upload tizen1.0 source
[kernel/linux-2.6.36.git] / tools / perf / util / session.c
1 #define _FILE_OFFSET_BITS 64
2
3 #include <linux/kernel.h>
4
5 #include <byteswap.h>
6 #include <unistd.h>
7 #include <sys/types.h>
8 #include <sys/mman.h>
9
10 #include "session.h"
11 #include "sort.h"
12 #include "util.h"
13
14 static int perf_session__open(struct perf_session *self, bool force)
15 {
16         struct stat input_stat;
17
18         if (!strcmp(self->filename, "-")) {
19                 self->fd_pipe = true;
20                 self->fd = STDIN_FILENO;
21
22                 if (perf_header__read(self, self->fd) < 0)
23                         pr_err("incompatible file format");
24
25                 return 0;
26         }
27
28         self->fd = open(self->filename, O_RDONLY);
29         if (self->fd < 0) {
30                 int err = errno;
31
32                 pr_err("failed to open %s: %s", self->filename, strerror(err));
33                 if (err == ENOENT && !strcmp(self->filename, "perf.data"))
34                         pr_err("  (try 'perf record' first)");
35                 pr_err("\n");
36                 return -errno;
37         }
38
39         if (fstat(self->fd, &input_stat) < 0)
40                 goto out_close;
41
42         if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
43                 pr_err("file %s not owned by current user or root\n",
44                        self->filename);
45                 goto out_close;
46         }
47
48         if (!input_stat.st_size) {
49                 pr_info("zero-sized file (%s), nothing to do!\n",
50                         self->filename);
51                 goto out_close;
52         }
53
54         if (perf_header__read(self, self->fd) < 0) {
55                 pr_err("incompatible file format");
56                 goto out_close;
57         }
58
59         self->size = input_stat.st_size;
60         return 0;
61
62 out_close:
63         close(self->fd);
64         self->fd = -1;
65         return -1;
66 }
67
68 void perf_session__update_sample_type(struct perf_session *self)
69 {
70         self->sample_type = perf_header__sample_type(&self->header);
71 }
72
73 int perf_session__create_kernel_maps(struct perf_session *self)
74 {
75         int ret = machine__create_kernel_maps(&self->host_machine);
76
77         if (ret >= 0)
78                 ret = machines__create_guest_kernel_maps(&self->machines);
79         return ret;
80 }
81
82 static void perf_session__destroy_kernel_maps(struct perf_session *self)
83 {
84         machine__destroy_kernel_maps(&self->host_machine);
85         machines__destroy_guest_kernel_maps(&self->machines);
86 }
87
88 struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
89 {
90         size_t len = filename ? strlen(filename) + 1 : 0;
91         struct perf_session *self = zalloc(sizeof(*self) + len);
92
93         if (self == NULL)
94                 goto out;
95
96         if (perf_header__init(&self->header) < 0)
97                 goto out_free;
98
99         memcpy(self->filename, filename, len);
100         self->threads = RB_ROOT;
101         INIT_LIST_HEAD(&self->dead_threads);
102         self->hists_tree = RB_ROOT;
103         self->last_match = NULL;
104         self->mmap_window = 32;
105         self->machines = RB_ROOT;
106         self->repipe = repipe;
107         INIT_LIST_HEAD(&self->ordered_samples.samples_head);
108         machine__init(&self->host_machine, "", HOST_KERNEL_ID);
109
110         if (mode == O_RDONLY) {
111                 if (perf_session__open(self, force) < 0)
112                         goto out_delete;
113         } else if (mode == O_WRONLY) {
114                 /*
115                  * In O_RDONLY mode this will be performed when reading the
116                  * kernel MMAP event, in event__process_mmap().
117                  */
118                 if (perf_session__create_kernel_maps(self) < 0)
119                         goto out_delete;
120         }
121
122         perf_session__update_sample_type(self);
123 out:
124         return self;
125 out_free:
126         free(self);
127         return NULL;
128 out_delete:
129         perf_session__delete(self);
130         return NULL;
131 }
132
133 static void perf_session__delete_dead_threads(struct perf_session *self)
134 {
135         struct thread *n, *t;
136
137         list_for_each_entry_safe(t, n, &self->dead_threads, node) {
138                 list_del(&t->node);
139                 thread__delete(t);
140         }
141 }
142
143 static void perf_session__delete_threads(struct perf_session *self)
144 {
145         struct rb_node *nd = rb_first(&self->threads);
146
147         while (nd) {
148                 struct thread *t = rb_entry(nd, struct thread, rb_node);
149
150                 rb_erase(&t->rb_node, &self->threads);
151                 nd = rb_next(nd);
152                 thread__delete(t);
153         }
154 }
155
156 void perf_session__delete(struct perf_session *self)
157 {
158         perf_header__exit(&self->header);
159         perf_session__destroy_kernel_maps(self);
160         perf_session__delete_dead_threads(self);
161         perf_session__delete_threads(self);
162         machine__exit(&self->host_machine);
163         close(self->fd);
164         free(self);
165 }
166
167 void perf_session__remove_thread(struct perf_session *self, struct thread *th)
168 {
169         self->last_match = NULL;
170         rb_erase(&th->rb_node, &self->threads);
171         /*
172          * We may have references to this thread, for instance in some hist_entry
173          * instances, so just move them to a separate list.
174          */
175         list_add_tail(&th->node, &self->dead_threads);
176 }
177
178 static bool symbol__match_parent_regex(struct symbol *sym)
179 {
180         if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
181                 return 1;
182
183         return 0;
184 }
185
186 struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
187                                                    struct thread *thread,
188                                                    struct ip_callchain *chain,
189                                                    struct symbol **parent)
190 {
191         u8 cpumode = PERF_RECORD_MISC_USER;
192         unsigned int i;
193         struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
194
195         if (!syms)
196                 return NULL;
197
198         for (i = 0; i < chain->nr; i++) {
199                 u64 ip = chain->ips[i];
200                 struct addr_location al;
201
202                 if (ip >= PERF_CONTEXT_MAX) {
203                         switch (ip) {
204                         case PERF_CONTEXT_HV:
205                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;  break;
206                         case PERF_CONTEXT_KERNEL:
207                                 cpumode = PERF_RECORD_MISC_KERNEL;      break;
208                         case PERF_CONTEXT_USER:
209                                 cpumode = PERF_RECORD_MISC_USER;        break;
210                         default:
211                                 break;
212                         }
213                         continue;
214                 }
215
216                 al.filtered = false;
217                 thread__find_addr_location(thread, self, cpumode,
218                                 MAP__FUNCTION, thread->pid, ip, &al, NULL);
219                 if (al.sym != NULL) {
220                         if (sort__has_parent && !*parent &&
221                             symbol__match_parent_regex(al.sym))
222                                 *parent = al.sym;
223                         if (!symbol_conf.use_callchain)
224                                 break;
225                         syms[i].map = al.map;
226                         syms[i].sym = al.sym;
227                 }
228         }
229
230         return syms;
231 }
232
233 static int process_event_stub(event_t *event __used,
234                               struct perf_session *session __used)
235 {
236         dump_printf(": unhandled!\n");
237         return 0;
238 }
239
240 static int process_finished_round_stub(event_t *event __used,
241                                        struct perf_session *session __used,
242                                        struct perf_event_ops *ops __used)
243 {
244         dump_printf(": unhandled!\n");
245         return 0;
246 }
247
248 static int process_finished_round(event_t *event,
249                                   struct perf_session *session,
250                                   struct perf_event_ops *ops);
251
252 static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
253 {
254         if (handler->sample == NULL)
255                 handler->sample = process_event_stub;
256         if (handler->mmap == NULL)
257                 handler->mmap = process_event_stub;
258         if (handler->comm == NULL)
259                 handler->comm = process_event_stub;
260         if (handler->fork == NULL)
261                 handler->fork = process_event_stub;
262         if (handler->exit == NULL)
263                 handler->exit = process_event_stub;
264         if (handler->lost == NULL)
265                 handler->lost = process_event_stub;
266         if (handler->read == NULL)
267                 handler->read = process_event_stub;
268         if (handler->throttle == NULL)
269                 handler->throttle = process_event_stub;
270         if (handler->unthrottle == NULL)
271                 handler->unthrottle = process_event_stub;
272         if (handler->attr == NULL)
273                 handler->attr = process_event_stub;
274         if (handler->event_type == NULL)
275                 handler->event_type = process_event_stub;
276         if (handler->tracing_data == NULL)
277                 handler->tracing_data = process_event_stub;
278         if (handler->build_id == NULL)
279                 handler->build_id = process_event_stub;
280         if (handler->finished_round == NULL) {
281                 if (handler->ordered_samples)
282                         handler->finished_round = process_finished_round;
283                 else
284                         handler->finished_round = process_finished_round_stub;
285         }
286 }
287
288 void mem_bswap_64(void *src, int byte_size)
289 {
290         u64 *m = src;
291
292         while (byte_size > 0) {
293                 *m = bswap_64(*m);
294                 byte_size -= sizeof(u64);
295                 ++m;
296         }
297 }
298
299 static void event__all64_swap(event_t *self)
300 {
301         struct perf_event_header *hdr = &self->header;
302         mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
303 }
304
305 static void event__comm_swap(event_t *self)
306 {
307         self->comm.pid = bswap_32(self->comm.pid);
308         self->comm.tid = bswap_32(self->comm.tid);
309 }
310
311 static void event__mmap_swap(event_t *self)
312 {
313         self->mmap.pid   = bswap_32(self->mmap.pid);
314         self->mmap.tid   = bswap_32(self->mmap.tid);
315         self->mmap.start = bswap_64(self->mmap.start);
316         self->mmap.len   = bswap_64(self->mmap.len);
317         self->mmap.pgoff = bswap_64(self->mmap.pgoff);
318 }
319
320 static void event__task_swap(event_t *self)
321 {
322         self->fork.pid  = bswap_32(self->fork.pid);
323         self->fork.tid  = bswap_32(self->fork.tid);
324         self->fork.ppid = bswap_32(self->fork.ppid);
325         self->fork.ptid = bswap_32(self->fork.ptid);
326         self->fork.time = bswap_64(self->fork.time);
327 }
328
329 static void event__read_swap(event_t *self)
330 {
331         self->read.pid          = bswap_32(self->read.pid);
332         self->read.tid          = bswap_32(self->read.tid);
333         self->read.value        = bswap_64(self->read.value);
334         self->read.time_enabled = bswap_64(self->read.time_enabled);
335         self->read.time_running = bswap_64(self->read.time_running);
336         self->read.id           = bswap_64(self->read.id);
337 }
338
339 static void event__attr_swap(event_t *self)
340 {
341         size_t size;
342
343         self->attr.attr.type            = bswap_32(self->attr.attr.type);
344         self->attr.attr.size            = bswap_32(self->attr.attr.size);
345         self->attr.attr.config          = bswap_64(self->attr.attr.config);
346         self->attr.attr.sample_period   = bswap_64(self->attr.attr.sample_period);
347         self->attr.attr.sample_type     = bswap_64(self->attr.attr.sample_type);
348         self->attr.attr.read_format     = bswap_64(self->attr.attr.read_format);
349         self->attr.attr.wakeup_events   = bswap_32(self->attr.attr.wakeup_events);
350         self->attr.attr.bp_type         = bswap_32(self->attr.attr.bp_type);
351         self->attr.attr.bp_addr         = bswap_64(self->attr.attr.bp_addr);
352         self->attr.attr.bp_len          = bswap_64(self->attr.attr.bp_len);
353
354         size = self->header.size;
355         size -= (void *)&self->attr.id - (void *)self;
356         mem_bswap_64(self->attr.id, size);
357 }
358
359 static void event__event_type_swap(event_t *self)
360 {
361         self->event_type.event_type.event_id =
362                 bswap_64(self->event_type.event_type.event_id);
363 }
364
365 static void event__tracing_data_swap(event_t *self)
366 {
367         self->tracing_data.size = bswap_32(self->tracing_data.size);
368 }
369
370 typedef void (*event__swap_op)(event_t *self);
371
372 static event__swap_op event__swap_ops[] = {
373         [PERF_RECORD_MMAP]   = event__mmap_swap,
374         [PERF_RECORD_COMM]   = event__comm_swap,
375         [PERF_RECORD_FORK]   = event__task_swap,
376         [PERF_RECORD_EXIT]   = event__task_swap,
377         [PERF_RECORD_LOST]   = event__all64_swap,
378         [PERF_RECORD_READ]   = event__read_swap,
379         [PERF_RECORD_SAMPLE] = event__all64_swap,
380         [PERF_RECORD_HEADER_ATTR]   = event__attr_swap,
381         [PERF_RECORD_HEADER_EVENT_TYPE]   = event__event_type_swap,
382         [PERF_RECORD_HEADER_TRACING_DATA]   = event__tracing_data_swap,
383         [PERF_RECORD_HEADER_BUILD_ID]   = NULL,
384         [PERF_RECORD_HEADER_MAX]    = NULL,
385 };
386
387 struct sample_queue {
388         u64                     timestamp;
389         struct sample_event     *event;
390         struct list_head        list;
391 };
392
393 static void flush_sample_queue(struct perf_session *s,
394                                struct perf_event_ops *ops)
395 {
396         struct list_head *head = &s->ordered_samples.samples_head;
397         u64 limit = s->ordered_samples.next_flush;
398         struct sample_queue *tmp, *iter;
399
400         if (!ops->ordered_samples || !limit)
401                 return;
402
403         list_for_each_entry_safe(iter, tmp, head, list) {
404                 if (iter->timestamp > limit)
405                         return;
406
407                 if (iter == s->ordered_samples.last_inserted)
408                         s->ordered_samples.last_inserted = NULL;
409
410                 ops->sample((event_t *)iter->event, s);
411
412                 s->ordered_samples.last_flush = iter->timestamp;
413                 list_del(&iter->list);
414                 free(iter->event);
415                 free(iter);
416         }
417 }
418
419 /*
420  * When perf record finishes a pass on every buffers, it records this pseudo
421  * event.
422  * We record the max timestamp t found in the pass n.
423  * Assuming these timestamps are monotonic across cpus, we know that if
424  * a buffer still has events with timestamps below t, they will be all
425  * available and then read in the pass n + 1.
426  * Hence when we start to read the pass n + 2, we can safely flush every
427  * events with timestamps below t.
428  *
429  *    ============ PASS n =================
430  *       CPU 0         |   CPU 1
431  *                     |
432  *    cnt1 timestamps  |   cnt2 timestamps
433  *          1          |         2
434  *          2          |         3
435  *          -          |         4  <--- max recorded
436  *
437  *    ============ PASS n + 1 ==============
438  *       CPU 0         |   CPU 1
439  *                     |
440  *    cnt1 timestamps  |   cnt2 timestamps
441  *          3          |         5
442  *          4          |         6
443  *          5          |         7 <---- max recorded
444  *
445  *      Flush every events below timestamp 4
446  *
447  *    ============ PASS n + 2 ==============
448  *       CPU 0         |   CPU 1
449  *                     |
450  *    cnt1 timestamps  |   cnt2 timestamps
451  *          6          |         8
452  *          7          |         9
453  *          -          |         10
454  *
455  *      Flush every events below timestamp 7
456  *      etc...
457  */
458 static int process_finished_round(event_t *event __used,
459                                   struct perf_session *session,
460                                   struct perf_event_ops *ops)
461 {
462         flush_sample_queue(session, ops);
463         session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
464
465         return 0;
466 }
467
468 static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
469 {
470         struct sample_queue *iter;
471
472         list_for_each_entry_reverse(iter, head, list) {
473                 if (iter->timestamp < new->timestamp) {
474                         list_add(&new->list, &iter->list);
475                         return;
476                 }
477         }
478
479         list_add(&new->list, head);
480 }
481
482 static void __queue_sample_before(struct sample_queue *new,
483                                   struct sample_queue *iter,
484                                   struct list_head *head)
485 {
486         list_for_each_entry_continue_reverse(iter, head, list) {
487                 if (iter->timestamp < new->timestamp) {
488                         list_add(&new->list, &iter->list);
489                         return;
490                 }
491         }
492
493         list_add(&new->list, head);
494 }
495
496 static void __queue_sample_after(struct sample_queue *new,
497                                  struct sample_queue *iter,
498                                  struct list_head *head)
499 {
500         list_for_each_entry_continue(iter, head, list) {
501                 if (iter->timestamp > new->timestamp) {
502                         list_add_tail(&new->list, &iter->list);
503                         return;
504                 }
505         }
506         list_add_tail(&new->list, head);
507 }
508
509 /* The queue is ordered by time */
510 static void __queue_sample_event(struct sample_queue *new,
511                                  struct perf_session *s)
512 {
513         struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
514         struct list_head *head = &s->ordered_samples.samples_head;
515
516
517         if (!last_inserted) {
518                 __queue_sample_end(new, head);
519                 return;
520         }
521
522         /*
523          * Most of the time the current event has a timestamp
524          * very close to the last event inserted, unless we just switched
525          * to another event buffer. Having a sorting based on a list and
526          * on the last inserted event that is close to the current one is
527          * probably more efficient than an rbtree based sorting.
528          */
529         if (last_inserted->timestamp >= new->timestamp)
530                 __queue_sample_before(new, last_inserted, head);
531         else
532                 __queue_sample_after(new, last_inserted, head);
533 }
534
535 static int queue_sample_event(event_t *event, struct sample_data *data,
536                               struct perf_session *s)
537 {
538         u64 timestamp = data->time;
539         struct sample_queue *new;
540
541
542         if (timestamp < s->ordered_samples.last_flush) {
543                 printf("Warning: Timestamp below last timeslice flush\n");
544                 return -EINVAL;
545         }
546
547         new = malloc(sizeof(*new));
548         if (!new)
549                 return -ENOMEM;
550
551         new->timestamp = timestamp;
552
553         new->event = malloc(event->header.size);
554         if (!new->event) {
555                 free(new);
556                 return -ENOMEM;
557         }
558
559         memcpy(new->event, event, event->header.size);
560
561         __queue_sample_event(new, s);
562         s->ordered_samples.last_inserted = new;
563
564         if (new->timestamp > s->ordered_samples.max_timestamp)
565                 s->ordered_samples.max_timestamp = new->timestamp;
566
567         return 0;
568 }
569
570 static int perf_session__process_sample(event_t *event, struct perf_session *s,
571                                         struct perf_event_ops *ops)
572 {
573         struct sample_data data;
574
575         if (!ops->ordered_samples)
576                 return ops->sample(event, s);
577
578         bzero(&data, sizeof(struct sample_data));
579         event__parse_sample(event, s->sample_type, &data);
580
581         queue_sample_event(event, &data, s);
582
583         return 0;
584 }
585
586 static int perf_session__process_event(struct perf_session *self,
587                                        event_t *event,
588                                        struct perf_event_ops *ops,
589                                        u64 offset, u64 head)
590 {
591         trace_event(event);
592
593         if (event->header.type < PERF_RECORD_HEADER_MAX) {
594                 dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
595                             offset + head, event->header.size,
596                             event__name[event->header.type]);
597                 hists__inc_nr_events(&self->hists, event->header.type);
598         }
599
600         if (self->header.needs_swap && event__swap_ops[event->header.type])
601                 event__swap_ops[event->header.type](event);
602
603         switch (event->header.type) {
604         case PERF_RECORD_SAMPLE:
605                 return perf_session__process_sample(event, self, ops);
606         case PERF_RECORD_MMAP:
607                 return ops->mmap(event, self);
608         case PERF_RECORD_COMM:
609                 return ops->comm(event, self);
610         case PERF_RECORD_FORK:
611                 return ops->fork(event, self);
612         case PERF_RECORD_EXIT:
613                 return ops->exit(event, self);
614         case PERF_RECORD_LOST:
615                 return ops->lost(event, self);
616         case PERF_RECORD_READ:
617                 return ops->read(event, self);
618         case PERF_RECORD_THROTTLE:
619                 return ops->throttle(event, self);
620         case PERF_RECORD_UNTHROTTLE:
621                 return ops->unthrottle(event, self);
622         case PERF_RECORD_HEADER_ATTR:
623                 return ops->attr(event, self);
624         case PERF_RECORD_HEADER_EVENT_TYPE:
625                 return ops->event_type(event, self);
626         case PERF_RECORD_HEADER_TRACING_DATA:
627                 /* setup for reading amidst mmap */
628                 lseek(self->fd, offset + head, SEEK_SET);
629                 return ops->tracing_data(event, self);
630         case PERF_RECORD_HEADER_BUILD_ID:
631                 return ops->build_id(event, self);
632         case PERF_RECORD_FINISHED_ROUND:
633                 return ops->finished_round(event, self, ops);
634         default:
635                 ++self->hists.stats.nr_unknown_events;
636                 return -1;
637         }
638 }
639
640 void perf_event_header__bswap(struct perf_event_header *self)
641 {
642         self->type = bswap_32(self->type);
643         self->misc = bswap_16(self->misc);
644         self->size = bswap_16(self->size);
645 }
646
647 static struct thread *perf_session__register_idle_thread(struct perf_session *self)
648 {
649         struct thread *thread = perf_session__findnew(self, 0);
650
651         if (thread == NULL || thread__set_comm(thread, "swapper")) {
652                 pr_err("problem inserting idle task.\n");
653                 thread = NULL;
654         }
655
656         return thread;
657 }
658
659 int do_read(int fd, void *buf, size_t size)
660 {
661         void *buf_start = buf;
662
663         while (size) {
664                 int ret = read(fd, buf, size);
665
666                 if (ret <= 0)
667                         return ret;
668
669                 size -= ret;
670                 buf += ret;
671         }
672
673         return buf - buf_start;
674 }
675
676 #define session_done()  (*(volatile int *)(&session_done))
677 volatile int session_done;
678
679 static int __perf_session__process_pipe_events(struct perf_session *self,
680                                                struct perf_event_ops *ops)
681 {
682         event_t event;
683         uint32_t size;
684         int skip = 0;
685         u64 head;
686         int err;
687         void *p;
688
689         perf_event_ops__fill_defaults(ops);
690
691         head = 0;
692 more:
693         err = do_read(self->fd, &event, sizeof(struct perf_event_header));
694         if (err <= 0) {
695                 if (err == 0)
696                         goto done;
697
698                 pr_err("failed to read event header\n");
699                 goto out_err;
700         }
701
702         if (self->header.needs_swap)
703                 perf_event_header__bswap(&event.header);
704
705         size = event.header.size;
706         if (size == 0)
707                 size = 8;
708
709         p = &event;
710         p += sizeof(struct perf_event_header);
711
712         if (size - sizeof(struct perf_event_header)) {
713                 err = do_read(self->fd, p,
714                               size - sizeof(struct perf_event_header));
715                 if (err <= 0) {
716                         if (err == 0) {
717                                 pr_err("unexpected end of event stream\n");
718                                 goto done;
719                         }
720
721                         pr_err("failed to read event data\n");
722                         goto out_err;
723                 }
724         }
725
726         if (size == 0 ||
727             (skip = perf_session__process_event(self, &event, ops,
728                                                 0, head)) < 0) {
729                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
730                             head, event.header.size, event.header.type);
731                 /*
732                  * assume we lost track of the stream, check alignment, and
733                  * increment a single u64 in the hope to catch on again 'soon'.
734                  */
735                 if (unlikely(head & 7))
736                         head &= ~7ULL;
737
738                 size = 8;
739         }
740
741         head += size;
742
743         dump_printf("\n%#Lx [%#x]: event: %d\n",
744                     head, event.header.size, event.header.type);
745
746         if (skip > 0)
747                 head += skip;
748
749         if (!session_done())
750                 goto more;
751 done:
752         err = 0;
753 out_err:
754         return err;
755 }
756
757 int __perf_session__process_events(struct perf_session *self,
758                                    u64 data_offset, u64 data_size,
759                                    u64 file_size, struct perf_event_ops *ops)
760 {
761         int err, mmap_prot, mmap_flags;
762         u64 head, shift;
763         u64 offset = 0;
764         size_t  page_size;
765         event_t *event;
766         uint32_t size;
767         char *buf;
768         struct ui_progress *progress = ui_progress__new("Processing events...",
769                                                         self->size);
770         if (progress == NULL)
771                 return -1;
772
773         perf_event_ops__fill_defaults(ops);
774
775         page_size = sysconf(_SC_PAGESIZE);
776
777         head = data_offset;
778         shift = page_size * (head / page_size);
779         offset += shift;
780         head -= shift;
781
782         mmap_prot  = PROT_READ;
783         mmap_flags = MAP_SHARED;
784
785         if (self->header.needs_swap) {
786                 mmap_prot  |= PROT_WRITE;
787                 mmap_flags = MAP_PRIVATE;
788         }
789 remap:
790         buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
791                    mmap_flags, self->fd, offset);
792         if (buf == MAP_FAILED) {
793                 pr_err("failed to mmap file\n");
794                 err = -errno;
795                 goto out_err;
796         }
797
798 more:
799         event = (event_t *)(buf + head);
800         ui_progress__update(progress, offset);
801
802         if (self->header.needs_swap)
803                 perf_event_header__bswap(&event->header);
804         size = event->header.size;
805         if (size == 0)
806                 size = 8;
807
808         if (head + event->header.size >= page_size * self->mmap_window) {
809                 int munmap_ret;
810
811                 shift = page_size * (head / page_size);
812
813                 munmap_ret = munmap(buf, page_size * self->mmap_window);
814                 assert(munmap_ret == 0);
815
816                 offset += shift;
817                 head -= shift;
818                 goto remap;
819         }
820
821         size = event->header.size;
822
823         dump_printf("\n%#Lx [%#x]: event: %d\n",
824                     offset + head, event->header.size, event->header.type);
825
826         if (size == 0 ||
827             perf_session__process_event(self, event, ops, offset, head) < 0) {
828                 dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
829                             offset + head, event->header.size,
830                             event->header.type);
831                 /*
832                  * assume we lost track of the stream, check alignment, and
833                  * increment a single u64 in the hope to catch on again 'soon'.
834                  */
835                 if (unlikely(head & 7))
836                         head &= ~7ULL;
837
838                 size = 8;
839         }
840
841         head += size;
842
843         if (offset + head >= data_offset + data_size)
844                 goto done;
845
846         if (offset + head < file_size)
847                 goto more;
848 done:
849         err = 0;
850         /* do the final flush for ordered samples */
851         self->ordered_samples.next_flush = ULLONG_MAX;
852         flush_sample_queue(self, ops);
853 out_err:
854         ui_progress__delete(progress);
855         return err;
856 }
857
858 int perf_session__process_events(struct perf_session *self,
859                                  struct perf_event_ops *ops)
860 {
861         int err;
862
863         if (perf_session__register_idle_thread(self) == NULL)
864                 return -ENOMEM;
865
866         if (!self->fd_pipe)
867                 err = __perf_session__process_events(self,
868                                                      self->header.data_offset,
869                                                      self->header.data_size,
870                                                      self->size, ops);
871         else
872                 err = __perf_session__process_pipe_events(self, ops);
873
874         return err;
875 }
876
877 bool perf_session__has_traces(struct perf_session *self, const char *msg)
878 {
879         if (!(self->sample_type & PERF_SAMPLE_RAW)) {
880                 pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
881                 return false;
882         }
883
884         return true;
885 }
886
887 int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
888                                              const char *symbol_name,
889                                              u64 addr)
890 {
891         char *bracket;
892         enum map_type i;
893         struct ref_reloc_sym *ref;
894
895         ref = zalloc(sizeof(struct ref_reloc_sym));
896         if (ref == NULL)
897                 return -ENOMEM;
898
899         ref->name = strdup(symbol_name);
900         if (ref->name == NULL) {
901                 free(ref);
902                 return -ENOMEM;
903         }
904
905         bracket = strchr(ref->name, ']');
906         if (bracket)
907                 *bracket = '\0';
908
909         ref->addr = addr;
910
911         for (i = 0; i < MAP__NR_TYPES; ++i) {
912                 struct kmap *kmap = map__kmap(maps[i]);
913                 kmap->ref_reloc_sym = ref;
914         }
915
916         return 0;
917 }
918
919 size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
920 {
921         return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
922                __dsos__fprintf(&self->host_machine.user_dsos, fp) +
923                machines__fprintf_dsos(&self->machines, fp);
924 }
925
926 size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
927                                           bool with_hits)
928 {
929         size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
930         return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
931 }