upload tizen1.0 source
[kernel/linux-2.6.36.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72  * Priority Inheritance state:
73  */
74 struct futex_pi_state {
75         /*
76          * list of 'owned' pi_state instances - these have to be
77          * cleaned up in do_exit() if the task exits prematurely:
78          */
79         struct list_head list;
80
81         /*
82          * The PI object:
83          */
84         struct rt_mutex pi_mutex;
85
86         struct task_struct *owner;
87         atomic_t refcount;
88
89         union futex_key key;
90 };
91
92 /**
93  * struct futex_q - The hashed futex queue entry, one per waiting task
94  * @task:               the task waiting on the futex
95  * @lock_ptr:           the hash bucket lock
96  * @key:                the key the futex is hashed on
97  * @pi_state:           optional priority inheritance state
98  * @rt_waiter:          rt_waiter storage for use with requeue_pi
99  * @requeue_pi_key:     the requeue_pi target futex key
100  * @bitset:             bitset for the optional bitmasked wakeup
101  *
102  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
103  * we can wake only the relevant ones (hashed queues may be shared).
104  *
105  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
106  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
107  * The order of wakup is always to make the first condition true, then
108  * the second.
109  *
110  * PI futexes are typically woken before they are removed from the hash list via
111  * the rt_mutex code. See unqueue_me_pi().
112  */
113 struct futex_q {
114         struct plist_node list;
115
116         struct task_struct *task;
117         spinlock_t *lock_ptr;
118         union futex_key key;
119         struct futex_pi_state *pi_state;
120         struct rt_mutex_waiter *rt_waiter;
121         union futex_key *requeue_pi_key;
122         u32 bitset;
123 };
124
125 /*
126  * Hash buckets are shared by all the futex_keys that hash to the same
127  * location.  Each key may have multiple futex_q structures, one for each task
128  * waiting on a futex.
129  */
130 struct futex_hash_bucket {
131         spinlock_t lock;
132         struct plist_head chain;
133 };
134
135 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
137 /*
138  * We hash on the keys returned from get_futex_key (see below).
139  */
140 static struct futex_hash_bucket *hash_futex(union futex_key *key)
141 {
142         u32 hash = jhash2((u32*)&key->both.word,
143                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144                           key->both.offset);
145         return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146 }
147
148 /*
149  * Return 1 if two futex_keys are equal, 0 otherwise.
150  */
151 static inline int match_futex(union futex_key *key1, union futex_key *key2)
152 {
153         return (key1 && key2
154                 && key1->both.word == key2->both.word
155                 && key1->both.ptr == key2->both.ptr
156                 && key1->both.offset == key2->both.offset);
157 }
158
159 /*
160  * Take a reference to the resource addressed by a key.
161  * Can be called while holding spinlocks.
162  *
163  */
164 static void get_futex_key_refs(union futex_key *key)
165 {
166         if (!key->both.ptr)
167                 return;
168
169         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170         case FUT_OFF_INODE:
171                 atomic_inc(&key->shared.inode->i_count);
172                 break;
173         case FUT_OFF_MMSHARED:
174                 atomic_inc(&key->private.mm->mm_count);
175                 break;
176         }
177 }
178
179 /*
180  * Drop a reference to the resource addressed by a key.
181  * The hash bucket spinlock must not be held.
182  */
183 static void drop_futex_key_refs(union futex_key *key)
184 {
185         if (!key->both.ptr) {
186                 /* If we're here then we tried to put a key we failed to get */
187                 WARN_ON_ONCE(1);
188                 return;
189         }
190
191         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192         case FUT_OFF_INODE:
193                 iput(key->shared.inode);
194                 break;
195         case FUT_OFF_MMSHARED:
196                 mmdrop(key->private.mm);
197                 break;
198         }
199 }
200
201 /**
202  * get_futex_key() - Get parameters which are the keys for a futex
203  * @uaddr:      virtual address of the futex
204  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205  * @key:        address where result is stored.
206  *
207  * Returns a negative error code or 0
208  * The key words are stored in *key on success.
209  *
210  * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
211  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
212  * We can usually work out the index without swapping in the page.
213  *
214  * lock_page() might sleep, the caller should not hold a spinlock.
215  */
216 static int
217 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
218 {
219         unsigned long address = (unsigned long)uaddr;
220         struct mm_struct *mm = current->mm;
221         struct page *page;
222         int err;
223
224         /*
225          * The futex address must be "naturally" aligned.
226          */
227         key->both.offset = address % PAGE_SIZE;
228         if (unlikely((address % sizeof(u32)) != 0))
229                 return -EINVAL;
230         address -= key->both.offset;
231
232         /*
233          * PROCESS_PRIVATE futexes are fast.
234          * As the mm cannot disappear under us and the 'key' only needs
235          * virtual address, we dont even have to find the underlying vma.
236          * Note : We do have to check 'uaddr' is a valid user address,
237          *        but access_ok() should be faster than find_vma()
238          */
239         if (!fshared) {
240                 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
241                         return -EFAULT;
242                 key->private.mm = mm;
243                 key->private.address = address;
244                 get_futex_key_refs(key);
245                 return 0;
246         }
247
248 again:
249         err = get_user_pages_fast(address, 1, 1, &page);
250         if (err < 0)
251                 return err;
252
253         page = compound_head(page);
254         lock_page(page);
255         if (!page->mapping) {
256                 unlock_page(page);
257                 put_page(page);
258                 goto again;
259         }
260
261         /*
262          * Private mappings are handled in a simple way.
263          *
264          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265          * it's a read-only handle, it's expected that futexes attach to
266          * the object not the particular process.
267          */
268         if (PageAnon(page)) {
269                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
270                 key->private.mm = mm;
271                 key->private.address = address;
272         } else {
273                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274                 key->shared.inode = page->mapping->host;
275                 key->shared.pgoff = page->index;
276         }
277
278         get_futex_key_refs(key);
279
280         unlock_page(page);
281         put_page(page);
282         return 0;
283 }
284
285 static inline
286 void put_futex_key(int fshared, union futex_key *key)
287 {
288         drop_futex_key_refs(key);
289 }
290
291 /**
292  * fault_in_user_writeable() - Fault in user address and verify RW access
293  * @uaddr:      pointer to faulting user space address
294  *
295  * Slow path to fixup the fault we just took in the atomic write
296  * access to @uaddr.
297  *
298  * We have no generic implementation of a non destructive write to the
299  * user address. We know that we faulted in the atomic pagefault
300  * disabled section so we can as well avoid the #PF overhead by
301  * calling get_user_pages() right away.
302  */
303 static int fault_in_user_writeable(u32 __user *uaddr)
304 {
305         struct mm_struct *mm = current->mm;
306         int ret;
307
308         down_read(&mm->mmap_sem);
309         ret = get_user_pages(current, mm, (unsigned long)uaddr,
310                              1, 1, 0, NULL, NULL);
311         up_read(&mm->mmap_sem);
312
313         return ret < 0 ? ret : 0;
314 }
315
316 /**
317  * futex_top_waiter() - Return the highest priority waiter on a futex
318  * @hb:         the hash bucket the futex_q's reside in
319  * @key:        the futex key (to distinguish it from other futex futex_q's)
320  *
321  * Must be called with the hb lock held.
322  */
323 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
324                                         union futex_key *key)
325 {
326         struct futex_q *this;
327
328         plist_for_each_entry(this, &hb->chain, list) {
329                 if (match_futex(&this->key, key))
330                         return this;
331         }
332         return NULL;
333 }
334
335 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
336                                       u32 uval, u32 newval)
337 {
338         int ret;
339
340         pagefault_disable();
341         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
342         pagefault_enable();
343
344         return ret;
345 }
346
347 static int get_futex_value_locked(u32 *dest, u32 __user *from)
348 {
349         int ret;
350
351         pagefault_disable();
352         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
353         pagefault_enable();
354
355         return ret ? -EFAULT : 0;
356 }
357
358
359 /*
360  * PI code:
361  */
362 static int refill_pi_state_cache(void)
363 {
364         struct futex_pi_state *pi_state;
365
366         if (likely(current->pi_state_cache))
367                 return 0;
368
369         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
370
371         if (!pi_state)
372                 return -ENOMEM;
373
374         INIT_LIST_HEAD(&pi_state->list);
375         /* pi_mutex gets initialized later */
376         pi_state->owner = NULL;
377         atomic_set(&pi_state->refcount, 1);
378         pi_state->key = FUTEX_KEY_INIT;
379
380         current->pi_state_cache = pi_state;
381
382         return 0;
383 }
384
385 static struct futex_pi_state * alloc_pi_state(void)
386 {
387         struct futex_pi_state *pi_state = current->pi_state_cache;
388
389         WARN_ON(!pi_state);
390         current->pi_state_cache = NULL;
391
392         return pi_state;
393 }
394
395 static void free_pi_state(struct futex_pi_state *pi_state)
396 {
397         if (!atomic_dec_and_test(&pi_state->refcount))
398                 return;
399
400         /*
401          * If pi_state->owner is NULL, the owner is most probably dying
402          * and has cleaned up the pi_state already
403          */
404         if (pi_state->owner) {
405                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
406                 list_del_init(&pi_state->list);
407                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
408
409                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
410         }
411
412         if (current->pi_state_cache)
413                 kfree(pi_state);
414         else {
415                 /*
416                  * pi_state->list is already empty.
417                  * clear pi_state->owner.
418                  * refcount is at 0 - put it back to 1.
419                  */
420                 pi_state->owner = NULL;
421                 atomic_set(&pi_state->refcount, 1);
422                 current->pi_state_cache = pi_state;
423         }
424 }
425
426 /*
427  * Look up the task based on what TID userspace gave us.
428  * We dont trust it.
429  */
430 static struct task_struct * futex_find_get_task(pid_t pid)
431 {
432         struct task_struct *p;
433
434         rcu_read_lock();
435         p = find_task_by_vpid(pid);
436         if (p)
437                 get_task_struct(p);
438
439         rcu_read_unlock();
440
441         return p;
442 }
443
444 /*
445  * This task is holding PI mutexes at exit time => bad.
446  * Kernel cleans up PI-state, but userspace is likely hosed.
447  * (Robust-futex cleanup is separate and might save the day for userspace.)
448  */
449 void exit_pi_state_list(struct task_struct *curr)
450 {
451         struct list_head *next, *head = &curr->pi_state_list;
452         struct futex_pi_state *pi_state;
453         struct futex_hash_bucket *hb;
454         union futex_key key = FUTEX_KEY_INIT;
455
456         if (!futex_cmpxchg_enabled)
457                 return;
458         /*
459          * We are a ZOMBIE and nobody can enqueue itself on
460          * pi_state_list anymore, but we have to be careful
461          * versus waiters unqueueing themselves:
462          */
463         raw_spin_lock_irq(&curr->pi_lock);
464         while (!list_empty(head)) {
465
466                 next = head->next;
467                 pi_state = list_entry(next, struct futex_pi_state, list);
468                 key = pi_state->key;
469                 hb = hash_futex(&key);
470                 raw_spin_unlock_irq(&curr->pi_lock);
471
472                 spin_lock(&hb->lock);
473
474                 raw_spin_lock_irq(&curr->pi_lock);
475                 /*
476                  * We dropped the pi-lock, so re-check whether this
477                  * task still owns the PI-state:
478                  */
479                 if (head->next != next) {
480                         spin_unlock(&hb->lock);
481                         continue;
482                 }
483
484                 WARN_ON(pi_state->owner != curr);
485                 WARN_ON(list_empty(&pi_state->list));
486                 list_del_init(&pi_state->list);
487                 pi_state->owner = NULL;
488                 raw_spin_unlock_irq(&curr->pi_lock);
489
490                 rt_mutex_unlock(&pi_state->pi_mutex);
491
492                 spin_unlock(&hb->lock);
493
494                 raw_spin_lock_irq(&curr->pi_lock);
495         }
496         raw_spin_unlock_irq(&curr->pi_lock);
497 }
498
499 static int
500 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
501                 union futex_key *key, struct futex_pi_state **ps)
502 {
503         struct futex_pi_state *pi_state = NULL;
504         struct futex_q *this, *next;
505         struct plist_head *head;
506         struct task_struct *p;
507         pid_t pid = uval & FUTEX_TID_MASK;
508
509         head = &hb->chain;
510
511         plist_for_each_entry_safe(this, next, head, list) {
512                 if (match_futex(&this->key, key)) {
513                         /*
514                          * Another waiter already exists - bump up
515                          * the refcount and return its pi_state:
516                          */
517                         pi_state = this->pi_state;
518                         /*
519                          * Userspace might have messed up non PI and PI futexes
520                          */
521                         if (unlikely(!pi_state))
522                                 return -EINVAL;
523
524                         WARN_ON(!atomic_read(&pi_state->refcount));
525
526                         /*
527                          * When pi_state->owner is NULL then the owner died
528                          * and another waiter is on the fly. pi_state->owner
529                          * is fixed up by the task which acquires
530                          * pi_state->rt_mutex.
531                          *
532                          * We do not check for pid == 0 which can happen when
533                          * the owner died and robust_list_exit() cleared the
534                          * TID.
535                          */
536                         if (pid && pi_state->owner) {
537                                 /*
538                                  * Bail out if user space manipulated the
539                                  * futex value.
540                                  */
541                                 if (pid != task_pid_vnr(pi_state->owner))
542                                         return -EINVAL;
543                         }
544
545                         atomic_inc(&pi_state->refcount);
546                         *ps = pi_state;
547
548                         return 0;
549                 }
550         }
551
552         /*
553          * We are the first waiter - try to look up the real owner and attach
554          * the new pi_state to it, but bail out when TID = 0
555          */
556         if (!pid)
557                 return -ESRCH;
558         p = futex_find_get_task(pid);
559         if (!p)
560                 return -ESRCH;
561
562         /*
563          * We need to look at the task state flags to figure out,
564          * whether the task is exiting. To protect against the do_exit
565          * change of the task flags, we do this protected by
566          * p->pi_lock:
567          */
568         raw_spin_lock_irq(&p->pi_lock);
569         if (unlikely(p->flags & PF_EXITING)) {
570                 /*
571                  * The task is on the way out. When PF_EXITPIDONE is
572                  * set, we know that the task has finished the
573                  * cleanup:
574                  */
575                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
576
577                 raw_spin_unlock_irq(&p->pi_lock);
578                 put_task_struct(p);
579                 return ret;
580         }
581
582         pi_state = alloc_pi_state();
583
584         /*
585          * Initialize the pi_mutex in locked state and make 'p'
586          * the owner of it:
587          */
588         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
589
590         /* Store the key for possible exit cleanups: */
591         pi_state->key = *key;
592
593         WARN_ON(!list_empty(&pi_state->list));
594         list_add(&pi_state->list, &p->pi_state_list);
595         pi_state->owner = p;
596         raw_spin_unlock_irq(&p->pi_lock);
597
598         put_task_struct(p);
599
600         *ps = pi_state;
601
602         return 0;
603 }
604
605 /**
606  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
607  * @uaddr:              the pi futex user address
608  * @hb:                 the pi futex hash bucket
609  * @key:                the futex key associated with uaddr and hb
610  * @ps:                 the pi_state pointer where we store the result of the
611  *                      lookup
612  * @task:               the task to perform the atomic lock work for.  This will
613  *                      be "current" except in the case of requeue pi.
614  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
615  *
616  * Returns:
617  *  0 - ready to wait
618  *  1 - acquired the lock
619  * <0 - error
620  *
621  * The hb->lock and futex_key refs shall be held by the caller.
622  */
623 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
624                                 union futex_key *key,
625                                 struct futex_pi_state **ps,
626                                 struct task_struct *task, int set_waiters)
627 {
628         int lock_taken, ret, ownerdied = 0;
629         u32 uval, newval, curval;
630
631 retry:
632         ret = lock_taken = 0;
633
634         /*
635          * To avoid races, we attempt to take the lock here again
636          * (by doing a 0 -> TID atomic cmpxchg), while holding all
637          * the locks. It will most likely not succeed.
638          */
639         newval = task_pid_vnr(task);
640         if (set_waiters)
641                 newval |= FUTEX_WAITERS;
642
643         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
644                 return -EFAULT;
645
646         /*
647          * Detect deadlocks.
648          */
649         if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
650                 return -EDEADLK;
651
652         /*
653          * Surprise - we got the lock. Just return to userspace:
654          */
655         if (unlikely(!curval))
656                 return 1;
657
658         uval = curval;
659
660         /*
661          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
662          * to wake at the next unlock.
663          */
664         newval = curval | FUTEX_WAITERS;
665
666         /*
667          * There are two cases, where a futex might have no owner (the
668          * owner TID is 0): OWNER_DIED. We take over the futex in this
669          * case. We also do an unconditional take over, when the owner
670          * of the futex died.
671          *
672          * This is safe as we are protected by the hash bucket lock !
673          */
674         if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
675                 /* Keep the OWNER_DIED bit */
676                 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
677                 ownerdied = 0;
678                 lock_taken = 1;
679         }
680
681         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
682                 return -EFAULT;
683         if (unlikely(curval != uval))
684                 goto retry;
685
686         /*
687          * We took the lock due to owner died take over.
688          */
689         if (unlikely(lock_taken))
690                 return 1;
691
692         /*
693          * We dont have the lock. Look up the PI state (or create it if
694          * we are the first waiter):
695          */
696         ret = lookup_pi_state(uval, hb, key, ps);
697
698         if (unlikely(ret)) {
699                 switch (ret) {
700                 case -ESRCH:
701                         /*
702                          * No owner found for this futex. Check if the
703                          * OWNER_DIED bit is set to figure out whether
704                          * this is a robust futex or not.
705                          */
706                         if (get_futex_value_locked(&curval, uaddr))
707                                 return -EFAULT;
708
709                         /*
710                          * We simply start over in case of a robust
711                          * futex. The code above will take the futex
712                          * and return happy.
713                          */
714                         if (curval & FUTEX_OWNER_DIED) {
715                                 ownerdied = 1;
716                                 goto retry;
717                         }
718                 default:
719                         break;
720                 }
721         }
722
723         return ret;
724 }
725
726 /*
727  * The hash bucket lock must be held when this is called.
728  * Afterwards, the futex_q must not be accessed.
729  */
730 static void wake_futex(struct futex_q *q)
731 {
732         struct task_struct *p = q->task;
733
734         /*
735          * We set q->lock_ptr = NULL _before_ we wake up the task. If
736          * a non futex wake up happens on another CPU then the task
737          * might exit and p would dereference a non existing task
738          * struct. Prevent this by holding a reference on p across the
739          * wake up.
740          */
741         get_task_struct(p);
742
743         plist_del(&q->list, &q->list.plist);
744         /*
745          * The waiting task can free the futex_q as soon as
746          * q->lock_ptr = NULL is written, without taking any locks. A
747          * memory barrier is required here to prevent the following
748          * store to lock_ptr from getting ahead of the plist_del.
749          */
750         smp_wmb();
751         q->lock_ptr = NULL;
752
753         wake_up_state(p, TASK_NORMAL);
754         put_task_struct(p);
755 }
756
757 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
758 {
759         struct task_struct *new_owner;
760         struct futex_pi_state *pi_state = this->pi_state;
761         u32 curval, newval;
762
763         if (!pi_state)
764                 return -EINVAL;
765
766         /*
767          * If current does not own the pi_state then the futex is
768          * inconsistent and user space fiddled with the futex value.
769          */
770         if (pi_state->owner != current)
771                 return -EINVAL;
772
773         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
774         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
775
776         /*
777          * This happens when we have stolen the lock and the original
778          * pending owner did not enqueue itself back on the rt_mutex.
779          * Thats not a tragedy. We know that way, that a lock waiter
780          * is on the fly. We make the futex_q waiter the pending owner.
781          */
782         if (!new_owner)
783                 new_owner = this->task;
784
785         /*
786          * We pass it to the next owner. (The WAITERS bit is always
787          * kept enabled while there is PI state around. We must also
788          * preserve the owner died bit.)
789          */
790         if (!(uval & FUTEX_OWNER_DIED)) {
791                 int ret = 0;
792
793                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
794
795                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
796                         ret = -EFAULT;
797                 else if (curval != uval)
798                         ret = -EINVAL;
799                 if (ret) {
800                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
801                         return ret;
802                 }
803         }
804
805         raw_spin_lock_irq(&pi_state->owner->pi_lock);
806         WARN_ON(list_empty(&pi_state->list));
807         list_del_init(&pi_state->list);
808         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
809
810         raw_spin_lock_irq(&new_owner->pi_lock);
811         WARN_ON(!list_empty(&pi_state->list));
812         list_add(&pi_state->list, &new_owner->pi_state_list);
813         pi_state->owner = new_owner;
814         raw_spin_unlock_irq(&new_owner->pi_lock);
815
816         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
817         rt_mutex_unlock(&pi_state->pi_mutex);
818
819         return 0;
820 }
821
822 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
823 {
824         u32 oldval;
825
826         /*
827          * There is no waiter, so we unlock the futex. The owner died
828          * bit has not to be preserved here. We are the owner:
829          */
830         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
831                 return -EFAULT;
832         if (oldval != uval)
833                 return -EAGAIN;
834
835         return 0;
836 }
837
838 /*
839  * Express the locking dependencies for lockdep:
840  */
841 static inline void
842 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
843 {
844         if (hb1 <= hb2) {
845                 spin_lock(&hb1->lock);
846                 if (hb1 < hb2)
847                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
848         } else { /* hb1 > hb2 */
849                 spin_lock(&hb2->lock);
850                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
851         }
852 }
853
854 static inline void
855 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
856 {
857         spin_unlock(&hb1->lock);
858         if (hb1 != hb2)
859                 spin_unlock(&hb2->lock);
860 }
861
862 /*
863  * Wake up waiters matching bitset queued on this futex (uaddr).
864  */
865 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
866 {
867         struct futex_hash_bucket *hb;
868         struct futex_q *this, *next;
869         struct plist_head *head;
870         union futex_key key = FUTEX_KEY_INIT;
871         int ret;
872
873         if (!bitset)
874                 return -EINVAL;
875
876         ret = get_futex_key(uaddr, fshared, &key);
877         if (unlikely(ret != 0))
878                 goto out;
879
880         hb = hash_futex(&key);
881         spin_lock(&hb->lock);
882         head = &hb->chain;
883
884         plist_for_each_entry_safe(this, next, head, list) {
885                 if (match_futex (&this->key, &key)) {
886                         if (this->pi_state || this->rt_waiter) {
887                                 ret = -EINVAL;
888                                 break;
889                         }
890
891                         /* Check if one of the bits is set in both bitsets */
892                         if (!(this->bitset & bitset))
893                                 continue;
894
895                         wake_futex(this);
896                         if (++ret >= nr_wake)
897                                 break;
898                 }
899         }
900
901         spin_unlock(&hb->lock);
902         put_futex_key(fshared, &key);
903 out:
904         return ret;
905 }
906
907 /*
908  * Wake up all waiters hashed on the physical page that is mapped
909  * to this virtual address:
910  */
911 static int
912 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
913               int nr_wake, int nr_wake2, int op)
914 {
915         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
916         struct futex_hash_bucket *hb1, *hb2;
917         struct plist_head *head;
918         struct futex_q *this, *next;
919         int ret, op_ret;
920
921 retry:
922         ret = get_futex_key(uaddr1, fshared, &key1);
923         if (unlikely(ret != 0))
924                 goto out;
925         ret = get_futex_key(uaddr2, fshared, &key2);
926         if (unlikely(ret != 0))
927                 goto out_put_key1;
928
929         hb1 = hash_futex(&key1);
930         hb2 = hash_futex(&key2);
931
932 retry_private:
933         double_lock_hb(hb1, hb2);
934         op_ret = futex_atomic_op_inuser(op, uaddr2);
935         if (unlikely(op_ret < 0)) {
936
937                 double_unlock_hb(hb1, hb2);
938
939 #ifndef CONFIG_MMU
940                 /*
941                  * we don't get EFAULT from MMU faults if we don't have an MMU,
942                  * but we might get them from range checking
943                  */
944                 ret = op_ret;
945                 goto out_put_keys;
946 #endif
947
948                 if (unlikely(op_ret != -EFAULT)) {
949                         ret = op_ret;
950                         goto out_put_keys;
951                 }
952
953                 ret = fault_in_user_writeable(uaddr2);
954                 if (ret)
955                         goto out_put_keys;
956
957                 if (!fshared)
958                         goto retry_private;
959
960                 put_futex_key(fshared, &key2);
961                 put_futex_key(fshared, &key1);
962                 goto retry;
963         }
964
965         head = &hb1->chain;
966
967         plist_for_each_entry_safe(this, next, head, list) {
968                 if (match_futex (&this->key, &key1)) {
969                         wake_futex(this);
970                         if (++ret >= nr_wake)
971                                 break;
972                 }
973         }
974
975         if (op_ret > 0) {
976                 head = &hb2->chain;
977
978                 op_ret = 0;
979                 plist_for_each_entry_safe(this, next, head, list) {
980                         if (match_futex (&this->key, &key2)) {
981                                 wake_futex(this);
982                                 if (++op_ret >= nr_wake2)
983                                         break;
984                         }
985                 }
986                 ret += op_ret;
987         }
988
989         double_unlock_hb(hb1, hb2);
990 out_put_keys:
991         put_futex_key(fshared, &key2);
992 out_put_key1:
993         put_futex_key(fshared, &key1);
994 out:
995         return ret;
996 }
997
998 /**
999  * requeue_futex() - Requeue a futex_q from one hb to another
1000  * @q:          the futex_q to requeue
1001  * @hb1:        the source hash_bucket
1002  * @hb2:        the target hash_bucket
1003  * @key2:       the new key for the requeued futex_q
1004  */
1005 static inline
1006 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1007                    struct futex_hash_bucket *hb2, union futex_key *key2)
1008 {
1009
1010         /*
1011          * If key1 and key2 hash to the same bucket, no need to
1012          * requeue.
1013          */
1014         if (likely(&hb1->chain != &hb2->chain)) {
1015                 plist_del(&q->list, &hb1->chain);
1016                 plist_add(&q->list, &hb2->chain);
1017                 q->lock_ptr = &hb2->lock;
1018 #ifdef CONFIG_DEBUG_PI_LIST
1019                 q->list.plist.spinlock = &hb2->lock;
1020 #endif
1021         }
1022         get_futex_key_refs(key2);
1023         q->key = *key2;
1024 }
1025
1026 /**
1027  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1028  * @q:          the futex_q
1029  * @key:        the key of the requeue target futex
1030  * @hb:         the hash_bucket of the requeue target futex
1031  *
1032  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1033  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1034  * to the requeue target futex so the waiter can detect the wakeup on the right
1035  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1036  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1037  * to protect access to the pi_state to fixup the owner later.  Must be called
1038  * with both q->lock_ptr and hb->lock held.
1039  */
1040 static inline
1041 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1042                            struct futex_hash_bucket *hb)
1043 {
1044         get_futex_key_refs(key);
1045         q->key = *key;
1046
1047         WARN_ON(plist_node_empty(&q->list));
1048         plist_del(&q->list, &q->list.plist);
1049
1050         WARN_ON(!q->rt_waiter);
1051         q->rt_waiter = NULL;
1052
1053         q->lock_ptr = &hb->lock;
1054 #ifdef CONFIG_DEBUG_PI_LIST
1055         q->list.plist.spinlock = &hb->lock;
1056 #endif
1057
1058         wake_up_state(q->task, TASK_NORMAL);
1059 }
1060
1061 /**
1062  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1063  * @pifutex:            the user address of the to futex
1064  * @hb1:                the from futex hash bucket, must be locked by the caller
1065  * @hb2:                the to futex hash bucket, must be locked by the caller
1066  * @key1:               the from futex key
1067  * @key2:               the to futex key
1068  * @ps:                 address to store the pi_state pointer
1069  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1070  *
1071  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1072  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1073  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1074  * hb1 and hb2 must be held by the caller.
1075  *
1076  * Returns:
1077  *  0 - failed to acquire the lock atomicly
1078  *  1 - acquired the lock
1079  * <0 - error
1080  */
1081 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1082                                  struct futex_hash_bucket *hb1,
1083                                  struct futex_hash_bucket *hb2,
1084                                  union futex_key *key1, union futex_key *key2,
1085                                  struct futex_pi_state **ps, int set_waiters)
1086 {
1087         struct futex_q *top_waiter = NULL;
1088         u32 curval;
1089         int ret;
1090
1091         if (get_futex_value_locked(&curval, pifutex))
1092                 return -EFAULT;
1093
1094         /*
1095          * Find the top_waiter and determine if there are additional waiters.
1096          * If the caller intends to requeue more than 1 waiter to pifutex,
1097          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1098          * as we have means to handle the possible fault.  If not, don't set
1099          * the bit unecessarily as it will force the subsequent unlock to enter
1100          * the kernel.
1101          */
1102         top_waiter = futex_top_waiter(hb1, key1);
1103
1104         /* There are no waiters, nothing for us to do. */
1105         if (!top_waiter)
1106                 return 0;
1107
1108         /* Ensure we requeue to the expected futex. */
1109         if (!match_futex(top_waiter->requeue_pi_key, key2))
1110                 return -EINVAL;
1111
1112         /*
1113          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1114          * the contended case or if set_waiters is 1.  The pi_state is returned
1115          * in ps in contended cases.
1116          */
1117         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1118                                    set_waiters);
1119         if (ret == 1)
1120                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1121
1122         return ret;
1123 }
1124
1125 /**
1126  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1127  * uaddr1:      source futex user address
1128  * uaddr2:      target futex user address
1129  * nr_wake:     number of waiters to wake (must be 1 for requeue_pi)
1130  * nr_requeue:  number of waiters to requeue (0-INT_MAX)
1131  * requeue_pi:  if we are attempting to requeue from a non-pi futex to a
1132  *              pi futex (pi to pi requeue is not supported)
1133  *
1134  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1135  * uaddr2 atomically on behalf of the top waiter.
1136  *
1137  * Returns:
1138  * >=0 - on success, the number of tasks requeued or woken
1139  *  <0 - on error
1140  */
1141 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1142                          int nr_wake, int nr_requeue, u32 *cmpval,
1143                          int requeue_pi)
1144 {
1145         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1146         int drop_count = 0, task_count = 0, ret;
1147         struct futex_pi_state *pi_state = NULL;
1148         struct futex_hash_bucket *hb1, *hb2;
1149         struct plist_head *head1;
1150         struct futex_q *this, *next;
1151         u32 curval2;
1152
1153         if (requeue_pi) {
1154                 /*
1155                  * requeue_pi requires a pi_state, try to allocate it now
1156                  * without any locks in case it fails.
1157                  */
1158                 if (refill_pi_state_cache())
1159                         return -ENOMEM;
1160                 /*
1161                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1162                  * + nr_requeue, since it acquires the rt_mutex prior to
1163                  * returning to userspace, so as to not leave the rt_mutex with
1164                  * waiters and no owner.  However, second and third wake-ups
1165                  * cannot be predicted as they involve race conditions with the
1166                  * first wake and a fault while looking up the pi_state.  Both
1167                  * pthread_cond_signal() and pthread_cond_broadcast() should
1168                  * use nr_wake=1.
1169                  */
1170                 if (nr_wake != 1)
1171                         return -EINVAL;
1172         }
1173
1174 retry:
1175         if (pi_state != NULL) {
1176                 /*
1177                  * We will have to lookup the pi_state again, so free this one
1178                  * to keep the accounting correct.
1179                  */
1180                 free_pi_state(pi_state);
1181                 pi_state = NULL;
1182         }
1183
1184         ret = get_futex_key(uaddr1, fshared, &key1);
1185         if (unlikely(ret != 0))
1186                 goto out;
1187         ret = get_futex_key(uaddr2, fshared, &key2);
1188         if (unlikely(ret != 0))
1189                 goto out_put_key1;
1190
1191         hb1 = hash_futex(&key1);
1192         hb2 = hash_futex(&key2);
1193
1194 retry_private:
1195         double_lock_hb(hb1, hb2);
1196
1197         if (likely(cmpval != NULL)) {
1198                 u32 curval;
1199
1200                 ret = get_futex_value_locked(&curval, uaddr1);
1201
1202                 if (unlikely(ret)) {
1203                         double_unlock_hb(hb1, hb2);
1204
1205                         ret = get_user(curval, uaddr1);
1206                         if (ret)
1207                                 goto out_put_keys;
1208
1209                         if (!fshared)
1210                                 goto retry_private;
1211
1212                         put_futex_key(fshared, &key2);
1213                         put_futex_key(fshared, &key1);
1214                         goto retry;
1215                 }
1216                 if (curval != *cmpval) {
1217                         ret = -EAGAIN;
1218                         goto out_unlock;
1219                 }
1220         }
1221
1222         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1223                 /*
1224                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1225                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1226                  * bit.  We force this here where we are able to easily handle
1227                  * faults rather in the requeue loop below.
1228                  */
1229                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1230                                                  &key2, &pi_state, nr_requeue);
1231
1232                 /*
1233                  * At this point the top_waiter has either taken uaddr2 or is
1234                  * waiting on it.  If the former, then the pi_state will not
1235                  * exist yet, look it up one more time to ensure we have a
1236                  * reference to it.
1237                  */
1238                 if (ret == 1) {
1239                         WARN_ON(pi_state);
1240                         drop_count++;
1241                         task_count++;
1242                         ret = get_futex_value_locked(&curval2, uaddr2);
1243                         if (!ret)
1244                                 ret = lookup_pi_state(curval2, hb2, &key2,
1245                                                       &pi_state);
1246                 }
1247
1248                 switch (ret) {
1249                 case 0:
1250                         break;
1251                 case -EFAULT:
1252                         double_unlock_hb(hb1, hb2);
1253                         put_futex_key(fshared, &key2);
1254                         put_futex_key(fshared, &key1);
1255                         ret = fault_in_user_writeable(uaddr2);
1256                         if (!ret)
1257                                 goto retry;
1258                         goto out;
1259                 case -EAGAIN:
1260                         /* The owner was exiting, try again. */
1261                         double_unlock_hb(hb1, hb2);
1262                         put_futex_key(fshared, &key2);
1263                         put_futex_key(fshared, &key1);
1264                         cond_resched();
1265                         goto retry;
1266                 default:
1267                         goto out_unlock;
1268                 }
1269         }
1270
1271         head1 = &hb1->chain;
1272         plist_for_each_entry_safe(this, next, head1, list) {
1273                 if (task_count - nr_wake >= nr_requeue)
1274                         break;
1275
1276                 if (!match_futex(&this->key, &key1))
1277                         continue;
1278
1279                 /*
1280                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1281                  * be paired with each other and no other futex ops.
1282                  */
1283                 if ((requeue_pi && !this->rt_waiter) ||
1284                     (!requeue_pi && this->rt_waiter)) {
1285                         ret = -EINVAL;
1286                         break;
1287                 }
1288
1289                 /*
1290                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1291                  * lock, we already woke the top_waiter.  If not, it will be
1292                  * woken by futex_unlock_pi().
1293                  */
1294                 if (++task_count <= nr_wake && !requeue_pi) {
1295                         wake_futex(this);
1296                         continue;
1297                 }
1298
1299                 /* Ensure we requeue to the expected futex for requeue_pi. */
1300                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1301                         ret = -EINVAL;
1302                         break;
1303                 }
1304
1305                 /*
1306                  * Requeue nr_requeue waiters and possibly one more in the case
1307                  * of requeue_pi if we couldn't acquire the lock atomically.
1308                  */
1309                 if (requeue_pi) {
1310                         /* Prepare the waiter to take the rt_mutex. */
1311                         atomic_inc(&pi_state->refcount);
1312                         this->pi_state = pi_state;
1313                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1314                                                         this->rt_waiter,
1315                                                         this->task, 1);
1316                         if (ret == 1) {
1317                                 /* We got the lock. */
1318                                 requeue_pi_wake_futex(this, &key2, hb2);
1319                                 drop_count++;
1320                                 continue;
1321                         } else if (ret) {
1322                                 /* -EDEADLK */
1323                                 this->pi_state = NULL;
1324                                 free_pi_state(pi_state);
1325                                 goto out_unlock;
1326                         }
1327                 }
1328                 requeue_futex(this, hb1, hb2, &key2);
1329                 drop_count++;
1330         }
1331
1332 out_unlock:
1333         double_unlock_hb(hb1, hb2);
1334
1335         /*
1336          * drop_futex_key_refs() must be called outside the spinlocks. During
1337          * the requeue we moved futex_q's from the hash bucket at key1 to the
1338          * one at key2 and updated their key pointer.  We no longer need to
1339          * hold the references to key1.
1340          */
1341         while (--drop_count >= 0)
1342                 drop_futex_key_refs(&key1);
1343
1344 out_put_keys:
1345         put_futex_key(fshared, &key2);
1346 out_put_key1:
1347         put_futex_key(fshared, &key1);
1348 out:
1349         if (pi_state != NULL)
1350                 free_pi_state(pi_state);
1351         return ret ? ret : task_count;
1352 }
1353
1354 /* The key must be already stored in q->key. */
1355 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1356 {
1357         struct futex_hash_bucket *hb;
1358
1359         hb = hash_futex(&q->key);
1360         q->lock_ptr = &hb->lock;
1361
1362         spin_lock(&hb->lock);
1363         return hb;
1364 }
1365
1366 static inline void
1367 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1368 {
1369         spin_unlock(&hb->lock);
1370 }
1371
1372 /**
1373  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1374  * @q:  The futex_q to enqueue
1375  * @hb: The destination hash bucket
1376  *
1377  * The hb->lock must be held by the caller, and is released here. A call to
1378  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1379  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1380  * or nothing if the unqueue is done as part of the wake process and the unqueue
1381  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1382  * an example).
1383  */
1384 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1385 {
1386         int prio;
1387
1388         /*
1389          * The priority used to register this element is
1390          * - either the real thread-priority for the real-time threads
1391          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1392          * - or MAX_RT_PRIO for non-RT threads.
1393          * Thus, all RT-threads are woken first in priority order, and
1394          * the others are woken last, in FIFO order.
1395          */
1396         prio = min(current->normal_prio, MAX_RT_PRIO);
1397
1398         plist_node_init(&q->list, prio);
1399 #ifdef CONFIG_DEBUG_PI_LIST
1400         q->list.plist.spinlock = &hb->lock;
1401 #endif
1402         plist_add(&q->list, &hb->chain);
1403         q->task = current;
1404         spin_unlock(&hb->lock);
1405 }
1406
1407 /**
1408  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1409  * @q:  The futex_q to unqueue
1410  *
1411  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1412  * be paired with exactly one earlier call to queue_me().
1413  *
1414  * Returns:
1415  *   1 - if the futex_q was still queued (and we removed unqueued it)
1416  *   0 - if the futex_q was already removed by the waking thread
1417  */
1418 static int unqueue_me(struct futex_q *q)
1419 {
1420         spinlock_t *lock_ptr;
1421         int ret = 0;
1422
1423         /* In the common case we don't take the spinlock, which is nice. */
1424 retry:
1425         lock_ptr = q->lock_ptr;
1426         barrier();
1427         if (lock_ptr != NULL) {
1428                 spin_lock(lock_ptr);
1429                 /*
1430                  * q->lock_ptr can change between reading it and
1431                  * spin_lock(), causing us to take the wrong lock.  This
1432                  * corrects the race condition.
1433                  *
1434                  * Reasoning goes like this: if we have the wrong lock,
1435                  * q->lock_ptr must have changed (maybe several times)
1436                  * between reading it and the spin_lock().  It can
1437                  * change again after the spin_lock() but only if it was
1438                  * already changed before the spin_lock().  It cannot,
1439                  * however, change back to the original value.  Therefore
1440                  * we can detect whether we acquired the correct lock.
1441                  */
1442                 if (unlikely(lock_ptr != q->lock_ptr)) {
1443                         spin_unlock(lock_ptr);
1444                         goto retry;
1445                 }
1446                 WARN_ON(plist_node_empty(&q->list));
1447                 plist_del(&q->list, &q->list.plist);
1448
1449                 BUG_ON(q->pi_state);
1450
1451                 spin_unlock(lock_ptr);
1452                 ret = 1;
1453         }
1454
1455         drop_futex_key_refs(&q->key);
1456         return ret;
1457 }
1458
1459 /*
1460  * PI futexes can not be requeued and must remove themself from the
1461  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1462  * and dropped here.
1463  */
1464 static void unqueue_me_pi(struct futex_q *q)
1465 {
1466         WARN_ON(plist_node_empty(&q->list));
1467         plist_del(&q->list, &q->list.plist);
1468
1469         BUG_ON(!q->pi_state);
1470         free_pi_state(q->pi_state);
1471         q->pi_state = NULL;
1472
1473         spin_unlock(q->lock_ptr);
1474 }
1475
1476 /*
1477  * Fixup the pi_state owner with the new owner.
1478  *
1479  * Must be called with hash bucket lock held and mm->sem held for non
1480  * private futexes.
1481  */
1482 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1483                                 struct task_struct *newowner, int fshared)
1484 {
1485         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1486         struct futex_pi_state *pi_state = q->pi_state;
1487         struct task_struct *oldowner = pi_state->owner;
1488         u32 uval, curval, newval;
1489         int ret;
1490
1491         /* Owner died? */
1492         if (!pi_state->owner)
1493                 newtid |= FUTEX_OWNER_DIED;
1494
1495         /*
1496          * We are here either because we stole the rtmutex from the
1497          * pending owner or we are the pending owner which failed to
1498          * get the rtmutex. We have to replace the pending owner TID
1499          * in the user space variable. This must be atomic as we have
1500          * to preserve the owner died bit here.
1501          *
1502          * Note: We write the user space value _before_ changing the pi_state
1503          * because we can fault here. Imagine swapped out pages or a fork
1504          * that marked all the anonymous memory readonly for cow.
1505          *
1506          * Modifying pi_state _before_ the user space value would
1507          * leave the pi_state in an inconsistent state when we fault
1508          * here, because we need to drop the hash bucket lock to
1509          * handle the fault. This might be observed in the PID check
1510          * in lookup_pi_state.
1511          */
1512 retry:
1513         if (get_futex_value_locked(&uval, uaddr))
1514                 goto handle_fault;
1515
1516         while (1) {
1517                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1518
1519                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1520                         goto handle_fault;
1521                 if (curval == uval)
1522                         break;
1523                 uval = curval;
1524         }
1525
1526         /*
1527          * We fixed up user space. Now we need to fix the pi_state
1528          * itself.
1529          */
1530         if (pi_state->owner != NULL) {
1531                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1532                 WARN_ON(list_empty(&pi_state->list));
1533                 list_del_init(&pi_state->list);
1534                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1535         }
1536
1537         pi_state->owner = newowner;
1538
1539         raw_spin_lock_irq(&newowner->pi_lock);
1540         WARN_ON(!list_empty(&pi_state->list));
1541         list_add(&pi_state->list, &newowner->pi_state_list);
1542         raw_spin_unlock_irq(&newowner->pi_lock);
1543         return 0;
1544
1545         /*
1546          * To handle the page fault we need to drop the hash bucket
1547          * lock here. That gives the other task (either the pending
1548          * owner itself or the task which stole the rtmutex) the
1549          * chance to try the fixup of the pi_state. So once we are
1550          * back from handling the fault we need to check the pi_state
1551          * after reacquiring the hash bucket lock and before trying to
1552          * do another fixup. When the fixup has been done already we
1553          * simply return.
1554          */
1555 handle_fault:
1556         spin_unlock(q->lock_ptr);
1557
1558         ret = fault_in_user_writeable(uaddr);
1559
1560         spin_lock(q->lock_ptr);
1561
1562         /*
1563          * Check if someone else fixed it for us:
1564          */
1565         if (pi_state->owner != oldowner)
1566                 return 0;
1567
1568         if (ret)
1569                 return ret;
1570
1571         goto retry;
1572 }
1573
1574 /*
1575  * In case we must use restart_block to restart a futex_wait,
1576  * we encode in the 'flags' shared capability
1577  */
1578 #define FLAGS_SHARED            0x01
1579 #define FLAGS_CLOCKRT           0x02
1580 #define FLAGS_HAS_TIMEOUT       0x04
1581
1582 static long futex_wait_restart(struct restart_block *restart);
1583
1584 /**
1585  * fixup_owner() - Post lock pi_state and corner case management
1586  * @uaddr:      user address of the futex
1587  * @fshared:    whether the futex is shared (1) or not (0)
1588  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1589  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1590  *
1591  * After attempting to lock an rt_mutex, this function is called to cleanup
1592  * the pi_state owner as well as handle race conditions that may allow us to
1593  * acquire the lock. Must be called with the hb lock held.
1594  *
1595  * Returns:
1596  *  1 - success, lock taken
1597  *  0 - success, lock not taken
1598  * <0 - on error (-EFAULT)
1599  */
1600 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1601                        int locked)
1602 {
1603         struct task_struct *owner;
1604         int ret = 0;
1605
1606         if (locked) {
1607                 /*
1608                  * Got the lock. We might not be the anticipated owner if we
1609                  * did a lock-steal - fix up the PI-state in that case:
1610                  */
1611                 if (q->pi_state->owner != current)
1612                         ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1613                 goto out;
1614         }
1615
1616         /*
1617          * Catch the rare case, where the lock was released when we were on the
1618          * way back before we locked the hash bucket.
1619          */
1620         if (q->pi_state->owner == current) {
1621                 /*
1622                  * Try to get the rt_mutex now. This might fail as some other
1623                  * task acquired the rt_mutex after we removed ourself from the
1624                  * rt_mutex waiters list.
1625                  */
1626                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1627                         locked = 1;
1628                         goto out;
1629                 }
1630
1631                 /*
1632                  * pi_state is incorrect, some other task did a lock steal and
1633                  * we returned due to timeout or signal without taking the
1634                  * rt_mutex. Too late. We can access the rt_mutex_owner without
1635                  * locking, as the other task is now blocked on the hash bucket
1636                  * lock. Fix the state up.
1637                  */
1638                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1639                 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1640                 goto out;
1641         }
1642
1643         /*
1644          * Paranoia check. If we did not take the lock, then we should not be
1645          * the owner, nor the pending owner, of the rt_mutex.
1646          */
1647         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1648                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1649                                 "pi-state %p\n", ret,
1650                                 q->pi_state->pi_mutex.owner,
1651                                 q->pi_state->owner);
1652
1653 out:
1654         return ret ? ret : locked;
1655 }
1656
1657 /**
1658  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1659  * @hb:         the futex hash bucket, must be locked by the caller
1660  * @q:          the futex_q to queue up on
1661  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1662  */
1663 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1664                                 struct hrtimer_sleeper *timeout)
1665 {
1666         /*
1667          * The task state is guaranteed to be set before another task can
1668          * wake it. set_current_state() is implemented using set_mb() and
1669          * queue_me() calls spin_unlock() upon completion, both serializing
1670          * access to the hash list and forcing another memory barrier.
1671          */
1672         set_current_state(TASK_INTERRUPTIBLE);
1673         queue_me(q, hb);
1674
1675         /* Arm the timer */
1676         if (timeout) {
1677                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1678                 if (!hrtimer_active(&timeout->timer))
1679                         timeout->task = NULL;
1680         }
1681
1682         /*
1683          * If we have been removed from the hash list, then another task
1684          * has tried to wake us, and we can skip the call to schedule().
1685          */
1686         if (likely(!plist_node_empty(&q->list))) {
1687                 /*
1688                  * If the timer has already expired, current will already be
1689                  * flagged for rescheduling. Only call schedule if there
1690                  * is no timeout, or if it has yet to expire.
1691                  */
1692                 if (!timeout || timeout->task)
1693                         schedule();
1694         }
1695         __set_current_state(TASK_RUNNING);
1696 }
1697
1698 /**
1699  * futex_wait_setup() - Prepare to wait on a futex
1700  * @uaddr:      the futex userspace address
1701  * @val:        the expected value
1702  * @fshared:    whether the futex is shared (1) or not (0)
1703  * @q:          the associated futex_q
1704  * @hb:         storage for hash_bucket pointer to be returned to caller
1705  *
1706  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1707  * compare it with the expected value.  Handle atomic faults internally.
1708  * Return with the hb lock held and a q.key reference on success, and unlocked
1709  * with no q.key reference on failure.
1710  *
1711  * Returns:
1712  *  0 - uaddr contains val and hb has been locked
1713  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1714  */
1715 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1716                            struct futex_q *q, struct futex_hash_bucket **hb)
1717 {
1718         u32 uval;
1719         int ret;
1720
1721         /*
1722          * Access the page AFTER the hash-bucket is locked.
1723          * Order is important:
1724          *
1725          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1726          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1727          *
1728          * The basic logical guarantee of a futex is that it blocks ONLY
1729          * if cond(var) is known to be true at the time of blocking, for
1730          * any cond.  If we queued after testing *uaddr, that would open
1731          * a race condition where we could block indefinitely with
1732          * cond(var) false, which would violate the guarantee.
1733          *
1734          * A consequence is that futex_wait() can return zero and absorb
1735          * a wakeup when *uaddr != val on entry to the syscall.  This is
1736          * rare, but normal.
1737          */
1738 retry:
1739         q->key = FUTEX_KEY_INIT;
1740         ret = get_futex_key(uaddr, fshared, &q->key);
1741         if (unlikely(ret != 0))
1742                 return ret;
1743
1744 retry_private:
1745         *hb = queue_lock(q);
1746
1747         ret = get_futex_value_locked(&uval, uaddr);
1748
1749         if (ret) {
1750                 queue_unlock(q, *hb);
1751
1752                 ret = get_user(uval, uaddr);
1753                 if (ret)
1754                         goto out;
1755
1756                 if (!fshared)
1757                         goto retry_private;
1758
1759                 put_futex_key(fshared, &q->key);
1760                 goto retry;
1761         }
1762
1763         if (uval != val) {
1764                 queue_unlock(q, *hb);
1765                 ret = -EWOULDBLOCK;
1766         }
1767
1768 out:
1769         if (ret)
1770                 put_futex_key(fshared, &q->key);
1771         return ret;
1772 }
1773
1774 static int futex_wait(u32 __user *uaddr, int fshared,
1775                       u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1776 {
1777         struct hrtimer_sleeper timeout, *to = NULL;
1778         struct restart_block *restart;
1779         struct futex_hash_bucket *hb;
1780         struct futex_q q;
1781         int ret;
1782
1783         if (!bitset)
1784                 return -EINVAL;
1785
1786         q.pi_state = NULL;
1787         q.bitset = bitset;
1788         q.rt_waiter = NULL;
1789         q.requeue_pi_key = NULL;
1790
1791         if (abs_time) {
1792                 to = &timeout;
1793
1794                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1795                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1796                 hrtimer_init_sleeper(to, current);
1797                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1798                                              current->timer_slack_ns);
1799         }
1800
1801 retry:
1802         /*
1803          * Prepare to wait on uaddr. On success, holds hb lock and increments
1804          * q.key refs.
1805          */
1806         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1807         if (ret)
1808                 goto out;
1809
1810         /* queue_me and wait for wakeup, timeout, or a signal. */
1811         futex_wait_queue_me(hb, &q, to);
1812
1813         /* If we were woken (and unqueued), we succeeded, whatever. */
1814         ret = 0;
1815         /* unqueue_me() drops q.key ref */
1816         if (!unqueue_me(&q))
1817                 goto out;
1818         ret = -ETIMEDOUT;
1819         if (to && !to->task)
1820                 goto out;
1821
1822         /*
1823          * We expect signal_pending(current), but we might be the
1824          * victim of a spurious wakeup as well.
1825          */
1826         if (!signal_pending(current))
1827                 goto retry;
1828
1829         ret = -ERESTARTSYS;
1830         if (!abs_time)
1831                 goto out;
1832
1833         restart = &current_thread_info()->restart_block;
1834         restart->fn = futex_wait_restart;
1835         restart->futex.uaddr = (u32 *)uaddr;
1836         restart->futex.val = val;
1837         restart->futex.time = abs_time->tv64;
1838         restart->futex.bitset = bitset;
1839         restart->futex.flags = FLAGS_HAS_TIMEOUT;
1840
1841         if (fshared)
1842                 restart->futex.flags |= FLAGS_SHARED;
1843         if (clockrt)
1844                 restart->futex.flags |= FLAGS_CLOCKRT;
1845
1846         ret = -ERESTART_RESTARTBLOCK;
1847
1848 out:
1849         if (to) {
1850                 hrtimer_cancel(&to->timer);
1851                 destroy_hrtimer_on_stack(&to->timer);
1852         }
1853         return ret;
1854 }
1855
1856
1857 static long futex_wait_restart(struct restart_block *restart)
1858 {
1859         u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1860         int fshared = 0;
1861         ktime_t t, *tp = NULL;
1862
1863         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1864                 t.tv64 = restart->futex.time;
1865                 tp = &t;
1866         }
1867         restart->fn = do_no_restart_syscall;
1868         if (restart->futex.flags & FLAGS_SHARED)
1869                 fshared = 1;
1870         return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1871                                 restart->futex.bitset,
1872                                 restart->futex.flags & FLAGS_CLOCKRT);
1873 }
1874
1875
1876 /*
1877  * Userspace tried a 0 -> TID atomic transition of the futex value
1878  * and failed. The kernel side here does the whole locking operation:
1879  * if there are waiters then it will block, it does PI, etc. (Due to
1880  * races the kernel might see a 0 value of the futex too.)
1881  */
1882 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1883                          int detect, ktime_t *time, int trylock)
1884 {
1885         struct hrtimer_sleeper timeout, *to = NULL;
1886         struct futex_hash_bucket *hb;
1887         struct futex_q q;
1888         int res, ret;
1889
1890         if (refill_pi_state_cache())
1891                 return -ENOMEM;
1892
1893         if (time) {
1894                 to = &timeout;
1895                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1896                                       HRTIMER_MODE_ABS);
1897                 hrtimer_init_sleeper(to, current);
1898                 hrtimer_set_expires(&to->timer, *time);
1899         }
1900
1901         q.pi_state = NULL;
1902         q.rt_waiter = NULL;
1903         q.requeue_pi_key = NULL;
1904 retry:
1905         q.key = FUTEX_KEY_INIT;
1906         ret = get_futex_key(uaddr, fshared, &q.key);
1907         if (unlikely(ret != 0))
1908                 goto out;
1909
1910 retry_private:
1911         hb = queue_lock(&q);
1912
1913         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
1914         if (unlikely(ret)) {
1915                 switch (ret) {
1916                 case 1:
1917                         /* We got the lock. */
1918                         ret = 0;
1919                         goto out_unlock_put_key;
1920                 case -EFAULT:
1921                         goto uaddr_faulted;
1922                 case -EAGAIN:
1923                         /*
1924                          * Task is exiting and we just wait for the
1925                          * exit to complete.
1926                          */
1927                         queue_unlock(&q, hb);
1928                         put_futex_key(fshared, &q.key);
1929                         cond_resched();
1930                         goto retry;
1931                 default:
1932                         goto out_unlock_put_key;
1933                 }
1934         }
1935
1936         /*
1937          * Only actually queue now that the atomic ops are done:
1938          */
1939         queue_me(&q, hb);
1940
1941         WARN_ON(!q.pi_state);
1942         /*
1943          * Block on the PI mutex:
1944          */
1945         if (!trylock)
1946                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1947         else {
1948                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1949                 /* Fixup the trylock return value: */
1950                 ret = ret ? 0 : -EWOULDBLOCK;
1951         }
1952
1953         spin_lock(q.lock_ptr);
1954         /*
1955          * Fixup the pi_state owner and possibly acquire the lock if we
1956          * haven't already.
1957          */
1958         res = fixup_owner(uaddr, fshared, &q, !ret);
1959         /*
1960          * If fixup_owner() returned an error, proprogate that.  If it acquired
1961          * the lock, clear our -ETIMEDOUT or -EINTR.
1962          */
1963         if (res)
1964                 ret = (res < 0) ? res : 0;
1965
1966         /*
1967          * If fixup_owner() faulted and was unable to handle the fault, unlock
1968          * it and return the fault to userspace.
1969          */
1970         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1971                 rt_mutex_unlock(&q.pi_state->pi_mutex);
1972
1973         /* Unqueue and drop the lock */
1974         unqueue_me_pi(&q);
1975
1976         goto out_put_key;
1977
1978 out_unlock_put_key:
1979         queue_unlock(&q, hb);
1980
1981 out_put_key:
1982         put_futex_key(fshared, &q.key);
1983 out:
1984         if (to)
1985                 destroy_hrtimer_on_stack(&to->timer);
1986         return ret != -EINTR ? ret : -ERESTARTNOINTR;
1987
1988 uaddr_faulted:
1989         queue_unlock(&q, hb);
1990
1991         ret = fault_in_user_writeable(uaddr);
1992         if (ret)
1993                 goto out_put_key;
1994
1995         if (!fshared)
1996                 goto retry_private;
1997
1998         put_futex_key(fshared, &q.key);
1999         goto retry;
2000 }
2001
2002 /*
2003  * Userspace attempted a TID -> 0 atomic transition, and failed.
2004  * This is the in-kernel slowpath: we look up the PI state (if any),
2005  * and do the rt-mutex unlock.
2006  */
2007 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
2008 {
2009         struct futex_hash_bucket *hb;
2010         struct futex_q *this, *next;
2011         u32 uval, vpid = task_pid_vnr(current);
2012         struct plist_head *head;
2013         union futex_key key = FUTEX_KEY_INIT;
2014         int ret;
2015
2016 retry:
2017         if (get_user(uval, uaddr))
2018                 return -EFAULT;
2019         /*
2020          * We release only a lock we actually own:
2021          */
2022         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
2023                 return -EPERM;
2024
2025         ret = get_futex_key(uaddr, fshared, &key);
2026         if (unlikely(ret != 0))
2027                 goto out;
2028
2029         hb = hash_futex(&key);
2030         spin_lock(&hb->lock);
2031
2032         /*
2033          * To avoid races, try to do the TID -> 0 atomic transition
2034          * again. If it succeeds then we can return without waking
2035          * anyone else up:
2036          */
2037         if (!(uval & FUTEX_OWNER_DIED) &&
2038             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2039                 goto pi_faulted;
2040         /*
2041          * Rare case: we managed to release the lock atomically,
2042          * no need to wake anyone else up:
2043          */
2044         if (unlikely(uval == task_pid_vnr(current)))
2045                 goto out_unlock;
2046
2047         /*
2048          * Ok, other tasks may need to be woken up - check waiters
2049          * and do the wakeup if necessary:
2050          */
2051         head = &hb->chain;
2052
2053         plist_for_each_entry_safe(this, next, head, list) {
2054                 if (!match_futex (&this->key, &key))
2055                         continue;
2056                 ret = wake_futex_pi(uaddr, uval, this);
2057                 /*
2058                  * The atomic access to the futex value
2059                  * generated a pagefault, so retry the
2060                  * user-access and the wakeup:
2061                  */
2062                 if (ret == -EFAULT)
2063                         goto pi_faulted;
2064                 goto out_unlock;
2065         }
2066         /*
2067          * No waiters - kernel unlocks the futex:
2068          */
2069         if (!(uval & FUTEX_OWNER_DIED)) {
2070                 ret = unlock_futex_pi(uaddr, uval);
2071                 if (ret == -EFAULT)
2072                         goto pi_faulted;
2073         }
2074
2075 out_unlock:
2076         spin_unlock(&hb->lock);
2077         put_futex_key(fshared, &key);
2078
2079 out:
2080         return ret;
2081
2082 pi_faulted:
2083         spin_unlock(&hb->lock);
2084         put_futex_key(fshared, &key);
2085
2086         ret = fault_in_user_writeable(uaddr);
2087         if (!ret)
2088                 goto retry;
2089
2090         return ret;
2091 }
2092
2093 /**
2094  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2095  * @hb:         the hash_bucket futex_q was original enqueued on
2096  * @q:          the futex_q woken while waiting to be requeued
2097  * @key2:       the futex_key of the requeue target futex
2098  * @timeout:    the timeout associated with the wait (NULL if none)
2099  *
2100  * Detect if the task was woken on the initial futex as opposed to the requeue
2101  * target futex.  If so, determine if it was a timeout or a signal that caused
2102  * the wakeup and return the appropriate error code to the caller.  Must be
2103  * called with the hb lock held.
2104  *
2105  * Returns
2106  *  0 - no early wakeup detected
2107  * <0 - -ETIMEDOUT or -ERESTARTNOINTR
2108  */
2109 static inline
2110 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2111                                    struct futex_q *q, union futex_key *key2,
2112                                    struct hrtimer_sleeper *timeout)
2113 {
2114         int ret = 0;
2115
2116         /*
2117          * With the hb lock held, we avoid races while we process the wakeup.
2118          * We only need to hold hb (and not hb2) to ensure atomicity as the
2119          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2120          * It can't be requeued from uaddr2 to something else since we don't
2121          * support a PI aware source futex for requeue.
2122          */
2123         if (!match_futex(&q->key, key2)) {
2124                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2125                 /*
2126                  * We were woken prior to requeue by a timeout or a signal.
2127                  * Unqueue the futex_q and determine which it was.
2128                  */
2129                 plist_del(&q->list, &q->list.plist);
2130
2131                 /* Handle spurious wakeups gracefully */
2132                 ret = -EWOULDBLOCK;
2133                 if (timeout && !timeout->task)
2134                         ret = -ETIMEDOUT;
2135                 else if (signal_pending(current))
2136                         ret = -ERESTARTNOINTR;
2137         }
2138         return ret;
2139 }
2140
2141 /**
2142  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2143  * @uaddr:      the futex we initially wait on (non-pi)
2144  * @fshared:    whether the futexes are shared (1) or not (0).  They must be
2145  *              the same type, no requeueing from private to shared, etc.
2146  * @val:        the expected value of uaddr
2147  * @abs_time:   absolute timeout
2148  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2149  * @clockrt:    whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2150  * @uaddr2:     the pi futex we will take prior to returning to user-space
2151  *
2152  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2153  * uaddr2 which must be PI aware.  Normal wakeup will wake on uaddr2 and
2154  * complete the acquisition of the rt_mutex prior to returning to userspace.
2155  * This ensures the rt_mutex maintains an owner when it has waiters; without
2156  * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2157  * need to.
2158  *
2159  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2160  * via the following:
2161  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2162  * 2) wakeup on uaddr2 after a requeue
2163  * 3) signal
2164  * 4) timeout
2165  *
2166  * If 3, cleanup and return -ERESTARTNOINTR.
2167  *
2168  * If 2, we may then block on trying to take the rt_mutex and return via:
2169  * 5) successful lock
2170  * 6) signal
2171  * 7) timeout
2172  * 8) other lock acquisition failure
2173  *
2174  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2175  *
2176  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2177  *
2178  * Returns:
2179  *  0 - On success
2180  * <0 - On error
2181  */
2182 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2183                                  u32 val, ktime_t *abs_time, u32 bitset,
2184                                  int clockrt, u32 __user *uaddr2)
2185 {
2186         struct hrtimer_sleeper timeout, *to = NULL;
2187         struct rt_mutex_waiter rt_waiter;
2188         struct rt_mutex *pi_mutex = NULL;
2189         struct futex_hash_bucket *hb;
2190         union futex_key key2;
2191         struct futex_q q;
2192         int res, ret;
2193
2194         if (!bitset)
2195                 return -EINVAL;
2196
2197         if (abs_time) {
2198                 to = &timeout;
2199                 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2200                                       CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2201                 hrtimer_init_sleeper(to, current);
2202                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2203                                              current->timer_slack_ns);
2204         }
2205
2206         /*
2207          * The waiter is allocated on our stack, manipulated by the requeue
2208          * code while we sleep on uaddr.
2209          */
2210         debug_rt_mutex_init_waiter(&rt_waiter);
2211         rt_waiter.task = NULL;
2212
2213         key2 = FUTEX_KEY_INIT;
2214         ret = get_futex_key(uaddr2, fshared, &key2);
2215         if (unlikely(ret != 0))
2216                 goto out;
2217
2218         q.pi_state = NULL;
2219         q.bitset = bitset;
2220         q.rt_waiter = &rt_waiter;
2221         q.requeue_pi_key = &key2;
2222
2223         /*
2224          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2225          * count.
2226          */
2227         ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2228         if (ret)
2229                 goto out_key2;
2230
2231         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2232         futex_wait_queue_me(hb, &q, to);
2233
2234         spin_lock(&hb->lock);
2235         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2236         spin_unlock(&hb->lock);
2237         if (ret)
2238                 goto out_put_keys;
2239
2240         /*
2241          * In order for us to be here, we know our q.key == key2, and since
2242          * we took the hb->lock above, we also know that futex_requeue() has
2243          * completed and we no longer have to concern ourselves with a wakeup
2244          * race with the atomic proxy lock acquisition by the requeue code. The
2245          * futex_requeue dropped our key1 reference and incremented our key2
2246          * reference count.
2247          */
2248
2249         /* Check if the requeue code acquired the second futex for us. */
2250         if (!q.rt_waiter) {
2251                 /*
2252                  * Got the lock. We might not be the anticipated owner if we
2253                  * did a lock-steal - fix up the PI-state in that case.
2254                  */
2255                 if (q.pi_state && (q.pi_state->owner != current)) {
2256                         spin_lock(q.lock_ptr);
2257                         ret = fixup_pi_state_owner(uaddr2, &q, current,
2258                                                    fshared);
2259                         spin_unlock(q.lock_ptr);
2260                 }
2261         } else {
2262                 /*
2263                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2264                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2265                  * the pi_state.
2266                  */
2267                 WARN_ON(!&q.pi_state);
2268                 pi_mutex = &q.pi_state->pi_mutex;
2269                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2270                 debug_rt_mutex_free_waiter(&rt_waiter);
2271
2272                 spin_lock(q.lock_ptr);
2273                 /*
2274                  * Fixup the pi_state owner and possibly acquire the lock if we
2275                  * haven't already.
2276                  */
2277                 res = fixup_owner(uaddr2, fshared, &q, !ret);
2278                 /*
2279                  * If fixup_owner() returned an error, proprogate that.  If it
2280                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2281                  */
2282                 if (res)
2283                         ret = (res < 0) ? res : 0;
2284
2285                 /* Unqueue and drop the lock. */
2286                 unqueue_me_pi(&q);
2287         }
2288
2289         /*
2290          * If fixup_pi_state_owner() faulted and was unable to handle the
2291          * fault, unlock the rt_mutex and return the fault to userspace.
2292          */
2293         if (ret == -EFAULT) {
2294                 if (rt_mutex_owner(pi_mutex) == current)
2295                         rt_mutex_unlock(pi_mutex);
2296         } else if (ret == -EINTR) {
2297                 /*
2298                  * We've already been requeued, but cannot restart by calling
2299                  * futex_lock_pi() directly. We could restart this syscall, but
2300                  * it would detect that the user space "val" changed and return
2301                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2302                  * -EWOULDBLOCK directly.
2303                  */
2304                 ret = -EWOULDBLOCK;
2305         }
2306
2307 out_put_keys:
2308         put_futex_key(fshared, &q.key);
2309 out_key2:
2310         put_futex_key(fshared, &key2);
2311
2312 out:
2313         if (to) {
2314                 hrtimer_cancel(&to->timer);
2315                 destroy_hrtimer_on_stack(&to->timer);
2316         }
2317         return ret;
2318 }
2319
2320 /*
2321  * Support for robust futexes: the kernel cleans up held futexes at
2322  * thread exit time.
2323  *
2324  * Implementation: user-space maintains a per-thread list of locks it
2325  * is holding. Upon do_exit(), the kernel carefully walks this list,
2326  * and marks all locks that are owned by this thread with the
2327  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2328  * always manipulated with the lock held, so the list is private and
2329  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2330  * field, to allow the kernel to clean up if the thread dies after
2331  * acquiring the lock, but just before it could have added itself to
2332  * the list. There can only be one such pending lock.
2333  */
2334
2335 /**
2336  * sys_set_robust_list() - Set the robust-futex list head of a task
2337  * @head:       pointer to the list-head
2338  * @len:        length of the list-head, as userspace expects
2339  */
2340 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2341                 size_t, len)
2342 {
2343         if (!futex_cmpxchg_enabled)
2344                 return -ENOSYS;
2345         /*
2346          * The kernel knows only one size for now:
2347          */
2348         if (unlikely(len != sizeof(*head)))
2349                 return -EINVAL;
2350
2351         current->robust_list = head;
2352
2353         return 0;
2354 }
2355
2356 /**
2357  * sys_get_robust_list() - Get the robust-futex list head of a task
2358  * @pid:        pid of the process [zero for current task]
2359  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2360  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2361  */
2362 SYSCALL_DEFINE3(get_robust_list, int, pid,
2363                 struct robust_list_head __user * __user *, head_ptr,
2364                 size_t __user *, len_ptr)
2365 {
2366         struct robust_list_head __user *head;
2367         unsigned long ret;
2368         const struct cred *cred = current_cred(), *pcred;
2369
2370         if (!futex_cmpxchg_enabled)
2371                 return -ENOSYS;
2372
2373         if (!pid)
2374                 head = current->robust_list;
2375         else {
2376                 struct task_struct *p;
2377
2378                 ret = -ESRCH;
2379                 rcu_read_lock();
2380                 p = find_task_by_vpid(pid);
2381                 if (!p)
2382                         goto err_unlock;
2383                 ret = -EPERM;
2384                 pcred = __task_cred(p);
2385                 if (cred->euid != pcred->euid &&
2386                     cred->euid != pcred->uid &&
2387                     !capable(CAP_SYS_PTRACE))
2388                         goto err_unlock;
2389                 head = p->robust_list;
2390                 rcu_read_unlock();
2391         }
2392
2393         if (put_user(sizeof(*head), len_ptr))
2394                 return -EFAULT;
2395         return put_user(head, head_ptr);
2396
2397 err_unlock:
2398         rcu_read_unlock();
2399
2400         return ret;
2401 }
2402
2403 /*
2404  * Process a futex-list entry, check whether it's owned by the
2405  * dying task, and do notification if so:
2406  */
2407 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2408 {
2409         u32 uval, nval, mval;
2410
2411 retry:
2412         if (get_user(uval, uaddr))
2413                 return -1;
2414
2415         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2416                 /*
2417                  * Ok, this dying thread is truly holding a futex
2418                  * of interest. Set the OWNER_DIED bit atomically
2419                  * via cmpxchg, and if the value had FUTEX_WAITERS
2420                  * set, wake up a waiter (if any). (We have to do a
2421                  * futex_wake() even if OWNER_DIED is already set -
2422                  * to handle the rare but possible case of recursive
2423                  * thread-death.) The rest of the cleanup is done in
2424                  * userspace.
2425                  */
2426                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2427                 if (futex_atomic_cmpxchg_inatomic(&nval, uaddr, uval, mval))
2428                         return -1;
2429
2430                 if (nval != uval)
2431                         goto retry;
2432
2433                 /*
2434                  * Wake robust non-PI futexes here. The wakeup of
2435                  * PI futexes happens in exit_pi_state():
2436                  */
2437                 if (!pi && (uval & FUTEX_WAITERS))
2438                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2439         }
2440         return 0;
2441 }
2442
2443 /*
2444  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2445  */
2446 static inline int fetch_robust_entry(struct robust_list __user **entry,
2447                                      struct robust_list __user * __user *head,
2448                                      int *pi)
2449 {
2450         unsigned long uentry;
2451
2452         if (get_user(uentry, (unsigned long __user *)head))
2453                 return -EFAULT;
2454
2455         *entry = (void __user *)(uentry & ~1UL);
2456         *pi = uentry & 1;
2457
2458         return 0;
2459 }
2460
2461 /*
2462  * Walk curr->robust_list (very carefully, it's a userspace list!)
2463  * and mark any locks found there dead, and notify any waiters.
2464  *
2465  * We silently return on any sign of list-walking problem.
2466  */
2467 void exit_robust_list(struct task_struct *curr)
2468 {
2469         struct robust_list_head __user *head = curr->robust_list;
2470         struct robust_list __user *entry, *next_entry, *pending;
2471         unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2472         unsigned long futex_offset;
2473         int rc;
2474
2475         if (!futex_cmpxchg_enabled)
2476                 return;
2477
2478         /*
2479          * Fetch the list head (which was registered earlier, via
2480          * sys_set_robust_list()):
2481          */
2482         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2483                 return;
2484         /*
2485          * Fetch the relative futex offset:
2486          */
2487         if (get_user(futex_offset, &head->futex_offset))
2488                 return;
2489         /*
2490          * Fetch any possibly pending lock-add first, and handle it
2491          * if it exists:
2492          */
2493         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2494                 return;
2495
2496         next_entry = NULL;      /* avoid warning with gcc */
2497         while (entry != &head->list) {
2498                 /*
2499                  * Fetch the next entry in the list before calling
2500                  * handle_futex_death:
2501                  */
2502                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2503                 /*
2504                  * A pending lock might already be on the list, so
2505                  * don't process it twice:
2506                  */
2507                 if (entry != pending)
2508                         if (handle_futex_death((void __user *)entry + futex_offset,
2509                                                 curr, pi))
2510                                 return;
2511                 if (rc)
2512                         return;
2513                 entry = next_entry;
2514                 pi = next_pi;
2515                 /*
2516                  * Avoid excessively long or circular lists:
2517                  */
2518                 if (!--limit)
2519                         break;
2520
2521                 cond_resched();
2522         }
2523
2524         if (pending)
2525                 handle_futex_death((void __user *)pending + futex_offset,
2526                                    curr, pip);
2527 }
2528
2529 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2530                 u32 __user *uaddr2, u32 val2, u32 val3)
2531 {
2532         int clockrt, ret = -ENOSYS;
2533         int cmd = op & FUTEX_CMD_MASK;
2534         int fshared = 0;
2535
2536         if (!(op & FUTEX_PRIVATE_FLAG))
2537                 fshared = 1;
2538
2539         clockrt = op & FUTEX_CLOCK_REALTIME;
2540         if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2541                 return -ENOSYS;
2542
2543         switch (cmd) {
2544         case FUTEX_WAIT:
2545                 val3 = FUTEX_BITSET_MATCH_ANY;
2546         case FUTEX_WAIT_BITSET:
2547                 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2548                 break;
2549         case FUTEX_WAKE:
2550                 val3 = FUTEX_BITSET_MATCH_ANY;
2551         case FUTEX_WAKE_BITSET:
2552                 ret = futex_wake(uaddr, fshared, val, val3);
2553                 break;
2554         case FUTEX_REQUEUE:
2555                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2556                 break;
2557         case FUTEX_CMP_REQUEUE:
2558                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2559                                     0);
2560                 break;
2561         case FUTEX_WAKE_OP:
2562                 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2563                 break;
2564         case FUTEX_LOCK_PI:
2565                 if (futex_cmpxchg_enabled)
2566                         ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2567                 break;
2568         case FUTEX_UNLOCK_PI:
2569                 if (futex_cmpxchg_enabled)
2570                         ret = futex_unlock_pi(uaddr, fshared);
2571                 break;
2572         case FUTEX_TRYLOCK_PI:
2573                 if (futex_cmpxchg_enabled)
2574                         ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2575                 break;
2576         case FUTEX_WAIT_REQUEUE_PI:
2577                 val3 = FUTEX_BITSET_MATCH_ANY;
2578                 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2579                                             clockrt, uaddr2);
2580                 break;
2581         case FUTEX_CMP_REQUEUE_PI:
2582                 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2583                                     1);
2584                 break;
2585         default:
2586                 ret = -ENOSYS;
2587         }
2588         return ret;
2589 }
2590
2591
2592 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2593                 struct timespec __user *, utime, u32 __user *, uaddr2,
2594                 u32, val3)
2595 {
2596         struct timespec ts;
2597         ktime_t t, *tp = NULL;
2598         u32 val2 = 0;
2599         int cmd = op & FUTEX_CMD_MASK;
2600
2601         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2602                       cmd == FUTEX_WAIT_BITSET ||
2603                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2604                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2605                         return -EFAULT;
2606                 if (!timespec_valid(&ts))
2607                         return -EINVAL;
2608
2609                 t = timespec_to_ktime(ts);
2610                 if (cmd == FUTEX_WAIT)
2611                         t = ktime_add_safe(ktime_get(), t);
2612                 tp = &t;
2613         }
2614         /*
2615          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2616          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2617          */
2618         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2619             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2620                 val2 = (u32) (unsigned long) utime;
2621
2622         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2623 }
2624
2625 static int __init futex_init(void)
2626 {
2627         u32 curval;
2628         int i;
2629
2630         /*
2631          * This will fail and we want it. Some arch implementations do
2632          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2633          * functionality. We want to know that before we call in any
2634          * of the complex code paths. Also we want to prevent
2635          * registration of robust lists in that case. NULL is
2636          * guaranteed to fault and we get -EFAULT on functional
2637          * implementation, the non functional ones will return
2638          * -ENOSYS.
2639          */
2640         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2641                 futex_cmpxchg_enabled = 1;
2642
2643         for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2644                 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2645                 spin_lock_init(&futex_queues[i].lock);
2646         }
2647
2648         return 0;
2649 }
2650 __initcall(futex_init);