upload tizen1.0 source
[kernel/linux-2.6.36.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock               (truncate_pagecache)
62  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock             (exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock             (truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
72  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page               (access_process_vm)
76  *
77  *  ->i_mutex                   (generic_file_buffered_write)
78  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock                 (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    ->inode_lock              (page_remove_rmap->set_page_dirty)
102  *    ->inode_lock              (zap_pte_range->set_page_dirty)
103  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock             (proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120         struct address_space *mapping = page->mapping;
121
122         radix_tree_delete(&mapping->page_tree, page->index);
123         page->mapping = NULL;
124         mapping->nrpages--;
125         __dec_zone_page_state(page, NR_FILE_PAGES);
126         if (PageSwapBacked(page))
127                 __dec_zone_page_state(page, NR_SHMEM);
128         BUG_ON(page_mapped(page));
129
130         /*
131          * Some filesystems seem to re-dirty the page even after
132          * the VM has canceled the dirty bit (eg ext3 journaling).
133          *
134          * Fix it up by doing a final dirty accounting check after
135          * having removed the page entirely.
136          */
137         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138                 dec_zone_page_state(page, NR_FILE_DIRTY);
139                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140         }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145         struct address_space *mapping = page->mapping;
146
147         BUG_ON(!PageLocked(page));
148
149         spin_lock_irq(&mapping->tree_lock);
150         __remove_from_page_cache(page);
151         spin_unlock_irq(&mapping->tree_lock);
152         mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155
156 static int sync_page(void *word)
157 {
158         struct address_space *mapping;
159         struct page *page;
160
161         page = container_of((unsigned long *)word, struct page, flags);
162
163         /*
164          * page_mapping() is being called without PG_locked held.
165          * Some knowledge of the state and use of the page is used to
166          * reduce the requirements down to a memory barrier.
167          * The danger here is of a stale page_mapping() return value
168          * indicating a struct address_space different from the one it's
169          * associated with when it is associated with one.
170          * After smp_mb(), it's either the correct page_mapping() for
171          * the page, or an old page_mapping() and the page's own
172          * page_mapping() has gone NULL.
173          * The ->sync_page() address_space operation must tolerate
174          * page_mapping() going NULL. By an amazing coincidence,
175          * this comes about because none of the users of the page
176          * in the ->sync_page() methods make essential use of the
177          * page_mapping(), merely passing the page down to the backing
178          * device's unplug functions when it's non-NULL, which in turn
179          * ignore it for all cases but swap, where only page_private(page) is
180          * of interest. When page_mapping() does go NULL, the entire
181          * call stack gracefully ignores the page and returns.
182          * -- wli
183          */
184         smp_mb();
185         mapping = page_mapping(page);
186         if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187                 mapping->a_ops->sync_page(page);
188         io_schedule();
189         return 0;
190 }
191
192 static int sync_page_killable(void *word)
193 {
194         sync_page(word);
195         return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:    address space structure to write
201  * @start:      offset in bytes where the range starts
202  * @end:        offset in bytes where the range ends (inclusive)
203  * @sync_mode:  enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214                                 loff_t end, int sync_mode)
215 {
216         int ret;
217         struct writeback_control wbc = {
218                 .sync_mode = sync_mode,
219                 .nr_to_write = LONG_MAX,
220                 .range_start = start,
221                 .range_end = end,
222         };
223
224         if (!mapping_cap_writeback_dirty(mapping))
225                 return 0;
226
227         ret = do_writepages(mapping, &wbc);
228         return ret;
229 }
230
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232         int sync_mode)
233 {
234         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244                                 loff_t end)
245 {
246         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:    target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:            address space structure to wait for
266  * @start_byte:         offset in bytes where the range starts
267  * @end_byte:           offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273                             loff_t end_byte)
274 {
275         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277         struct pagevec pvec;
278         int nr_pages;
279         int ret = 0;
280
281         if (end_byte < start_byte)
282                 return 0;
283
284         pagevec_init(&pvec, 0);
285         while ((index <= end) &&
286                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287                         PAGECACHE_TAG_WRITEBACK,
288                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289                 unsigned i;
290
291                 for (i = 0; i < nr_pages; i++) {
292                         struct page *page = pvec.pages[i];
293
294                         /* until radix tree lookup accepts end_index */
295                         if (page->index > end)
296                                 continue;
297
298                         wait_on_page_writeback(page);
299                         if (PageError(page))
300                                 ret = -EIO;
301                 }
302                 pagevec_release(&pvec);
303                 cond_resched();
304         }
305
306         /* Check for outstanding write errors */
307         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308                 ret = -ENOSPC;
309         if (test_and_clear_bit(AS_EIO, &mapping->flags))
310                 ret = -EIO;
311
312         return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325         loff_t i_size = i_size_read(mapping->host);
326
327         if (i_size == 0)
328                 return 0;
329
330         return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336         int err = 0;
337
338         if (mapping->nrpages) {
339                 err = filemap_fdatawrite(mapping);
340                 /*
341                  * Even if the above returned error, the pages may be
342                  * written partially (e.g. -ENOSPC), so we wait for it.
343                  * But the -EIO is special case, it may indicate the worst
344                  * thing (e.g. bug) happened, so we avoid waiting for it.
345                  */
346                 if (err != -EIO) {
347                         int err2 = filemap_fdatawait(mapping);
348                         if (!err)
349                                 err = err2;
350                 }
351         }
352         return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:    the address_space for the pages
359  * @lstart:     offset in bytes where the range starts
360  * @lend:       offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368                                  loff_t lstart, loff_t lend)
369 {
370         int err = 0;
371
372         if (mapping->nrpages) {
373                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374                                                  WB_SYNC_ALL);
375                 /* See comment of filemap_write_and_wait() */
376                 if (err != -EIO) {
377                         int err2 = filemap_fdatawait_range(mapping,
378                                                 lstart, lend);
379                         if (!err)
380                                 err = err2;
381                 }
382         }
383         return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:       page to add
390  * @mapping:    the page's address_space
391  * @offset:     page index
392  * @gfp_mask:   page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398                 pgoff_t offset, gfp_t gfp_mask)
399 {
400         int error;
401
402         VM_BUG_ON(!PageLocked(page));
403
404         error = mem_cgroup_cache_charge(page, current->mm,
405                                         gfp_mask & GFP_RECLAIM_MASK);
406         if (error)
407                 goto out;
408
409         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410         if (error == 0) {
411                 page_cache_get(page);
412                 page->mapping = mapping;
413                 page->index = offset;
414
415                 spin_lock_irq(&mapping->tree_lock);
416                 error = radix_tree_insert(&mapping->page_tree, offset, page);
417                 if (likely(!error)) {
418                         mapping->nrpages++;
419                         __inc_zone_page_state(page, NR_FILE_PAGES);
420                         if (PageSwapBacked(page))
421                                 __inc_zone_page_state(page, NR_SHMEM);
422                         spin_unlock_irq(&mapping->tree_lock);
423                 } else {
424                         page->mapping = NULL;
425                         spin_unlock_irq(&mapping->tree_lock);
426                         mem_cgroup_uncharge_cache_page(page);
427                         page_cache_release(page);
428                 }
429                 radix_tree_preload_end();
430         } else
431                 mem_cgroup_uncharge_cache_page(page);
432 out:
433         return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438                                 pgoff_t offset, gfp_t gfp_mask)
439 {
440         int ret;
441
442         /*
443          * Splice_read and readahead add shmem/tmpfs pages into the page cache
444          * before shmem_readpage has a chance to mark them as SwapBacked: they
445          * need to go on the anon lru below, and mem_cgroup_cache_charge
446          * (called in add_to_page_cache) needs to know where they're going too.
447          */
448         if (mapping_cap_swap_backed(mapping))
449                 SetPageSwapBacked(page);
450
451         ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452         if (ret == 0) {
453                 if (page_is_file_cache(page))
454                         lru_cache_add_file(page);
455                 else
456                         lru_cache_add_anon(page);
457         }
458         return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465         int n;
466         struct page *page;
467
468         if (cpuset_do_page_mem_spread()) {
469                 get_mems_allowed();
470                 n = cpuset_mem_spread_node();
471                 page = alloc_pages_exact_node(n, gfp, 0);
472                 put_mems_allowed();
473                 return page;
474         }
475         return alloc_pages(gfp, 0);
476 }
477 EXPORT_SYMBOL(__page_cache_alloc);
478 #endif
479
480 static int __sleep_on_page_lock(void *word)
481 {
482         io_schedule();
483         return 0;
484 }
485
486 /*
487  * In order to wait for pages to become available there must be
488  * waitqueues associated with pages. By using a hash table of
489  * waitqueues where the bucket discipline is to maintain all
490  * waiters on the same queue and wake all when any of the pages
491  * become available, and for the woken contexts to check to be
492  * sure the appropriate page became available, this saves space
493  * at a cost of "thundering herd" phenomena during rare hash
494  * collisions.
495  */
496 static wait_queue_head_t *page_waitqueue(struct page *page)
497 {
498         const struct zone *zone = page_zone(page);
499
500         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501 }
502
503 static inline void wake_up_page(struct page *page, int bit)
504 {
505         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
506 }
507
508 void wait_on_page_bit(struct page *page, int bit_nr)
509 {
510         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511
512         if (test_bit(bit_nr, &page->flags))
513                 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
514                                                         TASK_UNINTERRUPTIBLE);
515 }
516 EXPORT_SYMBOL(wait_on_page_bit);
517
518 /**
519  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520  * @page: Page defining the wait queue of interest
521  * @waiter: Waiter to add to the queue
522  *
523  * Add an arbitrary @waiter to the wait queue for the nominated @page.
524  */
525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526 {
527         wait_queue_head_t *q = page_waitqueue(page);
528         unsigned long flags;
529
530         spin_lock_irqsave(&q->lock, flags);
531         __add_wait_queue(q, waiter);
532         spin_unlock_irqrestore(&q->lock, flags);
533 }
534 EXPORT_SYMBOL_GPL(add_page_wait_queue);
535
536 /**
537  * unlock_page - unlock a locked page
538  * @page: the page
539  *
540  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542  * mechananism between PageLocked pages and PageWriteback pages is shared.
543  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544  *
545  * The mb is necessary to enforce ordering between the clear_bit and the read
546  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547  */
548 void unlock_page(struct page *page)
549 {
550         VM_BUG_ON(!PageLocked(page));
551         clear_bit_unlock(PG_locked, &page->flags);
552         smp_mb__after_clear_bit();
553         wake_up_page(page, PG_locked);
554 }
555 EXPORT_SYMBOL(unlock_page);
556
557 /**
558  * end_page_writeback - end writeback against a page
559  * @page: the page
560  */
561 void end_page_writeback(struct page *page)
562 {
563         if (TestClearPageReclaim(page))
564                 rotate_reclaimable_page(page);
565
566         if (!test_clear_page_writeback(page))
567                 BUG();
568
569         smp_mb__after_clear_bit();
570         wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void __lock_page(struct page *page)
584 {
585         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586
587         __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588                                                         TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591
592 int __lock_page_killable(struct page *page)
593 {
594         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595
596         return __wait_on_bit_lock(page_waitqueue(page), &wait,
597                                         sync_page_killable, TASK_KILLABLE);
598 }
599 EXPORT_SYMBOL_GPL(__lock_page_killable);
600
601 /**
602  * __lock_page_nosync - get a lock on the page, without calling sync_page()
603  * @page: the page to lock
604  *
605  * Variant of lock_page that does not require the caller to hold a reference
606  * on the page's mapping.
607  */
608 void __lock_page_nosync(struct page *page)
609 {
610         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611         __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612                                                         TASK_UNINTERRUPTIBLE);
613 }
614
615 /**
616  * find_get_page - find and get a page reference
617  * @mapping: the address_space to search
618  * @offset: the page index
619  *
620  * Is there a pagecache struct page at the given (mapping, offset) tuple?
621  * If yes, increment its refcount and return it; if no, return NULL.
622  */
623 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
624 {
625         void **pagep;
626         struct page *page;
627
628         rcu_read_lock();
629 repeat:
630         page = NULL;
631         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
632         if (pagep) {
633                 page = radix_tree_deref_slot(pagep);
634                 if (unlikely(!page))
635                         goto out;
636                 if (radix_tree_deref_retry(page))
637                         goto repeat;
638
639                 if (!page_cache_get_speculative(page))
640                         goto repeat;
641
642                 /*
643                  * Has the page moved?
644                  * This is part of the lockless pagecache protocol. See
645                  * include/linux/pagemap.h for details.
646                  */
647                 if (unlikely(page != *pagep)) {
648                         page_cache_release(page);
649                         goto repeat;
650                 }
651         }
652 out:
653         rcu_read_unlock();
654
655         return page;
656 }
657 EXPORT_SYMBOL(find_get_page);
658
659 /**
660  * find_lock_page - locate, pin and lock a pagecache page
661  * @mapping: the address_space to search
662  * @offset: the page index
663  *
664  * Locates the desired pagecache page, locks it, increments its reference
665  * count and returns its address.
666  *
667  * Returns zero if the page was not present. find_lock_page() may sleep.
668  */
669 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
670 {
671         struct page *page;
672
673 repeat:
674         page = find_get_page(mapping, offset);
675         if (page) {
676                 lock_page(page);
677                 /* Has the page been truncated? */
678                 if (unlikely(page->mapping != mapping)) {
679                         unlock_page(page);
680                         page_cache_release(page);
681                         goto repeat;
682                 }
683                 VM_BUG_ON(page->index != offset);
684         }
685         return page;
686 }
687 EXPORT_SYMBOL(find_lock_page);
688
689 /**
690  * find_or_create_page - locate or add a pagecache page
691  * @mapping: the page's address_space
692  * @index: the page's index into the mapping
693  * @gfp_mask: page allocation mode
694  *
695  * Locates a page in the pagecache.  If the page is not present, a new page
696  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
697  * LRU list.  The returned page is locked and has its reference count
698  * incremented.
699  *
700  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
701  * allocation!
702  *
703  * find_or_create_page() returns the desired page's address, or zero on
704  * memory exhaustion.
705  */
706 struct page *find_or_create_page(struct address_space *mapping,
707                 pgoff_t index, gfp_t gfp_mask)
708 {
709         struct page *page;
710         int err;
711 repeat:
712         page = find_lock_page(mapping, index);
713         if (!page) {
714                 page = __page_cache_alloc(gfp_mask);
715                 if (!page)
716                         return NULL;
717                 /*
718                  * We want a regular kernel memory (not highmem or DMA etc)
719                  * allocation for the radix tree nodes, but we need to honour
720                  * the context-specific requirements the caller has asked for.
721                  * GFP_RECLAIM_MASK collects those requirements.
722                  */
723                 err = add_to_page_cache_lru(page, mapping, index,
724                         (gfp_mask & GFP_RECLAIM_MASK));
725                 if (unlikely(err)) {
726                         page_cache_release(page);
727                         page = NULL;
728                         if (err == -EEXIST)
729                                 goto repeat;
730                 }
731         }
732         return page;
733 }
734 EXPORT_SYMBOL(find_or_create_page);
735
736 /**
737  * find_get_pages - gang pagecache lookup
738  * @mapping:    The address_space to search
739  * @start:      The starting page index
740  * @nr_pages:   The maximum number of pages
741  * @pages:      Where the resulting pages are placed
742  *
743  * find_get_pages() will search for and return a group of up to
744  * @nr_pages pages in the mapping.  The pages are placed at @pages.
745  * find_get_pages() takes a reference against the returned pages.
746  *
747  * The search returns a group of mapping-contiguous pages with ascending
748  * indexes.  There may be holes in the indices due to not-present pages.
749  *
750  * find_get_pages() returns the number of pages which were found.
751  */
752 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
753                             unsigned int nr_pages, struct page **pages)
754 {
755         unsigned int i;
756         unsigned int ret;
757         unsigned int nr_found;
758
759         rcu_read_lock();
760 restart:
761         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
762                                 (void ***)pages, start, nr_pages);
763         ret = 0;
764         for (i = 0; i < nr_found; i++) {
765                 struct page *page;
766 repeat:
767                 page = radix_tree_deref_slot((void **)pages[i]);
768                 if (unlikely(!page))
769                         continue;
770                 if (radix_tree_deref_retry(page)) {
771                         if (ret)
772                                 start = pages[ret-1]->index;
773                         goto restart;
774                 }
775
776                 if (!page_cache_get_speculative(page))
777                         goto repeat;
778
779                 /* Has the page moved? */
780                 if (unlikely(page != *((void **)pages[i]))) {
781                         page_cache_release(page);
782                         goto repeat;
783                 }
784
785                 pages[ret] = page;
786                 ret++;
787         }
788         rcu_read_unlock();
789         return ret;
790 }
791
792 /**
793  * find_get_pages_contig - gang contiguous pagecache lookup
794  * @mapping:    The address_space to search
795  * @index:      The starting page index
796  * @nr_pages:   The maximum number of pages
797  * @pages:      Where the resulting pages are placed
798  *
799  * find_get_pages_contig() works exactly like find_get_pages(), except
800  * that the returned number of pages are guaranteed to be contiguous.
801  *
802  * find_get_pages_contig() returns the number of pages which were found.
803  */
804 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
805                                unsigned int nr_pages, struct page **pages)
806 {
807         unsigned int i;
808         unsigned int ret;
809         unsigned int nr_found;
810
811         rcu_read_lock();
812 restart:
813         nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
814                                 (void ***)pages, index, nr_pages);
815         ret = 0;
816         for (i = 0; i < nr_found; i++) {
817                 struct page *page;
818 repeat:
819                 page = radix_tree_deref_slot((void **)pages[i]);
820                 if (unlikely(!page))
821                         continue;
822                 if (radix_tree_deref_retry(page))
823                         goto restart;
824
825                 if (page->mapping == NULL || page->index != index)
826                         break;
827
828                 if (!page_cache_get_speculative(page))
829                         goto repeat;
830
831                 /* Has the page moved? */
832                 if (unlikely(page != *((void **)pages[i]))) {
833                         page_cache_release(page);
834                         goto repeat;
835                 }
836
837                 pages[ret] = page;
838                 ret++;
839                 index++;
840         }
841         rcu_read_unlock();
842         return ret;
843 }
844 EXPORT_SYMBOL(find_get_pages_contig);
845
846 /**
847  * find_get_pages_tag - find and return pages that match @tag
848  * @mapping:    the address_space to search
849  * @index:      the starting page index
850  * @tag:        the tag index
851  * @nr_pages:   the maximum number of pages
852  * @pages:      where the resulting pages are placed
853  *
854  * Like find_get_pages, except we only return pages which are tagged with
855  * @tag.   We update @index to index the next page for the traversal.
856  */
857 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
858                         int tag, unsigned int nr_pages, struct page **pages)
859 {
860         unsigned int i;
861         unsigned int ret;
862         unsigned int nr_found;
863
864         rcu_read_lock();
865 restart:
866         nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
867                                 (void ***)pages, *index, nr_pages, tag);
868         ret = 0;
869         for (i = 0; i < nr_found; i++) {
870                 struct page *page;
871 repeat:
872                 page = radix_tree_deref_slot((void **)pages[i]);
873                 if (unlikely(!page))
874                         continue;
875                 if (radix_tree_deref_retry(page))
876                         goto restart;
877
878                 if (!page_cache_get_speculative(page))
879                         goto repeat;
880
881                 /* Has the page moved? */
882                 if (unlikely(page != *((void **)pages[i]))) {
883                         page_cache_release(page);
884                         goto repeat;
885                 }
886
887                 pages[ret] = page;
888                 ret++;
889         }
890         rcu_read_unlock();
891
892         if (ret)
893                 *index = pages[ret - 1]->index + 1;
894
895         return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_tag);
898
899 /**
900  * grab_cache_page_nowait - returns locked page at given index in given cache
901  * @mapping: target address_space
902  * @index: the page index
903  *
904  * Same as grab_cache_page(), but do not wait if the page is unavailable.
905  * This is intended for speculative data generators, where the data can
906  * be regenerated if the page couldn't be grabbed.  This routine should
907  * be safe to call while holding the lock for another page.
908  *
909  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
910  * and deadlock against the caller's locked page.
911  */
912 struct page *
913 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
914 {
915         struct page *page = find_get_page(mapping, index);
916
917         if (page) {
918                 if (trylock_page(page))
919                         return page;
920                 page_cache_release(page);
921                 return NULL;
922         }
923         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
924         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
925                 page_cache_release(page);
926                 page = NULL;
927         }
928         return page;
929 }
930 EXPORT_SYMBOL(grab_cache_page_nowait);
931
932 /*
933  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
934  * a _large_ part of the i/o request. Imagine the worst scenario:
935  *
936  *      ---R__________________________________________B__________
937  *         ^ reading here                             ^ bad block(assume 4k)
938  *
939  * read(R) => miss => readahead(R...B) => media error => frustrating retries
940  * => failing the whole request => read(R) => read(R+1) =>
941  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
942  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
943  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
944  *
945  * It is going insane. Fix it by quickly scaling down the readahead size.
946  */
947 static void shrink_readahead_size_eio(struct file *filp,
948                                         struct file_ra_state *ra)
949 {
950         ra->ra_pages /= 4;
951 }
952
953 /**
954  * do_generic_file_read - generic file read routine
955  * @filp:       the file to read
956  * @ppos:       current file position
957  * @desc:       read_descriptor
958  * @actor:      read method
959  *
960  * This is a generic file read routine, and uses the
961  * mapping->a_ops->readpage() function for the actual low-level stuff.
962  *
963  * This is really ugly. But the goto's actually try to clarify some
964  * of the logic when it comes to error handling etc.
965  */
966 static void do_generic_file_read(struct file *filp, loff_t *ppos,
967                 read_descriptor_t *desc, read_actor_t actor)
968 {
969         struct address_space *mapping = filp->f_mapping;
970         struct inode *inode = mapping->host;
971         struct file_ra_state *ra = &filp->f_ra;
972         pgoff_t index;
973         pgoff_t last_index;
974         pgoff_t prev_index;
975         unsigned long offset;      /* offset into pagecache page */
976         unsigned int prev_offset;
977         int error;
978
979         index = *ppos >> PAGE_CACHE_SHIFT;
980         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
981         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
982         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
983         offset = *ppos & ~PAGE_CACHE_MASK;
984
985         for (;;) {
986                 struct page *page;
987                 pgoff_t end_index;
988                 loff_t isize;
989                 unsigned long nr, ret;
990
991                 cond_resched();
992 find_page:
993                 page = find_get_page(mapping, index);
994                 if (!page) {
995                         page_cache_sync_readahead(mapping,
996                                         ra, filp,
997                                         index, last_index - index);
998                         page = find_get_page(mapping, index);
999                         if (unlikely(page == NULL))
1000                                 goto no_cached_page;
1001                 }
1002                 if (PageReadahead(page)) {
1003                         page_cache_async_readahead(mapping,
1004                                         ra, filp, page,
1005                                         index, last_index - index);
1006                 }
1007                 if (!PageUptodate(page)) {
1008                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1009                                         !mapping->a_ops->is_partially_uptodate)
1010                                 goto page_not_up_to_date;
1011                         if (!trylock_page(page))
1012                                 goto page_not_up_to_date;
1013                         /* Did it get truncated before we got the lock? */
1014                         if (!page->mapping)
1015                                 goto page_not_up_to_date_locked;
1016                         if (!mapping->a_ops->is_partially_uptodate(page,
1017                                                                 desc, offset))
1018                                 goto page_not_up_to_date_locked;
1019                         unlock_page(page);
1020                 }
1021 page_ok:
1022                 /*
1023                  * i_size must be checked after we know the page is Uptodate.
1024                  *
1025                  * Checking i_size after the check allows us to calculate
1026                  * the correct value for "nr", which means the zero-filled
1027                  * part of the page is not copied back to userspace (unless
1028                  * another truncate extends the file - this is desired though).
1029                  */
1030
1031                 isize = i_size_read(inode);
1032                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1033                 if (unlikely(!isize || index > end_index)) {
1034                         page_cache_release(page);
1035                         goto out;
1036                 }
1037
1038                 /* nr is the maximum number of bytes to copy from this page */
1039                 nr = PAGE_CACHE_SIZE;
1040                 if (index == end_index) {
1041                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1042                         if (nr <= offset) {
1043                                 page_cache_release(page);
1044                                 goto out;
1045                         }
1046                 }
1047                 nr = nr - offset;
1048
1049                 /* If users can be writing to this page using arbitrary
1050                  * virtual addresses, take care about potential aliasing
1051                  * before reading the page on the kernel side.
1052                  */
1053                 if (mapping_writably_mapped(mapping))
1054                         flush_dcache_page(page);
1055
1056                 /*
1057                  * When a sequential read accesses a page several times,
1058                  * only mark it as accessed the first time.
1059                  */
1060                 if (prev_index != index || offset != prev_offset)
1061                         mark_page_accessed(page);
1062                 prev_index = index;
1063
1064                 /*
1065                  * Ok, we have the page, and it's up-to-date, so
1066                  * now we can copy it to user space...
1067                  *
1068                  * The actor routine returns how many bytes were actually used..
1069                  * NOTE! This may not be the same as how much of a user buffer
1070                  * we filled up (we may be padding etc), so we can only update
1071                  * "pos" here (the actor routine has to update the user buffer
1072                  * pointers and the remaining count).
1073                  */
1074                 ret = actor(desc, page, offset, nr);
1075                 offset += ret;
1076                 index += offset >> PAGE_CACHE_SHIFT;
1077                 offset &= ~PAGE_CACHE_MASK;
1078                 prev_offset = offset;
1079
1080                 page_cache_release(page);
1081                 if (ret == nr && desc->count)
1082                         continue;
1083                 goto out;
1084
1085 page_not_up_to_date:
1086                 /* Get exclusive access to the page ... */
1087                 error = lock_page_killable(page);
1088                 if (unlikely(error))
1089                         goto readpage_error;
1090
1091 page_not_up_to_date_locked:
1092                 /* Did it get truncated before we got the lock? */
1093                 if (!page->mapping) {
1094                         unlock_page(page);
1095                         page_cache_release(page);
1096                         continue;
1097                 }
1098
1099                 /* Did somebody else fill it already? */
1100                 if (PageUptodate(page)) {
1101                         unlock_page(page);
1102                         goto page_ok;
1103                 }
1104
1105 readpage:
1106                 /*
1107                  * A previous I/O error may have been due to temporary
1108                  * failures, eg. multipath errors.
1109                  * PG_error will be set again if readpage fails.
1110                  */
1111                 ClearPageError(page);
1112                 /* Start the actual read. The read will unlock the page. */
1113                 error = mapping->a_ops->readpage(filp, page);
1114
1115                 if (unlikely(error)) {
1116                         if (error == AOP_TRUNCATED_PAGE) {
1117                                 page_cache_release(page);
1118                                 goto find_page;
1119                         }
1120                         goto readpage_error;
1121                 }
1122
1123                 if (!PageUptodate(page)) {
1124                         error = lock_page_killable(page);
1125                         if (unlikely(error))
1126                                 goto readpage_error;
1127                         if (!PageUptodate(page)) {
1128                                 if (page->mapping == NULL) {
1129                                         /*
1130                                          * invalidate_mapping_pages got it
1131                                          */
1132                                         unlock_page(page);
1133                                         page_cache_release(page);
1134                                         goto find_page;
1135                                 }
1136                                 unlock_page(page);
1137                                 shrink_readahead_size_eio(filp, ra);
1138                                 error = -EIO;
1139                                 goto readpage_error;
1140                         }
1141                         unlock_page(page);
1142                 }
1143
1144                 goto page_ok;
1145
1146 readpage_error:
1147                 /* UHHUH! A synchronous read error occurred. Report it */
1148                 desc->error = error;
1149                 page_cache_release(page);
1150                 goto out;
1151
1152 no_cached_page:
1153                 /*
1154                  * Ok, it wasn't cached, so we need to create a new
1155                  * page..
1156                  */
1157                 page = page_cache_alloc_cold(mapping);
1158                 if (!page) {
1159                         desc->error = -ENOMEM;
1160                         goto out;
1161                 }
1162                 error = add_to_page_cache_lru(page, mapping,
1163                                                 index, GFP_KERNEL);
1164                 if (error) {
1165                         page_cache_release(page);
1166                         if (error == -EEXIST)
1167                                 goto find_page;
1168                         desc->error = error;
1169                         goto out;
1170                 }
1171                 goto readpage;
1172         }
1173
1174 out:
1175         ra->prev_pos = prev_index;
1176         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1177         ra->prev_pos |= prev_offset;
1178
1179         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1180         file_accessed(filp);
1181 }
1182
1183 int file_read_actor(read_descriptor_t *desc, struct page *page,
1184                         unsigned long offset, unsigned long size)
1185 {
1186         char *kaddr;
1187         unsigned long left, count = desc->count;
1188
1189         if (size > count)
1190                 size = count;
1191
1192         /*
1193          * Faults on the destination of a read are common, so do it before
1194          * taking the kmap.
1195          */
1196         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1197                 kaddr = kmap_atomic(page, KM_USER0);
1198                 left = __copy_to_user_inatomic(desc->arg.buf,
1199                                                 kaddr + offset, size);
1200                 kunmap_atomic(kaddr, KM_USER0);
1201                 if (left == 0)
1202                         goto success;
1203         }
1204
1205         /* Do it the slow way */
1206         kaddr = kmap(page);
1207         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1208         kunmap(page);
1209
1210         if (left) {
1211                 size -= left;
1212                 desc->error = -EFAULT;
1213         }
1214 success:
1215         desc->count = count - size;
1216         desc->written += size;
1217         desc->arg.buf += size;
1218         return size;
1219 }
1220
1221 /*
1222  * Performs necessary checks before doing a write
1223  * @iov:        io vector request
1224  * @nr_segs:    number of segments in the iovec
1225  * @count:      number of bytes to write
1226  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1227  *
1228  * Adjust number of segments and amount of bytes to write (nr_segs should be
1229  * properly initialized first). Returns appropriate error code that caller
1230  * should return or zero in case that write should be allowed.
1231  */
1232 int generic_segment_checks(const struct iovec *iov,
1233                         unsigned long *nr_segs, size_t *count, int access_flags)
1234 {
1235         unsigned long   seg;
1236         size_t cnt = 0;
1237         for (seg = 0; seg < *nr_segs; seg++) {
1238                 const struct iovec *iv = &iov[seg];
1239
1240                 /*
1241                  * If any segment has a negative length, or the cumulative
1242                  * length ever wraps negative then return -EINVAL.
1243                  */
1244                 cnt += iv->iov_len;
1245                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1246                         return -EINVAL;
1247                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1248                         continue;
1249                 if (seg == 0)
1250                         return -EFAULT;
1251                 *nr_segs = seg;
1252                 cnt -= iv->iov_len;     /* This segment is no good */
1253                 break;
1254         }
1255         *count = cnt;
1256         return 0;
1257 }
1258 EXPORT_SYMBOL(generic_segment_checks);
1259
1260 /**
1261  * generic_file_aio_read - generic filesystem read routine
1262  * @iocb:       kernel I/O control block
1263  * @iov:        io vector request
1264  * @nr_segs:    number of segments in the iovec
1265  * @pos:        current file position
1266  *
1267  * This is the "read()" routine for all filesystems
1268  * that can use the page cache directly.
1269  */
1270 ssize_t
1271 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1272                 unsigned long nr_segs, loff_t pos)
1273 {
1274         struct file *filp = iocb->ki_filp;
1275         ssize_t retval;
1276         unsigned long seg = 0;
1277         size_t count;
1278         loff_t *ppos = &iocb->ki_pos;
1279
1280         count = 0;
1281         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1282         if (retval)
1283                 return retval;
1284
1285         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1286         if (filp->f_flags & O_DIRECT) {
1287                 loff_t size;
1288                 struct address_space *mapping;
1289                 struct inode *inode;
1290
1291                 mapping = filp->f_mapping;
1292                 inode = mapping->host;
1293                 if (!count)
1294                         goto out; /* skip atime */
1295                 size = i_size_read(inode);
1296                 if (pos < size) {
1297                         retval = filemap_write_and_wait_range(mapping, pos,
1298                                         pos + iov_length(iov, nr_segs) - 1);
1299                         if (!retval) {
1300                                 retval = mapping->a_ops->direct_IO(READ, iocb,
1301                                                         iov, pos, nr_segs);
1302                         }
1303                         if (retval > 0) {
1304                                 *ppos = pos + retval;
1305                                 count -= retval;
1306                         }
1307
1308                         /*
1309                          * Btrfs can have a short DIO read if we encounter
1310                          * compressed extents, so if there was an error, or if
1311                          * we've already read everything we wanted to, or if
1312                          * there was a short read because we hit EOF, go ahead
1313                          * and return.  Otherwise fallthrough to buffered io for
1314                          * the rest of the read.
1315                          */
1316                         if (retval < 0 || !count || *ppos >= size) {
1317                                 file_accessed(filp);
1318                                 goto out;
1319                         }
1320                 }
1321         }
1322
1323         count = retval;
1324         for (seg = 0; seg < nr_segs; seg++) {
1325                 read_descriptor_t desc;
1326                 loff_t offset = 0;
1327
1328                 /*
1329                  * If we did a short DIO read we need to skip the section of the
1330                  * iov that we've already read data into.
1331                  */
1332                 if (count) {
1333                         if (count > iov[seg].iov_len) {
1334                                 count -= iov[seg].iov_len;
1335                                 continue;
1336                         }
1337                         offset = count;
1338                         count = 0;
1339                 }
1340
1341                 desc.written = 0;
1342                 desc.arg.buf = iov[seg].iov_base + offset;
1343                 desc.count = iov[seg].iov_len - offset;
1344                 if (desc.count == 0)
1345                         continue;
1346                 desc.error = 0;
1347                 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1348                 retval += desc.written;
1349                 if (desc.error) {
1350                         retval = retval ?: desc.error;
1351                         break;
1352                 }
1353                 if (desc.count > 0)
1354                         break;
1355         }
1356 out:
1357         return retval;
1358 }
1359 EXPORT_SYMBOL(generic_file_aio_read);
1360
1361 static ssize_t
1362 do_readahead(struct address_space *mapping, struct file *filp,
1363              pgoff_t index, unsigned long nr)
1364 {
1365         if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1366                 return -EINVAL;
1367
1368         force_page_cache_readahead(mapping, filp, index, nr);
1369         return 0;
1370 }
1371
1372 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1373 {
1374         ssize_t ret;
1375         struct file *file;
1376
1377         ret = -EBADF;
1378         file = fget(fd);
1379         if (file) {
1380                 if (file->f_mode & FMODE_READ) {
1381                         struct address_space *mapping = file->f_mapping;
1382                         pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1383                         pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1384                         unsigned long len = end - start + 1;
1385                         ret = do_readahead(mapping, file, start, len);
1386                 }
1387                 fput(file);
1388         }
1389         return ret;
1390 }
1391 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1392 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1393 {
1394         return SYSC_readahead((int) fd, offset, (size_t) count);
1395 }
1396 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1397 #endif
1398
1399 #ifdef CONFIG_MMU
1400 /**
1401  * page_cache_read - adds requested page to the page cache if not already there
1402  * @file:       file to read
1403  * @offset:     page index
1404  *
1405  * This adds the requested page to the page cache if it isn't already there,
1406  * and schedules an I/O to read in its contents from disk.
1407  */
1408 static int page_cache_read(struct file *file, pgoff_t offset)
1409 {
1410         struct address_space *mapping = file->f_mapping;
1411         struct page *page; 
1412         int ret;
1413
1414         do {
1415                 page = page_cache_alloc_cold(mapping);
1416                 if (!page)
1417                         return -ENOMEM;
1418
1419                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1420                 if (ret == 0)
1421                         ret = mapping->a_ops->readpage(file, page);
1422                 else if (ret == -EEXIST)
1423                         ret = 0; /* losing race to add is OK */
1424
1425                 page_cache_release(page);
1426
1427         } while (ret == AOP_TRUNCATED_PAGE);
1428                 
1429         return ret;
1430 }
1431
1432 #define MMAP_LOTSAMISS  (100)
1433
1434 /*
1435  * Synchronous readahead happens when we don't even find
1436  * a page in the page cache at all.
1437  */
1438 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1439                                    struct file_ra_state *ra,
1440                                    struct file *file,
1441                                    pgoff_t offset)
1442 {
1443         unsigned long ra_pages;
1444         struct address_space *mapping = file->f_mapping;
1445
1446         /* If we don't want any read-ahead, don't bother */
1447         if (VM_RandomReadHint(vma))
1448                 return;
1449
1450         if (VM_SequentialReadHint(vma) ||
1451                         offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1452                 page_cache_sync_readahead(mapping, ra, file, offset,
1453                                           ra->ra_pages);
1454                 return;
1455         }
1456
1457         if (ra->mmap_miss < INT_MAX)
1458                 ra->mmap_miss++;
1459
1460         /*
1461          * Do we miss much more than hit in this file? If so,
1462          * stop bothering with read-ahead. It will only hurt.
1463          */
1464         if (ra->mmap_miss > MMAP_LOTSAMISS)
1465                 return;
1466
1467         /*
1468          * mmap read-around
1469          */
1470         ra_pages = max_sane_readahead(ra->ra_pages);
1471         if (ra_pages) {
1472                 ra->start = max_t(long, 0, offset - ra_pages/2);
1473                 ra->size = ra_pages;
1474                 ra->async_size = 0;
1475                 ra_submit(ra, mapping, file);
1476         }
1477 }
1478
1479 /*
1480  * Asynchronous readahead happens when we find the page and PG_readahead,
1481  * so we want to possibly extend the readahead further..
1482  */
1483 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1484                                     struct file_ra_state *ra,
1485                                     struct file *file,
1486                                     struct page *page,
1487                                     pgoff_t offset)
1488 {
1489         struct address_space *mapping = file->f_mapping;
1490
1491         /* If we don't want any read-ahead, don't bother */
1492         if (VM_RandomReadHint(vma))
1493                 return;
1494         if (ra->mmap_miss > 0)
1495                 ra->mmap_miss--;
1496         if (PageReadahead(page))
1497                 page_cache_async_readahead(mapping, ra, file,
1498                                            page, offset, ra->ra_pages);
1499 }
1500
1501 /**
1502  * filemap_fault - read in file data for page fault handling
1503  * @vma:        vma in which the fault was taken
1504  * @vmf:        struct vm_fault containing details of the fault
1505  *
1506  * filemap_fault() is invoked via the vma operations vector for a
1507  * mapped memory region to read in file data during a page fault.
1508  *
1509  * The goto's are kind of ugly, but this streamlines the normal case of having
1510  * it in the page cache, and handles the special cases reasonably without
1511  * having a lot of duplicated code.
1512  */
1513 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1514 {
1515         int error;
1516         struct file *file = vma->vm_file;
1517         struct address_space *mapping = file->f_mapping;
1518         struct file_ra_state *ra = &file->f_ra;
1519         struct inode *inode = mapping->host;
1520         pgoff_t offset = vmf->pgoff;
1521         struct page *page;
1522         pgoff_t size;
1523         int ret = 0;
1524
1525         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1526         if (offset >= size)
1527                 return VM_FAULT_SIGBUS;
1528
1529         /*
1530          * Do we have something in the page cache already?
1531          */
1532         page = find_get_page(mapping, offset);
1533         if (likely(page)) {
1534                 /*
1535                  * We found the page, so try async readahead before
1536                  * waiting for the lock.
1537                  */
1538                 do_async_mmap_readahead(vma, ra, file, page, offset);
1539                 lock_page(page);
1540
1541                 /* Did it get truncated? */
1542                 if (unlikely(page->mapping != mapping)) {
1543                         unlock_page(page);
1544                         put_page(page);
1545                         goto no_cached_page;
1546                 }
1547         } else {
1548                 /* No page in the page cache at all */
1549                 do_sync_mmap_readahead(vma, ra, file, offset);
1550                 count_vm_event(PGMAJFAULT);
1551                 ret = VM_FAULT_MAJOR;
1552 retry_find:
1553                 page = find_lock_page(mapping, offset);
1554                 if (!page)
1555                         goto no_cached_page;
1556         }
1557
1558         /*
1559          * We have a locked page in the page cache, now we need to check
1560          * that it's up-to-date. If not, it is going to be due to an error.
1561          */
1562         if (unlikely(!PageUptodate(page)))
1563                 goto page_not_uptodate;
1564
1565         /*
1566          * Found the page and have a reference on it.
1567          * We must recheck i_size under page lock.
1568          */
1569         size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1570         if (unlikely(offset >= size)) {
1571                 unlock_page(page);
1572                 page_cache_release(page);
1573                 return VM_FAULT_SIGBUS;
1574         }
1575
1576         ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1577         vmf->page = page;
1578         return ret | VM_FAULT_LOCKED;
1579
1580 no_cached_page:
1581         /*
1582          * We're only likely to ever get here if MADV_RANDOM is in
1583          * effect.
1584          */
1585         error = page_cache_read(file, offset);
1586
1587         /*
1588          * The page we want has now been added to the page cache.
1589          * In the unlikely event that someone removed it in the
1590          * meantime, we'll just come back here and read it again.
1591          */
1592         if (error >= 0)
1593                 goto retry_find;
1594
1595         /*
1596          * An error return from page_cache_read can result if the
1597          * system is low on memory, or a problem occurs while trying
1598          * to schedule I/O.
1599          */
1600         if (error == -ENOMEM)
1601                 return VM_FAULT_OOM;
1602         return VM_FAULT_SIGBUS;
1603
1604 page_not_uptodate:
1605         /*
1606          * Umm, take care of errors if the page isn't up-to-date.
1607          * Try to re-read it _once_. We do this synchronously,
1608          * because there really aren't any performance issues here
1609          * and we need to check for errors.
1610          */
1611         ClearPageError(page);
1612         error = mapping->a_ops->readpage(file, page);
1613         if (!error) {
1614                 wait_on_page_locked(page);
1615                 if (!PageUptodate(page))
1616                         error = -EIO;
1617         }
1618         page_cache_release(page);
1619
1620         if (!error || error == AOP_TRUNCATED_PAGE)
1621                 goto retry_find;
1622
1623         /* Things didn't work out. Return zero to tell the mm layer so. */
1624         shrink_readahead_size_eio(file, ra);
1625         return VM_FAULT_SIGBUS;
1626 }
1627 EXPORT_SYMBOL(filemap_fault);
1628
1629 const struct vm_operations_struct generic_file_vm_ops = {
1630         .fault          = filemap_fault,
1631 };
1632
1633 /* This is used for a general mmap of a disk file */
1634
1635 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1636 {
1637         struct address_space *mapping = file->f_mapping;
1638
1639         if (!mapping->a_ops->readpage)
1640                 return -ENOEXEC;
1641         file_accessed(file);
1642         vma->vm_ops = &generic_file_vm_ops;
1643         vma->vm_flags |= VM_CAN_NONLINEAR;
1644         return 0;
1645 }
1646
1647 /*
1648  * This is for filesystems which do not implement ->writepage.
1649  */
1650 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1651 {
1652         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1653                 return -EINVAL;
1654         return generic_file_mmap(file, vma);
1655 }
1656 #else
1657 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1658 {
1659         return -ENOSYS;
1660 }
1661 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1662 {
1663         return -ENOSYS;
1664 }
1665 #endif /* CONFIG_MMU */
1666
1667 EXPORT_SYMBOL(generic_file_mmap);
1668 EXPORT_SYMBOL(generic_file_readonly_mmap);
1669
1670 static struct page *__read_cache_page(struct address_space *mapping,
1671                                 pgoff_t index,
1672                                 int (*filler)(void *,struct page*),
1673                                 void *data,
1674                                 gfp_t gfp)
1675 {
1676         struct page *page;
1677         int err;
1678 repeat:
1679         page = find_get_page(mapping, index);
1680         if (!page) {
1681                 page = __page_cache_alloc(gfp | __GFP_COLD);
1682                 if (!page)
1683                         return ERR_PTR(-ENOMEM);
1684                 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1685                 if (unlikely(err)) {
1686                         page_cache_release(page);
1687                         if (err == -EEXIST)
1688                                 goto repeat;
1689                         /* Presumably ENOMEM for radix tree node */
1690                         return ERR_PTR(err);
1691                 }
1692                 err = filler(data, page);
1693                 if (err < 0) {
1694                         page_cache_release(page);
1695                         page = ERR_PTR(err);
1696                 }
1697         }
1698         return page;
1699 }
1700
1701 static struct page *do_read_cache_page(struct address_space *mapping,
1702                                 pgoff_t index,
1703                                 int (*filler)(void *,struct page*),
1704                                 void *data,
1705                                 gfp_t gfp)
1706
1707 {
1708         struct page *page;
1709         int err;
1710
1711 retry:
1712         page = __read_cache_page(mapping, index, filler, data, gfp);
1713         if (IS_ERR(page))
1714                 return page;
1715         if (PageUptodate(page))
1716                 goto out;
1717
1718         lock_page(page);
1719         if (!page->mapping) {
1720                 unlock_page(page);
1721                 page_cache_release(page);
1722                 goto retry;
1723         }
1724         if (PageUptodate(page)) {
1725                 unlock_page(page);
1726                 goto out;
1727         }
1728         err = filler(data, page);
1729         if (err < 0) {
1730                 page_cache_release(page);
1731                 return ERR_PTR(err);
1732         }
1733 out:
1734         mark_page_accessed(page);
1735         return page;
1736 }
1737
1738 /**
1739  * read_cache_page_async - read into page cache, fill it if needed
1740  * @mapping:    the page's address_space
1741  * @index:      the page index
1742  * @filler:     function to perform the read
1743  * @data:       destination for read data
1744  *
1745  * Same as read_cache_page, but don't wait for page to become unlocked
1746  * after submitting it to the filler.
1747  *
1748  * Read into the page cache. If a page already exists, and PageUptodate() is
1749  * not set, try to fill the page but don't wait for it to become unlocked.
1750  *
1751  * If the page does not get brought uptodate, return -EIO.
1752  */
1753 struct page *read_cache_page_async(struct address_space *mapping,
1754                                 pgoff_t index,
1755                                 int (*filler)(void *,struct page*),
1756                                 void *data)
1757 {
1758         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1759 }
1760 EXPORT_SYMBOL(read_cache_page_async);
1761
1762 static struct page *wait_on_page_read(struct page *page)
1763 {
1764         if (!IS_ERR(page)) {
1765                 wait_on_page_locked(page);
1766                 if (!PageUptodate(page)) {
1767                         page_cache_release(page);
1768                         page = ERR_PTR(-EIO);
1769                 }
1770         }
1771         return page;
1772 }
1773
1774 /**
1775  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1776  * @mapping:    the page's address_space
1777  * @index:      the page index
1778  * @gfp:        the page allocator flags to use if allocating
1779  *
1780  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1781  * any new page allocations done using the specified allocation flags. Note
1782  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1783  * expect to do this atomically or anything like that - but you can pass in
1784  * other page requirements.
1785  *
1786  * If the page does not get brought uptodate, return -EIO.
1787  */
1788 struct page *read_cache_page_gfp(struct address_space *mapping,
1789                                 pgoff_t index,
1790                                 gfp_t gfp)
1791 {
1792         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1793
1794         return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1795 }
1796 EXPORT_SYMBOL(read_cache_page_gfp);
1797
1798 /**
1799  * read_cache_page - read into page cache, fill it if needed
1800  * @mapping:    the page's address_space
1801  * @index:      the page index
1802  * @filler:     function to perform the read
1803  * @data:       destination for read data
1804  *
1805  * Read into the page cache. If a page already exists, and PageUptodate() is
1806  * not set, try to fill the page then wait for it to become unlocked.
1807  *
1808  * If the page does not get brought uptodate, return -EIO.
1809  */
1810 struct page *read_cache_page(struct address_space *mapping,
1811                                 pgoff_t index,
1812                                 int (*filler)(void *,struct page*),
1813                                 void *data)
1814 {
1815         return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1816 }
1817 EXPORT_SYMBOL(read_cache_page);
1818
1819 /*
1820  * The logic we want is
1821  *
1822  *      if suid or (sgid and xgrp)
1823  *              remove privs
1824  */
1825 int should_remove_suid(struct dentry *dentry)
1826 {
1827         mode_t mode = dentry->d_inode->i_mode;
1828         int kill = 0;
1829
1830         /* suid always must be killed */
1831         if (unlikely(mode & S_ISUID))
1832                 kill = ATTR_KILL_SUID;
1833
1834         /*
1835          * sgid without any exec bits is just a mandatory locking mark; leave
1836          * it alone.  If some exec bits are set, it's a real sgid; kill it.
1837          */
1838         if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1839                 kill |= ATTR_KILL_SGID;
1840
1841         if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1842                 return kill;
1843
1844         return 0;
1845 }
1846 EXPORT_SYMBOL(should_remove_suid);
1847
1848 static int __remove_suid(struct dentry *dentry, int kill)
1849 {
1850         struct iattr newattrs;
1851
1852         newattrs.ia_valid = ATTR_FORCE | kill;
1853         return notify_change(dentry, &newattrs);
1854 }
1855
1856 int file_remove_suid(struct file *file)
1857 {
1858         struct dentry *dentry = file->f_path.dentry;
1859         int killsuid = should_remove_suid(dentry);
1860         int killpriv = security_inode_need_killpriv(dentry);
1861         int error = 0;
1862
1863         if (killpriv < 0)
1864                 return killpriv;
1865         if (killpriv)
1866                 error = security_inode_killpriv(dentry);
1867         if (!error && killsuid)
1868                 error = __remove_suid(dentry, killsuid);
1869
1870         return error;
1871 }
1872 EXPORT_SYMBOL(file_remove_suid);
1873
1874 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1875                         const struct iovec *iov, size_t base, size_t bytes)
1876 {
1877         size_t copied = 0, left = 0;
1878
1879         while (bytes) {
1880                 char __user *buf = iov->iov_base + base;
1881                 int copy = min(bytes, iov->iov_len - base);
1882
1883                 base = 0;
1884                 left = __copy_from_user_inatomic(vaddr, buf, copy);
1885                 copied += copy;
1886                 bytes -= copy;
1887                 vaddr += copy;
1888                 iov++;
1889
1890                 if (unlikely(left))
1891                         break;
1892         }
1893         return copied - left;
1894 }
1895
1896 /*
1897  * Copy as much as we can into the page and return the number of bytes which
1898  * were successfully copied.  If a fault is encountered then return the number of
1899  * bytes which were copied.
1900  */
1901 size_t iov_iter_copy_from_user_atomic(struct page *page,
1902                 struct iov_iter *i, unsigned long offset, size_t bytes)
1903 {
1904         char *kaddr;
1905         size_t copied;
1906
1907         BUG_ON(!in_atomic());
1908         kaddr = kmap_atomic(page, KM_USER0);
1909         if (likely(i->nr_segs == 1)) {
1910                 int left;
1911                 char __user *buf = i->iov->iov_base + i->iov_offset;
1912                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1913                 copied = bytes - left;
1914         } else {
1915                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1916                                                 i->iov, i->iov_offset, bytes);
1917         }
1918         kunmap_atomic(kaddr, KM_USER0);
1919
1920         return copied;
1921 }
1922 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1923
1924 /*
1925  * This has the same sideeffects and return value as
1926  * iov_iter_copy_from_user_atomic().
1927  * The difference is that it attempts to resolve faults.
1928  * Page must not be locked.
1929  */
1930 size_t iov_iter_copy_from_user(struct page *page,
1931                 struct iov_iter *i, unsigned long offset, size_t bytes)
1932 {
1933         char *kaddr;
1934         size_t copied;
1935
1936         kaddr = kmap(page);
1937         if (likely(i->nr_segs == 1)) {
1938                 int left;
1939                 char __user *buf = i->iov->iov_base + i->iov_offset;
1940                 left = __copy_from_user(kaddr + offset, buf, bytes);
1941                 copied = bytes - left;
1942         } else {
1943                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1944                                                 i->iov, i->iov_offset, bytes);
1945         }
1946         kunmap(page);
1947         return copied;
1948 }
1949 EXPORT_SYMBOL(iov_iter_copy_from_user);
1950
1951 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1952 {
1953         BUG_ON(i->count < bytes);
1954
1955         if (likely(i->nr_segs == 1)) {
1956                 i->iov_offset += bytes;
1957                 i->count -= bytes;
1958         } else {
1959                 const struct iovec *iov = i->iov;
1960                 size_t base = i->iov_offset;
1961
1962                 /*
1963                  * The !iov->iov_len check ensures we skip over unlikely
1964                  * zero-length segments (without overruning the iovec).
1965                  */
1966                 while (bytes || unlikely(i->count && !iov->iov_len)) {
1967                         int copy;
1968
1969                         copy = min(bytes, iov->iov_len - base);
1970                         BUG_ON(!i->count || i->count < copy);
1971                         i->count -= copy;
1972                         bytes -= copy;
1973                         base += copy;
1974                         if (iov->iov_len == base) {
1975                                 iov++;
1976                                 base = 0;
1977                         }
1978                 }
1979                 i->iov = iov;
1980                 i->iov_offset = base;
1981         }
1982 }
1983 EXPORT_SYMBOL(iov_iter_advance);
1984
1985 /*
1986  * Fault in the first iovec of the given iov_iter, to a maximum length
1987  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1988  * accessed (ie. because it is an invalid address).
1989  *
1990  * writev-intensive code may want this to prefault several iovecs -- that
1991  * would be possible (callers must not rely on the fact that _only_ the
1992  * first iovec will be faulted with the current implementation).
1993  */
1994 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1995 {
1996         char __user *buf = i->iov->iov_base + i->iov_offset;
1997         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1998         return fault_in_pages_readable(buf, bytes);
1999 }
2000 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2001
2002 /*
2003  * Return the count of just the current iov_iter segment.
2004  */
2005 size_t iov_iter_single_seg_count(struct iov_iter *i)
2006 {
2007         const struct iovec *iov = i->iov;
2008         if (i->nr_segs == 1)
2009                 return i->count;
2010         else
2011                 return min(i->count, iov->iov_len - i->iov_offset);
2012 }
2013 EXPORT_SYMBOL(iov_iter_single_seg_count);
2014
2015 /*
2016  * Performs necessary checks before doing a write
2017  *
2018  * Can adjust writing position or amount of bytes to write.
2019  * Returns appropriate error code that caller should return or
2020  * zero in case that write should be allowed.
2021  */
2022 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2023 {
2024         struct inode *inode = file->f_mapping->host;
2025         unsigned long limit = rlimit(RLIMIT_FSIZE);
2026
2027         if (unlikely(*pos < 0))
2028                 return -EINVAL;
2029
2030         if (!isblk) {
2031                 /* FIXME: this is for backwards compatibility with 2.4 */
2032                 if (file->f_flags & O_APPEND)
2033                         *pos = i_size_read(inode);
2034
2035                 if (limit != RLIM_INFINITY) {
2036                         if (*pos >= limit) {
2037                                 send_sig(SIGXFSZ, current, 0);
2038                                 return -EFBIG;
2039                         }
2040                         if (*count > limit - (typeof(limit))*pos) {
2041                                 *count = limit - (typeof(limit))*pos;
2042                         }
2043                 }
2044         }
2045
2046         /*
2047          * LFS rule
2048          */
2049         if (unlikely(*pos + *count > MAX_NON_LFS &&
2050                                 !(file->f_flags & O_LARGEFILE))) {
2051                 if (*pos >= MAX_NON_LFS) {
2052                         return -EFBIG;
2053                 }
2054                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2055                         *count = MAX_NON_LFS - (unsigned long)*pos;
2056                 }
2057         }
2058
2059         /*
2060          * Are we about to exceed the fs block limit ?
2061          *
2062          * If we have written data it becomes a short write.  If we have
2063          * exceeded without writing data we send a signal and return EFBIG.
2064          * Linus frestrict idea will clean these up nicely..
2065          */
2066         if (likely(!isblk)) {
2067                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2068                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2069                                 return -EFBIG;
2070                         }
2071                         /* zero-length writes at ->s_maxbytes are OK */
2072                 }
2073
2074                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2075                         *count = inode->i_sb->s_maxbytes - *pos;
2076         } else {
2077 #ifdef CONFIG_BLOCK
2078                 loff_t isize;
2079                 if (bdev_read_only(I_BDEV(inode)))
2080                         return -EPERM;
2081                 isize = i_size_read(inode);
2082                 if (*pos >= isize) {
2083                         if (*count || *pos > isize)
2084                                 return -ENOSPC;
2085                 }
2086
2087                 if (*pos + *count > isize)
2088                         *count = isize - *pos;
2089 #else
2090                 return -EPERM;
2091 #endif
2092         }
2093         return 0;
2094 }
2095 EXPORT_SYMBOL(generic_write_checks);
2096
2097 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2098                                 loff_t pos, unsigned len, unsigned flags,
2099                                 struct page **pagep, void **fsdata)
2100 {
2101         const struct address_space_operations *aops = mapping->a_ops;
2102
2103         return aops->write_begin(file, mapping, pos, len, flags,
2104                                                         pagep, fsdata);
2105 }
2106 EXPORT_SYMBOL(pagecache_write_begin);
2107
2108 int pagecache_write_end(struct file *file, struct address_space *mapping,
2109                                 loff_t pos, unsigned len, unsigned copied,
2110                                 struct page *page, void *fsdata)
2111 {
2112         const struct address_space_operations *aops = mapping->a_ops;
2113
2114         mark_page_accessed(page);
2115         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2116 }
2117 EXPORT_SYMBOL(pagecache_write_end);
2118
2119 ssize_t
2120 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2121                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2122                 size_t count, size_t ocount)
2123 {
2124         struct file     *file = iocb->ki_filp;
2125         struct address_space *mapping = file->f_mapping;
2126         struct inode    *inode = mapping->host;
2127         ssize_t         written;
2128         size_t          write_len;
2129         pgoff_t         end;
2130
2131         if (count != ocount)
2132                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2133
2134         write_len = iov_length(iov, *nr_segs);
2135         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2136
2137         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2138         if (written)
2139                 goto out;
2140
2141         /*
2142          * After a write we want buffered reads to be sure to go to disk to get
2143          * the new data.  We invalidate clean cached page from the region we're
2144          * about to write.  We do this *before* the write so that we can return
2145          * without clobbering -EIOCBQUEUED from ->direct_IO().
2146          */
2147         if (mapping->nrpages) {
2148                 written = invalidate_inode_pages2_range(mapping,
2149                                         pos >> PAGE_CACHE_SHIFT, end);
2150                 /*
2151                  * If a page can not be invalidated, return 0 to fall back
2152                  * to buffered write.
2153                  */
2154                 if (written) {
2155                         if (written == -EBUSY)
2156                                 return 0;
2157                         goto out;
2158                 }
2159         }
2160
2161         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2162
2163         /*
2164          * Finally, try again to invalidate clean pages which might have been
2165          * cached by non-direct readahead, or faulted in by get_user_pages()
2166          * if the source of the write was an mmap'ed region of the file
2167          * we're writing.  Either one is a pretty crazy thing to do,
2168          * so we don't support it 100%.  If this invalidation
2169          * fails, tough, the write still worked...
2170          */
2171         if (mapping->nrpages) {
2172                 invalidate_inode_pages2_range(mapping,
2173                                               pos >> PAGE_CACHE_SHIFT, end);
2174         }
2175
2176         if (written > 0) {
2177                 loff_t end = pos + written;
2178                 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2179                         i_size_write(inode,  end);
2180                         mark_inode_dirty(inode);
2181                 }
2182                 *ppos = end;
2183         }
2184 out:
2185         return written;
2186 }
2187 EXPORT_SYMBOL(generic_file_direct_write);
2188
2189 /*
2190  * Find or create a page at the given pagecache position. Return the locked
2191  * page. This function is specifically for buffered writes.
2192  */
2193 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2194                                         pgoff_t index, unsigned flags)
2195 {
2196         int status;
2197         struct page *page;
2198         gfp_t gfp_notmask = 0;
2199         if (flags & AOP_FLAG_NOFS)
2200                 gfp_notmask = __GFP_FS;
2201 repeat:
2202         page = find_lock_page(mapping, index);
2203         if (likely(page))
2204                 return page;
2205
2206         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2207         if (!page)
2208                 return NULL;
2209         status = add_to_page_cache_lru(page, mapping, index,
2210                                                 GFP_KERNEL & ~gfp_notmask);
2211         if (unlikely(status)) {
2212                 page_cache_release(page);
2213                 if (status == -EEXIST)
2214                         goto repeat;
2215                 return NULL;
2216         }
2217         return page;
2218 }
2219 EXPORT_SYMBOL(grab_cache_page_write_begin);
2220
2221 static ssize_t generic_perform_write(struct file *file,
2222                                 struct iov_iter *i, loff_t pos)
2223 {
2224         struct address_space *mapping = file->f_mapping;
2225         const struct address_space_operations *a_ops = mapping->a_ops;
2226         long status = 0;
2227         ssize_t written = 0;
2228         unsigned int flags = 0;
2229
2230         /*
2231          * Copies from kernel address space cannot fail (NFSD is a big user).
2232          */
2233         if (segment_eq(get_fs(), KERNEL_DS))
2234                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2235
2236         do {
2237                 struct page *page;
2238                 unsigned long offset;   /* Offset into pagecache page */
2239                 unsigned long bytes;    /* Bytes to write to page */
2240                 size_t copied;          /* Bytes copied from user */
2241                 void *fsdata;
2242
2243                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2244                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2245                                                 iov_iter_count(i));
2246
2247 again:
2248
2249                 /*
2250                  * Bring in the user page that we will copy from _first_.
2251                  * Otherwise there's a nasty deadlock on copying from the
2252                  * same page as we're writing to, without it being marked
2253                  * up-to-date.
2254                  *
2255                  * Not only is this an optimisation, but it is also required
2256                  * to check that the address is actually valid, when atomic
2257                  * usercopies are used, below.
2258                  */
2259                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2260                         status = -EFAULT;
2261                         break;
2262                 }
2263
2264                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2265                                                 &page, &fsdata);
2266                 if (unlikely(status))
2267                         break;
2268
2269                 if (mapping_writably_mapped(mapping))
2270                         flush_dcache_page(page);
2271
2272                 pagefault_disable();
2273                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2274                 pagefault_enable();
2275                 flush_dcache_page(page);
2276
2277                 mark_page_accessed(page);
2278                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2279                                                 page, fsdata);
2280                 if (unlikely(status < 0))
2281                         break;
2282                 copied = status;
2283
2284                 cond_resched();
2285
2286                 iov_iter_advance(i, copied);
2287                 if (unlikely(copied == 0)) {
2288                         /*
2289                          * If we were unable to copy any data at all, we must
2290                          * fall back to a single segment length write.
2291                          *
2292                          * If we didn't fallback here, we could livelock
2293                          * because not all segments in the iov can be copied at
2294                          * once without a pagefault.
2295                          */
2296                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2297                                                 iov_iter_single_seg_count(i));
2298                         goto again;
2299                 }
2300                 pos += copied;
2301                 written += copied;
2302
2303                 balance_dirty_pages_ratelimited(mapping);
2304
2305         } while (iov_iter_count(i));
2306
2307         return written ? written : status;
2308 }
2309
2310 ssize_t
2311 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2312                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2313                 size_t count, ssize_t written)
2314 {
2315         struct file *file = iocb->ki_filp;
2316         ssize_t status;
2317         struct iov_iter i;
2318
2319         iov_iter_init(&i, iov, nr_segs, count, written);
2320         status = generic_perform_write(file, &i, pos);
2321
2322         if (likely(status >= 0)) {
2323                 written += status;
2324                 *ppos = pos + status;
2325         }
2326         
2327         return written ? written : status;
2328 }
2329 EXPORT_SYMBOL(generic_file_buffered_write);
2330
2331 /**
2332  * __generic_file_aio_write - write data to a file
2333  * @iocb:       IO state structure (file, offset, etc.)
2334  * @iov:        vector with data to write
2335  * @nr_segs:    number of segments in the vector
2336  * @ppos:       position where to write
2337  *
2338  * This function does all the work needed for actually writing data to a
2339  * file. It does all basic checks, removes SUID from the file, updates
2340  * modification times and calls proper subroutines depending on whether we
2341  * do direct IO or a standard buffered write.
2342  *
2343  * It expects i_mutex to be grabbed unless we work on a block device or similar
2344  * object which does not need locking at all.
2345  *
2346  * This function does *not* take care of syncing data in case of O_SYNC write.
2347  * A caller has to handle it. This is mainly due to the fact that we want to
2348  * avoid syncing under i_mutex.
2349  */
2350 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2351                                  unsigned long nr_segs, loff_t *ppos)
2352 {
2353         struct file *file = iocb->ki_filp;
2354         struct address_space * mapping = file->f_mapping;
2355         size_t ocount;          /* original count */
2356         size_t count;           /* after file limit checks */
2357         struct inode    *inode = mapping->host;
2358         loff_t          pos;
2359         ssize_t         written;
2360         ssize_t         err;
2361
2362         ocount = 0;
2363         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2364         if (err)
2365                 return err;
2366
2367         count = ocount;
2368         pos = *ppos;
2369
2370         vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2371
2372         /* We can write back this queue in page reclaim */
2373         current->backing_dev_info = mapping->backing_dev_info;
2374         written = 0;
2375
2376         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2377         if (err)
2378                 goto out;
2379
2380         if (count == 0)
2381                 goto out;
2382
2383         err = file_remove_suid(file);
2384         if (err)
2385                 goto out;
2386
2387         file_update_time(file);
2388
2389         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2390         if (unlikely(file->f_flags & O_DIRECT)) {
2391                 loff_t endbyte;
2392                 ssize_t written_buffered;
2393
2394                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2395                                                         ppos, count, ocount);
2396                 if (written < 0 || written == count)
2397                         goto out;
2398                 /*
2399                  * direct-io write to a hole: fall through to buffered I/O
2400                  * for completing the rest of the request.
2401                  */
2402                 pos += written;
2403                 count -= written;
2404                 written_buffered = generic_file_buffered_write(iocb, iov,
2405                                                 nr_segs, pos, ppos, count,
2406                                                 written);
2407                 /*
2408                  * If generic_file_buffered_write() retuned a synchronous error
2409                  * then we want to return the number of bytes which were
2410                  * direct-written, or the error code if that was zero.  Note
2411                  * that this differs from normal direct-io semantics, which
2412                  * will return -EFOO even if some bytes were written.
2413                  */
2414                 if (written_buffered < 0) {
2415                         err = written_buffered;
2416                         goto out;
2417                 }
2418
2419                 /*
2420                  * We need to ensure that the page cache pages are written to
2421                  * disk and invalidated to preserve the expected O_DIRECT
2422                  * semantics.
2423                  */
2424                 endbyte = pos + written_buffered - written - 1;
2425                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2426                 if (err == 0) {
2427                         written = written_buffered;
2428                         invalidate_mapping_pages(mapping,
2429                                                  pos >> PAGE_CACHE_SHIFT,
2430                                                  endbyte >> PAGE_CACHE_SHIFT);
2431                 } else {
2432                         /*
2433                          * We don't know how much we wrote, so just return
2434                          * the number of bytes which were direct-written
2435                          */
2436                 }
2437         } else {
2438                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2439                                 pos, ppos, count, written);
2440         }
2441 out:
2442         current->backing_dev_info = NULL;
2443         return written ? written : err;
2444 }
2445 EXPORT_SYMBOL(__generic_file_aio_write);
2446
2447 /**
2448  * generic_file_aio_write - write data to a file
2449  * @iocb:       IO state structure
2450  * @iov:        vector with data to write
2451  * @nr_segs:    number of segments in the vector
2452  * @pos:        position in file where to write
2453  *
2454  * This is a wrapper around __generic_file_aio_write() to be used by most
2455  * filesystems. It takes care of syncing the file in case of O_SYNC file
2456  * and acquires i_mutex as needed.
2457  */
2458 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2459                 unsigned long nr_segs, loff_t pos)
2460 {
2461         struct file *file = iocb->ki_filp;
2462         struct inode *inode = file->f_mapping->host;
2463         ssize_t ret;
2464
2465         BUG_ON(iocb->ki_pos != pos);
2466
2467         mutex_lock(&inode->i_mutex);
2468         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2469         mutex_unlock(&inode->i_mutex);
2470
2471         if (ret > 0 || ret == -EIOCBQUEUED) {
2472                 ssize_t err;
2473
2474                 err = generic_write_sync(file, pos, ret);
2475                 if (err < 0 && ret > 0)
2476                         ret = err;
2477         }
2478         return ret;
2479 }
2480 EXPORT_SYMBOL(generic_file_aio_write);
2481
2482 /**
2483  * try_to_release_page() - release old fs-specific metadata on a page
2484  *
2485  * @page: the page which the kernel is trying to free
2486  * @gfp_mask: memory allocation flags (and I/O mode)
2487  *
2488  * The address_space is to try to release any data against the page
2489  * (presumably at page->private).  If the release was successful, return `1'.
2490  * Otherwise return zero.
2491  *
2492  * This may also be called if PG_fscache is set on a page, indicating that the
2493  * page is known to the local caching routines.
2494  *
2495  * The @gfp_mask argument specifies whether I/O may be performed to release
2496  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2497  *
2498  */
2499 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2500 {
2501         struct address_space * const mapping = page->mapping;
2502
2503         BUG_ON(!PageLocked(page));
2504         if (PageWriteback(page))
2505                 return 0;
2506
2507         if (mapping && mapping->a_ops->releasepage)
2508                 return mapping->a_ops->releasepage(page, gfp_mask);
2509         return try_to_free_buffers(page);
2510 }
2511
2512 EXPORT_SYMBOL(try_to_release_page);