upload tizen1.0 source
[kernel/linux-2.6.36.git] / mm / vmstat.c
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *              Christoph Lameter <christoph@lameter.com>
10  */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/cpu.h>
17 #include <linux/vmstat.h>
18 #include <linux/sched.h>
19 #include <linux/math64.h>
20
21 #ifdef CONFIG_VM_EVENT_COUNTERS
22 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
23 EXPORT_PER_CPU_SYMBOL(vm_event_states);
24
25 static void sum_vm_events(unsigned long *ret)
26 {
27         int cpu;
28         int i;
29
30         memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
31
32         for_each_online_cpu(cpu) {
33                 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
34
35                 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
36                         ret[i] += this->event[i];
37         }
38 }
39
40 /*
41  * Accumulate the vm event counters across all CPUs.
42  * The result is unavoidably approximate - it can change
43  * during and after execution of this function.
44 */
45 void all_vm_events(unsigned long *ret)
46 {
47         get_online_cpus();
48         sum_vm_events(ret);
49         put_online_cpus();
50 }
51 EXPORT_SYMBOL_GPL(all_vm_events);
52
53 #ifdef CONFIG_HOTPLUG
54 /*
55  * Fold the foreign cpu events into our own.
56  *
57  * This is adding to the events on one processor
58  * but keeps the global counts constant.
59  */
60 void vm_events_fold_cpu(int cpu)
61 {
62         struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
63         int i;
64
65         for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
66                 count_vm_events(i, fold_state->event[i]);
67                 fold_state->event[i] = 0;
68         }
69 }
70 #endif /* CONFIG_HOTPLUG */
71
72 #endif /* CONFIG_VM_EVENT_COUNTERS */
73
74 /*
75  * Manage combined zone based / global counters
76  *
77  * vm_stat contains the global counters
78  */
79 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
80 EXPORT_SYMBOL(vm_stat);
81
82 #ifdef CONFIG_SMP
83
84 static int calculate_pressure_threshold(struct zone *zone)
85 {
86         int threshold;
87         int watermark_distance;
88
89         /*
90          * As vmstats are not up to date, there is drift between the estimated
91          * and real values. For high thresholds and a high number of CPUs, it
92          * is possible for the min watermark to be breached while the estimated
93          * value looks fine. The pressure threshold is a reduced value such
94          * that even the maximum amount of drift will not accidentally breach
95          * the min watermark
96          */
97         watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
98         threshold = max(1, (int)(watermark_distance / num_online_cpus()));
99
100         /*
101          * Maximum threshold is 125
102          */
103         threshold = min(125, threshold);
104
105         return threshold;
106 }
107
108 static int calculate_threshold(struct zone *zone)
109 {
110         int threshold;
111         int mem;        /* memory in 128 MB units */
112
113         /*
114          * The threshold scales with the number of processors and the amount
115          * of memory per zone. More memory means that we can defer updates for
116          * longer, more processors could lead to more contention.
117          * fls() is used to have a cheap way of logarithmic scaling.
118          *
119          * Some sample thresholds:
120          *
121          * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
122          * ------------------------------------------------------------------
123          * 8            1               1       0.9-1 GB        4
124          * 16           2               2       0.9-1 GB        4
125          * 20           2               2       1-2 GB          5
126          * 24           2               2       2-4 GB          6
127          * 28           2               2       4-8 GB          7
128          * 32           2               2       8-16 GB         8
129          * 4            2               2       <128M           1
130          * 30           4               3       2-4 GB          5
131          * 48           4               3       8-16 GB         8
132          * 32           8               4       1-2 GB          4
133          * 32           8               4       0.9-1GB         4
134          * 10           16              5       <128M           1
135          * 40           16              5       900M            4
136          * 70           64              7       2-4 GB          5
137          * 84           64              7       4-8 GB          6
138          * 108          512             9       4-8 GB          6
139          * 125          1024            10      8-16 GB         8
140          * 125          1024            10      16-32 GB        9
141          */
142
143         mem = zone->present_pages >> (27 - PAGE_SHIFT);
144
145         threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
146
147         /*
148          * Maximum threshold is 125
149          */
150         threshold = min(125, threshold);
151
152         return threshold;
153 }
154
155 /*
156  * Refresh the thresholds for each zone.
157  */
158 static void refresh_zone_stat_thresholds(void)
159 {
160         struct zone *zone;
161         int cpu;
162         int threshold;
163
164         for_each_populated_zone(zone) {
165                 unsigned long max_drift, tolerate_drift;
166
167                 threshold = calculate_threshold(zone);
168
169                 for_each_online_cpu(cpu)
170                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
171                                                         = threshold;
172
173                 /*
174                  * Only set percpu_drift_mark if there is a danger that
175                  * NR_FREE_PAGES reports the low watermark is ok when in fact
176                  * the min watermark could be breached by an allocation
177                  */
178                 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
179                 max_drift = num_online_cpus() * threshold;
180                 if (max_drift > tolerate_drift)
181                         zone->percpu_drift_mark = high_wmark_pages(zone) +
182                                         max_drift;
183         }
184 }
185
186 void reduce_pgdat_percpu_threshold(pg_data_t *pgdat)
187 {
188         struct zone *zone;
189         int cpu;
190         int threshold;
191         int i;
192
193         get_online_cpus();
194         for (i = 0; i < pgdat->nr_zones; i++) {
195                 zone = &pgdat->node_zones[i];
196                 if (!zone->percpu_drift_mark)
197                         continue;
198
199                 threshold = calculate_pressure_threshold(zone);
200                 for_each_online_cpu(cpu)
201                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
202                                                         = threshold;
203         }
204         put_online_cpus();
205 }
206
207 void restore_pgdat_percpu_threshold(pg_data_t *pgdat)
208 {
209         struct zone *zone;
210         int cpu;
211         int threshold;
212         int i;
213
214         get_online_cpus();
215         for (i = 0; i < pgdat->nr_zones; i++) {
216                 zone = &pgdat->node_zones[i];
217                 if (!zone->percpu_drift_mark)
218                         continue;
219
220                 threshold = calculate_threshold(zone);
221                 for_each_online_cpu(cpu)
222                         per_cpu_ptr(zone->pageset, cpu)->stat_threshold
223                                                         = threshold;
224         }
225         put_online_cpus();
226 }
227
228 /*
229  * For use when we know that interrupts are disabled.
230  */
231 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
232                                 int delta)
233 {
234         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
235
236         s8 *p = pcp->vm_stat_diff + item;
237         long x;
238
239         x = delta + *p;
240
241         if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
242                 zone_page_state_add(x, zone, item);
243                 x = 0;
244         }
245         *p = x;
246 }
247 EXPORT_SYMBOL(__mod_zone_page_state);
248
249 /*
250  * For an unknown interrupt state
251  */
252 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
253                                         int delta)
254 {
255         unsigned long flags;
256
257         local_irq_save(flags);
258         __mod_zone_page_state(zone, item, delta);
259         local_irq_restore(flags);
260 }
261 EXPORT_SYMBOL(mod_zone_page_state);
262
263 /*
264  * Optimized increment and decrement functions.
265  *
266  * These are only for a single page and therefore can take a struct page *
267  * argument instead of struct zone *. This allows the inclusion of the code
268  * generated for page_zone(page) into the optimized functions.
269  *
270  * No overflow check is necessary and therefore the differential can be
271  * incremented or decremented in place which may allow the compilers to
272  * generate better code.
273  * The increment or decrement is known and therefore one boundary check can
274  * be omitted.
275  *
276  * NOTE: These functions are very performance sensitive. Change only
277  * with care.
278  *
279  * Some processors have inc/dec instructions that are atomic vs an interrupt.
280  * However, the code must first determine the differential location in a zone
281  * based on the processor number and then inc/dec the counter. There is no
282  * guarantee without disabling preemption that the processor will not change
283  * in between and therefore the atomicity vs. interrupt cannot be exploited
284  * in a useful way here.
285  */
286 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
287 {
288         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
289         s8 *p = pcp->vm_stat_diff + item;
290
291         (*p)++;
292
293         if (unlikely(*p > pcp->stat_threshold)) {
294                 int overstep = pcp->stat_threshold / 2;
295
296                 zone_page_state_add(*p + overstep, zone, item);
297                 *p = -overstep;
298         }
299 }
300
301 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
302 {
303         __inc_zone_state(page_zone(page), item);
304 }
305 EXPORT_SYMBOL(__inc_zone_page_state);
306
307 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
308 {
309         struct per_cpu_pageset *pcp = this_cpu_ptr(zone->pageset);
310         s8 *p = pcp->vm_stat_diff + item;
311
312         (*p)--;
313
314         if (unlikely(*p < - pcp->stat_threshold)) {
315                 int overstep = pcp->stat_threshold / 2;
316
317                 zone_page_state_add(*p - overstep, zone, item);
318                 *p = overstep;
319         }
320 }
321
322 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
323 {
324         __dec_zone_state(page_zone(page), item);
325 }
326 EXPORT_SYMBOL(__dec_zone_page_state);
327
328 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
329 {
330         unsigned long flags;
331
332         local_irq_save(flags);
333         __inc_zone_state(zone, item);
334         local_irq_restore(flags);
335 }
336
337 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
338 {
339         unsigned long flags;
340         struct zone *zone;
341
342         zone = page_zone(page);
343         local_irq_save(flags);
344         __inc_zone_state(zone, item);
345         local_irq_restore(flags);
346 }
347 EXPORT_SYMBOL(inc_zone_page_state);
348
349 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
350 {
351         unsigned long flags;
352
353         local_irq_save(flags);
354         __dec_zone_page_state(page, item);
355         local_irq_restore(flags);
356 }
357 EXPORT_SYMBOL(dec_zone_page_state);
358
359 /*
360  * Update the zone counters for one cpu.
361  *
362  * The cpu specified must be either the current cpu or a processor that
363  * is not online. If it is the current cpu then the execution thread must
364  * be pinned to the current cpu.
365  *
366  * Note that refresh_cpu_vm_stats strives to only access
367  * node local memory. The per cpu pagesets on remote zones are placed
368  * in the memory local to the processor using that pageset. So the
369  * loop over all zones will access a series of cachelines local to
370  * the processor.
371  *
372  * The call to zone_page_state_add updates the cachelines with the
373  * statistics in the remote zone struct as well as the global cachelines
374  * with the global counters. These could cause remote node cache line
375  * bouncing and will have to be only done when necessary.
376  */
377 void refresh_cpu_vm_stats(int cpu)
378 {
379         struct zone *zone;
380         int i;
381         int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
382
383         for_each_populated_zone(zone) {
384                 struct per_cpu_pageset *p;
385
386                 p = per_cpu_ptr(zone->pageset, cpu);
387
388                 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
389                         if (p->vm_stat_diff[i]) {
390                                 unsigned long flags;
391                                 int v;
392
393                                 local_irq_save(flags);
394                                 v = p->vm_stat_diff[i];
395                                 p->vm_stat_diff[i] = 0;
396                                 local_irq_restore(flags);
397                                 atomic_long_add(v, &zone->vm_stat[i]);
398                                 global_diff[i] += v;
399 #ifdef CONFIG_NUMA
400                                 /* 3 seconds idle till flush */
401                                 p->expire = 3;
402 #endif
403                         }
404                 cond_resched();
405 #ifdef CONFIG_NUMA
406                 /*
407                  * Deal with draining the remote pageset of this
408                  * processor
409                  *
410                  * Check if there are pages remaining in this pageset
411                  * if not then there is nothing to expire.
412                  */
413                 if (!p->expire || !p->pcp.count)
414                         continue;
415
416                 /*
417                  * We never drain zones local to this processor.
418                  */
419                 if (zone_to_nid(zone) == numa_node_id()) {
420                         p->expire = 0;
421                         continue;
422                 }
423
424                 p->expire--;
425                 if (p->expire)
426                         continue;
427
428                 if (p->pcp.count)
429                         drain_zone_pages(zone, &p->pcp);
430 #endif
431         }
432
433         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
434                 if (global_diff[i])
435                         atomic_long_add(global_diff[i], &vm_stat[i]);
436 }
437
438 #endif
439
440 #ifdef CONFIG_NUMA
441 /*
442  * zonelist = the list of zones passed to the allocator
443  * z        = the zone from which the allocation occurred.
444  *
445  * Must be called with interrupts disabled.
446  */
447 void zone_statistics(struct zone *preferred_zone, struct zone *z)
448 {
449         if (z->zone_pgdat == preferred_zone->zone_pgdat) {
450                 __inc_zone_state(z, NUMA_HIT);
451         } else {
452                 __inc_zone_state(z, NUMA_MISS);
453                 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
454         }
455         if (z->node == numa_node_id())
456                 __inc_zone_state(z, NUMA_LOCAL);
457         else
458                 __inc_zone_state(z, NUMA_OTHER);
459 }
460 #endif
461
462 #ifdef CONFIG_COMPACTION
463 struct contig_page_info {
464         unsigned long free_pages;
465         unsigned long free_blocks_total;
466         unsigned long free_blocks_suitable;
467 };
468
469 /*
470  * Calculate the number of free pages in a zone, how many contiguous
471  * pages are free and how many are large enough to satisfy an allocation of
472  * the target size. Note that this function makes no attempt to estimate
473  * how many suitable free blocks there *might* be if MOVABLE pages were
474  * migrated. Calculating that is possible, but expensive and can be
475  * figured out from userspace
476  */
477 static void fill_contig_page_info(struct zone *zone,
478                                 unsigned int suitable_order,
479                                 struct contig_page_info *info)
480 {
481         unsigned int order;
482
483         info->free_pages = 0;
484         info->free_blocks_total = 0;
485         info->free_blocks_suitable = 0;
486
487         for (order = 0; order < MAX_ORDER; order++) {
488                 unsigned long blocks;
489
490                 /* Count number of free blocks */
491                 blocks = zone->free_area[order].nr_free;
492                 info->free_blocks_total += blocks;
493
494                 /* Count free base pages */
495                 info->free_pages += blocks << order;
496
497                 /* Count the suitable free blocks */
498                 if (order >= suitable_order)
499                         info->free_blocks_suitable += blocks <<
500                                                 (order - suitable_order);
501         }
502 }
503
504 /*
505  * A fragmentation index only makes sense if an allocation of a requested
506  * size would fail. If that is true, the fragmentation index indicates
507  * whether external fragmentation or a lack of memory was the problem.
508  * The value can be used to determine if page reclaim or compaction
509  * should be used
510  */
511 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
512 {
513         unsigned long requested = 1UL << order;
514
515         if (!info->free_blocks_total)
516                 return 0;
517
518         /* Fragmentation index only makes sense when a request would fail */
519         if (info->free_blocks_suitable)
520                 return -1000;
521
522         /*
523          * Index is between 0 and 1 so return within 3 decimal places
524          *
525          * 0 => allocation would fail due to lack of memory
526          * 1 => allocation would fail due to fragmentation
527          */
528         return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
529 }
530
531 /* Same as __fragmentation index but allocs contig_page_info on stack */
532 int fragmentation_index(struct zone *zone, unsigned int order)
533 {
534         struct contig_page_info info;
535
536         fill_contig_page_info(zone, order, &info);
537         return __fragmentation_index(order, &info);
538 }
539 #endif
540
541 #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
542 #include <linux/proc_fs.h>
543 #include <linux/seq_file.h>
544
545 static char * const migratetype_names[MIGRATE_TYPES] = {
546         "Unmovable",
547         "Reclaimable",
548         "Movable",
549         "Reserve",
550         "Isolate",
551 };
552
553 static void *frag_start(struct seq_file *m, loff_t *pos)
554 {
555         pg_data_t *pgdat;
556         loff_t node = *pos;
557         for (pgdat = first_online_pgdat();
558              pgdat && node;
559              pgdat = next_online_pgdat(pgdat))
560                 --node;
561
562         return pgdat;
563 }
564
565 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
566 {
567         pg_data_t *pgdat = (pg_data_t *)arg;
568
569         (*pos)++;
570         return next_online_pgdat(pgdat);
571 }
572
573 static void frag_stop(struct seq_file *m, void *arg)
574 {
575 }
576
577 /* Walk all the zones in a node and print using a callback */
578 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
579                 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
580 {
581         struct zone *zone;
582         struct zone *node_zones = pgdat->node_zones;
583         unsigned long flags;
584
585         for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
586                 if (!populated_zone(zone))
587                         continue;
588
589                 spin_lock_irqsave(&zone->lock, flags);
590                 print(m, pgdat, zone);
591                 spin_unlock_irqrestore(&zone->lock, flags);
592         }
593 }
594 #endif
595
596 #ifdef CONFIG_PROC_FS
597 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
598                                                 struct zone *zone)
599 {
600         int order;
601
602         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
603         for (order = 0; order < MAX_ORDER; ++order)
604                 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
605         seq_putc(m, '\n');
606 }
607
608 /*
609  * This walks the free areas for each zone.
610  */
611 static int frag_show(struct seq_file *m, void *arg)
612 {
613         pg_data_t *pgdat = (pg_data_t *)arg;
614         walk_zones_in_node(m, pgdat, frag_show_print);
615         return 0;
616 }
617
618 static void pagetypeinfo_showfree_print(struct seq_file *m,
619                                         pg_data_t *pgdat, struct zone *zone)
620 {
621         int order, mtype;
622
623         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
624                 seq_printf(m, "Node %4d, zone %8s, type %12s ",
625                                         pgdat->node_id,
626                                         zone->name,
627                                         migratetype_names[mtype]);
628                 for (order = 0; order < MAX_ORDER; ++order) {
629                         unsigned long freecount = 0;
630                         struct free_area *area;
631                         struct list_head *curr;
632
633                         area = &(zone->free_area[order]);
634
635                         list_for_each(curr, &area->free_list[mtype])
636                                 freecount++;
637                         seq_printf(m, "%6lu ", freecount);
638                 }
639                 seq_putc(m, '\n');
640         }
641 }
642
643 /* Print out the free pages at each order for each migatetype */
644 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
645 {
646         int order;
647         pg_data_t *pgdat = (pg_data_t *)arg;
648
649         /* Print header */
650         seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
651         for (order = 0; order < MAX_ORDER; ++order)
652                 seq_printf(m, "%6d ", order);
653         seq_putc(m, '\n');
654
655         walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
656
657         return 0;
658 }
659
660 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
661                                         pg_data_t *pgdat, struct zone *zone)
662 {
663         int mtype;
664         unsigned long pfn;
665         unsigned long start_pfn = zone->zone_start_pfn;
666         unsigned long end_pfn = start_pfn + zone->spanned_pages;
667         unsigned long count[MIGRATE_TYPES] = { 0, };
668
669         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
670                 struct page *page;
671
672                 if (!pfn_valid(pfn))
673                         continue;
674
675                 page = pfn_to_page(pfn);
676
677                 /* Watch for unexpected holes punched in the memmap */
678                 if (!memmap_valid_within(pfn, page, zone))
679                         continue;
680
681                 mtype = get_pageblock_migratetype(page);
682
683                 if (mtype < MIGRATE_TYPES)
684                         count[mtype]++;
685         }
686
687         /* Print counts */
688         seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
689         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
690                 seq_printf(m, "%12lu ", count[mtype]);
691         seq_putc(m, '\n');
692 }
693
694 /* Print out the free pages at each order for each migratetype */
695 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
696 {
697         int mtype;
698         pg_data_t *pgdat = (pg_data_t *)arg;
699
700         seq_printf(m, "\n%-23s", "Number of blocks type ");
701         for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
702                 seq_printf(m, "%12s ", migratetype_names[mtype]);
703         seq_putc(m, '\n');
704         walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
705
706         return 0;
707 }
708
709 /*
710  * This prints out statistics in relation to grouping pages by mobility.
711  * It is expensive to collect so do not constantly read the file.
712  */
713 static int pagetypeinfo_show(struct seq_file *m, void *arg)
714 {
715         pg_data_t *pgdat = (pg_data_t *)arg;
716
717         /* check memoryless node */
718         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
719                 return 0;
720
721         seq_printf(m, "Page block order: %d\n", pageblock_order);
722         seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
723         seq_putc(m, '\n');
724         pagetypeinfo_showfree(m, pgdat);
725         pagetypeinfo_showblockcount(m, pgdat);
726
727         return 0;
728 }
729
730 static const struct seq_operations fragmentation_op = {
731         .start  = frag_start,
732         .next   = frag_next,
733         .stop   = frag_stop,
734         .show   = frag_show,
735 };
736
737 static int fragmentation_open(struct inode *inode, struct file *file)
738 {
739         return seq_open(file, &fragmentation_op);
740 }
741
742 static const struct file_operations fragmentation_file_operations = {
743         .open           = fragmentation_open,
744         .read           = seq_read,
745         .llseek         = seq_lseek,
746         .release        = seq_release,
747 };
748
749 static const struct seq_operations pagetypeinfo_op = {
750         .start  = frag_start,
751         .next   = frag_next,
752         .stop   = frag_stop,
753         .show   = pagetypeinfo_show,
754 };
755
756 static int pagetypeinfo_open(struct inode *inode, struct file *file)
757 {
758         return seq_open(file, &pagetypeinfo_op);
759 }
760
761 static const struct file_operations pagetypeinfo_file_ops = {
762         .open           = pagetypeinfo_open,
763         .read           = seq_read,
764         .llseek         = seq_lseek,
765         .release        = seq_release,
766 };
767
768 #ifdef CONFIG_ZONE_DMA
769 #define TEXT_FOR_DMA(xx) xx "_dma",
770 #else
771 #define TEXT_FOR_DMA(xx)
772 #endif
773
774 #ifdef CONFIG_ZONE_DMA32
775 #define TEXT_FOR_DMA32(xx) xx "_dma32",
776 #else
777 #define TEXT_FOR_DMA32(xx)
778 #endif
779
780 #ifdef CONFIG_HIGHMEM
781 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
782 #else
783 #define TEXT_FOR_HIGHMEM(xx)
784 #endif
785
786 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
787                                         TEXT_FOR_HIGHMEM(xx) xx "_movable",
788
789 static const char * const vmstat_text[] = {
790         /* Zoned VM counters */
791         "nr_free_pages",
792         "nr_inactive_anon",
793         "nr_active_anon",
794         "nr_inactive_file",
795         "nr_active_file",
796         "nr_unevictable",
797         "nr_mlock",
798         "nr_anon_pages",
799         "nr_mapped",
800         "nr_file_pages",
801         "nr_dirty",
802         "nr_writeback",
803         "nr_slab_reclaimable",
804         "nr_slab_unreclaimable",
805         "nr_page_table_pages",
806         "nr_kernel_stack",
807         "nr_unstable",
808         "nr_bounce",
809         "nr_vmscan_write",
810         "nr_writeback_temp",
811         "nr_isolated_anon",
812         "nr_isolated_file",
813         "nr_shmem",
814 #ifdef CONFIG_NUMA
815         "numa_hit",
816         "numa_miss",
817         "numa_foreign",
818         "numa_interleave",
819         "numa_local",
820         "numa_other",
821 #endif
822
823 #ifdef CONFIG_VM_EVENT_COUNTERS
824         "pgpgin",
825         "pgpgout",
826         "pswpin",
827         "pswpout",
828
829         TEXTS_FOR_ZONES("pgalloc")
830
831         "pgfree",
832         "pgactivate",
833         "pgdeactivate",
834
835         "pgfault",
836         "pgmajfault",
837
838         TEXTS_FOR_ZONES("pgrefill")
839         TEXTS_FOR_ZONES("pgsteal")
840         TEXTS_FOR_ZONES("pgscan_kswapd")
841         TEXTS_FOR_ZONES("pgscan_direct")
842
843 #ifdef CONFIG_NUMA
844         "zone_reclaim_failed",
845 #endif
846         "pginodesteal",
847         "slabs_scanned",
848         "kswapd_steal",
849         "kswapd_inodesteal",
850         "kswapd_low_wmark_hit_quickly",
851         "kswapd_high_wmark_hit_quickly",
852         "kswapd_skip_congestion_wait",
853         "pageoutrun",
854         "allocstall",
855
856         "pgrotated",
857
858 #ifdef CONFIG_COMPACTION
859         "compact_blocks_moved",
860         "compact_pages_moved",
861         "compact_pagemigrate_failed",
862         "compact_stall",
863         "compact_fail",
864         "compact_success",
865 #endif
866
867 #ifdef CONFIG_HUGETLB_PAGE
868         "htlb_buddy_alloc_success",
869         "htlb_buddy_alloc_fail",
870 #endif
871         "unevictable_pgs_culled",
872         "unevictable_pgs_scanned",
873         "unevictable_pgs_rescued",
874         "unevictable_pgs_mlocked",
875         "unevictable_pgs_munlocked",
876         "unevictable_pgs_cleared",
877         "unevictable_pgs_stranded",
878         "unevictable_pgs_mlockfreed",
879 #endif
880 };
881
882 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
883                                                         struct zone *zone)
884 {
885         int i;
886         seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
887         seq_printf(m,
888                    "\n  pages free     %lu"
889                    "\n        min      %lu"
890                    "\n        low      %lu"
891                    "\n        high     %lu"
892                    "\n        scanned  %lu"
893                    "\n        spanned  %lu"
894                    "\n        present  %lu",
895                    zone_page_state(zone, NR_FREE_PAGES),
896                    min_wmark_pages(zone),
897                    low_wmark_pages(zone),
898                    high_wmark_pages(zone),
899                    zone->pages_scanned,
900                    zone->spanned_pages,
901                    zone->present_pages);
902
903         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
904                 seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
905                                 zone_page_state(zone, i));
906
907         seq_printf(m,
908                    "\n        protection: (%lu",
909                    zone->lowmem_reserve[0]);
910         for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
911                 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
912         seq_printf(m,
913                    ")"
914                    "\n  pagesets");
915         for_each_online_cpu(i) {
916                 struct per_cpu_pageset *pageset;
917
918                 pageset = per_cpu_ptr(zone->pageset, i);
919                 seq_printf(m,
920                            "\n    cpu: %i"
921                            "\n              count: %i"
922                            "\n              high:  %i"
923                            "\n              batch: %i",
924                            i,
925                            pageset->pcp.count,
926                            pageset->pcp.high,
927                            pageset->pcp.batch);
928 #ifdef CONFIG_SMP
929                 seq_printf(m, "\n  vm stats threshold: %d",
930                                 pageset->stat_threshold);
931 #endif
932         }
933         seq_printf(m,
934                    "\n  all_unreclaimable: %u"
935                    "\n  start_pfn:         %lu"
936                    "\n  inactive_ratio:    %u",
937                    zone->all_unreclaimable,
938                    zone->zone_start_pfn,
939                    zone->inactive_ratio);
940         seq_putc(m, '\n');
941 }
942
943 /*
944  * Output information about zones in @pgdat.
945  */
946 static int zoneinfo_show(struct seq_file *m, void *arg)
947 {
948         pg_data_t *pgdat = (pg_data_t *)arg;
949         walk_zones_in_node(m, pgdat, zoneinfo_show_print);
950         return 0;
951 }
952
953 static const struct seq_operations zoneinfo_op = {
954         .start  = frag_start, /* iterate over all zones. The same as in
955                                * fragmentation. */
956         .next   = frag_next,
957         .stop   = frag_stop,
958         .show   = zoneinfo_show,
959 };
960
961 static int zoneinfo_open(struct inode *inode, struct file *file)
962 {
963         return seq_open(file, &zoneinfo_op);
964 }
965
966 static const struct file_operations proc_zoneinfo_file_operations = {
967         .open           = zoneinfo_open,
968         .read           = seq_read,
969         .llseek         = seq_lseek,
970         .release        = seq_release,
971 };
972
973 static void *vmstat_start(struct seq_file *m, loff_t *pos)
974 {
975         unsigned long *v;
976 #ifdef CONFIG_VM_EVENT_COUNTERS
977         unsigned long *e;
978 #endif
979         int i;
980
981         if (*pos >= ARRAY_SIZE(vmstat_text))
982                 return NULL;
983
984 #ifdef CONFIG_VM_EVENT_COUNTERS
985         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
986                         + sizeof(struct vm_event_state), GFP_KERNEL);
987 #else
988         v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
989                         GFP_KERNEL);
990 #endif
991         m->private = v;
992         if (!v)
993                 return ERR_PTR(-ENOMEM);
994         for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
995                 v[i] = global_page_state(i);
996 #ifdef CONFIG_VM_EVENT_COUNTERS
997         e = v + NR_VM_ZONE_STAT_ITEMS;
998         all_vm_events(e);
999         e[PGPGIN] /= 2;         /* sectors -> kbytes */
1000         e[PGPGOUT] /= 2;
1001 #endif
1002         return v + *pos;
1003 }
1004
1005 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1006 {
1007         (*pos)++;
1008         if (*pos >= ARRAY_SIZE(vmstat_text))
1009                 return NULL;
1010         return (unsigned long *)m->private + *pos;
1011 }
1012
1013 static int vmstat_show(struct seq_file *m, void *arg)
1014 {
1015         unsigned long *l = arg;
1016         unsigned long off = l - (unsigned long *)m->private;
1017
1018         seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1019         return 0;
1020 }
1021
1022 static void vmstat_stop(struct seq_file *m, void *arg)
1023 {
1024         kfree(m->private);
1025         m->private = NULL;
1026 }
1027
1028 static const struct seq_operations vmstat_op = {
1029         .start  = vmstat_start,
1030         .next   = vmstat_next,
1031         .stop   = vmstat_stop,
1032         .show   = vmstat_show,
1033 };
1034
1035 static int vmstat_open(struct inode *inode, struct file *file)
1036 {
1037         return seq_open(file, &vmstat_op);
1038 }
1039
1040 static const struct file_operations proc_vmstat_file_operations = {
1041         .open           = vmstat_open,
1042         .read           = seq_read,
1043         .llseek         = seq_lseek,
1044         .release        = seq_release,
1045 };
1046 #endif /* CONFIG_PROC_FS */
1047
1048 #ifdef CONFIG_SMP
1049 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1050 int sysctl_stat_interval __read_mostly = HZ;
1051
1052 static void vmstat_update(struct work_struct *w)
1053 {
1054         refresh_cpu_vm_stats(smp_processor_id());
1055         schedule_delayed_work(&__get_cpu_var(vmstat_work),
1056                 round_jiffies_relative(sysctl_stat_interval));
1057 }
1058
1059 static void __cpuinit start_cpu_timer(int cpu)
1060 {
1061         struct delayed_work *work = &per_cpu(vmstat_work, cpu);
1062
1063         INIT_DELAYED_WORK_DEFERRABLE(work, vmstat_update);
1064         schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
1065 }
1066
1067 /*
1068  * Use the cpu notifier to insure that the thresholds are recalculated
1069  * when necessary.
1070  */
1071 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
1072                 unsigned long action,
1073                 void *hcpu)
1074 {
1075         long cpu = (long)hcpu;
1076
1077         switch (action) {
1078         case CPU_ONLINE:
1079         case CPU_ONLINE_FROZEN:
1080                 refresh_zone_stat_thresholds();
1081                 start_cpu_timer(cpu);
1082                 node_set_state(cpu_to_node(cpu), N_CPU);
1083                 break;
1084         case CPU_DOWN_PREPARE:
1085         case CPU_DOWN_PREPARE_FROZEN:
1086                 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
1087                 per_cpu(vmstat_work, cpu).work.func = NULL;
1088                 break;
1089         case CPU_DOWN_FAILED:
1090         case CPU_DOWN_FAILED_FROZEN:
1091                 start_cpu_timer(cpu);
1092                 break;
1093         case CPU_DEAD:
1094         case CPU_DEAD_FROZEN:
1095                 refresh_zone_stat_thresholds();
1096                 break;
1097         default:
1098                 break;
1099         }
1100         return NOTIFY_OK;
1101 }
1102
1103 static struct notifier_block __cpuinitdata vmstat_notifier =
1104         { &vmstat_cpuup_callback, NULL, 0 };
1105 #endif
1106
1107 static int __init setup_vmstat(void)
1108 {
1109 #ifdef CONFIG_SMP
1110         int cpu;
1111
1112         refresh_zone_stat_thresholds();
1113         register_cpu_notifier(&vmstat_notifier);
1114
1115         for_each_online_cpu(cpu)
1116                 start_cpu_timer(cpu);
1117 #endif
1118 #ifdef CONFIG_PROC_FS
1119         proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1120         proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1121         proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1122         proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1123 #endif
1124         return 0;
1125 }
1126 module_init(setup_vmstat)
1127
1128 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1129 #include <linux/debugfs.h>
1130
1131 static struct dentry *extfrag_debug_root;
1132
1133 /*
1134  * Return an index indicating how much of the available free memory is
1135  * unusable for an allocation of the requested size.
1136  */
1137 static int unusable_free_index(unsigned int order,
1138                                 struct contig_page_info *info)
1139 {
1140         /* No free memory is interpreted as all free memory is unusable */
1141         if (info->free_pages == 0)
1142                 return 1000;
1143
1144         /*
1145          * Index should be a value between 0 and 1. Return a value to 3
1146          * decimal places.
1147          *
1148          * 0 => no fragmentation
1149          * 1 => high fragmentation
1150          */
1151         return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1152
1153 }
1154
1155 static void unusable_show_print(struct seq_file *m,
1156                                         pg_data_t *pgdat, struct zone *zone)
1157 {
1158         unsigned int order;
1159         int index;
1160         struct contig_page_info info;
1161
1162         seq_printf(m, "Node %d, zone %8s ",
1163                                 pgdat->node_id,
1164                                 zone->name);
1165         for (order = 0; order < MAX_ORDER; ++order) {
1166                 fill_contig_page_info(zone, order, &info);
1167                 index = unusable_free_index(order, &info);
1168                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1169         }
1170
1171         seq_putc(m, '\n');
1172 }
1173
1174 /*
1175  * Display unusable free space index
1176  *
1177  * The unusable free space index measures how much of the available free
1178  * memory cannot be used to satisfy an allocation of a given size and is a
1179  * value between 0 and 1. The higher the value, the more of free memory is
1180  * unusable and by implication, the worse the external fragmentation is. This
1181  * can be expressed as a percentage by multiplying by 100.
1182  */
1183 static int unusable_show(struct seq_file *m, void *arg)
1184 {
1185         pg_data_t *pgdat = (pg_data_t *)arg;
1186
1187         /* check memoryless node */
1188         if (!node_state(pgdat->node_id, N_HIGH_MEMORY))
1189                 return 0;
1190
1191         walk_zones_in_node(m, pgdat, unusable_show_print);
1192
1193         return 0;
1194 }
1195
1196 static const struct seq_operations unusable_op = {
1197         .start  = frag_start,
1198         .next   = frag_next,
1199         .stop   = frag_stop,
1200         .show   = unusable_show,
1201 };
1202
1203 static int unusable_open(struct inode *inode, struct file *file)
1204 {
1205         return seq_open(file, &unusable_op);
1206 }
1207
1208 static const struct file_operations unusable_file_ops = {
1209         .open           = unusable_open,
1210         .read           = seq_read,
1211         .llseek         = seq_lseek,
1212         .release        = seq_release,
1213 };
1214
1215 static void extfrag_show_print(struct seq_file *m,
1216                                         pg_data_t *pgdat, struct zone *zone)
1217 {
1218         unsigned int order;
1219         int index;
1220
1221         /* Alloc on stack as interrupts are disabled for zone walk */
1222         struct contig_page_info info;
1223
1224         seq_printf(m, "Node %d, zone %8s ",
1225                                 pgdat->node_id,
1226                                 zone->name);
1227         for (order = 0; order < MAX_ORDER; ++order) {
1228                 fill_contig_page_info(zone, order, &info);
1229                 index = __fragmentation_index(order, &info);
1230                 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1231         }
1232
1233         seq_putc(m, '\n');
1234 }
1235
1236 /*
1237  * Display fragmentation index for orders that allocations would fail for
1238  */
1239 static int extfrag_show(struct seq_file *m, void *arg)
1240 {
1241         pg_data_t *pgdat = (pg_data_t *)arg;
1242
1243         walk_zones_in_node(m, pgdat, extfrag_show_print);
1244
1245         return 0;
1246 }
1247
1248 static const struct seq_operations extfrag_op = {
1249         .start  = frag_start,
1250         .next   = frag_next,
1251         .stop   = frag_stop,
1252         .show   = extfrag_show,
1253 };
1254
1255 static int extfrag_open(struct inode *inode, struct file *file)
1256 {
1257         return seq_open(file, &extfrag_op);
1258 }
1259
1260 static const struct file_operations extfrag_file_ops = {
1261         .open           = extfrag_open,
1262         .read           = seq_read,
1263         .llseek         = seq_lseek,
1264         .release        = seq_release,
1265 };
1266
1267 static int __init extfrag_debug_init(void)
1268 {
1269         extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1270         if (!extfrag_debug_root)
1271                 return -ENOMEM;
1272
1273         if (!debugfs_create_file("unusable_index", 0444,
1274                         extfrag_debug_root, NULL, &unusable_file_ops))
1275                 return -ENOMEM;
1276
1277         if (!debugfs_create_file("extfrag_index", 0444,
1278                         extfrag_debug_root, NULL, &extfrag_file_ops))
1279                 return -ENOMEM;
1280
1281         return 0;
1282 }
1283
1284 module_init(extfrag_debug_init);
1285 #endif