tizen 2.3.1 release
[kernel/linux-3.0.git] / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
43
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
48
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
52
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/unistd.h>
56
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
59 #endif
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
62 #endif
63 #ifndef SET_FPEMU_CTL
64 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
65 #endif
66 #ifndef GET_FPEMU_CTL
67 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
68 #endif
69 #ifndef SET_FPEXC_CTL
70 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
71 #endif
72 #ifndef GET_FPEXC_CTL
73 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
74 #endif
75 #ifndef GET_ENDIAN
76 # define GET_ENDIAN(a,b)        (-EINVAL)
77 #endif
78 #ifndef SET_ENDIAN
79 # define SET_ENDIAN(a,b)        (-EINVAL)
80 #endif
81 #ifndef GET_TSC_CTL
82 # define GET_TSC_CTL(a)         (-EINVAL)
83 #endif
84 #ifndef SET_TSC_CTL
85 # define SET_TSC_CTL(a)         (-EINVAL)
86 #endif
87
88 /*
89  * this is where the system-wide overflow UID and GID are defined, for
90  * architectures that now have 32-bit UID/GID but didn't in the past
91  */
92
93 int overflowuid = DEFAULT_OVERFLOWUID;
94 int overflowgid = DEFAULT_OVERFLOWGID;
95
96 #ifdef CONFIG_UID16
97 EXPORT_SYMBOL(overflowuid);
98 EXPORT_SYMBOL(overflowgid);
99 #endif
100
101 /*
102  * the same as above, but for filesystems which can only store a 16-bit
103  * UID and GID. as such, this is needed on all architectures
104  */
105
106 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
107 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
108
109 EXPORT_SYMBOL(fs_overflowuid);
110 EXPORT_SYMBOL(fs_overflowgid);
111
112 /*
113  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
114  */
115
116 int C_A_D = 1;
117 struct pid *cad_pid;
118 EXPORT_SYMBOL(cad_pid);
119
120 /*
121  * If set, this is used for preparing the system to power off.
122  */
123
124 void (*pm_power_off_prepare)(void);
125
126 /*
127  * Returns true if current's euid is same as p's uid or euid,
128  * or has CAP_SYS_NICE to p's user_ns.
129  *
130  * Called with rcu_read_lock, creds are safe
131  */
132 static bool set_one_prio_perm(struct task_struct *p)
133 {
134         const struct cred *cred = current_cred(), *pcred = __task_cred(p);
135
136         if (pcred->user->user_ns == cred->user->user_ns &&
137             (pcred->uid  == cred->euid ||
138              pcred->euid == cred->euid))
139                 return true;
140         if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
141                 return true;
142         return false;
143 }
144
145 /*
146  * set the priority of a task
147  * - the caller must hold the RCU read lock
148  */
149 static int set_one_prio(struct task_struct *p, int niceval, int error)
150 {
151         int no_nice;
152
153         if (!set_one_prio_perm(p)) {
154                 error = -EPERM;
155                 goto out;
156         }
157         if (niceval < task_nice(p) && !can_nice(p, niceval)) {
158                 error = -EACCES;
159                 goto out;
160         }
161         no_nice = security_task_setnice(p, niceval);
162         if (no_nice) {
163                 error = no_nice;
164                 goto out;
165         }
166         if (error == -ESRCH)
167                 error = 0;
168         set_user_nice(p, niceval);
169 out:
170         return error;
171 }
172
173 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
174 {
175         struct task_struct *g, *p;
176         struct user_struct *user;
177         const struct cred *cred = current_cred();
178         int error = -EINVAL;
179         struct pid *pgrp;
180
181         if (which > PRIO_USER || which < PRIO_PROCESS)
182                 goto out;
183
184         /* normalize: avoid signed division (rounding problems) */
185         error = -ESRCH;
186         if (niceval < -20)
187                 niceval = -20;
188         if (niceval > 19)
189                 niceval = 19;
190
191         rcu_read_lock();
192         read_lock(&tasklist_lock);
193         switch (which) {
194                 case PRIO_PROCESS:
195                         if (who)
196                                 p = find_task_by_vpid(who);
197                         else
198                                 p = current;
199                         if (p)
200                                 error = set_one_prio(p, niceval, error);
201                         break;
202                 case PRIO_PGRP:
203                         if (who)
204                                 pgrp = find_vpid(who);
205                         else
206                                 pgrp = task_pgrp(current);
207                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
208                                 error = set_one_prio(p, niceval, error);
209                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
210                         break;
211                 case PRIO_USER:
212                         user = (struct user_struct *) cred->user;
213                         if (!who)
214                                 who = cred->uid;
215                         else if ((who != cred->uid) &&
216                                  !(user = find_user(who)))
217                                 goto out_unlock;        /* No processes for this user */
218
219                         do_each_thread(g, p) {
220                                 if (__task_cred(p)->uid == who)
221                                         error = set_one_prio(p, niceval, error);
222                         } while_each_thread(g, p);
223                         if (who != cred->uid)
224                                 free_uid(user);         /* For find_user() */
225                         break;
226         }
227 out_unlock:
228         read_unlock(&tasklist_lock);
229         rcu_read_unlock();
230 out:
231         return error;
232 }
233
234 /*
235  * Ugh. To avoid negative return values, "getpriority()" will
236  * not return the normal nice-value, but a negated value that
237  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238  * to stay compatible.
239  */
240 SYSCALL_DEFINE2(getpriority, int, which, int, who)
241 {
242         struct task_struct *g, *p;
243         struct user_struct *user;
244         const struct cred *cred = current_cred();
245         long niceval, retval = -ESRCH;
246         struct pid *pgrp;
247
248         if (which > PRIO_USER || which < PRIO_PROCESS)
249                 return -EINVAL;
250
251         rcu_read_lock();
252         read_lock(&tasklist_lock);
253         switch (which) {
254                 case PRIO_PROCESS:
255                         if (who)
256                                 p = find_task_by_vpid(who);
257                         else
258                                 p = current;
259                         if (p) {
260                                 niceval = 20 - task_nice(p);
261                                 if (niceval > retval)
262                                         retval = niceval;
263                         }
264                         break;
265                 case PRIO_PGRP:
266                         if (who)
267                                 pgrp = find_vpid(who);
268                         else
269                                 pgrp = task_pgrp(current);
270                         do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
271                                 niceval = 20 - task_nice(p);
272                                 if (niceval > retval)
273                                         retval = niceval;
274                         } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
275                         break;
276                 case PRIO_USER:
277                         user = (struct user_struct *) cred->user;
278                         if (!who)
279                                 who = cred->uid;
280                         else if ((who != cred->uid) &&
281                                  !(user = find_user(who)))
282                                 goto out_unlock;        /* No processes for this user */
283
284                         do_each_thread(g, p) {
285                                 if (__task_cred(p)->uid == who) {
286                                         niceval = 20 - task_nice(p);
287                                         if (niceval > retval)
288                                                 retval = niceval;
289                                 }
290                         } while_each_thread(g, p);
291                         if (who != cred->uid)
292                                 free_uid(user);         /* for find_user() */
293                         break;
294         }
295 out_unlock:
296         read_unlock(&tasklist_lock);
297         rcu_read_unlock();
298
299         return retval;
300 }
301
302 /**
303  *      emergency_restart - reboot the system
304  *
305  *      Without shutting down any hardware or taking any locks
306  *      reboot the system.  This is called when we know we are in
307  *      trouble so this is our best effort to reboot.  This is
308  *      safe to call in interrupt context.
309  */
310 void emergency_restart(void)
311 {
312         kmsg_dump(KMSG_DUMP_EMERG);
313         machine_emergency_restart();
314 }
315 EXPORT_SYMBOL_GPL(emergency_restart);
316
317 void kernel_restart_prepare(char *cmd)
318 {
319         blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
320         system_state = SYSTEM_RESTART;
321         usermodehelper_disable();
322         device_shutdown();
323 }
324
325 /**
326  *      kernel_restart - reboot the system
327  *      @cmd: pointer to buffer containing command to execute for restart
328  *              or %NULL
329  *
330  *      Shutdown everything and perform a clean reboot.
331  *      This is not safe to call in interrupt context.
332  */
333 void kernel_restart(char *cmd)
334 {
335         kernel_restart_prepare(cmd);
336         if (pm_power_off_prepare)
337                 pm_power_off_prepare();
338         disable_nonboot_cpus();
339         syscore_shutdown();
340         if (!cmd)
341                 printk(KERN_EMERG "Restarting system.\n");
342         else{
343                 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
344                 printk(KERN_EMERG "pid = %d name:%s\n", task_tgid_vnr(current), current->comm);
345         }
346         kmsg_dump(KMSG_DUMP_RESTART);
347         machine_restart(cmd);
348 }
349 EXPORT_SYMBOL_GPL(kernel_restart);
350
351 static void kernel_shutdown_prepare(enum system_states state)
352 {
353         blocking_notifier_call_chain(&reboot_notifier_list,
354                 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
355         system_state = state;
356         usermodehelper_disable();
357         device_shutdown();
358 }
359 /**
360  *      kernel_halt - halt the system
361  *
362  *      Shutdown everything and perform a clean system halt.
363  */
364 void kernel_halt(void)
365 {
366         kernel_shutdown_prepare(SYSTEM_HALT);
367         disable_nonboot_cpus();
368         syscore_shutdown();
369         printk(KERN_EMERG "System halted.\n");
370         kmsg_dump(KMSG_DUMP_HALT);
371         machine_halt();
372 }
373
374 EXPORT_SYMBOL_GPL(kernel_halt);
375
376 /**
377  *      kernel_power_off - power_off the system
378  *
379  *      Shutdown everything and perform a clean system power_off.
380  */
381 void kernel_power_off(void)
382 {
383         kernel_shutdown_prepare(SYSTEM_POWER_OFF);
384         if (pm_power_off_prepare)
385                 pm_power_off_prepare();
386         disable_nonboot_cpus();
387         syscore_shutdown();
388         printk(KERN_EMERG "Power down.\n");
389         kmsg_dump(KMSG_DUMP_POWEROFF);
390         machine_power_off();
391 }
392 EXPORT_SYMBOL_GPL(kernel_power_off);
393
394 static DEFINE_MUTEX(reboot_mutex);
395
396 /*
397  * Reboot system call: for obvious reasons only root may call it,
398  * and even root needs to set up some magic numbers in the registers
399  * so that some mistake won't make this reboot the whole machine.
400  * You can also set the meaning of the ctrl-alt-del-key here.
401  *
402  * reboot doesn't sync: do that yourself before calling this.
403  */
404 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
405                 void __user *, arg)
406 {
407         char buffer[256];
408         int ret = 0;
409
410         /* We only trust the superuser with rebooting the system. */
411         if (!capable(CAP_SYS_BOOT))
412                 return -EPERM;
413
414         /* For safety, we require "magic" arguments. */
415         if (magic1 != LINUX_REBOOT_MAGIC1 ||
416             (magic2 != LINUX_REBOOT_MAGIC2 &&
417                         magic2 != LINUX_REBOOT_MAGIC2A &&
418                         magic2 != LINUX_REBOOT_MAGIC2B &&
419                         magic2 != LINUX_REBOOT_MAGIC2C))
420                 return -EINVAL;
421
422         /* Instead of trying to make the power_off code look like
423          * halt when pm_power_off is not set do it the easy way.
424          */
425         if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
426                 cmd = LINUX_REBOOT_CMD_HALT;
427
428         mutex_lock(&reboot_mutex);
429         switch (cmd) {
430         case LINUX_REBOOT_CMD_RESTART:
431                 kernel_restart(NULL);
432                 break;
433
434         case LINUX_REBOOT_CMD_CAD_ON:
435                 C_A_D = 1;
436                 break;
437
438         case LINUX_REBOOT_CMD_CAD_OFF:
439                 C_A_D = 0;
440                 break;
441
442         case LINUX_REBOOT_CMD_HALT:
443                 kernel_halt();
444                 do_exit(0);
445                 panic("cannot halt");
446
447         case LINUX_REBOOT_CMD_POWER_OFF:
448                 kernel_power_off();
449                 do_exit(0);
450                 break;
451
452         case LINUX_REBOOT_CMD_RESTART2:
453                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
454                         ret = -EFAULT;
455                         break;
456                 }
457                 buffer[sizeof(buffer) - 1] = '\0';
458
459                 kernel_restart(buffer);
460                 break;
461
462 #ifdef CONFIG_KEXEC
463         case LINUX_REBOOT_CMD_KEXEC:
464                 ret = kernel_kexec();
465                 break;
466 #endif
467
468 #ifdef CONFIG_HIBERNATION
469         case LINUX_REBOOT_CMD_SW_SUSPEND:
470                 ret = hibernate();
471                 break;
472 #endif
473
474         default:
475                 ret = -EINVAL;
476                 break;
477         }
478         mutex_unlock(&reboot_mutex);
479         return ret;
480 }
481
482 static void deferred_cad(struct work_struct *dummy)
483 {
484         kernel_restart(NULL);
485 }
486
487 /*
488  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
489  * As it's called within an interrupt, it may NOT sync: the only choice
490  * is whether to reboot at once, or just ignore the ctrl-alt-del.
491  */
492 void ctrl_alt_del(void)
493 {
494         static DECLARE_WORK(cad_work, deferred_cad);
495
496         if (C_A_D)
497                 schedule_work(&cad_work);
498         else
499                 kill_cad_pid(SIGINT, 1);
500 }
501         
502 /*
503  * Unprivileged users may change the real gid to the effective gid
504  * or vice versa.  (BSD-style)
505  *
506  * If you set the real gid at all, or set the effective gid to a value not
507  * equal to the real gid, then the saved gid is set to the new effective gid.
508  *
509  * This makes it possible for a setgid program to completely drop its
510  * privileges, which is often a useful assertion to make when you are doing
511  * a security audit over a program.
512  *
513  * The general idea is that a program which uses just setregid() will be
514  * 100% compatible with BSD.  A program which uses just setgid() will be
515  * 100% compatible with POSIX with saved IDs. 
516  *
517  * SMP: There are not races, the GIDs are checked only by filesystem
518  *      operations (as far as semantic preservation is concerned).
519  */
520 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
521 {
522         const struct cred *old;
523         struct cred *new;
524         int retval;
525
526         new = prepare_creds();
527         if (!new)
528                 return -ENOMEM;
529         old = current_cred();
530
531         retval = -EPERM;
532         if (rgid != (gid_t) -1) {
533                 if (old->gid == rgid ||
534                     old->egid == rgid ||
535                     nsown_capable(CAP_SETGID))
536                         new->gid = rgid;
537                 else
538                         goto error;
539         }
540         if (egid != (gid_t) -1) {
541                 if (old->gid == egid ||
542                     old->egid == egid ||
543                     old->sgid == egid ||
544                     nsown_capable(CAP_SETGID))
545                         new->egid = egid;
546                 else
547                         goto error;
548         }
549
550         if (rgid != (gid_t) -1 ||
551             (egid != (gid_t) -1 && egid != old->gid))
552                 new->sgid = new->egid;
553         new->fsgid = new->egid;
554
555         return commit_creds(new);
556
557 error:
558         abort_creds(new);
559         return retval;
560 }
561
562 /*
563  * setgid() is implemented like SysV w/ SAVED_IDS 
564  *
565  * SMP: Same implicit races as above.
566  */
567 SYSCALL_DEFINE1(setgid, gid_t, gid)
568 {
569         const struct cred *old;
570         struct cred *new;
571         int retval;
572
573         new = prepare_creds();
574         if (!new)
575                 return -ENOMEM;
576         old = current_cred();
577
578         retval = -EPERM;
579         if (nsown_capable(CAP_SETGID))
580                 new->gid = new->egid = new->sgid = new->fsgid = gid;
581         else if (gid == old->gid || gid == old->sgid)
582                 new->egid = new->fsgid = gid;
583         else
584                 goto error;
585
586         return commit_creds(new);
587
588 error:
589         abort_creds(new);
590         return retval;
591 }
592
593 /*
594  * change the user struct in a credentials set to match the new UID
595  */
596 static int set_user(struct cred *new)
597 {
598         struct user_struct *new_user;
599
600         new_user = alloc_uid(current_user_ns(), new->uid);
601         if (!new_user)
602                 return -EAGAIN;
603
604         if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
605                         new_user != INIT_USER) {
606                 free_uid(new_user);
607                 return -EAGAIN;
608         }
609
610         free_uid(new->user);
611         new->user = new_user;
612         return 0;
613 }
614
615 /*
616  * Unprivileged users may change the real uid to the effective uid
617  * or vice versa.  (BSD-style)
618  *
619  * If you set the real uid at all, or set the effective uid to a value not
620  * equal to the real uid, then the saved uid is set to the new effective uid.
621  *
622  * This makes it possible for a setuid program to completely drop its
623  * privileges, which is often a useful assertion to make when you are doing
624  * a security audit over a program.
625  *
626  * The general idea is that a program which uses just setreuid() will be
627  * 100% compatible with BSD.  A program which uses just setuid() will be
628  * 100% compatible with POSIX with saved IDs. 
629  */
630 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
631 {
632         const struct cred *old;
633         struct cred *new;
634         int retval;
635
636         new = prepare_creds();
637         if (!new)
638                 return -ENOMEM;
639         old = current_cred();
640
641         retval = -EPERM;
642         if (ruid != (uid_t) -1) {
643                 new->uid = ruid;
644                 if (old->uid != ruid &&
645                     old->euid != ruid &&
646                     !nsown_capable(CAP_SETUID))
647                         goto error;
648         }
649
650         if (euid != (uid_t) -1) {
651                 new->euid = euid;
652                 if (old->uid != euid &&
653                     old->euid != euid &&
654                     old->suid != euid &&
655                     !nsown_capable(CAP_SETUID))
656                         goto error;
657         }
658
659         if (new->uid != old->uid) {
660                 retval = set_user(new);
661                 if (retval < 0)
662                         goto error;
663         }
664         if (ruid != (uid_t) -1 ||
665             (euid != (uid_t) -1 && euid != old->uid))
666                 new->suid = new->euid;
667         new->fsuid = new->euid;
668
669         retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
670         if (retval < 0)
671                 goto error;
672
673         return commit_creds(new);
674
675 error:
676         abort_creds(new);
677         return retval;
678 }
679                 
680 /*
681  * setuid() is implemented like SysV with SAVED_IDS 
682  * 
683  * Note that SAVED_ID's is deficient in that a setuid root program
684  * like sendmail, for example, cannot set its uid to be a normal 
685  * user and then switch back, because if you're root, setuid() sets
686  * the saved uid too.  If you don't like this, blame the bright people
687  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
688  * will allow a root program to temporarily drop privileges and be able to
689  * regain them by swapping the real and effective uid.  
690  */
691 SYSCALL_DEFINE1(setuid, uid_t, uid)
692 {
693         const struct cred *old;
694         struct cred *new;
695         int retval;
696
697         new = prepare_creds();
698         if (!new)
699                 return -ENOMEM;
700         old = current_cred();
701
702         retval = -EPERM;
703         if (nsown_capable(CAP_SETUID)) {
704                 new->suid = new->uid = uid;
705                 if (uid != old->uid) {
706                         retval = set_user(new);
707                         if (retval < 0)
708                                 goto error;
709                 }
710         } else if (uid != old->uid && uid != new->suid) {
711                 goto error;
712         }
713
714         new->fsuid = new->euid = uid;
715
716         retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
717         if (retval < 0)
718                 goto error;
719
720         return commit_creds(new);
721
722 error:
723         abort_creds(new);
724         return retval;
725 }
726
727
728 /*
729  * This function implements a generic ability to update ruid, euid,
730  * and suid.  This allows you to implement the 4.4 compatible seteuid().
731  */
732 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
733 {
734         const struct cred *old;
735         struct cred *new;
736         int retval;
737
738         new = prepare_creds();
739         if (!new)
740                 return -ENOMEM;
741
742         old = current_cred();
743
744         retval = -EPERM;
745         if (!nsown_capable(CAP_SETUID)) {
746                 if (ruid != (uid_t) -1 && ruid != old->uid &&
747                     ruid != old->euid  && ruid != old->suid)
748                         goto error;
749                 if (euid != (uid_t) -1 && euid != old->uid &&
750                     euid != old->euid  && euid != old->suid)
751                         goto error;
752                 if (suid != (uid_t) -1 && suid != old->uid &&
753                     suid != old->euid  && suid != old->suid)
754                         goto error;
755         }
756
757         if (ruid != (uid_t) -1) {
758                 new->uid = ruid;
759                 if (ruid != old->uid) {
760                         retval = set_user(new);
761                         if (retval < 0)
762                                 goto error;
763                 }
764         }
765         if (euid != (uid_t) -1)
766                 new->euid = euid;
767         if (suid != (uid_t) -1)
768                 new->suid = suid;
769         new->fsuid = new->euid;
770
771         retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
772         if (retval < 0)
773                 goto error;
774
775         return commit_creds(new);
776
777 error:
778         abort_creds(new);
779         return retval;
780 }
781
782 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
783 {
784         const struct cred *cred = current_cred();
785         int retval;
786
787         if (!(retval   = put_user(cred->uid,  ruid)) &&
788             !(retval   = put_user(cred->euid, euid)))
789                 retval = put_user(cred->suid, suid);
790
791         return retval;
792 }
793
794 /*
795  * Same as above, but for rgid, egid, sgid.
796  */
797 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
798 {
799         const struct cred *old;
800         struct cred *new;
801         int retval;
802
803         new = prepare_creds();
804         if (!new)
805                 return -ENOMEM;
806         old = current_cred();
807
808         retval = -EPERM;
809         if (!nsown_capable(CAP_SETGID)) {
810                 if (rgid != (gid_t) -1 && rgid != old->gid &&
811                     rgid != old->egid  && rgid != old->sgid)
812                         goto error;
813                 if (egid != (gid_t) -1 && egid != old->gid &&
814                     egid != old->egid  && egid != old->sgid)
815                         goto error;
816                 if (sgid != (gid_t) -1 && sgid != old->gid &&
817                     sgid != old->egid  && sgid != old->sgid)
818                         goto error;
819         }
820
821         if (rgid != (gid_t) -1)
822                 new->gid = rgid;
823         if (egid != (gid_t) -1)
824                 new->egid = egid;
825         if (sgid != (gid_t) -1)
826                 new->sgid = sgid;
827         new->fsgid = new->egid;
828
829         return commit_creds(new);
830
831 error:
832         abort_creds(new);
833         return retval;
834 }
835
836 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
837 {
838         const struct cred *cred = current_cred();
839         int retval;
840
841         if (!(retval   = put_user(cred->gid,  rgid)) &&
842             !(retval   = put_user(cred->egid, egid)))
843                 retval = put_user(cred->sgid, sgid);
844
845         return retval;
846 }
847
848
849 /*
850  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
851  * is used for "access()" and for the NFS daemon (letting nfsd stay at
852  * whatever uid it wants to). It normally shadows "euid", except when
853  * explicitly set by setfsuid() or for access..
854  */
855 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
856 {
857         const struct cred *old;
858         struct cred *new;
859         uid_t old_fsuid;
860
861         new = prepare_creds();
862         if (!new)
863                 return current_fsuid();
864         old = current_cred();
865         old_fsuid = old->fsuid;
866
867         if (uid == old->uid  || uid == old->euid  ||
868             uid == old->suid || uid == old->fsuid ||
869             nsown_capable(CAP_SETUID)) {
870                 if (uid != old_fsuid) {
871                         new->fsuid = uid;
872                         if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
873                                 goto change_okay;
874                 }
875         }
876
877         abort_creds(new);
878         return old_fsuid;
879
880 change_okay:
881         commit_creds(new);
882         return old_fsuid;
883 }
884
885 /*
886  * Samma pÃ¥ svenska..
887  */
888 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
889 {
890         const struct cred *old;
891         struct cred *new;
892         gid_t old_fsgid;
893
894         new = prepare_creds();
895         if (!new)
896                 return current_fsgid();
897         old = current_cred();
898         old_fsgid = old->fsgid;
899
900         if (gid == old->gid  || gid == old->egid  ||
901             gid == old->sgid || gid == old->fsgid ||
902             nsown_capable(CAP_SETGID)) {
903                 if (gid != old_fsgid) {
904                         new->fsgid = gid;
905                         goto change_okay;
906                 }
907         }
908
909         abort_creds(new);
910         return old_fsgid;
911
912 change_okay:
913         commit_creds(new);
914         return old_fsgid;
915 }
916
917 void do_sys_times(struct tms *tms)
918 {
919         cputime_t tgutime, tgstime, cutime, cstime;
920
921         spin_lock_irq(&current->sighand->siglock);
922         thread_group_times(current, &tgutime, &tgstime);
923         cutime = current->signal->cutime;
924         cstime = current->signal->cstime;
925         spin_unlock_irq(&current->sighand->siglock);
926         tms->tms_utime = cputime_to_clock_t(tgutime);
927         tms->tms_stime = cputime_to_clock_t(tgstime);
928         tms->tms_cutime = cputime_to_clock_t(cutime);
929         tms->tms_cstime = cputime_to_clock_t(cstime);
930 }
931
932 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
933 {
934         if (tbuf) {
935                 struct tms tmp;
936
937                 do_sys_times(&tmp);
938                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
939                         return -EFAULT;
940         }
941         force_successful_syscall_return();
942         return (long) jiffies_64_to_clock_t(get_jiffies_64());
943 }
944
945 /*
946  * This needs some heavy checking ...
947  * I just haven't the stomach for it. I also don't fully
948  * understand sessions/pgrp etc. Let somebody who does explain it.
949  *
950  * OK, I think I have the protection semantics right.... this is really
951  * only important on a multi-user system anyway, to make sure one user
952  * can't send a signal to a process owned by another.  -TYT, 12/12/91
953  *
954  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
955  * LBT 04.03.94
956  */
957 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
958 {
959         struct task_struct *p;
960         struct task_struct *group_leader = current->group_leader;
961         struct pid *pgrp;
962         int err;
963
964         if (!pid)
965                 pid = task_pid_vnr(group_leader);
966         if (!pgid)
967                 pgid = pid;
968         if (pgid < 0)
969                 return -EINVAL;
970         rcu_read_lock();
971
972         /* From this point forward we keep holding onto the tasklist lock
973          * so that our parent does not change from under us. -DaveM
974          */
975         write_lock_irq(&tasklist_lock);
976
977         err = -ESRCH;
978         p = find_task_by_vpid(pid);
979         if (!p)
980                 goto out;
981
982         err = -EINVAL;
983         if (!thread_group_leader(p))
984                 goto out;
985
986         if (same_thread_group(p->real_parent, group_leader)) {
987                 err = -EPERM;
988                 if (task_session(p) != task_session(group_leader))
989                         goto out;
990                 err = -EACCES;
991                 if (p->did_exec)
992                         goto out;
993         } else {
994                 err = -ESRCH;
995                 if (p != group_leader)
996                         goto out;
997         }
998
999         err = -EPERM;
1000         if (p->signal->leader)
1001                 goto out;
1002
1003         pgrp = task_pid(p);
1004         if (pgid != pid) {
1005                 struct task_struct *g;
1006
1007                 pgrp = find_vpid(pgid);
1008                 g = pid_task(pgrp, PIDTYPE_PGID);
1009                 if (!g || task_session(g) != task_session(group_leader))
1010                         goto out;
1011         }
1012
1013         err = security_task_setpgid(p, pgid);
1014         if (err)
1015                 goto out;
1016
1017         if (task_pgrp(p) != pgrp)
1018                 change_pid(p, PIDTYPE_PGID, pgrp);
1019
1020         err = 0;
1021 out:
1022         /* All paths lead to here, thus we are safe. -DaveM */
1023         write_unlock_irq(&tasklist_lock);
1024         rcu_read_unlock();
1025         return err;
1026 }
1027
1028 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1029 {
1030         struct task_struct *p;
1031         struct pid *grp;
1032         int retval;
1033
1034         rcu_read_lock();
1035         if (!pid)
1036                 grp = task_pgrp(current);
1037         else {
1038                 retval = -ESRCH;
1039                 p = find_task_by_vpid(pid);
1040                 if (!p)
1041                         goto out;
1042                 grp = task_pgrp(p);
1043                 if (!grp)
1044                         goto out;
1045
1046                 retval = security_task_getpgid(p);
1047                 if (retval)
1048                         goto out;
1049         }
1050         retval = pid_vnr(grp);
1051 out:
1052         rcu_read_unlock();
1053         return retval;
1054 }
1055
1056 #ifdef __ARCH_WANT_SYS_GETPGRP
1057
1058 SYSCALL_DEFINE0(getpgrp)
1059 {
1060         return sys_getpgid(0);
1061 }
1062
1063 #endif
1064
1065 SYSCALL_DEFINE1(getsid, pid_t, pid)
1066 {
1067         struct task_struct *p;
1068         struct pid *sid;
1069         int retval;
1070
1071         rcu_read_lock();
1072         if (!pid)
1073                 sid = task_session(current);
1074         else {
1075                 retval = -ESRCH;
1076                 p = find_task_by_vpid(pid);
1077                 if (!p)
1078                         goto out;
1079                 sid = task_session(p);
1080                 if (!sid)
1081                         goto out;
1082
1083                 retval = security_task_getsid(p);
1084                 if (retval)
1085                         goto out;
1086         }
1087         retval = pid_vnr(sid);
1088 out:
1089         rcu_read_unlock();
1090         return retval;
1091 }
1092
1093 SYSCALL_DEFINE0(setsid)
1094 {
1095         struct task_struct *group_leader = current->group_leader;
1096         struct pid *sid = task_pid(group_leader);
1097         pid_t session = pid_vnr(sid);
1098         int err = -EPERM;
1099
1100         write_lock_irq(&tasklist_lock);
1101         /* Fail if I am already a session leader */
1102         if (group_leader->signal->leader)
1103                 goto out;
1104
1105         /* Fail if a process group id already exists that equals the
1106          * proposed session id.
1107          */
1108         if (pid_task(sid, PIDTYPE_PGID))
1109                 goto out;
1110
1111         group_leader->signal->leader = 1;
1112         __set_special_pids(sid);
1113
1114         proc_clear_tty(group_leader);
1115
1116         err = session;
1117 out:
1118         write_unlock_irq(&tasklist_lock);
1119         if (err > 0) {
1120                 proc_sid_connector(group_leader);
1121                 sched_autogroup_create_attach(group_leader);
1122         }
1123         return err;
1124 }
1125
1126 DECLARE_RWSEM(uts_sem);
1127
1128 #ifdef COMPAT_UTS_MACHINE
1129 #define override_architecture(name) \
1130         (personality(current->personality) == PER_LINUX32 && \
1131          copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1132                       sizeof(COMPAT_UTS_MACHINE)))
1133 #else
1134 #define override_architecture(name)     0
1135 #endif
1136
1137 /*
1138  * Work around broken programs that cannot handle "Linux 3.0".
1139  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1140  */
1141 static int override_release(char __user *release, size_t len)
1142 {
1143         int ret = 0;
1144
1145         if (current->personality & UNAME26) {
1146                 const char *rest = UTS_RELEASE;
1147                 char buf[65] = { 0 };
1148                 int ndots = 0;
1149                 unsigned v;
1150                 size_t copy;
1151
1152                 while (*rest) {
1153                         if (*rest == '.' && ++ndots >= 3)
1154                                 break;
1155                         if (!isdigit(*rest) && *rest != '.')
1156                                 break;
1157                         rest++;
1158                 }
1159                 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1160                 copy = clamp_t(size_t, len, 1, sizeof(buf));
1161                 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1162                 ret = copy_to_user(release, buf, copy + 1);
1163         }
1164         return ret;
1165 }
1166
1167 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1168 {
1169         int errno = 0;
1170
1171         down_read(&uts_sem);
1172         if (copy_to_user(name, utsname(), sizeof *name))
1173                 errno = -EFAULT;
1174         up_read(&uts_sem);
1175
1176         if (!errno && override_release(name->release, sizeof(name->release)))
1177                 errno = -EFAULT;
1178         if (!errno && override_architecture(name))
1179                 errno = -EFAULT;
1180         return errno;
1181 }
1182
1183 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1184 /*
1185  * Old cruft
1186  */
1187 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1188 {
1189         int error = 0;
1190
1191         if (!name)
1192                 return -EFAULT;
1193
1194         down_read(&uts_sem);
1195         if (copy_to_user(name, utsname(), sizeof(*name)))
1196                 error = -EFAULT;
1197         up_read(&uts_sem);
1198
1199         if (!error && override_release(name->release, sizeof(name->release)))
1200                 error = -EFAULT;
1201         if (!error && override_architecture(name))
1202                 error = -EFAULT;
1203         return error;
1204 }
1205
1206 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1207 {
1208         int error;
1209
1210         if (!name)
1211                 return -EFAULT;
1212         if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1213                 return -EFAULT;
1214
1215         down_read(&uts_sem);
1216         error = __copy_to_user(&name->sysname, &utsname()->sysname,
1217                                __OLD_UTS_LEN);
1218         error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1219         error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1220                                 __OLD_UTS_LEN);
1221         error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1222         error |= __copy_to_user(&name->release, &utsname()->release,
1223                                 __OLD_UTS_LEN);
1224         error |= __put_user(0, name->release + __OLD_UTS_LEN);
1225         error |= __copy_to_user(&name->version, &utsname()->version,
1226                                 __OLD_UTS_LEN);
1227         error |= __put_user(0, name->version + __OLD_UTS_LEN);
1228         error |= __copy_to_user(&name->machine, &utsname()->machine,
1229                                 __OLD_UTS_LEN);
1230         error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1231         up_read(&uts_sem);
1232
1233         if (!error && override_architecture(name))
1234                 error = -EFAULT;
1235         if (!error && override_release(name->release, sizeof(name->release)))
1236                 error = -EFAULT;
1237         return error ? -EFAULT : 0;
1238 }
1239 #endif
1240
1241 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1242 {
1243         int errno;
1244         char tmp[__NEW_UTS_LEN];
1245
1246         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1247                 return -EPERM;
1248
1249         if (len < 0 || len > __NEW_UTS_LEN)
1250                 return -EINVAL;
1251         down_write(&uts_sem);
1252         errno = -EFAULT;
1253         if (!copy_from_user(tmp, name, len)) {
1254                 struct new_utsname *u = utsname();
1255
1256                 memcpy(u->nodename, tmp, len);
1257                 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1258                 errno = 0;
1259         }
1260         up_write(&uts_sem);
1261         return errno;
1262 }
1263
1264 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1265
1266 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1267 {
1268         int i, errno;
1269         struct new_utsname *u;
1270
1271         if (len < 0)
1272                 return -EINVAL;
1273         down_read(&uts_sem);
1274         u = utsname();
1275         i = 1 + strlen(u->nodename);
1276         if (i > len)
1277                 i = len;
1278         errno = 0;
1279         if (copy_to_user(name, u->nodename, i))
1280                 errno = -EFAULT;
1281         up_read(&uts_sem);
1282         return errno;
1283 }
1284
1285 #endif
1286
1287 /*
1288  * Only setdomainname; getdomainname can be implemented by calling
1289  * uname()
1290  */
1291 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1292 {
1293         int errno;
1294         char tmp[__NEW_UTS_LEN];
1295
1296         if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1297                 return -EPERM;
1298         if (len < 0 || len > __NEW_UTS_LEN)
1299                 return -EINVAL;
1300
1301         down_write(&uts_sem);
1302         errno = -EFAULT;
1303         if (!copy_from_user(tmp, name, len)) {
1304                 struct new_utsname *u = utsname();
1305
1306                 memcpy(u->domainname, tmp, len);
1307                 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1308                 errno = 0;
1309         }
1310         up_write(&uts_sem);
1311         return errno;
1312 }
1313
1314 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1315 {
1316         struct rlimit value;
1317         int ret;
1318
1319         ret = do_prlimit(current, resource, NULL, &value);
1320         if (!ret)
1321                 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1322
1323         return ret;
1324 }
1325
1326 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1327
1328 /*
1329  *      Back compatibility for getrlimit. Needed for some apps.
1330  */
1331  
1332 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1333                 struct rlimit __user *, rlim)
1334 {
1335         struct rlimit x;
1336         if (resource >= RLIM_NLIMITS)
1337                 return -EINVAL;
1338
1339         task_lock(current->group_leader);
1340         x = current->signal->rlim[resource];
1341         task_unlock(current->group_leader);
1342         if (x.rlim_cur > 0x7FFFFFFF)
1343                 x.rlim_cur = 0x7FFFFFFF;
1344         if (x.rlim_max > 0x7FFFFFFF)
1345                 x.rlim_max = 0x7FFFFFFF;
1346         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1347 }
1348
1349 #endif
1350
1351 static inline bool rlim64_is_infinity(__u64 rlim64)
1352 {
1353 #if BITS_PER_LONG < 64
1354         return rlim64 >= ULONG_MAX;
1355 #else
1356         return rlim64 == RLIM64_INFINITY;
1357 #endif
1358 }
1359
1360 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1361 {
1362         if (rlim->rlim_cur == RLIM_INFINITY)
1363                 rlim64->rlim_cur = RLIM64_INFINITY;
1364         else
1365                 rlim64->rlim_cur = rlim->rlim_cur;
1366         if (rlim->rlim_max == RLIM_INFINITY)
1367                 rlim64->rlim_max = RLIM64_INFINITY;
1368         else
1369                 rlim64->rlim_max = rlim->rlim_max;
1370 }
1371
1372 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1373 {
1374         if (rlim64_is_infinity(rlim64->rlim_cur))
1375                 rlim->rlim_cur = RLIM_INFINITY;
1376         else
1377                 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1378         if (rlim64_is_infinity(rlim64->rlim_max))
1379                 rlim->rlim_max = RLIM_INFINITY;
1380         else
1381                 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1382 }
1383
1384 /* make sure you are allowed to change @tsk limits before calling this */
1385 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1386                 struct rlimit *new_rlim, struct rlimit *old_rlim)
1387 {
1388         struct rlimit *rlim;
1389         int retval = 0;
1390
1391         if (resource >= RLIM_NLIMITS)
1392                 return -EINVAL;
1393         if (new_rlim) {
1394                 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1395                         return -EINVAL;
1396                 if (resource == RLIMIT_NOFILE &&
1397                                 new_rlim->rlim_max > sysctl_nr_open)
1398                         return -EPERM;
1399         }
1400
1401         /* protect tsk->signal and tsk->sighand from disappearing */
1402         read_lock(&tasklist_lock);
1403         if (!tsk->sighand) {
1404                 retval = -ESRCH;
1405                 goto out;
1406         }
1407
1408         rlim = tsk->signal->rlim + resource;
1409         task_lock(tsk->group_leader);
1410         if (new_rlim) {
1411                 /* Keep the capable check against init_user_ns until
1412                    cgroups can contain all limits */
1413                 if (new_rlim->rlim_max > rlim->rlim_max &&
1414                                 !capable(CAP_SYS_RESOURCE))
1415                         retval = -EPERM;
1416                 if (!retval)
1417                         retval = security_task_setrlimit(tsk->group_leader,
1418                                         resource, new_rlim);
1419                 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1420                         /*
1421                          * The caller is asking for an immediate RLIMIT_CPU
1422                          * expiry.  But we use the zero value to mean "it was
1423                          * never set".  So let's cheat and make it one second
1424                          * instead
1425                          */
1426                         new_rlim->rlim_cur = 1;
1427                 }
1428         }
1429         if (!retval) {
1430                 if (old_rlim)
1431                         *old_rlim = *rlim;
1432                 if (new_rlim)
1433                         *rlim = *new_rlim;
1434         }
1435         task_unlock(tsk->group_leader);
1436
1437         /*
1438          * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1439          * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1440          * very long-standing error, and fixing it now risks breakage of
1441          * applications, so we live with it
1442          */
1443          if (!retval && new_rlim && resource == RLIMIT_CPU &&
1444                          new_rlim->rlim_cur != RLIM_INFINITY)
1445                 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1446 out:
1447         read_unlock(&tasklist_lock);
1448         return retval;
1449 }
1450
1451 /* rcu lock must be held */
1452 static int check_prlimit_permission(struct task_struct *task)
1453 {
1454         const struct cred *cred = current_cred(), *tcred;
1455
1456         if (current == task)
1457                 return 0;
1458
1459         tcred = __task_cred(task);
1460         if (cred->user->user_ns == tcred->user->user_ns &&
1461             (cred->uid == tcred->euid &&
1462              cred->uid == tcred->suid &&
1463              cred->uid == tcred->uid  &&
1464              cred->gid == tcred->egid &&
1465              cred->gid == tcred->sgid &&
1466              cred->gid == tcred->gid))
1467                 return 0;
1468         if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1469                 return 0;
1470
1471         return -EPERM;
1472 }
1473
1474 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1475                 const struct rlimit64 __user *, new_rlim,
1476                 struct rlimit64 __user *, old_rlim)
1477 {
1478         struct rlimit64 old64, new64;
1479         struct rlimit old, new;
1480         struct task_struct *tsk;
1481         int ret;
1482
1483         if (new_rlim) {
1484                 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1485                         return -EFAULT;
1486                 rlim64_to_rlim(&new64, &new);
1487         }
1488
1489         rcu_read_lock();
1490         tsk = pid ? find_task_by_vpid(pid) : current;
1491         if (!tsk) {
1492                 rcu_read_unlock();
1493                 return -ESRCH;
1494         }
1495         ret = check_prlimit_permission(tsk);
1496         if (ret) {
1497                 rcu_read_unlock();
1498                 return ret;
1499         }
1500         get_task_struct(tsk);
1501         rcu_read_unlock();
1502
1503         ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1504                         old_rlim ? &old : NULL);
1505
1506         if (!ret && old_rlim) {
1507                 rlim_to_rlim64(&old, &old64);
1508                 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1509                         ret = -EFAULT;
1510         }
1511
1512         put_task_struct(tsk);
1513         return ret;
1514 }
1515
1516 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1517 {
1518         struct rlimit new_rlim;
1519
1520         if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1521                 return -EFAULT;
1522         return do_prlimit(current, resource, &new_rlim, NULL);
1523 }
1524
1525 /*
1526  * It would make sense to put struct rusage in the task_struct,
1527  * except that would make the task_struct be *really big*.  After
1528  * task_struct gets moved into malloc'ed memory, it would
1529  * make sense to do this.  It will make moving the rest of the information
1530  * a lot simpler!  (Which we're not doing right now because we're not
1531  * measuring them yet).
1532  *
1533  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1534  * races with threads incrementing their own counters.  But since word
1535  * reads are atomic, we either get new values or old values and we don't
1536  * care which for the sums.  We always take the siglock to protect reading
1537  * the c* fields from p->signal from races with exit.c updating those
1538  * fields when reaping, so a sample either gets all the additions of a
1539  * given child after it's reaped, or none so this sample is before reaping.
1540  *
1541  * Locking:
1542  * We need to take the siglock for CHILDEREN, SELF and BOTH
1543  * for  the cases current multithreaded, non-current single threaded
1544  * non-current multithreaded.  Thread traversal is now safe with
1545  * the siglock held.
1546  * Strictly speaking, we donot need to take the siglock if we are current and
1547  * single threaded,  as no one else can take our signal_struct away, no one
1548  * else can  reap the  children to update signal->c* counters, and no one else
1549  * can race with the signal-> fields. If we do not take any lock, the
1550  * signal-> fields could be read out of order while another thread was just
1551  * exiting. So we should  place a read memory barrier when we avoid the lock.
1552  * On the writer side,  write memory barrier is implied in  __exit_signal
1553  * as __exit_signal releases  the siglock spinlock after updating the signal->
1554  * fields. But we don't do this yet to keep things simple.
1555  *
1556  */
1557
1558 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1559 {
1560         r->ru_nvcsw += t->nvcsw;
1561         r->ru_nivcsw += t->nivcsw;
1562         r->ru_minflt += t->min_flt;
1563         r->ru_majflt += t->maj_flt;
1564         r->ru_inblock += task_io_get_inblock(t);
1565         r->ru_oublock += task_io_get_oublock(t);
1566 }
1567
1568 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1569 {
1570         struct task_struct *t;
1571         unsigned long flags;
1572         cputime_t tgutime, tgstime, utime, stime;
1573         unsigned long maxrss = 0;
1574
1575         memset((char *) r, 0, sizeof *r);
1576         utime = stime = cputime_zero;
1577
1578         if (who == RUSAGE_THREAD) {
1579                 task_times(current, &utime, &stime);
1580                 accumulate_thread_rusage(p, r);
1581                 maxrss = p->signal->maxrss;
1582                 goto out;
1583         }
1584
1585         if (!lock_task_sighand(p, &flags))
1586                 return;
1587
1588         switch (who) {
1589                 case RUSAGE_BOTH:
1590                 case RUSAGE_CHILDREN:
1591                         utime = p->signal->cutime;
1592                         stime = p->signal->cstime;
1593                         r->ru_nvcsw = p->signal->cnvcsw;
1594                         r->ru_nivcsw = p->signal->cnivcsw;
1595                         r->ru_minflt = p->signal->cmin_flt;
1596                         r->ru_majflt = p->signal->cmaj_flt;
1597                         r->ru_inblock = p->signal->cinblock;
1598                         r->ru_oublock = p->signal->coublock;
1599                         maxrss = p->signal->cmaxrss;
1600
1601                         if (who == RUSAGE_CHILDREN)
1602                                 break;
1603
1604                 case RUSAGE_SELF:
1605                         thread_group_times(p, &tgutime, &tgstime);
1606                         utime = cputime_add(utime, tgutime);
1607                         stime = cputime_add(stime, tgstime);
1608                         r->ru_nvcsw += p->signal->nvcsw;
1609                         r->ru_nivcsw += p->signal->nivcsw;
1610                         r->ru_minflt += p->signal->min_flt;
1611                         r->ru_majflt += p->signal->maj_flt;
1612                         r->ru_inblock += p->signal->inblock;
1613                         r->ru_oublock += p->signal->oublock;
1614                         if (maxrss < p->signal->maxrss)
1615                                 maxrss = p->signal->maxrss;
1616                         t = p;
1617                         do {
1618                                 accumulate_thread_rusage(t, r);
1619                                 t = next_thread(t);
1620                         } while (t != p);
1621                         break;
1622
1623                 default:
1624                         BUG();
1625         }
1626         unlock_task_sighand(p, &flags);
1627
1628 out:
1629         cputime_to_timeval(utime, &r->ru_utime);
1630         cputime_to_timeval(stime, &r->ru_stime);
1631
1632         if (who != RUSAGE_CHILDREN) {
1633                 struct mm_struct *mm = get_task_mm(p);
1634                 if (mm) {
1635                         setmax_mm_hiwater_rss(&maxrss, mm);
1636                         mmput(mm);
1637                 }
1638         }
1639         r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1640 }
1641
1642 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1643 {
1644         struct rusage r;
1645         k_getrusage(p, who, &r);
1646         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1647 }
1648
1649 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1650 {
1651         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1652             who != RUSAGE_THREAD)
1653                 return -EINVAL;
1654         return getrusage(current, who, ru);
1655 }
1656
1657 SYSCALL_DEFINE1(umask, int, mask)
1658 {
1659         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1660         return mask;
1661 }
1662
1663 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1664                 unsigned long, arg4, unsigned long, arg5)
1665 {
1666         struct task_struct *me = current;
1667         unsigned char comm[sizeof(me->comm)];
1668         long error;
1669
1670         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1671         if (error != -ENOSYS)
1672                 return error;
1673
1674         error = 0;
1675         switch (option) {
1676                 case PR_SET_PDEATHSIG:
1677                         if (!valid_signal(arg2)) {
1678                                 error = -EINVAL;
1679                                 break;
1680                         }
1681                         me->pdeath_signal = arg2;
1682                         error = 0;
1683                         break;
1684                 case PR_GET_PDEATHSIG:
1685                         error = put_user(me->pdeath_signal, (int __user *)arg2);
1686                         break;
1687                 case PR_GET_DUMPABLE:
1688                         error = get_dumpable(me->mm);
1689                         break;
1690                 case PR_SET_DUMPABLE:
1691                         if (arg2 < 0 || arg2 > 1) {
1692                                 error = -EINVAL;
1693                                 break;
1694                         }
1695                         set_dumpable(me->mm, arg2);
1696                         error = 0;
1697                         break;
1698
1699                 case PR_SET_UNALIGN:
1700                         error = SET_UNALIGN_CTL(me, arg2);
1701                         break;
1702                 case PR_GET_UNALIGN:
1703                         error = GET_UNALIGN_CTL(me, arg2);
1704                         break;
1705                 case PR_SET_FPEMU:
1706                         error = SET_FPEMU_CTL(me, arg2);
1707                         break;
1708                 case PR_GET_FPEMU:
1709                         error = GET_FPEMU_CTL(me, arg2);
1710                         break;
1711                 case PR_SET_FPEXC:
1712                         error = SET_FPEXC_CTL(me, arg2);
1713                         break;
1714                 case PR_GET_FPEXC:
1715                         error = GET_FPEXC_CTL(me, arg2);
1716                         break;
1717                 case PR_GET_TIMING:
1718                         error = PR_TIMING_STATISTICAL;
1719                         break;
1720                 case PR_SET_TIMING:
1721                         if (arg2 != PR_TIMING_STATISTICAL)
1722                                 error = -EINVAL;
1723                         else
1724                                 error = 0;
1725                         break;
1726
1727                 case PR_SET_NAME:
1728                         comm[sizeof(me->comm)-1] = 0;
1729                         if (strncpy_from_user(comm, (char __user *)arg2,
1730                                               sizeof(me->comm) - 1) < 0)
1731                                 return -EFAULT;
1732                         set_task_comm(me, comm);
1733                         return 0;
1734                 case PR_GET_NAME:
1735                         get_task_comm(comm, me);
1736                         if (copy_to_user((char __user *)arg2, comm,
1737                                          sizeof(comm)))
1738                                 return -EFAULT;
1739                         return 0;
1740                 case PR_GET_ENDIAN:
1741                         error = GET_ENDIAN(me, arg2);
1742                         break;
1743                 case PR_SET_ENDIAN:
1744                         error = SET_ENDIAN(me, arg2);
1745                         break;
1746
1747                 case PR_GET_SECCOMP:
1748                         error = prctl_get_seccomp();
1749                         break;
1750                 case PR_SET_SECCOMP:
1751                         error = prctl_set_seccomp(arg2);
1752                         break;
1753                 case PR_GET_TSC:
1754                         error = GET_TSC_CTL(arg2);
1755                         break;
1756                 case PR_SET_TSC:
1757                         error = SET_TSC_CTL(arg2);
1758                         break;
1759                 case PR_TASK_PERF_EVENTS_DISABLE:
1760                         error = perf_event_task_disable();
1761                         break;
1762                 case PR_TASK_PERF_EVENTS_ENABLE:
1763                         error = perf_event_task_enable();
1764                         break;
1765                 case PR_GET_TIMERSLACK:
1766                         error = current->timer_slack_ns;
1767                         break;
1768                 case PR_SET_TIMERSLACK:
1769                         if (arg2 <= 0)
1770                                 current->timer_slack_ns =
1771                                         current->default_timer_slack_ns;
1772                         else
1773                                 current->timer_slack_ns = arg2;
1774                         error = 0;
1775                         break;
1776                 case PR_MCE_KILL:
1777                         if (arg4 | arg5)
1778                                 return -EINVAL;
1779                         switch (arg2) {
1780                         case PR_MCE_KILL_CLEAR:
1781                                 if (arg3 != 0)
1782                                         return -EINVAL;
1783                                 current->flags &= ~PF_MCE_PROCESS;
1784                                 break;
1785                         case PR_MCE_KILL_SET:
1786                                 current->flags |= PF_MCE_PROCESS;
1787                                 if (arg3 == PR_MCE_KILL_EARLY)
1788                                         current->flags |= PF_MCE_EARLY;
1789                                 else if (arg3 == PR_MCE_KILL_LATE)
1790                                         current->flags &= ~PF_MCE_EARLY;
1791                                 else if (arg3 == PR_MCE_KILL_DEFAULT)
1792                                         current->flags &=
1793                                                 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
1794                                 else
1795                                         return -EINVAL;
1796                                 break;
1797                         default:
1798                                 return -EINVAL;
1799                         }
1800                         error = 0;
1801                         break;
1802                 case PR_MCE_KILL_GET:
1803                         if (arg2 | arg3 | arg4 | arg5)
1804                                 return -EINVAL;
1805                         if (current->flags & PF_MCE_PROCESS)
1806                                 error = (current->flags & PF_MCE_EARLY) ?
1807                                         PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1808                         else
1809                                 error = PR_MCE_KILL_DEFAULT;
1810                         break;
1811                 default:
1812                         error = -EINVAL;
1813                         break;
1814         }
1815         return error;
1816 }
1817
1818 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1819                 struct getcpu_cache __user *, unused)
1820 {
1821         int err = 0;
1822         int cpu = raw_smp_processor_id();
1823         if (cpup)
1824                 err |= put_user(cpu, cpup);
1825         if (nodep)
1826                 err |= put_user(cpu_to_node(cpu), nodep);
1827         return err ? -EFAULT : 0;
1828 }
1829
1830 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1831
1832 static void argv_cleanup(struct subprocess_info *info)
1833 {
1834         argv_free(info->argv);
1835 }
1836
1837 /**
1838  * orderly_poweroff - Trigger an orderly system poweroff
1839  * @force: force poweroff if command execution fails
1840  *
1841  * This may be called from any context to trigger a system shutdown.
1842  * If the orderly shutdown fails, it will force an immediate shutdown.
1843  */
1844 int orderly_poweroff(bool force)
1845 {
1846         int argc;
1847         char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1848         static char *envp[] = {
1849                 "HOME=/",
1850                 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1851                 NULL
1852         };
1853         int ret = -ENOMEM;
1854         struct subprocess_info *info;
1855
1856         if (argv == NULL) {
1857                 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1858                        __func__, poweroff_cmd);
1859                 goto out;
1860         }
1861
1862         info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1863         if (info == NULL) {
1864                 argv_free(argv);
1865                 goto out;
1866         }
1867
1868         call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1869
1870         ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1871
1872   out:
1873         if (ret && force) {
1874                 printk(KERN_WARNING "Failed to start orderly shutdown: "
1875                        "forcing the issue\n");
1876
1877                 /* I guess this should try to kick off some daemon to
1878                    sync and poweroff asap.  Or not even bother syncing
1879                    if we're doing an emergency shutdown? */
1880                 emergency_sync();
1881                 kernel_power_off();
1882         }
1883
1884         return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(orderly_poweroff);