upload tizen1.0 source
[kernel/linux-2.6.36.git] / fs / nilfs2 / page.c
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  *
20  * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21  *            Seiji Kihara <kihara@osrg.net>.
22  */
23
24 #include <linux/pagemap.h>
25 #include <linux/writeback.h>
26 #include <linux/swap.h>
27 #include <linux/bitops.h>
28 #include <linux/page-flags.h>
29 #include <linux/list.h>
30 #include <linux/highmem.h>
31 #include <linux/pagevec.h>
32 #include <linux/gfp.h>
33 #include "nilfs.h"
34 #include "page.h"
35 #include "mdt.h"
36
37
38 #define NILFS_BUFFER_INHERENT_BITS  \
39         ((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40          (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Allocated) | \
41          (1UL << BH_NILFS_Checked))
42
43 static struct buffer_head *
44 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
45                        int blkbits, unsigned long b_state)
46
47 {
48         unsigned long first_block;
49         struct buffer_head *bh;
50
51         if (!page_has_buffers(page))
52                 create_empty_buffers(page, 1 << blkbits, b_state);
53
54         first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
55         bh = nilfs_page_get_nth_block(page, block - first_block);
56
57         touch_buffer(bh);
58         wait_on_buffer(bh);
59         return bh;
60 }
61
62 /*
63  * Since the page cache of B-tree node pages or data page cache of pseudo
64  * inodes does not have a valid mapping->host pointer, calling
65  * mark_buffer_dirty() for their buffers causes a NULL pointer dereference;
66  * it calls __mark_inode_dirty(NULL) through __set_page_dirty().
67  * To avoid this problem, the old style mark_buffer_dirty() is used instead.
68  */
69 void nilfs_mark_buffer_dirty(struct buffer_head *bh)
70 {
71         if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
72                 __set_page_dirty_nobuffers(bh->b_page);
73 }
74
75 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
76                                       struct address_space *mapping,
77                                       unsigned long blkoff,
78                                       unsigned long b_state)
79 {
80         int blkbits = inode->i_blkbits;
81         pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
82         struct page *page, *opage;
83         struct buffer_head *bh, *obh;
84
85         page = grab_cache_page(mapping, index);
86         if (unlikely(!page))
87                 return NULL;
88
89         bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
90         if (unlikely(!bh)) {
91                 unlock_page(page);
92                 page_cache_release(page);
93                 return NULL;
94         }
95         if (!buffer_uptodate(bh) && mapping->assoc_mapping != NULL) {
96                 /*
97                  * Shadow page cache uses assoc_mapping to point its original
98                  * page cache.  The following code tries the original cache
99                  * if the given cache is a shadow and it didn't hit.
100                  */
101                 opage = find_lock_page(mapping->assoc_mapping, index);
102                 if (!opage)
103                         return bh;
104
105                 obh = __nilfs_get_page_block(opage, blkoff, index, blkbits,
106                                              b_state);
107                 if (buffer_uptodate(obh)) {
108                         nilfs_copy_buffer(bh, obh);
109                         if (buffer_dirty(obh)) {
110                                 nilfs_mark_buffer_dirty(bh);
111                                 if (!buffer_nilfs_node(bh) && NILFS_MDT(inode))
112                                         nilfs_mdt_mark_dirty(inode);
113                         }
114                 }
115                 brelse(obh);
116                 unlock_page(opage);
117                 page_cache_release(opage);
118         }
119         return bh;
120 }
121
122 /**
123  * nilfs_forget_buffer - discard dirty state
124  * @inode: owner inode of the buffer
125  * @bh: buffer head of the buffer to be discarded
126  */
127 void nilfs_forget_buffer(struct buffer_head *bh)
128 {
129         struct page *page = bh->b_page;
130
131         lock_buffer(bh);
132         clear_buffer_nilfs_volatile(bh);
133         clear_buffer_nilfs_checked(bh);
134         clear_buffer_dirty(bh);
135         if (nilfs_page_buffers_clean(page))
136                 __nilfs_clear_page_dirty(page);
137
138         clear_buffer_uptodate(bh);
139         clear_buffer_mapped(bh);
140         bh->b_blocknr = -1;
141         ClearPageUptodate(page);
142         ClearPageMappedToDisk(page);
143         unlock_buffer(bh);
144         brelse(bh);
145 }
146
147 /**
148  * nilfs_copy_buffer -- copy buffer data and flags
149  * @dbh: destination buffer
150  * @sbh: source buffer
151  */
152 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
153 {
154         void *kaddr0, *kaddr1;
155         unsigned long bits;
156         struct page *spage = sbh->b_page, *dpage = dbh->b_page;
157         struct buffer_head *bh;
158
159         kaddr0 = kmap_atomic(spage, KM_USER0);
160         kaddr1 = kmap_atomic(dpage, KM_USER1);
161         memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
162         kunmap_atomic(kaddr1, KM_USER1);
163         kunmap_atomic(kaddr0, KM_USER0);
164
165         dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
166         dbh->b_blocknr = sbh->b_blocknr;
167         dbh->b_bdev = sbh->b_bdev;
168
169         bh = dbh;
170         bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
171         while ((bh = bh->b_this_page) != dbh) {
172                 lock_buffer(bh);
173                 bits &= bh->b_state;
174                 unlock_buffer(bh);
175         }
176         if (bits & (1UL << BH_Uptodate))
177                 SetPageUptodate(dpage);
178         else
179                 ClearPageUptodate(dpage);
180         if (bits & (1UL << BH_Mapped))
181                 SetPageMappedToDisk(dpage);
182         else
183                 ClearPageMappedToDisk(dpage);
184 }
185
186 /**
187  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
188  * @page: page to be checked
189  *
190  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
191  * Otherwise, it returns non-zero value.
192  */
193 int nilfs_page_buffers_clean(struct page *page)
194 {
195         struct buffer_head *bh, *head;
196
197         bh = head = page_buffers(page);
198         do {
199                 if (buffer_dirty(bh))
200                         return 0;
201                 bh = bh->b_this_page;
202         } while (bh != head);
203         return 1;
204 }
205
206 void nilfs_page_bug(struct page *page)
207 {
208         struct address_space *m;
209         unsigned long ino = 0;
210
211         if (unlikely(!page)) {
212                 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
213                 return;
214         }
215
216         m = page->mapping;
217         if (m) {
218                 struct inode *inode = NILFS_AS_I(m);
219                 if (inode != NULL)
220                         ino = inode->i_ino;
221         }
222         printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
223                "mapping=%p ino=%lu\n",
224                page, atomic_read(&page->_count),
225                (unsigned long long)page->index, page->flags, m, ino);
226
227         if (page_has_buffers(page)) {
228                 struct buffer_head *bh, *head;
229                 int i = 0;
230
231                 bh = head = page_buffers(page);
232                 do {
233                         printk(KERN_CRIT
234                                " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
235                                i++, bh, atomic_read(&bh->b_count),
236                                (unsigned long long)bh->b_blocknr, bh->b_state);
237                         bh = bh->b_this_page;
238                 } while (bh != head);
239         }
240 }
241
242 /**
243  * nilfs_alloc_private_page - allocate a private page with buffer heads
244  *
245  * Return Value: On success, a pointer to the allocated page is returned.
246  * On error, NULL is returned.
247  */
248 struct page *nilfs_alloc_private_page(struct block_device *bdev, int size,
249                                       unsigned long state)
250 {
251         struct buffer_head *bh, *head, *tail;
252         struct page *page;
253
254         page = alloc_page(GFP_NOFS); /* page_count of the returned page is 1 */
255         if (unlikely(!page))
256                 return NULL;
257
258         lock_page(page);
259         head = alloc_page_buffers(page, size, 0);
260         if (unlikely(!head)) {
261                 unlock_page(page);
262                 __free_page(page);
263                 return NULL;
264         }
265
266         bh = head;
267         do {
268                 bh->b_state = (1UL << BH_NILFS_Allocated) | state;
269                 tail = bh;
270                 bh->b_bdev = bdev;
271                 bh = bh->b_this_page;
272         } while (bh);
273
274         tail->b_this_page = head;
275         attach_page_buffers(page, head);
276
277         return page;
278 }
279
280 void nilfs_free_private_page(struct page *page)
281 {
282         BUG_ON(!PageLocked(page));
283         BUG_ON(page->mapping);
284
285         if (page_has_buffers(page) && !try_to_free_buffers(page))
286                 NILFS_PAGE_BUG(page, "failed to free page");
287
288         unlock_page(page);
289         __free_page(page);
290 }
291
292 /**
293  * nilfs_copy_page -- copy the page with buffers
294  * @dst: destination page
295  * @src: source page
296  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
297  *
298  * This function is for both data pages and btnode pages.  The dirty flag
299  * should be treated by caller.  The page must not be under i/o.
300  * Both src and dst page must be locked
301  */
302 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
303 {
304         struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
305         unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
306
307         BUG_ON(PageWriteback(dst));
308
309         sbh = sbufs = page_buffers(src);
310         if (!page_has_buffers(dst))
311                 create_empty_buffers(dst, sbh->b_size, 0);
312
313         if (copy_dirty)
314                 mask |= (1UL << BH_Dirty);
315
316         dbh = dbufs = page_buffers(dst);
317         do {
318                 lock_buffer(sbh);
319                 lock_buffer(dbh);
320                 dbh->b_state = sbh->b_state & mask;
321                 dbh->b_blocknr = sbh->b_blocknr;
322                 dbh->b_bdev = sbh->b_bdev;
323                 sbh = sbh->b_this_page;
324                 dbh = dbh->b_this_page;
325         } while (dbh != dbufs);
326
327         copy_highpage(dst, src);
328
329         if (PageUptodate(src) && !PageUptodate(dst))
330                 SetPageUptodate(dst);
331         else if (!PageUptodate(src) && PageUptodate(dst))
332                 ClearPageUptodate(dst);
333         if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
334                 SetPageMappedToDisk(dst);
335         else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
336                 ClearPageMappedToDisk(dst);
337
338         do {
339                 unlock_buffer(sbh);
340                 unlock_buffer(dbh);
341                 sbh = sbh->b_this_page;
342                 dbh = dbh->b_this_page;
343         } while (dbh != dbufs);
344 }
345
346 int nilfs_copy_dirty_pages(struct address_space *dmap,
347                            struct address_space *smap)
348 {
349         struct pagevec pvec;
350         unsigned int i;
351         pgoff_t index = 0;
352         int err = 0;
353
354         pagevec_init(&pvec, 0);
355 repeat:
356         if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
357                                 PAGEVEC_SIZE))
358                 return 0;
359
360         for (i = 0; i < pagevec_count(&pvec); i++) {
361                 struct page *page = pvec.pages[i], *dpage;
362
363                 lock_page(page);
364                 if (unlikely(!PageDirty(page)))
365                         NILFS_PAGE_BUG(page, "inconsistent dirty state");
366
367                 dpage = grab_cache_page(dmap, page->index);
368                 if (unlikely(!dpage)) {
369                         /* No empty page is added to the page cache */
370                         err = -ENOMEM;
371                         unlock_page(page);
372                         break;
373                 }
374                 if (unlikely(!page_has_buffers(page)))
375                         NILFS_PAGE_BUG(page,
376                                        "found empty page in dat page cache");
377
378                 nilfs_copy_page(dpage, page, 1);
379                 __set_page_dirty_nobuffers(dpage);
380
381                 unlock_page(dpage);
382                 page_cache_release(dpage);
383                 unlock_page(page);
384         }
385         pagevec_release(&pvec);
386         cond_resched();
387
388         if (likely(!err))
389                 goto repeat;
390         return err;
391 }
392
393 /**
394  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
395  * @dmap: destination page cache
396  * @smap: source page cache
397  *
398  * No pages must no be added to the cache during this process.
399  * This must be ensured by the caller.
400  */
401 void nilfs_copy_back_pages(struct address_space *dmap,
402                            struct address_space *smap)
403 {
404         struct pagevec pvec;
405         unsigned int i, n;
406         pgoff_t index = 0;
407         int err;
408
409         pagevec_init(&pvec, 0);
410 repeat:
411         n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
412         if (!n)
413                 return;
414         index = pvec.pages[n - 1]->index + 1;
415
416         for (i = 0; i < pagevec_count(&pvec); i++) {
417                 struct page *page = pvec.pages[i], *dpage;
418                 pgoff_t offset = page->index;
419
420                 lock_page(page);
421                 dpage = find_lock_page(dmap, offset);
422                 if (dpage) {
423                         /* override existing page on the destination cache */
424                         WARN_ON(PageDirty(dpage));
425                         nilfs_copy_page(dpage, page, 0);
426                         unlock_page(dpage);
427                         page_cache_release(dpage);
428                 } else {
429                         struct page *page2;
430
431                         /* move the page to the destination cache */
432                         spin_lock_irq(&smap->tree_lock);
433                         page2 = radix_tree_delete(&smap->page_tree, offset);
434                         WARN_ON(page2 != page);
435
436                         smap->nrpages--;
437                         spin_unlock_irq(&smap->tree_lock);
438
439                         spin_lock_irq(&dmap->tree_lock);
440                         err = radix_tree_insert(&dmap->page_tree, offset, page);
441                         if (unlikely(err < 0)) {
442                                 WARN_ON(err == -EEXIST);
443                                 page->mapping = NULL;
444                                 page_cache_release(page); /* for cache */
445                         } else {
446                                 page->mapping = dmap;
447                                 dmap->nrpages++;
448                                 if (PageDirty(page))
449                                         radix_tree_tag_set(&dmap->page_tree,
450                                                            offset,
451                                                            PAGECACHE_TAG_DIRTY);
452                         }
453                         spin_unlock_irq(&dmap->tree_lock);
454                 }
455                 unlock_page(page);
456         }
457         pagevec_release(&pvec);
458         cond_resched();
459
460         goto repeat;
461 }
462
463 void nilfs_clear_dirty_pages(struct address_space *mapping)
464 {
465         struct pagevec pvec;
466         unsigned int i;
467         pgoff_t index = 0;
468
469         pagevec_init(&pvec, 0);
470
471         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
472                                   PAGEVEC_SIZE)) {
473                 for (i = 0; i < pagevec_count(&pvec); i++) {
474                         struct page *page = pvec.pages[i];
475                         struct buffer_head *bh, *head;
476
477                         lock_page(page);
478                         ClearPageUptodate(page);
479                         ClearPageMappedToDisk(page);
480                         bh = head = page_buffers(page);
481                         do {
482                                 lock_buffer(bh);
483                                 clear_buffer_dirty(bh);
484                                 clear_buffer_nilfs_volatile(bh);
485                                 clear_buffer_nilfs_checked(bh);
486                                 clear_buffer_uptodate(bh);
487                                 clear_buffer_mapped(bh);
488                                 unlock_buffer(bh);
489                                 bh = bh->b_this_page;
490                         } while (bh != head);
491
492                         __nilfs_clear_page_dirty(page);
493                         unlock_page(page);
494                 }
495                 pagevec_release(&pvec);
496                 cond_resched();
497         }
498 }
499
500 unsigned nilfs_page_count_clean_buffers(struct page *page,
501                                         unsigned from, unsigned to)
502 {
503         unsigned block_start, block_end;
504         struct buffer_head *bh, *head;
505         unsigned nc = 0;
506
507         for (bh = head = page_buffers(page), block_start = 0;
508              bh != head || !block_start;
509              block_start = block_end, bh = bh->b_this_page) {
510                 block_end = block_start + bh->b_size;
511                 if (block_end > from && block_start < to && !buffer_dirty(bh))
512                         nc++;
513         }
514         return nc;
515 }
516
517 /*
518  * NILFS2 needs clear_page_dirty() in the following two cases:
519  *
520  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
521  *    page dirty flags when it copies back pages from the shadow cache
522  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
523  *    (dat->{i_mapping,i_btnode_cache}).
524  *
525  * 2) Some B-tree operations like insertion or deletion may dispose buffers
526  *    in dirty state, and this needs to cancel the dirty state of their pages.
527  */
528 int __nilfs_clear_page_dirty(struct page *page)
529 {
530         struct address_space *mapping = page->mapping;
531
532         if (mapping) {
533                 spin_lock_irq(&mapping->tree_lock);
534                 if (test_bit(PG_dirty, &page->flags)) {
535                         radix_tree_tag_clear(&mapping->page_tree,
536                                              page_index(page),
537                                              PAGECACHE_TAG_DIRTY);
538                         spin_unlock_irq(&mapping->tree_lock);
539                         return clear_page_dirty_for_io(page);
540                 }
541                 spin_unlock_irq(&mapping->tree_lock);
542                 return 0;
543         }
544         return TestClearPageDirty(page);
545 }