200         ddp = device & ONENAND_DEVICE_IS_DDP;
2201         density = onenand_get_density(device);
2202         flexonenand = device & DEVICE_IS_FLEXONENAND;
2203         p += sprintf(dev_info, "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)",
2204                demuxed ? "" : "Muxed ",
2205                flexonenand ? "Flex-" : "",
2206                ddp ? "(DDP)" : "",
2207                (16 << density), vcc ? "2.65/3.3" : "1.8", device);
2208
2209         sprintf(p, "\nOneNAND version = 0x%04x", version);
2210         printk("%s\n", dev_info);
2211
2212         return dev_info;
2213 }
2214
2215 static const struct onenand_manufacturers onenand_manuf_ids[] = {
2216         {ONENAND_MFR_NUMONYX, "Numonyx"},
2217         {ONENAND_MFR_SAMSUNG, "Samsung"},
2218 };
2219
2220 /**
2221  * onenand_check_maf - Check manufacturer ID
2222  * @param manuf         manufacturer ID
2223  *
2224  * Check manufacturer ID
2225  */
2226 static int onenand_check_maf(int manuf)
2227 {
2228         int size = ARRAY_SIZE(onenand_manuf_ids);
2229         char *name;
2230         int i;
2231
2232         for (i = 0; i < size; i++)
2233                 if (manuf == onenand_manuf_ids[i].id)
2234                         break;
2235
2236         if (i < size)
2237                 name = onenand_manuf_ids[i].name;
2238         else
2239                 name = "Unknown";
2240
2241 #ifdef ONENAND_DEBUG
2242         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2243 #endif
2244
2245         return i == size;
2246 }
2247
2248 /**
2249 * flexonenand_get_boundary      - Reads the SLC boundary
2250 * @param onenand_info           - onenand info structure
2251 *
2252 * Fill up boundary[] field in onenand_chip
2253 **/
2254 static int flexonenand_get_boundary(struct mtd_info *mtd)
2255 {
2256         struct onenand_chip *this = mtd->priv;
2257         unsigned int die, bdry;
2258         int ret, syscfg, locked;
2259
2260         /* Disable ECC */
2261         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2262         this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
2263
2264         for (die = 0; die < this->dies; die++) {
2265                 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2266                 this->wait(mtd, FL_SYNCING);
2267
2268                 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2269                 ret = this->wait(mtd, FL_READING);
2270
2271                 bdry = this->read_word(this->base + ONENAND_DATARAM);
2272                 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
2273                         locked = 0;
2274                 else
2275                         locked = 1;
2276                 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
2277
2278                 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2279                 ret = this->wait(mtd, FL_RESETING);
2280
2281                 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
2282                        this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
2283         }
2284
2285         /* Enable ECC */
2286         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2287         return 0;
2288 }
2289
2290 /**
2291  * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
2292  *                        boundary[], diesize[], mtd->size, mtd->erasesize,
2293  *                        mtd->eraseregions
2294  * @param mtd           - MTD device structure
2295  */
2296 static void flexonenand_get_size(struct mtd_info *mtd)
2297 {
2298         struct onenand_chip *this = mtd->priv;
2299         int die, i, eraseshift, density;
2300         int blksperdie, maxbdry;
2301         loff_t ofs;
2302
2303         density = onenand_get_density(this->device_id);
2304         blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
2305         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2306         maxbdry = blksperdie - 1;
2307         eraseshift = this->erase_shift - 1;
2308
2309         mtd->numeraseregions = this->dies << 1;
2310
2311         /* This fills up the device boundary */
2312         flexonenand_get_boundary(mtd);
2313         die = 0;
2314         ofs = 0;
2315         i = -1;
2316         for (; die < this->dies; die++) {
2317                 if (!die || this->boundary[die-1] != maxbdry) {
2318                         i++;
2319                         mtd->eraseregions[i].offset = ofs;
2320                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2321                         mtd->eraseregions[i].numblocks =
2322                                                         this->boundary[die] + 1;
2323                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2324                         eraseshift++;
2325                 } else {
2326                         mtd->numeraseregions -= 1;
2327                         mtd->eraseregions[i].numblocks +=
2328                                                         this->boundary[die] + 1;
2329                         ofs += (this->boundary[die] + 1) << (eraseshift - 1);
2330                 }
2331                 if (this->boundary[die] != maxbdry) {
2332                         i++;
2333                         mtd->eraseregions[i].offset = ofs;
2334                         mtd->eraseregions[i].erasesize = 1 << eraseshift;
2335                         mtd->eraseregions[i].numblocks = maxbdry ^
2336                                                          this->boundary[die];
2337                         ofs += mtd->eraseregions[i].numblocks << eraseshift;
2338                         eraseshift--;
2339                 } else
2340                         mtd->numeraseregions -= 1;
2341         }
2342
2343         /* Expose MLC erase size except when all blocks are SLC */
2344         mtd->erasesize = 1 << this->erase_shift;
2345         if (mtd->numeraseregions == 1)
2346                 mtd->erasesize >>= 1;
2347
2348         printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
2349         for (i = 0; i < mtd->numeraseregions; i++)
2350                 printk(KERN_INFO "[offset: 0x%08llx, erasesize: 0x%05x,"
2351                         " numblocks: %04u]\n", mtd->eraseregions[i].offset,
2352                         mtd->eraseregions[i].erasesize,
2353                         mtd->eraseregions[i].numblocks);
2354
2355         for (die = 0, mtd->size = 0; die < this->dies; die++) {
2356                 this->diesize[die] = (loff_t) (blksperdie << this->erase_shift);
2357                 this->diesize[die] -= (loff_t) (this->boundary[die] + 1)
2358                                                  << (this->erase_shift - 1);
2359                 mtd->size += this->diesize[die];
2360         }
2361 }
2362
2363 /**
2364  * flexonenand_check_blocks_erased - Check if blocks are erased
2365  * @param mtd_info      - mtd info structure
2366  * @param start         - first erase block to check
2367  * @param end           - last erase block to check
2368  *
2369  * Converting an unerased block from MLC to SLC
2370  * causes byte values to change. Since both data and its ECC
2371  * have changed, reads on the block give uncorrectable error.
2372  * This might lead to the block being detected as bad.
2373  *
2374  * Avoid this by ensuring that the block to be converted is
2375  * erased.
2376  */
2377 static int flexonenand_check_blocks_erased(struct mtd_info *mtd,
2378                                         int start, int end)
2379 {
2380         struct onenand_chip *this = mtd->priv;
2381         int i, ret;
2382         int block;
2383         struct mtd_oob_ops ops = {
2384                 .mode = MTD_OOB_PLACE,
2385                 .ooboffs = 0,
2386                 .ooblen = mtd->oobsize,
2387                 .datbuf = NULL,
2388                 .oobbuf = this->oob_buf,
2389         };
2390         loff_t addr;
2391
2392         printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
2393
2394         for (block = start; block <= end; block++) {
2395                 addr = flexonenand_addr(this, block);
2396                 if (onenand_block_isbad_nolock(mtd, addr, 0))
2397                         continue;
2398
2399                 /*
2400                  * Since main area write results in ECC write to spare,
2401                  * it is sufficient to check only ECC bytes for change.
2402                  */
2403                 ret = onenand_read_oob_nolock(mtd, addr, &ops);
2404                 if (ret)
2405                         return ret;
2406
2407                 for (i = 0; i < mtd->oobsize; i++)
2408                         if (this->oob_buf[i] != 0xff)
2409                                 break;
2410
2411                 if (i != mtd->oobsize) {
2412                         printk(KERN_WARNING "Block %d not erased.\n", block);
2413                         return 1;
2414                 }
2415         }
2416
2417         return 0;
2418 }
2419
2420 /**
2421  * flexonenand_set_boundary     - Writes the SLC boundary
2422  * @param mtd                   - mtd info structure
2423  */
2424 int flexonenand_set_boundary(struct mtd_info *mtd, int die,
2425                                     int boundary, int lock)
2426 {
2427         struct onenand_chip *this = mtd->priv;
2428         int ret, density, blksperdie, old, new, thisboundary;
2429         loff_t addr;
2430
2431         if (die >= this->dies)
2432                 return -EINVAL;
2433
2434         if (boundary == this->boundary[die])
2435                 return 0;
2436
2437         density = onenand_get_density(this->device_id);
2438         blksperdie = ((16 << density) << 20) >> this->erase_shift;
2439         blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
2440
2441         if (boundary >= blksperdie) {
2442                 printk("flexonenand_set_boundary:"
2443                         "Invalid boundary value. "
2444                         "Boundary not changed.\n");
2445                 return -EINVAL;
2446         }
2447
2448         /* Check if converting blocks are erased */
2449         old = this->boundary[die] + (die * this->density_mask);
2450         new = boundary + (die * this->density_mask);
2451         ret = flexonenand_check_blocks_erased(mtd, min(old, new)
2452                                                 + 1, max(old, new));
2453         if (ret) {
2454                 printk(KERN_ERR "flexonenand_set_boundary: Please erase blocks before boundary change\n");
2455                 return ret;
2456         }
2457
2458         this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
2459         this->wait(mtd, FL_SYNCING);
2460
2461         /* Check is boundary is locked */
2462         this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
2463         ret = this->wait(mtd, FL_READING);
2464
2465         thisboundary = this->read_word(this->base + ONENAND_DATARAM);
2466         if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
2467                 printk(KERN_ERR "flexonenand_set_boundary: boundary locked\n");
2468                 goto out;
2469         }
2470
2471         printk(KERN_INFO "flexonenand_set_boundary: Changing die %d boundary: %d%s\n",
2472                         die, boundary, lock ? "(Locked)" : "(Unlocked)");
2473
2474         boundary &= FLEXONENAND_PI_MASK;
2475         boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
2476
2477         addr = die ? this->diesize[0] : 0;
2478         this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
2479         ret = this->wait(mtd, FL_ERASING);
2480         if (ret) {
2481                 printk("flexonenand_set_boundary:"
2482                         "Failed PI erase for Die %d\n", die);
2483                 goto out;
2484         }
2485
2486         this->write_word(boundary, this->base + ONENAND_DATARAM);
2487         this->command(mtd, ONENAND_CMD_PROG, addr, 0);
2488         ret = this->wait(mtd, FL_WRITING);
2489         if (ret) {
2490                 printk("flexonenand_set_boundary:"
2491                         "Failed PI write for Die %d\n", die);
2492                 goto out;
2493         }
2494
2495         this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
2496         ret = this->wait(mtd, FL_WRITING);
2497 out:
2498         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
2499         this->wait(mtd, FL_RESETING);
2500         if (!ret)
2501                 /* Recalculate device size on boundary change*/
2502                 flexonenand_get_size(mtd);
2503
2504         return ret;
2505 }
2506
2507 /**
2508  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2509  * @param mtd           MTD device structure
2510  *
2511  * OneNAND detection method:
2512  *   Compare the the values from command with ones from register
2513  */
2514 static int onenand_probe(struct mtd_info *mtd)
2515 {
2516         struct onenand_chip *this = mtd->priv;
2517         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2518         int density;
2519         int syscfg;
2520
2521         /* Save system configuration 1 */
2522         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2523         /* Clear Sync. Burst Read mode to read BootRAM */
2524         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2525
2526         /* Send the command for reading device ID from BootRAM */
2527         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2528
2529         /* Read manufacturer and device IDs from BootRAM */
2530         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2531         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2532
2533         /* Reset OneNAND to read default register values */
2534         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2535
2536         /* Wait reset */
2537         this->wait(mtd, FL_RESETING);
2538
2539         /* Restore system configuration 1 */
2540         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2541
2542         /* Check manufacturer ID */
2543         if (onenand_check_maf(bram_maf_id))
2544                 return -ENXIO;
2545
2546         /* Read manufacturer and device IDs from Register */
2547         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2548         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2549         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2550         this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
2551
2552         /* Check OneNAND device */
2553         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2554                 return -ENXIO;
2555
2556         /* Flash device information */
2557         mtd->name = onenand_print_device_info(dev_id, ver_id);
2558         this->device_id = dev_id;
2559         this->version_id = ver_id;
2560
2561         density = onenand_get_density(dev_id);
2562         if (FLEXONENAND(this)) {
2563                 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
2564                 /* Maximum possible erase regions */
2565                 mtd->numeraseregions = this->dies << 1;
2566                 mtd->eraseregions = malloc(sizeof(struct mtd_erase_region_info)
2567                                         * (this->dies << 1));
2568                 if (!mtd->eraseregions)
2569                         return -ENOMEM;
2570         }
2571
2572         /*
2573          * For Flex-OneNAND, chipsize represents maximum possible device size.
2574          * mtd->size represents the actual device size.
2575          */
2576         this->chipsize = (16 << density) << 20;
2577
2578         /* OneNAND page size & block size */
2579         /* The data buffer size is equal to page size */
2580         mtd->writesize =
2581             this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2582         /* We use the full BufferRAM */
2583         if (ONENAND_IS_MLC(this))
2584                 mtd->writesize <<= 1;
2585
2586         mtd->oobsize = mtd->writesize >> 5;
2587         /* Pagers per block is always 64 in OneNAND */
2588         mtd->erasesize = mtd->writesize << 6;
2589         /*
2590          * Flex-OneNAND SLC area has 64 pages per block.
2591          * Flex-OneNAND MLC area has 128 pages per block.
2592          * Expose MLC erase size to find erase_shift and page_mask.
2593          */
2594         if (FLEXONENAND(this))
2595                 mtd->erasesize <<= 1;
2596
2597         this->erase_shift = ffs(mtd->erasesize) - 1;
2598         this->page_shift = ffs(mtd->writesize) - 1;
2599         this->ppb_shift = (this->erase_shift - this->page_shift);
2600         this->page_mask = (mtd->erasesize / mtd->writesize) - 1;
2601         /* Set density mask. it is used for DDP */
2602         if (ONENAND_IS_DDP(this))
2603                 this->density_mask = this->chipsize >> (this->erase_shift + 1);
2604         /* It's real page size */
2605         this->writesize = mtd->writesize;
2606
2607         /* REVIST: Multichip handling */
2608
2609         if (FLEXONENAND(this))
2610                 flexonenand_get_size(mtd);
2611         else
2612                 mtd->size = this->chipsize;
2613
2614         /* Check OneNAND features */
2615         onenand_check_features(mtd);
2616
2617         mtd->flags = MTD_CAP_NANDFLASH;
2618         mtd->erase = onenand_erase;
2619         mtd->read = onenand_read;
2620         mtd->write = onenand_write;
2621         mtd->read_oob = onenand_read_oob;
2622         mtd->write_oob = onenand_write_oob;
2623         mtd->sync = onenand_sync;
2624         mtd->block_isbad = onenand_block_isbad;
2625         mtd->block_markbad = onenand_block_markbad;
2626
2627         return 0;
2628 }
2629
2630 /**
2631  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2632  * @param mtd           MTD device structure
2633  * @param maxchips      Number of chips to scan for
2634  *
2635  * This fills out all the not initialized function pointers
2636  * with the defaults.
2637  * The flash ID is read and the mtd/chip structures are
2638  * filled with the appropriate values.
2639  */
2640 int onenand_scan(struct mtd_info *mtd, int maxchips)
2641 {
2642         int i;
2643         struct onenand_chip *this = mtd->priv;
2644
2645         if (!this->read_word)
2646                 this->read_word = onenand_readw;
2647         if (!this->write_word)
2648                 this->write_word = onenand_writew;
2649
2650         if (!this->command)
2651                 this->command = onenand_command;
2652         if (!this->wait)
2653                 this->wait = onenand_wait;
2654         if (!this->bbt_wait)
2655                 this->bbt_wait = onenand_bbt_wait;
2656
2657         if (!this->read_bufferram)
2658                 this->read_bufferram = onenand_read_bufferram;
2659         if (!this->write_bufferram)
2660                 this->write_bufferram = onenand_write_bufferram;
2661
2662         if (!this->block_markbad)
2663                 this->block_markbad = onenand_default_block_markbad;
2664         if (!this->scan_bbt)
2665                 this->scan_bbt = onenand_default_bbt;
2666
2667         if (onenand_probe(mtd))
2668                 return -ENXIO;
2669
2670         /* Set Sync. Burst Read after probing */
2671         if (this->mmcontrol) {
2672                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2673                 this->read_bufferram = onenand_sync_read_bufferram;
2674         }
2675
2676         /* Allocate buffers, if necessary */
2677         if (!this->page_buf) {
2678                 this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL);
2679                 if (!this->page_buf) {
2680                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2681                         return -ENOMEM;
2682                 }
2683                 this->options |= ONENAND_PAGEBUF_ALLOC;
2684         }
2685         if (!this->oob_buf) {
2686                 this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
2687                 if (!this->oob_buf) {
2688                         printk(KERN_ERR "onenand_scan: Can't allocate oob_buf\n");
2689                         if (this->options & ONENAND_PAGEBUF_ALLOC) {
2690                                 this->options &= ~ONENAND_PAGEBUF_ALLOC;
2691                                 kfree(this->page_buf);
2692                         }
2693                         return -ENOMEM;
2694                 }
2695                 this->options |= ONENAND_OOBBUF_ALLOC;
2696         }
2697
2698         this->state = FL_READY;
2699
2700         /*
2701          * Allow subpage writes up to oobsize.
2702          */
2703         switch (mtd->oobsize) {
2704         case 128:
2705                 this->ecclayout = &onenand_oob_128;
2706                 mtd->subpage_sft = 0;
2707                 break;
2708
2709         case 64:
2710                 this->ecclayout = &onenand_oob_64;
2711                 mtd->subpage_sft = 2;
2712                 break;
2713
2714         case 32:
2715                 this->ecclayout = &onenand_oob_32;
2716                 mtd->subpage_sft = 1;
2717                 break;
2718
2719         default:
2720                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2721                         mtd->oobsize);
2722                 mtd->subpage_sft = 0;
2723                 /* To prevent kernel oops */
2724                 this->ecclayout = &onenand_oob_32;
2725                 break;
2726         }
2727
2728         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2729
2730         /*
2731          * The number of bytes available for a client to place data into
2732          * the out of band area
2733          */
2734         this->ecclayout->oobavail = 0;
2735         for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES &&
2736             this->ecclayout->oobfree[i].length; i++)
2737                 this->ecclayout->oobavail +=
2738                         this->ecclayout->oobfree[i].length;
2739         mtd->oobavail = this->ecclayout->oobavail;
2740
2741         mtd->ecclayout = this->ecclayout;
2742
2743         /* Unlock whole block */
2744         onenand_unlock_all(mtd);
2745
2746         return this->scan_bbt(mtd);
2747 }
2748
2749 /**
2750  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2751  * @param mtd           MTD device structure
2752  */
2753 void onenand_release(struct mtd_info *mtd)
2754 {
2755 }