upload tizen1.0 source
[kernel/linux-2.6.36.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008       Luis R. Rodriguez <lrodriguz@atheros.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 /**
13  * DOC: Wireless regulatory infrastructure
14  *
15  * The usual implementation is for a driver to read a device EEPROM to
16  * determine which regulatory domain it should be operating under, then
17  * looking up the allowable channels in a driver-local table and finally
18  * registering those channels in the wiphy structure.
19  *
20  * Another set of compliance enforcement is for drivers to use their
21  * own compliance limits which can be stored on the EEPROM. The host
22  * driver or firmware may ensure these are used.
23  *
24  * In addition to all this we provide an extra layer of regulatory
25  * conformance. For drivers which do not have any regulatory
26  * information CRDA provides the complete regulatory solution.
27  * For others it provides a community effort on further restrictions
28  * to enhance compliance.
29  *
30  * Note: When number of rules --> infinity we will not be able to
31  * index on alpha2 any more, instead we'll probably have to
32  * rely on some SHA1 checksum of the regdomain for example.
33  *
34  */
35 #include <linux/kernel.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/random.h>
39 #include <linux/nl80211.h>
40 #include <linux/platform_device.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
44 #include "regdb.h"
45 #include "nl80211.h"
46
47 #ifdef CONFIG_CFG80211_REG_DEBUG
48 #define REG_DBG_PRINT(format, args...) \
49         do { \
50                 printk(KERN_DEBUG format , ## args); \
51         } while (0)
52 #else
53 #define REG_DBG_PRINT(args...)
54 #endif
55
56 /* Receipt of information from last regulatory request */
57 static struct regulatory_request *last_request;
58
59 /* To trigger userspace events */
60 static struct platform_device *reg_pdev;
61
62 /*
63  * Central wireless core regulatory domains, we only need two,
64  * the current one and a world regulatory domain in case we have no
65  * information to give us an alpha2
66  */
67 const struct ieee80211_regdomain *cfg80211_regdomain;
68
69 /*
70  * Protects static reg.c components:
71  *     - cfg80211_world_regdom
72  *     - cfg80211_regdom
73  *     - last_request
74  */
75 static DEFINE_MUTEX(reg_mutex);
76 #define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
77
78 /* Used to queue up regulatory hints */
79 static LIST_HEAD(reg_requests_list);
80 static spinlock_t reg_requests_lock;
81
82 /* Used to queue up beacon hints for review */
83 static LIST_HEAD(reg_pending_beacons);
84 static spinlock_t reg_pending_beacons_lock;
85
86 /* Used to keep track of processed beacon hints */
87 static LIST_HEAD(reg_beacon_list);
88
89 struct reg_beacon {
90         struct list_head list;
91         struct ieee80211_channel chan;
92 };
93
94 /* We keep a static world regulatory domain in case of the absence of CRDA */
95 static const struct ieee80211_regdomain world_regdom = {
96         .n_reg_rules = 5,
97         .alpha2 =  "00",
98         .reg_rules = {
99                 /* IEEE 802.11b/g, channels 1..11 */
100                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
101                 /* IEEE 802.11b/g, channels 12..13. No HT40
102                  * channel fits here. */
103                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
104                         NL80211_RRF_PASSIVE_SCAN |
105                         NL80211_RRF_NO_IBSS),
106                 /* IEEE 802.11 channel 14 - Only JP enables
107                  * this and for 802.11b only */
108                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
109                         NL80211_RRF_PASSIVE_SCAN |
110                         NL80211_RRF_NO_IBSS |
111                         NL80211_RRF_NO_OFDM),
112                 /* IEEE 802.11a, channel 36..48 */
113                 REG_RULE(5180-10, 5240+10, 40, 6, 20,
114                         NL80211_RRF_PASSIVE_SCAN |
115                         NL80211_RRF_NO_IBSS),
116
117                 /* NB: 5260 MHz - 5700 MHz requies DFS */
118
119                 /* IEEE 802.11a, channel 149..165 */
120                 REG_RULE(5745-10, 5825+10, 40, 6, 20,
121                         NL80211_RRF_PASSIVE_SCAN |
122                         NL80211_RRF_NO_IBSS),
123         }
124 };
125
126 static const struct ieee80211_regdomain *cfg80211_world_regdom =
127         &world_regdom;
128
129 static char *ieee80211_regdom = "00";
130 static char user_alpha2[2];
131
132 module_param(ieee80211_regdom, charp, 0444);
133 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
134
135 static void reset_regdomains(void)
136 {
137         /* avoid freeing static information or freeing something twice */
138         if (cfg80211_regdomain == cfg80211_world_regdom)
139                 cfg80211_regdomain = NULL;
140         if (cfg80211_world_regdom == &world_regdom)
141                 cfg80211_world_regdom = NULL;
142         if (cfg80211_regdomain == &world_regdom)
143                 cfg80211_regdomain = NULL;
144
145         kfree(cfg80211_regdomain);
146         kfree(cfg80211_world_regdom);
147
148         cfg80211_world_regdom = &world_regdom;
149         cfg80211_regdomain = NULL;
150 }
151
152 /*
153  * Dynamic world regulatory domain requested by the wireless
154  * core upon initialization
155  */
156 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
157 {
158         BUG_ON(!last_request);
159
160         reset_regdomains();
161
162         cfg80211_world_regdom = rd;
163         cfg80211_regdomain = rd;
164 }
165
166 bool is_world_regdom(const char *alpha2)
167 {
168         if (!alpha2)
169                 return false;
170         if (alpha2[0] == '0' && alpha2[1] == '0')
171                 return true;
172         return false;
173 }
174
175 static bool is_alpha2_set(const char *alpha2)
176 {
177         if (!alpha2)
178                 return false;
179         if (alpha2[0] != 0 && alpha2[1] != 0)
180                 return true;
181         return false;
182 }
183
184 static bool is_alpha_upper(char letter)
185 {
186         /* ASCII A - Z */
187         if (letter >= 65 && letter <= 90)
188                 return true;
189         return false;
190 }
191
192 static bool is_unknown_alpha2(const char *alpha2)
193 {
194         if (!alpha2)
195                 return false;
196         /*
197          * Special case where regulatory domain was built by driver
198          * but a specific alpha2 cannot be determined
199          */
200         if (alpha2[0] == '9' && alpha2[1] == '9')
201                 return true;
202         return false;
203 }
204
205 static bool is_intersected_alpha2(const char *alpha2)
206 {
207         if (!alpha2)
208                 return false;
209         /*
210          * Special case where regulatory domain is the
211          * result of an intersection between two regulatory domain
212          * structures
213          */
214         if (alpha2[0] == '9' && alpha2[1] == '8')
215                 return true;
216         return false;
217 }
218
219 static bool is_an_alpha2(const char *alpha2)
220 {
221         if (!alpha2)
222                 return false;
223         if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
224                 return true;
225         return false;
226 }
227
228 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
229 {
230         if (!alpha2_x || !alpha2_y)
231                 return false;
232         if (alpha2_x[0] == alpha2_y[0] &&
233                 alpha2_x[1] == alpha2_y[1])
234                 return true;
235         return false;
236 }
237
238 static bool regdom_changes(const char *alpha2)
239 {
240         assert_cfg80211_lock();
241
242         if (!cfg80211_regdomain)
243                 return true;
244         if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
245                 return false;
246         return true;
247 }
248
249 /*
250  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
251  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
252  * has ever been issued.
253  */
254 static bool is_user_regdom_saved(void)
255 {
256         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
257                 return false;
258
259         /* This would indicate a mistake on the design */
260         if (WARN((!is_world_regdom(user_alpha2) &&
261                   !is_an_alpha2(user_alpha2)),
262                  "Unexpected user alpha2: %c%c\n",
263                  user_alpha2[0],
264                  user_alpha2[1]))
265                 return false;
266
267         return true;
268 }
269
270 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
271                          const struct ieee80211_regdomain *src_regd)
272 {
273         struct ieee80211_regdomain *regd;
274         int size_of_regd = 0;
275         unsigned int i;
276
277         size_of_regd = sizeof(struct ieee80211_regdomain) +
278           ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
279
280         regd = kzalloc(size_of_regd, GFP_KERNEL);
281         if (!regd)
282                 return -ENOMEM;
283
284         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
285
286         for (i = 0; i < src_regd->n_reg_rules; i++)
287                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
288                         sizeof(struct ieee80211_reg_rule));
289
290         *dst_regd = regd;
291         return 0;
292 }
293
294 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
295 struct reg_regdb_search_request {
296         char alpha2[2];
297         struct list_head list;
298 };
299
300 static LIST_HEAD(reg_regdb_search_list);
301 static DEFINE_MUTEX(reg_regdb_search_mutex);
302
303 static void reg_regdb_search(struct work_struct *work)
304 {
305         struct reg_regdb_search_request *request;
306         const struct ieee80211_regdomain *curdom, *regdom;
307         int i, r;
308
309         mutex_lock(&reg_regdb_search_mutex);
310         while (!list_empty(&reg_regdb_search_list)) {
311                 request = list_first_entry(&reg_regdb_search_list,
312                                            struct reg_regdb_search_request,
313                                            list);
314                 list_del(&request->list);
315
316                 for (i=0; i<reg_regdb_size; i++) {
317                         curdom = reg_regdb[i];
318
319                         if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
320                                 r = reg_copy_regd(&regdom, curdom);
321                                 if (r)
322                                         break;
323                                 mutex_lock(&cfg80211_mutex);
324                                 set_regdom(regdom);
325                                 mutex_unlock(&cfg80211_mutex);
326                                 break;
327                         }
328                 }
329
330                 kfree(request);
331         }
332         mutex_unlock(&reg_regdb_search_mutex);
333 }
334
335 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
336
337 static void reg_regdb_query(const char *alpha2)
338 {
339         struct reg_regdb_search_request *request;
340
341         if (!alpha2)
342                 return;
343
344         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
345         if (!request)
346                 return;
347
348         memcpy(request->alpha2, alpha2, 2);
349
350         mutex_lock(&reg_regdb_search_mutex);
351         list_add_tail(&request->list, &reg_regdb_search_list);
352         mutex_unlock(&reg_regdb_search_mutex);
353
354         schedule_work(&reg_regdb_work);
355 }
356 #else
357 static inline void reg_regdb_query(const char *alpha2) {}
358 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
359
360 /*
361  * This lets us keep regulatory code which is updated on a regulatory
362  * basis in userspace.
363  */
364 static int call_crda(const char *alpha2)
365 {
366         char country_env[9 + 2] = "COUNTRY=";
367         char *envp[] = {
368                 country_env,
369                 NULL
370         };
371
372         if (!is_world_regdom((char *) alpha2))
373                 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
374                         alpha2[0], alpha2[1]);
375         else
376                 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
377                         "regulatory domain\n");
378
379         /* query internal regulatory database (if it exists) */
380         reg_regdb_query(alpha2);
381
382         country_env[8] = alpha2[0];
383         country_env[9] = alpha2[1];
384
385         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386 }
387
388 /* Used by nl80211 before kmalloc'ing our regulatory domain */
389 bool reg_is_valid_request(const char *alpha2)
390 {
391         assert_cfg80211_lock();
392
393         if (!last_request)
394                 return false;
395
396         return alpha2_equal(last_request->alpha2, alpha2);
397 }
398
399 /* Sanity check on a regulatory rule */
400 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
401 {
402         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
403         u32 freq_diff;
404
405         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
406                 return false;
407
408         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409                 return false;
410
411         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
413         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414                         freq_range->max_bandwidth_khz > freq_diff)
415                 return false;
416
417         return true;
418 }
419
420 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
421 {
422         const struct ieee80211_reg_rule *reg_rule = NULL;
423         unsigned int i;
424
425         if (!rd->n_reg_rules)
426                 return false;
427
428         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429                 return false;
430
431         for (i = 0; i < rd->n_reg_rules; i++) {
432                 reg_rule = &rd->reg_rules[i];
433                 if (!is_valid_reg_rule(reg_rule))
434                         return false;
435         }
436
437         return true;
438 }
439
440 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441                             u32 center_freq_khz,
442                             u32 bw_khz)
443 {
444         u32 start_freq_khz, end_freq_khz;
445
446         start_freq_khz = center_freq_khz - (bw_khz/2);
447         end_freq_khz = center_freq_khz + (bw_khz/2);
448
449         if (start_freq_khz >= freq_range->start_freq_khz &&
450             end_freq_khz <= freq_range->end_freq_khz)
451                 return true;
452
453         return false;
454 }
455
456 /**
457  * freq_in_rule_band - tells us if a frequency is in a frequency band
458  * @freq_range: frequency rule we want to query
459  * @freq_khz: frequency we are inquiring about
460  *
461  * This lets us know if a specific frequency rule is or is not relevant to
462  * a specific frequency's band. Bands are device specific and artificial
463  * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464  * safe for now to assume that a frequency rule should not be part of a
465  * frequency's band if the start freq or end freq are off by more than 2 GHz.
466  * This resolution can be lowered and should be considered as we add
467  * regulatory rule support for other "bands".
468  **/
469 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470         u32 freq_khz)
471 {
472 #define ONE_GHZ_IN_KHZ  1000000
473         if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474                 return true;
475         if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476                 return true;
477         return false;
478 #undef ONE_GHZ_IN_KHZ
479 }
480
481 /*
482  * Helper for regdom_intersect(), this does the real
483  * mathematical intersection fun
484  */
485 static int reg_rules_intersect(
486         const struct ieee80211_reg_rule *rule1,
487         const struct ieee80211_reg_rule *rule2,
488         struct ieee80211_reg_rule *intersected_rule)
489 {
490         const struct ieee80211_freq_range *freq_range1, *freq_range2;
491         struct ieee80211_freq_range *freq_range;
492         const struct ieee80211_power_rule *power_rule1, *power_rule2;
493         struct ieee80211_power_rule *power_rule;
494         u32 freq_diff;
495
496         freq_range1 = &rule1->freq_range;
497         freq_range2 = &rule2->freq_range;
498         freq_range = &intersected_rule->freq_range;
499
500         power_rule1 = &rule1->power_rule;
501         power_rule2 = &rule2->power_rule;
502         power_rule = &intersected_rule->power_rule;
503
504         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
505                 freq_range2->start_freq_khz);
506         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
507                 freq_range2->end_freq_khz);
508         freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
509                 freq_range2->max_bandwidth_khz);
510
511         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
512         if (freq_range->max_bandwidth_khz > freq_diff)
513                 freq_range->max_bandwidth_khz = freq_diff;
514
515         power_rule->max_eirp = min(power_rule1->max_eirp,
516                 power_rule2->max_eirp);
517         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
518                 power_rule2->max_antenna_gain);
519
520         intersected_rule->flags = (rule1->flags | rule2->flags);
521
522         if (!is_valid_reg_rule(intersected_rule))
523                 return -EINVAL;
524
525         return 0;
526 }
527
528 /**
529  * regdom_intersect - do the intersection between two regulatory domains
530  * @rd1: first regulatory domain
531  * @rd2: second regulatory domain
532  *
533  * Use this function to get the intersection between two regulatory domains.
534  * Once completed we will mark the alpha2 for the rd as intersected, "98",
535  * as no one single alpha2 can represent this regulatory domain.
536  *
537  * Returns a pointer to the regulatory domain structure which will hold the
538  * resulting intersection of rules between rd1 and rd2. We will
539  * kzalloc() this structure for you.
540  */
541 static struct ieee80211_regdomain *regdom_intersect(
542         const struct ieee80211_regdomain *rd1,
543         const struct ieee80211_regdomain *rd2)
544 {
545         int r, size_of_regd;
546         unsigned int x, y;
547         unsigned int num_rules = 0, rule_idx = 0;
548         const struct ieee80211_reg_rule *rule1, *rule2;
549         struct ieee80211_reg_rule *intersected_rule;
550         struct ieee80211_regdomain *rd;
551         /* This is just a dummy holder to help us count */
552         struct ieee80211_reg_rule irule;
553
554         /* Uses the stack temporarily for counter arithmetic */
555         intersected_rule = &irule;
556
557         memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
558
559         if (!rd1 || !rd2)
560                 return NULL;
561
562         /*
563          * First we get a count of the rules we'll need, then we actually
564          * build them. This is to so we can malloc() and free() a
565          * regdomain once. The reason we use reg_rules_intersect() here
566          * is it will return -EINVAL if the rule computed makes no sense.
567          * All rules that do check out OK are valid.
568          */
569
570         for (x = 0; x < rd1->n_reg_rules; x++) {
571                 rule1 = &rd1->reg_rules[x];
572                 for (y = 0; y < rd2->n_reg_rules; y++) {
573                         rule2 = &rd2->reg_rules[y];
574                         if (!reg_rules_intersect(rule1, rule2,
575                                         intersected_rule))
576                                 num_rules++;
577                         memset(intersected_rule, 0,
578                                         sizeof(struct ieee80211_reg_rule));
579                 }
580         }
581
582         if (!num_rules)
583                 return NULL;
584
585         size_of_regd = sizeof(struct ieee80211_regdomain) +
586                 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
587
588         rd = kzalloc(size_of_regd, GFP_KERNEL);
589         if (!rd)
590                 return NULL;
591
592         for (x = 0; x < rd1->n_reg_rules; x++) {
593                 rule1 = &rd1->reg_rules[x];
594                 for (y = 0; y < rd2->n_reg_rules; y++) {
595                         rule2 = &rd2->reg_rules[y];
596                         /*
597                          * This time around instead of using the stack lets
598                          * write to the target rule directly saving ourselves
599                          * a memcpy()
600                          */
601                         intersected_rule = &rd->reg_rules[rule_idx];
602                         r = reg_rules_intersect(rule1, rule2,
603                                 intersected_rule);
604                         /*
605                          * No need to memset here the intersected rule here as
606                          * we're not using the stack anymore
607                          */
608                         if (r)
609                                 continue;
610                         rule_idx++;
611                 }
612         }
613
614         if (rule_idx != num_rules) {
615                 kfree(rd);
616                 return NULL;
617         }
618
619         rd->n_reg_rules = num_rules;
620         rd->alpha2[0] = '9';
621         rd->alpha2[1] = '8';
622
623         return rd;
624 }
625
626 /*
627  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
628  * want to just have the channel structure use these
629  */
630 static u32 map_regdom_flags(u32 rd_flags)
631 {
632         u32 channel_flags = 0;
633         if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
634                 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
635         if (rd_flags & NL80211_RRF_NO_IBSS)
636                 channel_flags |= IEEE80211_CHAN_NO_IBSS;
637         if (rd_flags & NL80211_RRF_DFS)
638                 channel_flags |= IEEE80211_CHAN_RADAR;
639         return channel_flags;
640 }
641
642 static int freq_reg_info_regd(struct wiphy *wiphy,
643                               u32 center_freq,
644                               u32 desired_bw_khz,
645                               const struct ieee80211_reg_rule **reg_rule,
646                               const struct ieee80211_regdomain *custom_regd)
647 {
648         int i;
649         bool band_rule_found = false;
650         const struct ieee80211_regdomain *regd;
651         bool bw_fits = false;
652
653         if (!desired_bw_khz)
654                 desired_bw_khz = MHZ_TO_KHZ(20);
655
656         regd = custom_regd ? custom_regd : cfg80211_regdomain;
657
658         /*
659          * Follow the driver's regulatory domain, if present, unless a country
660          * IE has been processed or a user wants to help complaince further
661          */
662         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663             last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664             wiphy->regd)
665                 regd = wiphy->regd;
666
667         if (!regd)
668                 return -EINVAL;
669
670         for (i = 0; i < regd->n_reg_rules; i++) {
671                 const struct ieee80211_reg_rule *rr;
672                 const struct ieee80211_freq_range *fr = NULL;
673                 const struct ieee80211_power_rule *pr = NULL;
674
675                 rr = &regd->reg_rules[i];
676                 fr = &rr->freq_range;
677                 pr = &rr->power_rule;
678
679                 /*
680                  * We only need to know if one frequency rule was
681                  * was in center_freq's band, that's enough, so lets
682                  * not overwrite it once found
683                  */
684                 if (!band_rule_found)
685                         band_rule_found = freq_in_rule_band(fr, center_freq);
686
687                 bw_fits = reg_does_bw_fit(fr,
688                                           center_freq,
689                                           desired_bw_khz);
690
691                 if (band_rule_found && bw_fits) {
692                         *reg_rule = rr;
693                         return 0;
694                 }
695         }
696
697         if (!band_rule_found)
698                 return -ERANGE;
699
700         return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704                   u32 center_freq,
705                   u32 desired_bw_khz,
706                   const struct ieee80211_reg_rule **reg_rule)
707 {
708         assert_cfg80211_lock();
709         return freq_reg_info_regd(wiphy,
710                                   center_freq,
711                                   desired_bw_khz,
712                                   reg_rule,
713                                   NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 /*
718  * Note that right now we assume the desired channel bandwidth
719  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
720  * per channel, the primary and the extension channel). To support
721  * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
722  * new ieee80211_channel.target_bw and re run the regulatory check
723  * on the wiphy with the target_bw specified. Then we can simply use
724  * that below for the desired_bw_khz below.
725  */
726 static void handle_channel(struct wiphy *wiphy,
727                            enum nl80211_reg_initiator initiator,
728                            enum ieee80211_band band,
729                            unsigned int chan_idx)
730 {
731         int r;
732         u32 flags, bw_flags = 0;
733         u32 desired_bw_khz = MHZ_TO_KHZ(20);
734         const struct ieee80211_reg_rule *reg_rule = NULL;
735         const struct ieee80211_power_rule *power_rule = NULL;
736         const struct ieee80211_freq_range *freq_range = NULL;
737         struct ieee80211_supported_band *sband;
738         struct ieee80211_channel *chan;
739         struct wiphy *request_wiphy = NULL;
740
741         assert_cfg80211_lock();
742
743         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
744
745         sband = wiphy->bands[band];
746         BUG_ON(chan_idx >= sband->n_channels);
747         chan = &sband->channels[chan_idx];
748
749         flags = chan->orig_flags;
750
751         r = freq_reg_info(wiphy,
752                           MHZ_TO_KHZ(chan->center_freq),
753                           desired_bw_khz,
754                           &reg_rule);
755
756         if (r)
757                 return;
758
759         power_rule = &reg_rule->power_rule;
760         freq_range = &reg_rule->freq_range;
761
762         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
763                 bw_flags = IEEE80211_CHAN_NO_HT40;
764
765         if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
766             request_wiphy && request_wiphy == wiphy &&
767             request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
768                 /*
769                  * This gaurantees the driver's requested regulatory domain
770                  * will always be used as a base for further regulatory
771                  * settings
772                  */
773                 chan->flags = chan->orig_flags =
774                         map_regdom_flags(reg_rule->flags) | bw_flags;
775                 chan->max_antenna_gain = chan->orig_mag =
776                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
777                 chan->max_power = chan->orig_mpwr =
778                         (int) MBM_TO_DBM(power_rule->max_eirp);
779                 return;
780         }
781
782         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
783         chan->max_antenna_gain = min(chan->orig_mag,
784                 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
785         if (chan->orig_mpwr)
786                 chan->max_power = min(chan->orig_mpwr,
787                         (int) MBM_TO_DBM(power_rule->max_eirp));
788         else
789                 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
790 }
791
792 static void handle_band(struct wiphy *wiphy,
793                         enum ieee80211_band band,
794                         enum nl80211_reg_initiator initiator)
795 {
796         unsigned int i;
797         struct ieee80211_supported_band *sband;
798
799         BUG_ON(!wiphy->bands[band]);
800         sband = wiphy->bands[band];
801
802         for (i = 0; i < sband->n_channels; i++)
803                 handle_channel(wiphy, initiator, band, i);
804 }
805
806 static bool ignore_reg_update(struct wiphy *wiphy,
807                               enum nl80211_reg_initiator initiator)
808 {
809         if (!last_request)
810                 return true;
811         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
812             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
813                 return true;
814         /*
815          * wiphy->regd will be set once the device has its own
816          * desired regulatory domain set
817          */
818         if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
819             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
820             !is_world_regdom(last_request->alpha2))
821                 return true;
822         return false;
823 }
824
825 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
826 {
827         struct cfg80211_registered_device *rdev;
828
829         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
830                 wiphy_update_regulatory(&rdev->wiphy, initiator);
831 }
832
833 static void handle_reg_beacon(struct wiphy *wiphy,
834                               unsigned int chan_idx,
835                               struct reg_beacon *reg_beacon)
836 {
837         struct ieee80211_supported_band *sband;
838         struct ieee80211_channel *chan;
839         bool channel_changed = false;
840         struct ieee80211_channel chan_before;
841
842         assert_cfg80211_lock();
843
844         sband = wiphy->bands[reg_beacon->chan.band];
845         chan = &sband->channels[chan_idx];
846
847         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
848                 return;
849
850         if (chan->beacon_found)
851                 return;
852
853         chan->beacon_found = true;
854
855         if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
856                 return;
857
858         chan_before.center_freq = chan->center_freq;
859         chan_before.flags = chan->flags;
860
861         if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
862                 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
863                 channel_changed = true;
864         }
865
866         if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
867                 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
868                 channel_changed = true;
869         }
870
871         if (channel_changed)
872                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
873 }
874
875 /*
876  * Called when a scan on a wiphy finds a beacon on
877  * new channel
878  */
879 static void wiphy_update_new_beacon(struct wiphy *wiphy,
880                                     struct reg_beacon *reg_beacon)
881 {
882         unsigned int i;
883         struct ieee80211_supported_band *sband;
884
885         assert_cfg80211_lock();
886
887         if (!wiphy->bands[reg_beacon->chan.band])
888                 return;
889
890         sband = wiphy->bands[reg_beacon->chan.band];
891
892         for (i = 0; i < sband->n_channels; i++)
893                 handle_reg_beacon(wiphy, i, reg_beacon);
894 }
895
896 /*
897  * Called upon reg changes or a new wiphy is added
898  */
899 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
900 {
901         unsigned int i;
902         struct ieee80211_supported_band *sband;
903         struct reg_beacon *reg_beacon;
904
905         assert_cfg80211_lock();
906
907         if (list_empty(&reg_beacon_list))
908                 return;
909
910         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
911                 if (!wiphy->bands[reg_beacon->chan.band])
912                         continue;
913                 sband = wiphy->bands[reg_beacon->chan.band];
914                 for (i = 0; i < sband->n_channels; i++)
915                         handle_reg_beacon(wiphy, i, reg_beacon);
916         }
917 }
918
919 static bool reg_is_world_roaming(struct wiphy *wiphy)
920 {
921         if (is_world_regdom(cfg80211_regdomain->alpha2) ||
922             (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
923                 return true;
924         if (last_request &&
925             last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
926             wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
927                 return true;
928         return false;
929 }
930
931 /* Reap the advantages of previously found beacons */
932 static void reg_process_beacons(struct wiphy *wiphy)
933 {
934         /*
935          * Means we are just firing up cfg80211, so no beacons would
936          * have been processed yet.
937          */
938         if (!last_request)
939                 return;
940         if (!reg_is_world_roaming(wiphy))
941                 return;
942         wiphy_update_beacon_reg(wiphy);
943 }
944
945 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
946 {
947         if (!chan)
948                 return true;
949         if (chan->flags & IEEE80211_CHAN_DISABLED)
950                 return true;
951         /* This would happen when regulatory rules disallow HT40 completely */
952         if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
953                 return true;
954         return false;
955 }
956
957 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
958                                          enum ieee80211_band band,
959                                          unsigned int chan_idx)
960 {
961         struct ieee80211_supported_band *sband;
962         struct ieee80211_channel *channel;
963         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
964         unsigned int i;
965
966         assert_cfg80211_lock();
967
968         sband = wiphy->bands[band];
969         BUG_ON(chan_idx >= sband->n_channels);
970         channel = &sband->channels[chan_idx];
971
972         if (is_ht40_not_allowed(channel)) {
973                 channel->flags |= IEEE80211_CHAN_NO_HT40;
974                 return;
975         }
976
977         /*
978          * We need to ensure the extension channels exist to
979          * be able to use HT40- or HT40+, this finds them (or not)
980          */
981         for (i = 0; i < sband->n_channels; i++) {
982                 struct ieee80211_channel *c = &sband->channels[i];
983                 if (c->center_freq == (channel->center_freq - 20))
984                         channel_before = c;
985                 if (c->center_freq == (channel->center_freq + 20))
986                         channel_after = c;
987         }
988
989         /*
990          * Please note that this assumes target bandwidth is 20 MHz,
991          * if that ever changes we also need to change the below logic
992          * to include that as well.
993          */
994         if (is_ht40_not_allowed(channel_before))
995                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
996         else
997                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
998
999         if (is_ht40_not_allowed(channel_after))
1000                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1001         else
1002                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1003 }
1004
1005 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1006                                       enum ieee80211_band band)
1007 {
1008         unsigned int i;
1009         struct ieee80211_supported_band *sband;
1010
1011         BUG_ON(!wiphy->bands[band]);
1012         sband = wiphy->bands[band];
1013
1014         for (i = 0; i < sband->n_channels; i++)
1015                 reg_process_ht_flags_channel(wiphy, band, i);
1016 }
1017
1018 static void reg_process_ht_flags(struct wiphy *wiphy)
1019 {
1020         enum ieee80211_band band;
1021
1022         if (!wiphy)
1023                 return;
1024
1025         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1026                 if (wiphy->bands[band])
1027                         reg_process_ht_flags_band(wiphy, band);
1028         }
1029
1030 }
1031
1032 void wiphy_update_regulatory(struct wiphy *wiphy,
1033                              enum nl80211_reg_initiator initiator)
1034 {
1035         enum ieee80211_band band;
1036
1037         if (ignore_reg_update(wiphy, initiator))
1038                 goto out;
1039         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1040                 if (wiphy->bands[band])
1041                         handle_band(wiphy, band, initiator);
1042         }
1043 out:
1044         reg_process_beacons(wiphy);
1045         reg_process_ht_flags(wiphy);
1046         if (wiphy->reg_notifier)
1047                 wiphy->reg_notifier(wiphy, last_request);
1048 }
1049
1050 static void handle_channel_custom(struct wiphy *wiphy,
1051                                   enum ieee80211_band band,
1052                                   unsigned int chan_idx,
1053                                   const struct ieee80211_regdomain *regd)
1054 {
1055         int r;
1056         u32 desired_bw_khz = MHZ_TO_KHZ(20);
1057         u32 bw_flags = 0;
1058         const struct ieee80211_reg_rule *reg_rule = NULL;
1059         const struct ieee80211_power_rule *power_rule = NULL;
1060         const struct ieee80211_freq_range *freq_range = NULL;
1061         struct ieee80211_supported_band *sband;
1062         struct ieee80211_channel *chan;
1063
1064         assert_reg_lock();
1065
1066         sband = wiphy->bands[band];
1067         BUG_ON(chan_idx >= sband->n_channels);
1068         chan = &sband->channels[chan_idx];
1069
1070         r = freq_reg_info_regd(wiphy,
1071                                MHZ_TO_KHZ(chan->center_freq),
1072                                desired_bw_khz,
1073                                &reg_rule,
1074                                regd);
1075
1076         if (r) {
1077                 chan->flags = IEEE80211_CHAN_DISABLED;
1078                 return;
1079         }
1080
1081         power_rule = &reg_rule->power_rule;
1082         freq_range = &reg_rule->freq_range;
1083
1084         if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1085                 bw_flags = IEEE80211_CHAN_NO_HT40;
1086
1087         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1088         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1089         chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1090 }
1091
1092 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1093                                const struct ieee80211_regdomain *regd)
1094 {
1095         unsigned int i;
1096         struct ieee80211_supported_band *sband;
1097
1098         BUG_ON(!wiphy->bands[band]);
1099         sband = wiphy->bands[band];
1100
1101         for (i = 0; i < sband->n_channels; i++)
1102                 handle_channel_custom(wiphy, band, i, regd);
1103 }
1104
1105 /* Used by drivers prior to wiphy registration */
1106 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1107                                    const struct ieee80211_regdomain *regd)
1108 {
1109         enum ieee80211_band band;
1110         unsigned int bands_set = 0;
1111
1112         mutex_lock(&reg_mutex);
1113         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1114                 if (!wiphy->bands[band])
1115                         continue;
1116                 handle_band_custom(wiphy, band, regd);
1117                 bands_set++;
1118         }
1119         mutex_unlock(&reg_mutex);
1120
1121         /*
1122          * no point in calling this if it won't have any effect
1123          * on your device's supportd bands.
1124          */
1125         WARN_ON(!bands_set);
1126 }
1127 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1128
1129 /*
1130  * Return value which can be used by ignore_request() to indicate
1131  * it has been determined we should intersect two regulatory domains
1132  */
1133 #define REG_INTERSECT   1
1134
1135 /* This has the logic which determines when a new request
1136  * should be ignored. */
1137 static int ignore_request(struct wiphy *wiphy,
1138                           struct regulatory_request *pending_request)
1139 {
1140         struct wiphy *last_wiphy = NULL;
1141
1142         assert_cfg80211_lock();
1143
1144         /* All initial requests are respected */
1145         if (!last_request)
1146                 return 0;
1147
1148         switch (pending_request->initiator) {
1149         case NL80211_REGDOM_SET_BY_CORE:
1150                 return 0;
1151         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1152
1153                 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1154
1155                 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1156                         return -EINVAL;
1157                 if (last_request->initiator ==
1158                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1159                         if (last_wiphy != wiphy) {
1160                                 /*
1161                                  * Two cards with two APs claiming different
1162                                  * Country IE alpha2s. We could
1163                                  * intersect them, but that seems unlikely
1164                                  * to be correct. Reject second one for now.
1165                                  */
1166                                 if (regdom_changes(pending_request->alpha2))
1167                                         return -EOPNOTSUPP;
1168                                 return -EALREADY;
1169                         }
1170                         /*
1171                          * Two consecutive Country IE hints on the same wiphy.
1172                          * This should be picked up early by the driver/stack
1173                          */
1174                         if (WARN_ON(regdom_changes(pending_request->alpha2)))
1175                                 return 0;
1176                         return -EALREADY;
1177                 }
1178                 return 0;
1179         case NL80211_REGDOM_SET_BY_DRIVER:
1180                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1181                         if (regdom_changes(pending_request->alpha2))
1182                                 return 0;
1183                         return -EALREADY;
1184                 }
1185
1186                 /*
1187                  * This would happen if you unplug and plug your card
1188                  * back in or if you add a new device for which the previously
1189                  * loaded card also agrees on the regulatory domain.
1190                  */
1191                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1192                     !regdom_changes(pending_request->alpha2))
1193                         return -EALREADY;
1194
1195                 return REG_INTERSECT;
1196         case NL80211_REGDOM_SET_BY_USER:
1197                 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1198                         return REG_INTERSECT;
1199                 /*
1200                  * If the user knows better the user should set the regdom
1201                  * to their country before the IE is picked up
1202                  */
1203                 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1204                           last_request->intersect)
1205                         return -EOPNOTSUPP;
1206                 /*
1207                  * Process user requests only after previous user/driver/core
1208                  * requests have been processed
1209                  */
1210                 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1211                     last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1212                     last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1213                         if (regdom_changes(last_request->alpha2))
1214                                 return -EAGAIN;
1215                 }
1216
1217                 if (!regdom_changes(pending_request->alpha2))
1218                         return -EALREADY;
1219
1220                 return 0;
1221         }
1222
1223         return -EINVAL;
1224 }
1225
1226 /**
1227  * __regulatory_hint - hint to the wireless core a regulatory domain
1228  * @wiphy: if the hint comes from country information from an AP, this
1229  *      is required to be set to the wiphy that received the information
1230  * @pending_request: the regulatory request currently being processed
1231  *
1232  * The Wireless subsystem can use this function to hint to the wireless core
1233  * what it believes should be the current regulatory domain.
1234  *
1235  * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1236  * already been set or other standard error codes.
1237  *
1238  * Caller must hold &cfg80211_mutex and &reg_mutex
1239  */
1240 static int __regulatory_hint(struct wiphy *wiphy,
1241                              struct regulatory_request *pending_request)
1242 {
1243         bool intersect = false;
1244         int r = 0;
1245
1246         assert_cfg80211_lock();
1247
1248         r = ignore_request(wiphy, pending_request);
1249
1250         if (r == REG_INTERSECT) {
1251                 if (pending_request->initiator ==
1252                     NL80211_REGDOM_SET_BY_DRIVER) {
1253                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1254                         if (r) {
1255                                 kfree(pending_request);
1256                                 return r;
1257                         }
1258                 }
1259                 intersect = true;
1260         } else if (r) {
1261                 /*
1262                  * If the regulatory domain being requested by the
1263                  * driver has already been set just copy it to the
1264                  * wiphy
1265                  */
1266                 if (r == -EALREADY &&
1267                     pending_request->initiator ==
1268                     NL80211_REGDOM_SET_BY_DRIVER) {
1269                         r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1270                         if (r) {
1271                                 kfree(pending_request);
1272                                 return r;
1273                         }
1274                         r = -EALREADY;
1275                         goto new_request;
1276                 }
1277                 kfree(pending_request);
1278                 return r;
1279         }
1280
1281 new_request:
1282         kfree(last_request);
1283
1284         last_request = pending_request;
1285         last_request->intersect = intersect;
1286
1287         pending_request = NULL;
1288
1289         if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1290                 user_alpha2[0] = last_request->alpha2[0];
1291                 user_alpha2[1] = last_request->alpha2[1];
1292         }
1293
1294         /* When r == REG_INTERSECT we do need to call CRDA */
1295         if (r < 0) {
1296                 /*
1297                  * Since CRDA will not be called in this case as we already
1298                  * have applied the requested regulatory domain before we just
1299                  * inform userspace we have processed the request
1300                  */
1301                 if (r == -EALREADY)
1302                         nl80211_send_reg_change_event(last_request);
1303                 return r;
1304         }
1305
1306         return call_crda(last_request->alpha2);
1307 }
1308
1309 /* This processes *all* regulatory hints */
1310 static void reg_process_hint(struct regulatory_request *reg_request)
1311 {
1312         int r = 0;
1313         struct wiphy *wiphy = NULL;
1314         enum nl80211_reg_initiator initiator = reg_request->initiator;
1315
1316         BUG_ON(!reg_request->alpha2);
1317
1318         mutex_lock(&cfg80211_mutex);
1319         mutex_lock(&reg_mutex);
1320
1321         if (wiphy_idx_valid(reg_request->wiphy_idx))
1322                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1323
1324         if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1325             !wiphy) {
1326                 kfree(reg_request);
1327                 goto out;
1328         }
1329
1330         r = __regulatory_hint(wiphy, reg_request);
1331         /* This is required so that the orig_* parameters are saved */
1332         if (r == -EALREADY && wiphy &&
1333             wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1334                 wiphy_update_regulatory(wiphy, initiator);
1335 out:
1336         mutex_unlock(&reg_mutex);
1337         mutex_unlock(&cfg80211_mutex);
1338 }
1339
1340 /* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1341 static void reg_process_pending_hints(void)
1342         {
1343         struct regulatory_request *reg_request;
1344
1345         spin_lock(&reg_requests_lock);
1346         while (!list_empty(&reg_requests_list)) {
1347                 reg_request = list_first_entry(&reg_requests_list,
1348                                                struct regulatory_request,
1349                                                list);
1350                 list_del_init(&reg_request->list);
1351
1352                 spin_unlock(&reg_requests_lock);
1353                 reg_process_hint(reg_request);
1354                 spin_lock(&reg_requests_lock);
1355         }
1356         spin_unlock(&reg_requests_lock);
1357 }
1358
1359 /* Processes beacon hints -- this has nothing to do with country IEs */
1360 static void reg_process_pending_beacon_hints(void)
1361 {
1362         struct cfg80211_registered_device *rdev;
1363         struct reg_beacon *pending_beacon, *tmp;
1364
1365         /*
1366          * No need to hold the reg_mutex here as we just touch wiphys
1367          * and do not read or access regulatory variables.
1368          */
1369         mutex_lock(&cfg80211_mutex);
1370
1371         /* This goes through the _pending_ beacon list */
1372         spin_lock_bh(&reg_pending_beacons_lock);
1373
1374         if (list_empty(&reg_pending_beacons)) {
1375                 spin_unlock_bh(&reg_pending_beacons_lock);
1376                 goto out;
1377         }
1378
1379         list_for_each_entry_safe(pending_beacon, tmp,
1380                                  &reg_pending_beacons, list) {
1381
1382                 list_del_init(&pending_beacon->list);
1383
1384                 /* Applies the beacon hint to current wiphys */
1385                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1386                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1387
1388                 /* Remembers the beacon hint for new wiphys or reg changes */
1389                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1390         }
1391
1392         spin_unlock_bh(&reg_pending_beacons_lock);
1393 out:
1394         mutex_unlock(&cfg80211_mutex);
1395 }
1396
1397 static void reg_todo(struct work_struct *work)
1398 {
1399         reg_process_pending_hints();
1400         reg_process_pending_beacon_hints();
1401 }
1402
1403 static DECLARE_WORK(reg_work, reg_todo);
1404
1405 static void queue_regulatory_request(struct regulatory_request *request)
1406 {
1407         spin_lock(&reg_requests_lock);
1408         list_add_tail(&request->list, &reg_requests_list);
1409         spin_unlock(&reg_requests_lock);
1410
1411         schedule_work(&reg_work);
1412 }
1413
1414 /*
1415  * Core regulatory hint -- happens during cfg80211_init()
1416  * and when we restore regulatory settings.
1417  */
1418 static int regulatory_hint_core(const char *alpha2)
1419 {
1420         struct regulatory_request *request;
1421
1422         kfree(last_request);
1423         last_request = NULL;
1424
1425         request = kzalloc(sizeof(struct regulatory_request),
1426                           GFP_KERNEL);
1427         if (!request)
1428                 return -ENOMEM;
1429
1430         request->alpha2[0] = alpha2[0];
1431         request->alpha2[1] = alpha2[1];
1432         request->initiator = NL80211_REGDOM_SET_BY_CORE;
1433
1434         /*
1435          * This ensures last_request is populated once modules
1436          * come swinging in and calling regulatory hints and
1437          * wiphy_apply_custom_regulatory().
1438          */
1439         reg_process_hint(request);
1440
1441         return 0;
1442 }
1443
1444 /* User hints */
1445 int regulatory_hint_user(const char *alpha2)
1446 {
1447         struct regulatory_request *request;
1448
1449         BUG_ON(!alpha2);
1450
1451         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1452         if (!request)
1453                 return -ENOMEM;
1454
1455         request->wiphy_idx = WIPHY_IDX_STALE;
1456         request->alpha2[0] = alpha2[0];
1457         request->alpha2[1] = alpha2[1];
1458         request->initiator = NL80211_REGDOM_SET_BY_USER;
1459
1460         queue_regulatory_request(request);
1461
1462         return 0;
1463 }
1464
1465 /* Driver hints */
1466 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1467 {
1468         struct regulatory_request *request;
1469
1470         BUG_ON(!alpha2);
1471         BUG_ON(!wiphy);
1472
1473         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1474         if (!request)
1475                 return -ENOMEM;
1476
1477         request->wiphy_idx = get_wiphy_idx(wiphy);
1478
1479         /* Must have registered wiphy first */
1480         BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1481
1482         request->alpha2[0] = alpha2[0];
1483         request->alpha2[1] = alpha2[1];
1484         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1485
1486         queue_regulatory_request(request);
1487
1488         return 0;
1489 }
1490 EXPORT_SYMBOL(regulatory_hint);
1491
1492 /*
1493  * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1494  * therefore cannot iterate over the rdev list here.
1495  */
1496 void regulatory_hint_11d(struct wiphy *wiphy,
1497                          enum ieee80211_band band,
1498                          u8 *country_ie,
1499                          u8 country_ie_len)
1500 {
1501         char alpha2[2];
1502         enum environment_cap env = ENVIRON_ANY;
1503         struct regulatory_request *request;
1504
1505         mutex_lock(&reg_mutex);
1506
1507         if (unlikely(!last_request))
1508                 goto out;
1509
1510         /* IE len must be evenly divisible by 2 */
1511         if (country_ie_len & 0x01)
1512                 goto out;
1513
1514         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1515                 goto out;
1516
1517         alpha2[0] = country_ie[0];
1518         alpha2[1] = country_ie[1];
1519
1520         if (country_ie[2] == 'I')
1521                 env = ENVIRON_INDOOR;
1522         else if (country_ie[2] == 'O')
1523                 env = ENVIRON_OUTDOOR;
1524
1525         /*
1526          * We will run this only upon a successful connection on cfg80211.
1527          * We leave conflict resolution to the workqueue, where can hold
1528          * cfg80211_mutex.
1529          */
1530         if (likely(last_request->initiator ==
1531             NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1532             wiphy_idx_valid(last_request->wiphy_idx)))
1533                 goto out;
1534
1535         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1536         if (!request)
1537                 goto out;
1538
1539         request->wiphy_idx = get_wiphy_idx(wiphy);
1540         request->alpha2[0] = alpha2[0];
1541         request->alpha2[1] = alpha2[1];
1542         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1543         request->country_ie_env = env;
1544
1545         mutex_unlock(&reg_mutex);
1546
1547         queue_regulatory_request(request);
1548
1549         return;
1550
1551 out:
1552         mutex_unlock(&reg_mutex);
1553 }
1554
1555 static void restore_alpha2(char *alpha2, bool reset_user)
1556 {
1557         /* indicates there is no alpha2 to consider for restoration */
1558         alpha2[0] = '9';
1559         alpha2[1] = '7';
1560
1561         /* The user setting has precedence over the module parameter */
1562         if (is_user_regdom_saved()) {
1563                 /* Unless we're asked to ignore it and reset it */
1564                 if (reset_user) {
1565                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1566                                "including user preference\n");
1567                         user_alpha2[0] = '9';
1568                         user_alpha2[1] = '7';
1569
1570                         /*
1571                          * If we're ignoring user settings, we still need to
1572                          * check the module parameter to ensure we put things
1573                          * back as they were for a full restore.
1574                          */
1575                         if (!is_world_regdom(ieee80211_regdom)) {
1576                                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1577                                        "module parameter ieee80211_regdom: %c%c\n",
1578                                        ieee80211_regdom[0],
1579                                        ieee80211_regdom[1]);
1580                                 alpha2[0] = ieee80211_regdom[0];
1581                                 alpha2[1] = ieee80211_regdom[1];
1582                         }
1583                 } else {
1584                         REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
1585                                "while preserving user preference for: %c%c\n",
1586                                user_alpha2[0],
1587                                user_alpha2[1]);
1588                         alpha2[0] = user_alpha2[0];
1589                         alpha2[1] = user_alpha2[1];
1590                 }
1591         } else if (!is_world_regdom(ieee80211_regdom)) {
1592                 REG_DBG_PRINT("cfg80211: Keeping preference on "
1593                        "module parameter ieee80211_regdom: %c%c\n",
1594                        ieee80211_regdom[0],
1595                        ieee80211_regdom[1]);
1596                 alpha2[0] = ieee80211_regdom[0];
1597                 alpha2[1] = ieee80211_regdom[1];
1598         } else
1599                 REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
1600 }
1601
1602 /*
1603  * Restoring regulatory settings involves ingoring any
1604  * possibly stale country IE information and user regulatory
1605  * settings if so desired, this includes any beacon hints
1606  * learned as we could have traveled outside to another country
1607  * after disconnection. To restore regulatory settings we do
1608  * exactly what we did at bootup:
1609  *
1610  *   - send a core regulatory hint
1611  *   - send a user regulatory hint if applicable
1612  *
1613  * Device drivers that send a regulatory hint for a specific country
1614  * keep their own regulatory domain on wiphy->regd so that does does
1615  * not need to be remembered.
1616  */
1617 static void restore_regulatory_settings(bool reset_user)
1618 {
1619         char alpha2[2];
1620         struct reg_beacon *reg_beacon, *btmp;
1621
1622         mutex_lock(&cfg80211_mutex);
1623         mutex_lock(&reg_mutex);
1624
1625         reset_regdomains();
1626         restore_alpha2(alpha2, reset_user);
1627
1628         /* Clear beacon hints */
1629         spin_lock_bh(&reg_pending_beacons_lock);
1630         if (!list_empty(&reg_pending_beacons)) {
1631                 list_for_each_entry_safe(reg_beacon, btmp,
1632                                          &reg_pending_beacons, list) {
1633                         list_del(&reg_beacon->list);
1634                         kfree(reg_beacon);
1635                 }
1636         }
1637         spin_unlock_bh(&reg_pending_beacons_lock);
1638
1639         if (!list_empty(&reg_beacon_list)) {
1640                 list_for_each_entry_safe(reg_beacon, btmp,
1641                                          &reg_beacon_list, list) {
1642                         list_del(&reg_beacon->list);
1643                         kfree(reg_beacon);
1644                 }
1645         }
1646
1647         /* First restore to the basic regulatory settings */
1648         cfg80211_regdomain = cfg80211_world_regdom;
1649
1650         mutex_unlock(&reg_mutex);
1651         mutex_unlock(&cfg80211_mutex);
1652
1653         regulatory_hint_core(cfg80211_regdomain->alpha2);
1654
1655         /*
1656          * This restores the ieee80211_regdom module parameter
1657          * preference or the last user requested regulatory
1658          * settings, user regulatory settings takes precedence.
1659          */
1660         if (is_an_alpha2(alpha2))
1661                 regulatory_hint_user(user_alpha2);
1662 }
1663
1664
1665 void regulatory_hint_disconnect(void)
1666 {
1667         REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
1668                       "restore regulatory settings\n");
1669         restore_regulatory_settings(false);
1670 }
1671
1672 static bool freq_is_chan_12_13_14(u16 freq)
1673 {
1674         if (freq == ieee80211_channel_to_frequency(12) ||
1675             freq == ieee80211_channel_to_frequency(13) ||
1676             freq == ieee80211_channel_to_frequency(14))
1677                 return true;
1678         return false;
1679 }
1680
1681 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1682                                  struct ieee80211_channel *beacon_chan,
1683                                  gfp_t gfp)
1684 {
1685         struct reg_beacon *reg_beacon;
1686
1687         if (likely((beacon_chan->beacon_found ||
1688             (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1689             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1690              !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1691                 return 0;
1692
1693         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1694         if (!reg_beacon)
1695                 return -ENOMEM;
1696
1697         REG_DBG_PRINT("cfg80211: Found new beacon on "
1698                       "frequency: %d MHz (Ch %d) on %s\n",
1699                       beacon_chan->center_freq,
1700                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
1701                       wiphy_name(wiphy));
1702
1703         memcpy(&reg_beacon->chan, beacon_chan,
1704                 sizeof(struct ieee80211_channel));
1705
1706
1707         /*
1708          * Since we can be called from BH or and non-BH context
1709          * we must use spin_lock_bh()
1710          */
1711         spin_lock_bh(&reg_pending_beacons_lock);
1712         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1713         spin_unlock_bh(&reg_pending_beacons_lock);
1714
1715         schedule_work(&reg_work);
1716
1717         return 0;
1718 }
1719
1720 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1721 {
1722         unsigned int i;
1723         const struct ieee80211_reg_rule *reg_rule = NULL;
1724         const struct ieee80211_freq_range *freq_range = NULL;
1725         const struct ieee80211_power_rule *power_rule = NULL;
1726
1727         printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1728                 "(max_antenna_gain, max_eirp)\n");
1729
1730         for (i = 0; i < rd->n_reg_rules; i++) {
1731                 reg_rule = &rd->reg_rules[i];
1732                 freq_range = &reg_rule->freq_range;
1733                 power_rule = &reg_rule->power_rule;
1734
1735                 /*
1736                  * There may not be documentation for max antenna gain
1737                  * in certain regions
1738                  */
1739                 if (power_rule->max_antenna_gain)
1740                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1741                                 "(%d mBi, %d mBm)\n",
1742                                 freq_range->start_freq_khz,
1743                                 freq_range->end_freq_khz,
1744                                 freq_range->max_bandwidth_khz,
1745                                 power_rule->max_antenna_gain,
1746                                 power_rule->max_eirp);
1747                 else
1748                         printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1749                                 "(N/A, %d mBm)\n",
1750                                 freq_range->start_freq_khz,
1751                                 freq_range->end_freq_khz,
1752                                 freq_range->max_bandwidth_khz,
1753                                 power_rule->max_eirp);
1754         }
1755 }
1756
1757 static void print_regdomain(const struct ieee80211_regdomain *rd)
1758 {
1759
1760         if (is_intersected_alpha2(rd->alpha2)) {
1761
1762                 if (last_request->initiator ==
1763                     NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1764                         struct cfg80211_registered_device *rdev;
1765                         rdev = cfg80211_rdev_by_wiphy_idx(
1766                                 last_request->wiphy_idx);
1767                         if (rdev) {
1768                                 printk(KERN_INFO "cfg80211: Current regulatory "
1769                                         "domain updated by AP to: %c%c\n",
1770                                         rdev->country_ie_alpha2[0],
1771                                         rdev->country_ie_alpha2[1]);
1772                         } else
1773                                 printk(KERN_INFO "cfg80211: Current regulatory "
1774                                         "domain intersected:\n");
1775                 } else
1776                         printk(KERN_INFO "cfg80211: Current regulatory "
1777                                 "domain intersected:\n");
1778         } else if (is_world_regdom(rd->alpha2))
1779                 printk(KERN_INFO "cfg80211: World regulatory "
1780                         "domain updated:\n");
1781         else {
1782                 if (is_unknown_alpha2(rd->alpha2))
1783                         printk(KERN_INFO "cfg80211: Regulatory domain "
1784                                 "changed to driver built-in settings "
1785                                 "(unknown country)\n");
1786                 else
1787                         printk(KERN_INFO "cfg80211: Regulatory domain "
1788                                 "changed to country: %c%c\n",
1789                                 rd->alpha2[0], rd->alpha2[1]);
1790         }
1791         print_rd_rules(rd);
1792 }
1793
1794 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1795 {
1796         printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1797                 rd->alpha2[0], rd->alpha2[1]);
1798         print_rd_rules(rd);
1799 }
1800
1801 /* Takes ownership of rd only if it doesn't fail */
1802 static int __set_regdom(const struct ieee80211_regdomain *rd)
1803 {
1804         const struct ieee80211_regdomain *intersected_rd = NULL;
1805         struct cfg80211_registered_device *rdev = NULL;
1806         struct wiphy *request_wiphy;
1807         /* Some basic sanity checks first */
1808
1809         if (is_world_regdom(rd->alpha2)) {
1810                 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1811                         return -EINVAL;
1812                 update_world_regdomain(rd);
1813                 return 0;
1814         }
1815
1816         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1817                         !is_unknown_alpha2(rd->alpha2))
1818                 return -EINVAL;
1819
1820         if (!last_request)
1821                 return -EINVAL;
1822
1823         /*
1824          * Lets only bother proceeding on the same alpha2 if the current
1825          * rd is non static (it means CRDA was present and was used last)
1826          * and the pending request came in from a country IE
1827          */
1828         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1829                 /*
1830                  * If someone else asked us to change the rd lets only bother
1831                  * checking if the alpha2 changes if CRDA was already called
1832                  */
1833                 if (!regdom_changes(rd->alpha2))
1834                         return -EINVAL;
1835         }
1836
1837         /*
1838          * Now lets set the regulatory domain, update all driver channels
1839          * and finally inform them of what we have done, in case they want
1840          * to review or adjust their own settings based on their own
1841          * internal EEPROM data
1842          */
1843
1844         if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1845                 return -EINVAL;
1846
1847         if (!is_valid_rd(rd)) {
1848                 printk(KERN_ERR "cfg80211: Invalid "
1849                         "regulatory domain detected:\n");
1850                 print_regdomain_info(rd);
1851                 return -EINVAL;
1852         }
1853
1854         request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1855
1856         if (!last_request->intersect) {
1857                 int r;
1858
1859                 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1860                         reset_regdomains();
1861                         cfg80211_regdomain = rd;
1862                         return 0;
1863                 }
1864
1865                 /*
1866                  * For a driver hint, lets copy the regulatory domain the
1867                  * driver wanted to the wiphy to deal with conflicts
1868                  */
1869
1870                 /*
1871                  * Userspace could have sent two replies with only
1872                  * one kernel request.
1873                  */
1874                 if (request_wiphy->regd)
1875                         return -EALREADY;
1876
1877                 r = reg_copy_regd(&request_wiphy->regd, rd);
1878                 if (r)
1879                         return r;
1880
1881                 reset_regdomains();
1882                 cfg80211_regdomain = rd;
1883                 return 0;
1884         }
1885
1886         /* Intersection requires a bit more work */
1887
1888         if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1889
1890                 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1891                 if (!intersected_rd)
1892                         return -EINVAL;
1893
1894                 /*
1895                  * We can trash what CRDA provided now.
1896                  * However if a driver requested this specific regulatory
1897                  * domain we keep it for its private use
1898                  */
1899                 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1900                         request_wiphy->regd = rd;
1901                 else
1902                         kfree(rd);
1903
1904                 rd = NULL;
1905
1906                 reset_regdomains();
1907                 cfg80211_regdomain = intersected_rd;
1908
1909                 return 0;
1910         }
1911
1912         if (!intersected_rd)
1913                 return -EINVAL;
1914
1915         rdev = wiphy_to_dev(request_wiphy);
1916
1917         rdev->country_ie_alpha2[0] = rd->alpha2[0];
1918         rdev->country_ie_alpha2[1] = rd->alpha2[1];
1919         rdev->env = last_request->country_ie_env;
1920
1921         BUG_ON(intersected_rd == rd);
1922
1923         kfree(rd);
1924         rd = NULL;
1925
1926         reset_regdomains();
1927         cfg80211_regdomain = intersected_rd;
1928
1929         return 0;
1930 }
1931
1932
1933 /*
1934  * Use this call to set the current regulatory domain. Conflicts with
1935  * multiple drivers can be ironed out later. Caller must've already
1936  * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
1937  */
1938 int set_regdom(const struct ieee80211_regdomain *rd)
1939 {
1940         int r;
1941
1942         assert_cfg80211_lock();
1943
1944         mutex_lock(&reg_mutex);
1945
1946         /* Note that this doesn't update the wiphys, this is done below */
1947         r = __set_regdom(rd);
1948         if (r) {
1949                 kfree(rd);
1950                 mutex_unlock(&reg_mutex);
1951                 return r;
1952         }
1953
1954         /* This would make this whole thing pointless */
1955         if (!last_request->intersect)
1956                 BUG_ON(rd != cfg80211_regdomain);
1957
1958         /* update all wiphys now with the new established regulatory domain */
1959         update_all_wiphy_regulatory(last_request->initiator);
1960
1961         print_regdomain(cfg80211_regdomain);
1962
1963         nl80211_send_reg_change_event(last_request);
1964
1965         mutex_unlock(&reg_mutex);
1966
1967         return r;
1968 }
1969
1970 /* Caller must hold cfg80211_mutex */
1971 void reg_device_remove(struct wiphy *wiphy)
1972 {
1973         struct wiphy *request_wiphy = NULL;
1974
1975         assert_cfg80211_lock();
1976
1977         mutex_lock(&reg_mutex);
1978
1979         kfree(wiphy->regd);
1980
1981         if (last_request)
1982                 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1983
1984         if (!request_wiphy || request_wiphy != wiphy)
1985                 goto out;
1986
1987         last_request->wiphy_idx = WIPHY_IDX_STALE;
1988         last_request->country_ie_env = ENVIRON_ANY;
1989 out:
1990         mutex_unlock(&reg_mutex);
1991 }
1992
1993 int __init regulatory_init(void)
1994 {
1995         int err = 0;
1996
1997         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1998         if (IS_ERR(reg_pdev))
1999                 return PTR_ERR(reg_pdev);
2000
2001         spin_lock_init(&reg_requests_lock);
2002         spin_lock_init(&reg_pending_beacons_lock);
2003
2004         cfg80211_regdomain = cfg80211_world_regdom;
2005
2006         user_alpha2[0] = '9';
2007         user_alpha2[1] = '7';
2008
2009         /* We always try to get an update for the static regdomain */
2010         err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2011         if (err) {
2012                 if (err == -ENOMEM)
2013                         return err;
2014                 /*
2015                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2016                  * memory which is handled and propagated appropriately above
2017                  * but it can also fail during a netlink_broadcast() or during
2018                  * early boot for call_usermodehelper(). For now treat these
2019                  * errors as non-fatal.
2020                  */
2021                 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2022                         "to call CRDA during init");
2023 #ifdef CONFIG_CFG80211_REG_DEBUG
2024                 /* We want to find out exactly why when debugging */
2025                 WARN_ON(err);
2026 #endif
2027         }
2028
2029         /*
2030          * Finally, if the user set the module parameter treat it
2031          * as a user hint.
2032          */
2033         if (!is_world_regdom(ieee80211_regdom))
2034                 regulatory_hint_user(ieee80211_regdom);
2035
2036         return 0;
2037 }
2038
2039 void /* __init_or_exit */ regulatory_exit(void)
2040 {
2041         struct regulatory_request *reg_request, *tmp;
2042         struct reg_beacon *reg_beacon, *btmp;
2043
2044         cancel_work_sync(&reg_work);
2045
2046         mutex_lock(&cfg80211_mutex);
2047         mutex_lock(&reg_mutex);
2048
2049         reset_regdomains();
2050
2051         kfree(last_request);
2052
2053         platform_device_unregister(reg_pdev);
2054
2055         spin_lock_bh(&reg_pending_beacons_lock);
2056         if (!list_empty(&reg_pending_beacons)) {
2057                 list_for_each_entry_safe(reg_beacon, btmp,
2058                                          &reg_pending_beacons, list) {
2059                         list_del(&reg_beacon->list);
2060                         kfree(reg_beacon);
2061                 }
2062         }
2063         spin_unlock_bh(&reg_pending_beacons_lock);
2064
2065         if (!list_empty(&reg_beacon_list)) {
2066                 list_for_each_entry_safe(reg_beacon, btmp,
2067                                          &reg_beacon_list, list) {
2068                         list_del(&reg_beacon->list);
2069                         kfree(reg_beacon);
2070                 }
2071         }
2072
2073         spin_lock(&reg_requests_lock);
2074         if (!list_empty(&reg_requests_list)) {
2075                 list_for_each_entry_safe(reg_request, tmp,
2076                                          &reg_requests_list, list) {
2077                         list_del(&reg_request->list);
2078                         kfree(reg_request);
2079                 }
2080         }
2081         spin_unlock(&reg_requests_lock);
2082
2083         mutex_unlock(&reg_mutex);
2084         mutex_unlock(&cfg80211_mutex);
2085 }